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Abstract

The turnstile continual release model of differen-
tial privacy captures scenarios where a privacy-
preserving real-time analysis is sought for a
dataset evolving through additions and deletions.
In typical applications of real-time data analy-
sis, both the length of the stream T and the size
of the universe |U| from which data come can
be extremely large. This motivates the study of
private algorithms in the turnstile setting using
space sublinear in both T and |U|. In this paper,
we give the first sublinear space differentially pri-
vate algorithms for the fundamental problem of
counting distinct elements in the turnstile stream-
ing model. Our algorithm achieves, on arbitrary
streams, Õη(T

1/3) space and additive error, and a
(1 + η)-relative approximation for all η ∈ (0, 1).
Our result significantly improves upon the space
requirements of the state-of-the-art algorithms for
this problem, which is linear, approaching the
known Ω(T 1/4) additive error lower bound for
arbitrary streams. Moreover, when a bound W on
the number of times an item appears in the stream
is known, our algorithm provides Õη(

√
W ) ad-

ditive error, using Õη(
√
W ) space. This addi-

tive error asymptotically matches that of prior
work which required instead linear space. Our
results address an open question posed by (Jain
et al., 2023) about designing low-memory mech-
anisms for this problem. We complement these
results with a space lower bound for this problem,
which shows that any algorithm that uses similar
techniques must use space Ω̃(T 1/3) on arbitrary
streams.
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1. Introduction
Data streaming applications in which one needs to track
specific statistics over a period of time occur in many real-
world scenarios including digital advertising, network mon-
itoring, and database systems. Given the sheer volume of
data collected and processed in these online settings, sig-
nificant work has been dedicated to the design of efficient
algorithms to track and release useful statistics about the
data stream, at every timestep. A key goal in this area is the
design of space-efficient algorithms, i.e., algorithms that do
not require storing the entire stream in memory.

In many applications, the data being collected is not only
massive, but also contains sensitive and personal user infor-
mation. In this case, formal privacy protections are often re-
quired to ensure that the data released by the algorithm does
not inadvertently leak protected information about individ-
ual users. Differential privacy (DP) (Dwork et al., 2006) has
emerged as the de facto gold-standard in privacy-preserving
data analysis to address such concerns.

We focus on the turnstile model of continual release in
differential privacy. In this model, we are given a stream
x = (x1, . . . , xT ), where each xt can be an insertion (+u)
or deletion (−u) of some data item u from a fixed universe
U , or ⊥ (no update), and the goal is to release a statistic of
interest at every timestep t ∈ [T ], in a differentially private
manner. An algorithmA is (ε, δ)-differentially private if for
any neighboring input streams x ∼ x′ and any output set O,

Pr[A(x) ∈ O] ≤ eε Pr[A(x′) ∈ O] + δ.

In the continual release model, the output A(x) refers to
the entire output history of the algorithm A over stream x
at every timestep. We consider event-level privacy, i.e., the
input streams x ∼ x′ are neighboring if they differ in at
most one timestep.

In this paper, we study the fundamental problem of count-
ing distinct elements in the turnstile model under continual
release. Starting from the seminal works of (Flajolet & Mar-
tin, 1985; Alon et al., 1999), there is a rich literature of low
space algorithms for the problem of counting distinct ele-
ments in the non-DP streaming world (e.g., see references
within (Muthukrishnan, 2005)).
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While space-efficient DP algorithms for this problem have
been recently studied in the (1) one-shot model (where
the algorithm produces an output once at the end of the
stream) (Pagh & Stausholm, 2021; Wang et al., 2022; Dick-
ens et al., 2022; Hehir et al., 2023; Smith et al., 2020; Stano-
jevic et al., 2017; Braverman et al., 2023; Blocki et al.,
2023), and (2) insertion-only continual release model (where
the algorithm outputs at every timestep, but no deletions are
allowed) (Epasto et al., 2023; Dwork et al., 2010; Chan et al.,
2011; Bolot et al., 2013; Ghazi et al., 2023), the existence
of a private space-efficient algorithm in the more general
turnstile model under continual release has been largely
unexplored. Notably, even without any space constraints,
recent work (Jain et al., 2023) has shown that designing DP
algorithms for this problem in the general turnstile model
is more challenging and can incur significantly more addi-
tive error, i.e., polynomial in T in the turnstile model vs.
polylogarithmic in T in the insertion-only model. Under-
standing whether this fundamental problem can be solved in
the turnstile model under continual release with reasonable
accuracy and efficiency is an open problem. We address
this gap by presenting the first sublinear space algorithm
(sublinear in T and |U|) for counting distinct elements.

For counting distinct elements in an input stream x under
continual release, one strategy used by prior work (Epasto
et al., 2023; Jain et al., 2023) is to approximately track
the summation over the stream sx ∈ {−1, 0, 1}T with the
binary tree mechanism (Chan et al., 2011; Dwork et al.,
2010), where sx(t) is the difference in the number of dis-
tinct elements at timestep t− 1 and t. Note that

∑
i≤t sx(i)

precisely gives the number of distinct elements at timestep
t. In the insertion-only setting, it is easy to observe that
the sensitivity of the summation stream sx is bounded by
a constant (Epasto et al., 2023; Bolot et al., 2013). In the
turnstile model, (Jain et al., 2023) observed that a change in
the stream x can cause Ω(T ) changes to the corresponding
summation stream sx. In particular, the sensitivity of the
summation stream sx in the turnstile model depends on the
number of times an input stream item switches between be-
ing present to absent or vice versa — this property is called
the flippancy of the item. (Jain et al., 2023) designed DP
algorithms for counting distinct elements where the additive
error scales with the flippancy of the stream, denoted wx

(i.e., maximum flippancy over all items in the universe for
a fixed stream). More specifically, the algorithm imposes a
(provable) bound on the maximum flippancy of the stream.

However, flippancy is ill-suited to design low-space algo-
rithms due to its inherently stateful nature (i.e., whether an
element flips at time t depends on all prior events of that
element). For this reason, we introduce the related, but
stateless, notion of occurrency (see Definition 1.1) which
measures the maximum number of times an item appears in
the stream. Using this occurrency measure, we design space-

efficient DP algorithms for counting distinct elements with
error and space that scales with the maximum occurrency.

Definition 1.1 (Occurrency). Given a stream x and an ele-
ment u ∈ U , the occurrency of u in x, denoted occur(u, x),
is the number of times an element u appears (either as inser-
tion or as deletion) in the stream x. The occurrency of the
stream x, denoted Wx, is maxu∈U occur(u, x).

We remark that for any stream x of size T , Wx ≤ T ; how-
ever, in many instances, the occurrency is much smaller, and
can be as low as T / |U|. For example, consider the case of
an online learning platform that wants to estimate the num-
ber of activities being actively performed at the moment by
users. A user can begin one activity (e.g., initiating an home-
work assignment for a course) and then terminate it when
they are done (e.g., completing the assignment).1 Each event
in this example stream represents initiations/terminations
of a given activity (where +u is an initiation of an activity
u, and −u is a termination). In this case, occurrency can
be bounded by twice the maximum number of students in a
class, which is clearly≪ T (total number of events).

In this paper, we first design a DP algorithm for counting dis-
tinct elements that, when provided with a stream promised
to have occurrency bounded by W , has an error and space
that scales as a function of the promised bound W . When
a bound on occurrency is known, as in the example above,
this first algorithm can be used as is and will satisfy DP
guarantees. However, in many cases an occurrency bound
may not be known. For this reason, we also design a more
general algorithm that for an arbitrary stream of unknown
occurrency, imposes a bound on occurrency for a subset of
the stream. Combining these results, we prove our main
result: a low-space algorithm with unconditional DP guar-
antees for arbitrary streams — i.e., the algorithm is truly
private in the sense of (Jain et al., 2023). Finally, we give a
matching space lower bound showing that any algorithm us-
ing a technique based on bounding occurrency (or flippancy)
cannot hope to achieve better space bounds.

1.1. Our Contributions

The main result of our paper is the design of the first
sublinear space DP algorithms for the problem of count-
ing distinct elements in the turnstile model under contin-
ual release. Before presenting our results, we first define
some useful notation and terminology. We say v is an
(α, β)-approximation of a function f on input stream x
if (1/α)f(x)− β ≤ v ≤ αf(x) + β.

We first present a DP algorithm for the problem of counting
distinct elements, where the input stream has a promised

1In this simple example, for clarity, we assume a user can only
participate in the activity once. Our algorithms make no such
assumption.
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upper bound on its occurrency. In such cases, our DP algo-
rithm achieves space and error guarantees that only have a
sublinear dependency on occurrency as stated below.2

This algorithm utilizes a low-space dictionary data structure
denoted KSET, which was introduced by (Ganguly, 2007)
to estimate the number of distinct elements in the non-DP
turnstile streaming setting. KSET supports the insertion and
deletion of data items and returns (with high probability) the
set of items S present in the dictionary as long as |S| ≤ k.
If the number of elements exceeds k or there is a collision
where two elements are assigned the same cell in the KSET,
then it “fails” by outputting NIL.

Theorem 1.2 (Informal, Corollary 3.1). For all ε, η > 0
and δ ∈ (0, 1) and streams of length T ∈ N, given a
promised occurrency bound of Wx, there exists an (ε, δ)-
DP algorithm in the turnstile model under continual re-
lease that outputs a (1 + η, Õε,δ,η(

√
Wx))-approximation

to the number of distinct elements in the stream, using space
Õε,δ,η(

√
Wx).

We remark that in this result, DP is guaranteed only when the
input streams do not violate the promised occurrency upper
bound. Our next result allows us to remove this assumption
and provide a DP algorithm for streams with unbounded
occurrency by creating a blocklist of high occurrency items
to effectively ignore them in future timesteps. Before pre-
senting our main result, we first define the problem of block-
listing high occurrency items and show a near optimal space
algorithm for this problem.

Let blocklistocc(W) be the problem of outputting 0 at
timestep t when the current input element has occurrency
< W (up to the step before), and 1 otherwise. An algorithm
for solving blocklistocc(W) reports a false negative if the
element at timestep t has occurrency≥W but the algorithm
outputs 0; it reports a false positive if the element at timestep
t has occurrency < W but the algorithm outputs 1.

Theorem 1.3 (Informal, Corollary E.3 and Theorem E.2).
There exists an algorithm that, with high probability,
has no false negatives and bounded false positives for
blocklistocc(W) and uses space Õ(T/W ). Moreover, for
any W > 0, any algorithm that solves blocklistocc(W)
with the same false positive bound (and no false negatives)
needs space Ω̃(T/W ).

This space lower bound applies to any algorithm (even ex-
ponential time ones) and implies that the space bounds
achieved by our final algorithms are optimal up to log factors
(among algorithms using the blocklisting approach).

Finally, our main result gives a DP algorithm for counting

2We present our informal results in terms of (ε, δ)-DP, however
our formal theorems are stated in terms of ρ-zCDP. We can use
Theorem A.2 to convert ρ-zCDP to (ε, δ)-DP.

distinct elements with no assumptions on the occurrency of
the input stream. Our algorithm uses the blocklisting tech-
nique described above with the optimal choice of occurrency
Wx = T 2/3, combined with the KSET data strucure to
achieve sublinear space and non-trivial additive error.

Theorem 1.4 (Main (Informal), Corollary 3.2). For all
ε, η > 0 and δ ∈ (0, 1) and streams of length T ∈ N,
there exists an (ε, δ)-DP algorithm in the turnstile model
under continual release that outputs a (1+η, Õε,δ,η(T

1/3))-
approximation to the number of distinct elements in the
stream, using space Õε,δ,η(T

1/3).

Comparison to prior work. We observe that our results
are the first to address the open question posed by (Jain
et al., 2023) regarding the existence of accurate, private, and
low-memory mechanism for counting distinct elements in
turnstile streams. When the stream has a promised flippancy
bound wx rather than a promised occurrency bound, the
informal Theorem 1.2 (and the formal counterpart Corol-
lary 3.1) can be restated equally in terms of the flippancy
of the stream. More precisely, our algorithm provides a
1 + η multiplicative approximation with Õε,δ,η(

√
wx)) ad-

ditive error, using space Õε,δ,η(
√
wx).3 This additive er-

ror matches (neglecting lower order terms) the additive er-
ror Õε(min(

√
wx, T

1/3)) in the algorithm of (Jain et al.,
2023)4 which is achieved however with Ω(T ) space. (This
is because for the regime of wx ≥ T 2/3 one can use the
unbounded occurrency algorithm in our paper to obtain ad-
ditive error Õε,δ,η(T

1/3)). When flippancy is unbounded,
our additive error is always Õε,δ,η(T

1/3). This is close to
the lower bound of Ω̃ε(T

1/4) from (Jain et al., 2023) for pri-
vate algorithms for the problem in streams of arbitrary large
flippancy. Closing this gap is an interesting open problem.

1.2. Related Work

Our work on designing space-efficient turnstile streaming
algorithms in the DP continual release setting is related to
several topics in the areas of (non-private) space-efficient
streaming algorithms, DP continual release, and DP stream-
ing algorithms. Additional related work can be found in
Appendix A.1.

Space-efficient streaming algorithms. The streaming
model of computation (Flajolet & Martin, 1985) is a well-
known abstraction for efficient computation on large-scale
data. In this model, data are received one input at a time,
and the algorithm designer seeks to design algorithms that
compute a solution on-the-fly while using limited space and
time. In the area of non-private computation, a vast literature

3We omit the proof for simplicity as it is follows the same steps
as our proof in terms of occurrency.

4Sublinear space requires a multiplicative approximation factor
in our algorithm.
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has been developed over the past decades (Morris, 1978;
Flajolet & Martin, 1985; Flajolet et al., 2012; Alon et al.,
1996) for addressing a variety of problems ranging from
classical streaming computations (such as heavy hitters and
frequency moments) (Flajolet & Martin, 1985; Flajolet et al.,
2012; Durand & Flajolet, 2003; Cormode & Muthukrishnan,
2005; Misra & Gries, 1982), to solving combinatorial opti-
mization problems (McGregor & Vorotnikova, 2018; Huang
& Peng, 2019; Charikar et al., 2003). Two key questions
in the literature are whether it is possible to obtain space
sublinear in the number of updates (Flajolet et al., 2012)
and whether it is possible to handle increasingly more dy-
namic updates (i.e., insertions-only, sliding window (Datar
et al., 2002), and fully-dynamic streams (McGregor & Vorot-
nikova, 2018)). In the (non-private) streaming literature,
there is a well-developed theoretical understanding for in-
terplay between the dynamicity of the stream, the accuracy
achievable, and space bounds required, for a vast array of
algorithmic problems (Woodruff, 2004).

DP turnstile model. All previously mentioned work does
not consider the fully dynamic streaming setting, where
items can also be removed from the stream. The DP
turnstile continual release model is the private equiva-
lent of the fully-dynamic streaming model, and has re-
ceived substantially less attention in the literature. Count-
ing distinct elements in the turnstile continual release
model was only recently studied for the first time by (Jain
et al., 2023). For a stream with flippancy bound w,
they give an (ε, δ)-DP mechanism with additive error
O(ε−1

√
w poly log(T )

√
log(1/δ)) and space Ω(T ). They

also show a lower bound of Ω(min(w, T 1/4)) on the ad-
ditive error for any DP mechanism for this problem. In a
concurrent work, (Henzinger et al., 2023) also studied this
problem under a restricted variant of the turnstile model
where items are guaranteed to be present with cardinality
at most 1 at any time (i.e., multiple insertions of the same
element are ignored). For this setting, they give an (ε, 0)-DP
algorithm with additive error Õ(

√
ε−1K log(T )), where K

is the total number of insertions and deletions, and a nearly
matching lower bound. Contrary to the non-private litera-
ture, theoretical understanding of space efficiency in private
dynamic streaming algorithms is very limited. No prior
work has designed differentially private sublinear-space al-
gorithms for the foundational problem of counting distinct
elements in the turnstile continual release model.

2. Preliminaries
We consider an input stream x1, . . . , xT of length T , com-
ing from universe U , such that each xi ∈ U ∪ {⊥}. We
assume that |U| = poly(T ), as is standard in streaming
literature (Chakrabarti, 2012). This assumption allows for
simplified lower bound on space, since storing a single item

from the universe requires O(log(|U|)) = log(T )) bits.

First, we recall the definition of differential privacy (DP) on
streams. Neighboring streams x and x′, denoted x ∼ x′,
differ in the stream elements at most one timestep.
Definition 2.1 (Differential Privacy (Dwork et al., 2006)).
Given privacy parameters ε > 0 and δ ∈ [0, 1), an algorithm
A is (ε, δ)-DP if for any neighboring streams x ∼ x′ and
any output set O, Pr[A(x) ∈ O] ≤ eε Pr[A(x′) ∈ O] + δ.

When δ = 0, this is known as pure DP, when δ > 0 and it is
known as approximate DP. In the continual release setting,
the output of A(x) is the entire T -length output over the
stream x at every timestep.

Our privacy analysis will primarily use zero-concentrated
differential privacy (zCDP), which is a slight variant of the
standard DP definition. We present the definition of zCDP,
its composition properties, and its relationship to (ε, δ)-DP
in the one-shot setting, where the entire stream is processed
and only one output is released at the end of the stream.
Definition 2.2 (zero-Concentrated Differential Privacy
(zCDP) (Bun & Steinke, 2016)). Given a privacy parameter
ρ > 0, a randomized algorithm A satisfies ρ-zCDP if for all
pairs of neighboring streams x ∼ x′ and all α > 1,

Dα(A(x)∥A(x′)) ≤ ρα,

where Dα(P∥Q) = 1
α−1 log

(
Ey∼P

[
P (y)α−1

Q(y)α−1

])
is the

Renyi divergence of order α between probability distribu-
tions P and Q.

There is also a relaxation of zCDP, known as approximate
zCDP, which is analogous to the relaxation between pure
DP and approximate DP.
Definition 2.3 (Approximate zCDP (Bun & Steinke, 2016)).
Given privacy parameters ρ > 0 and δ ∈ (0, 1), a random-
ized algorithm A satisfies δ-approximate ρ-zCDP if for all
pairs of neighboring streams x ∼ x′, there exist events E
(which depends onA(x)) and E′ (which depends onA(x′))
such that Pr[E] ≥ 1 − δ, Pr[E′] ≥ 1 − δ, and for all
α ∈ (1,∞),

Dα(A(x)|E∥A(x′)|E′) ≤ ρα ∨Dα(A(x′)|E′∥A(x)|E) ≤ ρα,

where A(x)|E is the distribution of A(x) conditioned on E.

The privacy parameters of zCDP compose, similar to the
composition guarantees of DP, and it is possible to translate
between the guarantees of zCDP and DP. Both of these are
shown in Appendix A.2, along with other additional details
on zCDP.

3. Estimating the Number of Distinct Elements
In Section 3.1, we first present our DP algorithm (Algo-
rithm 1), which outputs an approximation of the number of
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distinct elements in the stream in a continual release manner.
We then present our main results for this algorithm in Sec-
tion 3.2, namely its privacy, accuracy, and space guarantees,
will details of the analysis deferred to Section 4.

3.1. Algorithm and Description

Our algorithm CountDistinct (Algorithm 1) for counting
the number of distinct elements in a stream uses three main
ingredients: (1) a KSET data structure which we use to store
distinct elements from the stream x with low space, (2) a
binary-tree mechanism BinaryMechanism-CD for estimat-
ing the summation stream sx(t) ∈ {−1, 0, 1}T which we
obtain by comparing the cardinality of the distinct element
set returned by the KSET data structure at timesteps t− 1
and t, and (3) a blocklist B which with high probability,
stores all items whose occurrency is too large.

At a high-level, CountDistinct executes the following pro-
cess on different subsamples. At each timestep t ∈ [T ], if
the data element xt is non-empty, then the COUNTING-
KSET subroutine updates the KSET data structure with xt,
and obtains the current set of distinct elements from the
KSET (if the KSET does not fail; we discuss later how to
deal with failures in the KSET as this case requires more
care). If the item corresponding to xt is present in the block-
list B, then the COUNTING-KSET subroutine does not
update the KSET data structure with xt. Next, the algo-
rithm computes sx(t) to be the difference in counts between
the current distinct elements set and the previously stored
set, and feeds sx(t) into BinaryMechanism-CD, which
produces a differentially privat count of the number of dis-
tinct elements ŝx(t). Finally ŝx(t) is compared to a fixed
threshold τ . If ŝx(t) is greater than τ , then COUNTING-
KSET returns TOO-HIGH, otherwise it returns ŝx(t) to the
main algorithm. The algorithm then performs the block-
listing step, which adds the current item to the blocklist B
with probability p — this ensures that the elements with
high occurrency are not likely to be considered by our algo-
rithm in future iterations. This process is executed in log(T )
parallel instances of COUNTING-KSET with different sam-
pling rates using a hash function, in order to ensure that at
least one sampling rate yields a good approximation to the
number of distinct elements.

More concretely, Algorithm 1 takes in a boolean flag ob as
input, indicating whether there is a promised bound on the
occurrency of the stream — if ob is true, the algorithm will
operate under the assumption that the input stream has an
occurrency upper bounded by W , and thus does not employ
the blocklisting technique. If ob is false, the algorithm
imposes an internal bound of W = T 2/3 and executes
the blocklisting procedure, in which it fixes a sampling
probability p (in Line 16), and every time an element occurs,
the element is sampled with probability p to be stored in a

Algorithm 1 CountDistinct
Require: Stream x1, . . . , xT ∈ U , relative error η ∈

(0, 0.5), privacy parameter ρ, failure probability β,
boolean ob that signals if we have an occurrency bound
on elements, occurrency bound W

1: Let L← ⌈log(T )⌉, λ← 2 log(40L/β)
2: if ob is true then
3: γ =

√
4(W+1)(log T+1)3 log(10(log T+1)/β)

ρ

4: else
5: γ =

√
4(T 2/3+1)(log T+1)3 log(10(log T+1)/β)

ρ +

3T 1/3 log(T 1/3⌈log T ⌉/β)
6: end if
7: Let g : U → [L] be a λ-wise independent hash func-

tion; for every a ∈ U , i ∈ [L], Pr[g(a) = i] = 2−i,
Pr[g(a) =⊥] = 2−L

8: Initialize empty streams S1, . . . ,SL {Si is the stream
of noisy distinct counts and TOO-HIGHs}

9: Initialize COUNTING-KSET1, . . . ,COUNTING-KSETL

with occurrency bound W if ob = true or occurrency
bound T 2/3 if ob = false

10: Initialize blocklist B = ∅
11: for update xt do
12: for i ∈ [L] do
13: if xt ̸=⊥ and g(xt) = i then
14: Si[t] = COUNTING-KSETi.Update(xt,B)

{see Algorithm 2}
15: if xt /∈ B and ob is false then
16: Add xt to B with probability p =

log(T 1/3L/β)
T 2/3

17: end if
18: else
19: Si[t] = COUNTING-KSETi.Update(⊥,B)

{see Algorithm 2}
20: end if
21: end for
22: Output: Si[t] · 2i for the largest i ∈ [L]

such that Si[t] is not TOO-HIGH and Si[t] ≥
max{γ/η, 32λ/η2}. (If such i does not exist, output
0.)

23: end for

blocklist B.

Algorithm 1 uses a hash function to generate multiple par-
allel substreams i ∈ [L] of the input stream (see Line 7)
where L = ⌈log(T )⌉, all subsampled with different sam-
pling rates. The different sampling rates ensure that at least
one sampling rate will yield a good approximation of the
number of distinct elements in the original stream.

For each instance, i ∈ L, Algorithm 1 initializes the DP
subroutine COUNTING-KSETi (Algorithm 2), which uses
two key subroutines:
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Algorithm 2 COUNTING-KSET
Require: Stream update x1, . . . , xT ∈ U , relative error

η ∈ (0, 0.5), privacy parameter ρ, failure probability β,
substream index i, occurrency bound W on elements,
blocklist B

1: Initialize τ = 16max{γ/η, 32λ/η2} +

2
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ

2: Initialize k = 16max{γ/η, 32λ/η2} +

4
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ

3: Initialize BinaryMechanism-CDi with parameters:
privacy parameter ρ/L and occurrency bound W

4: Initialize KSETi data structure with parameters: capac-
ity k and failure probability β/(2TL)

5: Initialize Fi,last = 0, tlast = 0
6: Update(xt,B):
7: for update xt do
8: if xt ̸=⊥ and xt ̸∈ B then
9: KSETi.Update(xt)

10: end if
11: Let Si ← KSETi.ReturnSet {Only keep the ele-

ments but not their counts }
12: if Si ̸= NIL then
13: tdiff = t− tlast
14: diff = |Si| − Fi,last
15: for j = 1 to |diff| do
16: if diff > 0 then
17: ŝi ←BinaryMechanism-CDi.Update(1)
18: else if diff < 0 then
19: ŝi ←BinaryMechanism-CDi.Update(−1)
20: end if
21: end for
22: for j = 1 to tdiff − |diff| do
23: ŝi ←BinaryMechanism-CDi.Update(0)
24: end for
25: Save Fi,last ← |Si|
26: tlast = t
27: end if
28: if ŝi > τ or Si =NIL then
29: Return TOO-HIGH
30: else
31: Return ŝi
32: end if
33: end for

1. KSET (Algorithm 4): The k-set structure is a dictio-
nary data structure that supports insertion and deletion
of data items and either returns, with high probability,
the set of items S that are present in the dictionary if
|S| ≤ k, or returns NIL (failure condition). Additional
details are deferred to Appendix B.1.

2. BinaryMechanism-CD (Algorithm 5): This subrou-

tine is used to privately count the sum of the differ-
ence in the count of distinct elements between consec-
utive timesteps. The mechanism is an extension of the
Binary Mechanism (Chan et al., 2011; Dwork et al.,
2010); however, the major differences are that it uses
Gaussian noise (similar to (Jain et al., 2023)) and the
input is {−1, 0, 1}T (as opposed to {0, 1}T in the orig-
inal). Although the BinaryMechanism-CD algorithm
is similar to prior work, its privacy analysis needs to be
handled carefully in our use-case, as it is closely tied
to the failure behavior of the KSET. Additional details
are deferred to Appendix B.2.

COUNTING-KSETi (Algorithm 2) takes as input xt and
updates the KSET data structure with xt (as long as xt is
not in blocklist B or equal to ⊥). If the KSETi does not
fail, then COUNTING-KSETi updates BinaryMechanism-
CDi with the difference of the distinct sample size at time
t and the distinct sample size at the last timestep before
tlast < t (Line 26) that the KSET did not fail. Then
BinaryMechanism-CDi outputs the noisy count of distinct
elements, denoted ŝi. If the KSET does fail, i.e., Si = NIL,
then COUNTING-KSETi skips to Line 28 which returns
TOO-HIGH if the KSET fails, or ŝi exceeds the threshold k.
Note that this step is crucial for proving that COUNTING-
KSETi is DP, which is presented in more detail in Sec-
tion 4.1. We note that COUNTING-KSETi does not take
as input the flag ob, because if ob = true, then B = ∅ in
Algorithm 1, so taking B as input is sufficient.

Finally, Algorithm 1 maintains a stream of noisy distinct
counts or TOO-HIGHs, denoted Si, for each of the log T
instances of COUNTING-KSETi instance. These streams
are used to output Si[t] ·2i such that Si[t] is not TOO-HIGH
in Line 22, which is the private count of distinct elements
in the i-th stream at time t, normalized by (the inverse of)
that stream’s sampling rate. This final count is output for all
times t ∈ [T ].

3.2. Main Results

In this subsection, we present our main results: Corollary 3.1
and Corollary 3.2, which summarize our main results on
the privacy (Theorem 4.1), accuracy (Theorem 4.5), and
space (Theorem 4.7) of Algorithm 1. Corollary 3.1 first
summarizes our main results when there is a promised upper
bound on the occurrency of the input stream.

Corollary 3.1. For all η > 0 and β ∈ (0, 1), and a
stream of length T , universe size |U| = poly(T ), and
promised occurrency ≤ W , there exists a β-approximate
ρ-zCDP algorithm in the turnstile model under continual
release that, with probability at least 1− 2β, outputs a (1±
η,max{O(γ/η), O(λ/η2)})-approximation to the number
of distinct elements using space O(

√
W · polylog(T/β)) ·
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poly( 1
ρη ) where γ = O

(√
W (log T )3 log(log T/β)

ρ

)
and

λ = O(log(log(T )/β)).

The next result (Corollary 3.2) summarizes our theoretical
guarantees when the stream has unbounded occurrency.

Corollary 3.2. For all η > 0 and β ∈ (0, 1),
and a stream of length T and universe size |U| =
poly(T ), there exists a 2β-approximate ρ-zCDP algo-
rithm in the turnstile model under continual release
that, with probability at least 1 − 2β outputs a (1 ±
η,max{O(γ/η), O(λ/η2)})-approximation to the number
of distinct elements using space O(T 1/3 · polylog(T/β)) ·

poly( 1
ρη ) where γ = O

(
T 1/3

√
(log T )3 log(log T/β)

ρ

)
and

λ = O(log(log(T )/β)).

4. Analysis of CountDistinct

This section presents details of the privacy (Theorem 4.1),
accuracy (Theorem 4.5) and space (Theorem 4.7) guarantees
of Algorithm 1. Omitted proofs are in Appendix D.

4.1. Privacy

First we present the privacy analysis, showing that Count-
Distinct (Algorithm 1) is differentially private. One key
challenge in the privacy analysis is to ensure that the out-
put of the KSET data structure does not leak privacy, even
in the event of its failure (i.e., if more than k distinct ele-
ments are stored). Note that if the KSET never failed, then
one could simply sum up the difference in the output sizes
of the KSET over consecutive timesteps, i.e., the stream
sx ∈ {−1, 0, 1}T using BinaryMechanism-CD. Assum-
ing no failures, the sensitivity of sx can be bounded in terms
of the maximum occurrency W , since in this case the KSET
returns exact counts. However, the failure of KSET cannot
be avoided or absorbed into the δ parameter because the
KSET will fail with probability 1 when its capacity exceeds
k (see Lemma B.1).

We address this challenge by modifying the original KSET
algorithm to have well-behaved failures. More precisely, we
introduce a thresholding step where our algorithm returns
TOO-HIGH if the KSET fails or approaches a regime where
failing is a likely event. The latter can be estimated privately
by verifying whether the binary tree output is too large,
ŝx > τ , and returning TOO-HIGH if so (see COUNTING-
KSET, Algorithm 2).

By doing so, we can make a coupling argument between
our algorithm and a much simpler algorithm (COUNTING-
DICT, Algorithm 3) that simply stores the exact counts
of elements and computes ŝx via BinaryMechanism-CD
and has the same thresholding step: if ŝx > τ , return

TOO-HIGH. Note that COUNTING-DICT is not space-
efficient, and we only introduce it for analysis purposes. In
COUNTING-DICT, the sensitivity of sx can be bounded
in terms of the maximum occurrency W for all timesteps.
We then use the coupling argument to bound the sensitivity
of sx in COUNTING-KSET for all timesteps (barring spe-
cific bad events whose failure probability is negligible and
absorbed into the DP failure probability).

Algorithm 3 COUNTING-DICT
Require: Stream x1, . . . , xT ∈ U , relative error η ∈

(0, 0.5), privacy parameter ρ, failure probability β,
occurrency bound W on elements, substream index i,
list of blocklisted elements B

1: Let ŝi = 0 and τ = 16max{γ/η, 32λ/η2} +

2
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ

2: Initialize BinaryMechanism-CDi with parameters:
privacy parameter ρ/L and occurrency bound W

3: Initialize DICTi dictionary data structure of size |U|×T
4: Initialize Fi,last = 0
5: Update(xt,B):
6: for update xt do
7: if xt ̸=⊥ and xt ̸∈ B then
8: if xt is an insertion then
9: DICTi[xt][t] = DICTi[xt][t− 1] + 1

10: else
11: DICTi[xt][t] = DICTi[xt][t− 1]− 1
12: end if
13: Let si ←

∑
u∈U 1DICTi[u][t]>0

14: ŝi ←BinaryMechanism-CDi.Update(si −
Fi,last)

15: Save Fi,last ← si
16: else
17: ŝi ←BinaryMechanism-CDi.Update(0)
18: end if
19: if ŝi > τ then
20: Return TOO-HIGH
21: else
22: Return ŝi
23: end if
24: end for

We present the main theorem of the privacy guarantee below.
The proof requires showing that the output stream published
by COUNTING-KSETi is DP (see Corollary 4.4), which is
argued by showing that the outputs of COUNTING-KSETi

and COUNTING-DICTi are identical except with proba-
bility at most β (see Lemma 4.2). Since all the operations
after calling the subroutine COUNTING-KSETi in Lines
14 and 19 of Algorithm 1 is post-processing, we will have
shown that CountDistinct is approximate zCDP (see Defi-
nition 2.3) in Theorem 4.1.

Theorem 4.1. CountDistinct (Algorithm 1) is

7
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1. β-approximate ρ-zCDP if ob = true,

2. 2β-approximate ρ-zCDP if ob = false.

To prove Theorem 4.1, we first establish that the outputs of
COUNTING-KSETi and COUNTING-DICTi are identical
with high probability (Lemma 4.2, proven in Appendix
D.1). Define CountDistinct’ as a variant of CountDistinct
that replaces calls to COUNTING-KSETi (Algorithm 2) in
Line 9, Line 14, Line 19 with calls to COUNTING-DICTi

(Algorithm 3) for i ∈ [L].

Lemma 4.2. Fix the randomness used across runs of Count-
Distinct and CountDistinct’. Fix i ∈ [L], and let K
and E denote the output distributions of COUNTING-
KSETi and COUNTING-DICTi respectively. If k ≥
τ + O

(
polylog(T/β)

√
W√

ρ

)
, then the total variation distance

of the two distributions, dTV (K,E) ≤ β/L.

To prove that COUNTING-KSETi is differentially private
(Corollary 4.4), we first show that COUNTING-DICTi sat-
isfies differential privacy (Lemma 4.3).

Lemma 4.3. COUNTING-DICTi (Algorithm 3) is ρ/L-
zCDP, if ob = true, and is β/L-approximate ρ/L-zCDP, if
ob = false.

The full proof of Lemma 4.3 is in Appendix D.2; we pro-
vide a proof sketch here to highlight the key ideas. Re-
call that COUNTING-DICTi uses a dictionary data struc-
ture DICT to store the counts of the elements seen in the
stream, and the difference in the number of distinct ele-
ments is exactly computed from DICT and fed as input to
BM-Count-Distincti, which outputs a noisy distinct ele-
ment count ŝi. Thus, in order to prove the privacy guarantee
of COUNTING-DICTi, we need to show that BM-Count-
Distincti is DP. Then the output of COUNTING-DICTi

will simply be post-processing on the DP output of BM-
Count-Distincti (either ŝi or TOO-HIGH), so it will also be
DP. Hence, we prove that BM-Count-Distincti when used
in COUNTING-DICTi is β/L-approximate ρ/L-zCDP (in
Lemma D.4), which implies Lemma 4.3.

We next sketch the proof of Lemma D.4, that COUNTING-
DICTi is ρ/L-zCDP. On a high-level, we need to argue
that if x and x′ are neighboring streams, then the resulting
streams (after hashing and blocklisting, see Definition D.2)
that are fed as input to BM-Count-Distincti can differ in
at most W + 1 positions with probability 1 − β/L, for
occurrency bound W = T 2/3 (see Lemma D.6). Opening
up the analysis of the binary tree mechanism in BM-Count-
Distincti, we show that the sensitivity of the nodes over all
levels of the binary tree is at most 2

√
(W + 1)(log(T ) + 1).

Thus adding Gaussian noise proportional to this quantity
to each node of the binary tree preserves ρ/L-zCDP with
probability β/L.

We emphasize that the privacy argument for the BM-
Count-Distincti instance in COUNTING-DICTi cannot
be directly applied to the BM-Count-Distincti instance in
COUNTING-KSETi. This is because in COUNTING-
KSETi, the output of the KSET is used to compute the
input stream to BM-Count-Distincti, and failures of the
KSET can lead to a large difference in the outputs of BM-
Count-Distincti on neighboring streams. Thus the failure
behavior of the KSET must be handled carefully in the
privacy analysis. Corollary 4.4 gives the resulting privacy
guarantee for COUNTING-KSETi.

Corollary 4.4. COUNTING-KSETi (Algorithm 2) is (1)
(β/L)-approximate (ρ/L)-zCDP if ob = true, and (2)
(2β/L)-approximate (ρ/L)-zCDP if ob = false.

Proof. From Lemma 4.3 we know that COUNTING-DICTi

is β/L-approximate ρ/L-zCDP. In particular, for ob =
true, COUNTING-DICTi is ρ/L-zCDP. From Lemma 4.2,
we know that the output distribution of COUNTING-DICTi

and COUNTING-KSETi is identical except with probabil-
ity β/L. The claims for when ob = true vs ob = false
follows.

We are finally ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first argue about the case when
ob = false as this is the more general case.

The randomness of CountDistinct can be viewed as a joint
probability distribution RCD = Rg × RBL × RKC1

×
. . .×RKCL

whereRg denotes the randomness from pick-
ing hash function g (in Line 7 of Algorithm 1), RBL

denotes the randomness associated with sampling an el-
ement to add to blocklist B (in Line 16), and RKCi

de-
notes the randomness from the subroutine COUNTING-
KSETi for i ∈ [L]. Similarly, the randomness of Count-
Distinct’ can be viewed as a joint probability distribution
RCD′ = Rg × RBL × REC1 × . . . × RECL

where Rg

denotes the randomness from picking a hash function g,
RBL denotes the randomness associated with sampling an
element to add to blocklist B andRECi

denotes the random-
ness from the subroutine COUNTING-DICTi for i ∈ [L].

We first define an identity coupling over the randomnessRg

of picking the hash function and the randomness RBL of
blocklisting between CountDistinct and CountDistinct’. In
other words, we fix the same hash function g and the same
sampling rate to blocklist an item for CountDistinct and
CountDistinct’. Applying Lemma 4.2, we have that the
outputs of COUNTING-KSETi and COUNTING-DICTi

are identical except with probability β/L. In particular,
from Corollary 4.4, we have that COUNTING-KSETi is
2β/L-approximate ρ/L-zCDP. Since we have a total of
L substreams, using a union bound argument, the entire

8
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CountDistinct algorithm is 2β-approximate ρ-zCDP by
basic composition of zCDP (Theorem A.1).5

In the case when ob = true, note that we only have to con-
sider the identity coupling of over hashing items using hash
function g in CountDistinct and CountDistinct’. The claim
that the outputs are identical except with probability β/L
follows from Lemma 4.2. But now, from Corollary 4.4, we
have that COUNTING-KSETi is β/L-approximate ρ/L-
zCDP, and the rest of the argument follows from a union
bound and composition.

4.2. Accuracy

We present our main accuracy theorem in Theorem 4.5. Our
accuracy theorem is also parameterized by the value of the
boolean flag ob and gives different error/space trade-offs
according to whether ob is true or false. In particular if ob is
true, meaning our algorithm is promised that the occurrency
of input streams is bounded by W , then we get additive
error only that has

√
W dependency. If ob is false, then

our algorithm makes no assumption on the occurrency of
the input stream and therefore incurs a higher additive error.
Omitted accuracy proofs are in Appendices D.3 and D.4.

Theorem 4.5 (Accuracy of Algorithm 1). Let F (t) be
the correct number of distinct elements of the stream at
time t and let λ = 2 log(40⌈log(T )⌉/β). When ob=true,

let γ =
√

4(W+1)(log T+1)3 log(10(log T+1)/β)
ρ ; when

ob=false, let γ =
√

4(T 2/3+1)(log T+1)3 log(10(log T+1)/β)
ρ +

3T 1/3 log(T 1/3⌈log T ⌉/β). For a fixed timestep t ∈ [T ],
with probability at least 1−2β, the output of Algorithm 1 at
time t is a (1± 4η, 32max{γ/η, 32λ/η2})-approximation
of F (t) for any η ∈ (0, 0.5).

To prove Theorem 4.5, we use three helper lemmas, all
proved in Appendix D.4. Lemma D.7 bounds the number
of elements in the substream after hashing. Lemma D.8
proves the accuracy of BinaryMechanism-CD algorithm.
Lemma D.9 bounds the size of the blocklist when ob is false.
With the help of these lemmas, we can show the accuracy of
COUNTING-DICT, as an intermediate step in the analysis.
The proof of Theorem 4.6 is deferred to Appendix D.3.

Theorem 4.6. Let F (t) be the correct number of
distinct elements of the stream at time t and let
λ = 2 log(40⌈log(T )⌉/β). When ob is true, let

γ =
√

4(W+1)(log T+1)3 log(10(log T+1)/β)
ρ and when ob

is false, let γ =
√

4(T 2/3+1)(log T+1)3 log(10(log T+1)/β)
ρ +

3T 1/3 log(T 1/3⌈log T ⌉/β). For a fixed timestep t ∈ [T ],
with probability at least 1 − β, the output of Algorithm 1
at time t with COUNTING-DICTi as the subroutine is a

5Note that Theorem A.1 gives an even tighter guarantee, but we
we use this slightly weaker composition for a cleaner presentation.

(1± 4η, 32max{γ/η, 32λ/η2})-approximation of F (t) for
any η ∈ (0, 0.5).

With this, we can finally prove Theorem 4.5, by showing that
substituting COUNTING-KSET in place of COUNTING-
DICT still allows high accuracy of Algorithm 1.

Proof of Theorem 4.5. We apply a union bound argument
that combines Lemma 4.2 and Theorem 4.6. By Lemma 4.2,
we can link the accuracy of COUNTING-DICTi to that of
COUNTING-KSETi and with probability at least 1−β, the
output distributions of all the L instances of COUNTING-
DICTi and COUNTING-KSETi used in Algorithm 1 are
the same. Furthermore, Theorem 4.6 gives desired accu-
racy with probability at least 1 − β for Algorithm 1 with
COUNTING-DICTi. Thus, by a union bound over the two
events that (1) the output of COUNTING-DICTi matches
the output of COUNTING-KSETi for i ∈ [L] and (2)
COUNTING-DICTi is accurate.

4.3. Space Complexity

Finally, we present the space guarantees of our algorithm be-
low. As with the privacy and accuracy result, Theorem 4.7 is
parameterized by the value of the boolean flag ob. When ob
is true and the input stream is promised to have occurrency
bounded by W , the space is only polynomial in W . When
ob is false, the algorithm allows general input streams, and
internally enforces a bound T 2/3 on the stream’s occurrency
using blocklisting, which requires more space. We defer the
proof of Theorem 4.7 to Appendix D.5.

Theorem 4.7. With probability at least 1− β, assuming the
universe size |U| = poly(T ): If ob is true, the space com-
plexity of Algorithm 1 is O(

√
W ·polylog(T/β)) ·poly( 1

ρη ).
If ob is false, the space complexity of Algorithm 1 is
O(T 1/3 · polylog(T/β)) · poly( 1

ρη ).

5. Conclusions
In this paper we designed the first space-efficient differ-
entially private algorithms for the count distinct element
problem in the turnstile model. This result addresses an
open question of (Jain et al., 2023), showing that it is possi-
ble to design a low memory DP algorithm for this problem
in the turnstile setting. While we show that any algorithm
that uses blocklisting techniques cannot do any better in
terms of space, an interesting open question is to prove un-
conditional space bounds for any DP continual release algo-
rithm addressing the problem (regardless of the techniques
used). The current theoretical understanding of space lower
bounds in the DP streaming setting is very limited. Only
recently (Dinur et al., 2023) gave the first space DP lower
bound for any problem, under cryptographic assumptions;
any future progress in this direction would be interesting.
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A. Additional Tools and Background
A.1. Additional Related Work

DP continual release algorithms. Differential privacy (DP) (Dwork et al., 2006) has become the de facto standard of
private computation in algorithm design. In the context of streaming algorithms, the standard DP model is the continual
release model, first introduced by (Dwork et al., 2010; Chan et al., 2011). In this model, algorithms should preserve privacy
of the input, even if a solution is observed at each timestep (as opposed to the one-shot model where the adversary can obtain
only one solution at the end of the stream). Celebrated results in the continual release model include the well-known binary
mechanism for releasing sum statistics in a binary data stream with O(ε−1 log2(T )) additive error (Dwork et al., 2010; Chan
et al., 2011). Significant work has expanded on this foundational result in various directions, including handling non-binary
streams (Thakurta & Smith, 2013; Fichtenberger et al., 2021), sliding windows (Bolot et al., 2013), and improving the
space/utility tradeoffs (Dvijotham et al., 2024). The latter work also provided algorithms for counting distinct elements with
additive error of O(log1.5(T )) in insertion-only streams. Later work (Ghazi et al., 2023) also focused on counting distinct
elements in the sliding window model, achieving polylogarithmic additive error in the window size. For insertion-only
streams, (Epasto et al., 2023) gave the first DP algorithms with space O(poly log(T )) and a (1 + η)-multiplicative and
O(poly log(T )) additive error for counting distinct elements and frequency moment estimation in the insertion-only and
sliding window model under continual release.

DP one-shot streaming algorithms. A more restricted setting is the one-shot streaming model, where the analyst only
seeks to output a solution at the end of the stream. In the one-shot setting, (Desfontaines et al., 2019) showed membership
inference attacks for a large class of non-DP sketching algorithms for counting distinct elements, implying that they do
not preserve any reasonable notion of privacy. In the private sphere and for a related problem, designing low-space DP
algorithms for the general frequency moment estimation problem has been well-explored (Smith et al., 2020; Pagh &
Stausholm, 2021; Blocki et al., 2012; Dickens et al., 2022; Hehir et al., 2023). Specifically (Wang et al., 2022) showed
that a well-known streaming algorithm called the Fp sketch preserves DP as is. (Blocki et al., 2023) gave a black-box
transformation for turning non-DP streaming algorithms into DP streaming algorithms while still preserving sublinear
space and accuracy guarantees. These problems have also been explored in the pan-privacy streaming model, where DP is
preserved even if the internal memory of the algorithm is compromised (Dwork et al., 2010; Mir et al., 2011).

A.2. Additional Background on Differential Privacy

The privacy parameters of zCDP compose, similar to the composition guarantees of DP. Additionally, it is possible to
translate between the guarantees of zCDP and DP.

Theorem A.1 (Composition (Bun & Steinke, 2016)). Let A be a δ-approximate ρ-zCDP algorithm and A′ be a δ′-
approximate ρ′-zCDP algorithm. Then the composition A′′(x) = (A(x),A′(x)) satisfies (δ + δ′ − δ · δ′)-approximate
(ρ+ ρ′)-zCDP.

Theorem A.2 (Relationship to DP (Bun & Steinke, 2016)). For all ρ, δ > 0, if algorithm A is ρ-zCDP then A is
(ρ+ 2

√
ρ log(1/δ), δ)-DP. Conversely, if A is ε-DP then A is (ε2/2)-zCDP. If algorithm A is δ-approximate ρ-zCDP then

A is (ε, δ+(1−δ)δ′)-DP for all ε ≥ ρ, where δ′ = exp(−(ε−ρ)2/4ρ)·min{1,√π · ρ, 1
1+ε−ρ)/2ρ ,

2

1+ ε−ρ
2ρ +

√
(1+ ε−ρ

2ρ )+ 4
πρ

}.

Conversely, if A is (ε, δ)-DP then A is δ-approximate (ε2/2)-zCDP.

Finally, we present a simple mechanism that satisfies both DP and zCDP. The Gaussian Mechanism privately answers
vector-valued queries by adding Gaussian noise to the true query answer. The noise is proportional to the ℓ2-sensitivity of
the function, which is the maximum change in the function’s ℓ2-norm from changing a single element in the data.

Definition A.3 (Sensitivity (Dwork et al., 2006)). Let f : X → Rk be a function. Its ℓ2-sensitivity is defined as

max
x∼x′∈X

∥f(x)− f(x′)∥2

Theorem A.4 (Gaussian mechanism (Dwork & Roth, 2014)). Let f : Xn → R be a function with ℓ2-sensitivity at most ∆2.
Let A be an algorithm that on input y, releases a sample from N (f(y), σ2). Then A is (∆2

2/(2σ
2))-zCDP.

A.3. Concentration Bounds

We provide some basic concentration inequalities that will be used in our analyses.
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Lemma A.5 ((Bellare & Rompel, 1994)). Let λ ≥ 4 be an even integer. Let X be the sum of n λ-wise independent random
variables which take values in [0, 1]. Let µ = E[X] and A > 0. Then,

Pr[|X − µ| > A] ≤ 8

(
λµ+ λ2

A2

)λ/2

.

Theorem A.6 (Multiplicative Chernoff Bound (Mitzenmacher & Upfal, 2017)). Let X =
∑n

i=1 Xi where each Xi is a
Bernoulli variable which takes value 1 with probability pi and value 0 with probability 1− pi. Let µ = E[X] =

∑n
i=1 pi.

Then,

1. Upper Tail: Pr[X ≥ (1 + η) · µ] ≤ exp
(
− η2µ

2+η

)
for all η > 0;

2. Lower Tail: Pr[X ≤ (1− η) · µ] ≤ exp
(
−η2µ

3

)
for all 0 < η < 1.

Lemma A.7 (Chernoff Bound of Gaussian Random Variable). For X ∼ N (0, σ2), Pr(|X| > t) ≤ 2 exp(−t2/2σ2).

A.4. Information Theory Basics

We provide some basic information theory definitions and facts that are used in Section E. In this paper, we use log to refer
to the base 2 logarithm.

Definition A.8. The entropy of a random variable X , denoted by H(X), is defined as H(X) =
∑

x Pr[X =
x] log(1/Pr[X = x]).

Definition A.9. The conditional entropy of random variable X conditioned on random variable Y is defined as H(X|Y ) =
Ey[H(X|Y = y)] =

∑
y Pr[Y = y] ·H(X|Y = y).

Definition A.10. The mutual information between two random variables X and Y is defined as I(X;Y ) = H(X) −
H(X|Y ) = H(Y )−H(Y |X).

Definition A.11. The conditional mutual information between X and Y given Z is defined as I(X;Y |Z) = Ez[I(X;Y |Z =
z)]

Fact A.12. Let X,Y, Z be three random variables.

1. H(X|Y ) ≥ H(X|Y, Z).

2. H(X) ≤ log |supp(X)|.

3. I(X;Y |Z) ≤ H(X|Z).

4. Data processing inequality: for a deterministic function f(X), I(X;Y |Z) ≥ I(f(X);Y |Z).

5. I(X;Y |Z) ≥ 0.

B. KSET and Binary Mechanism
B.1. KSET Data Structure

In this subsection, we present the KSET data structure, first introduced in (Ganguly, 2007). In the non-DP turnstile setting,
one key strategy for solving a variety of problems including estimating the number of distinct elements in sublinear space is to
use space-efficient and dynamic distinct sample data structures. A distinct sample of a stream with sampling probability p is a
set of items such that each of the distinct items in the stream has an equal and independent probability of p of being included
in the set. (Ganguly, 2007) introduced the KSET data structure for this problem, which can be used to (non-privately) give
a (1 + α)-approximation of the number of distinct elements in a stream using roughly O( 1

α2 (log(T ) + log(|U|) log(|U|))
space. Our implementation of KSET is largely similar to the original version in (Ganguly, 2007), with one small change
that is necessary for our privacy analysis.

Our primary reason for using the KSET data structure in the DP setting is that it allows us to maintain a distinct sample. This
in turn helps us add a smaller amount of noise (proportional to the bounded occurrency of data items) to the final distinct
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elements estimate released through a binary mechanism. However, the privacy analysis for the output of the KSET is quite
involved and discussed in Section 4.1. To the best of our knowledge, a distinct sample data structure has not previously been
used in the DP setting.

The k-set structure (which we denote as KSET and is formally described in Algorithm 4) is a dictionary data structure
that supports insertion and deletion of data items and, with high probability, either returns the set of items S present in
the dictionary as long as |S| ≤ k, or otherwise returns NIL. The structure is represented as a 2D array H[R × B] which
consists of R hash tables, each containing B buckets, where R = ⌈log k

β ⌉ and B = 2k. For each r ∈ [R], b ∈ [B], the
bucket H[r, b] contains a TESTSINGLETON data structure, which tests whether or not the bucket H[r, b] contains a single
universe element. Details on the implementation of the TESTSINGLETON data structure are deferred to Appendix C. The
r-th hash table in H[R×B] uses a pairwise independent hash function hr : U → [B]. Upon the arrival of an update xt, the
KSET structure contains two main operations:

1. The Update(xt) operation first increments (resp., decrements) the total number m of data items in the structure (which
is initialized to zero) if the update is an insertion (resp., deletion) of an item. Next, for every hash table r ∈ [R], we
update the corresponding TESTSINGLETON structure in the bucket H[r, hr(xt)].

2. The ReturnSet() operation, for every r ∈ [R], iterates over the buckets b ∈ [B], and checks whether the entry in the
hash table H[r, b] is a SINGLETON. If so, then it retrieves the data item along with its frequency and keeps track of
the set of elements (S) as well as the total sum of frequencies of items (ms) in S. If ms = m and |S| ≤ k, then it
returns S. Otherwise, the function returns NIL. We note that the latter check for |S| ≤ k is not included in the original
version of KSET from (Ganguly, 2007), but it is crucial for our privacy analysis. We include this check to ensure that
the KSET returns NIL with probability 1 in the event that there are more than k elements.

Next, we state some simple properties regarding the accuracy of the KSET structure in Lemma B.1 that are used in the
analysis of Algorithm 1.

Lemma B.1 (KSET properties). Consider a KSET data structure with capacity k and failure probability β. Then, the
following holds:

1. If strictly more than k distict elements are present in the KSET, then with probability 1, KSET.ReturnSet = NIL.

2. If less than or equal to k distict elements are present in the KSET then with probability≥ 1−β, KSET.ReturnSet = S
where S is the entire set of items present in the KSET.

3. The space complexity of KSET is O(k(log T + log |U|) log k
β ).

Proof. For Item 1, from (Ganguly, 2007), we have that if ms = m then the set of retrieved items S is exactly the set of
distinct elements with probability 1. Observe that if there are more than k elements, then either ms ̸= m, or the number of
distinct elements returned is |S| > k. In both cases, the condition in Algorithm 4 fails and the output is NIL.

The proofs for Item 2 and Item 3 are identical to the one given in (Ganguly, 2007).

B.2. Binary Mechanism for the Count Distinct Problem

In this subsection, we present a subroutine for COUNTING-KSET (Algorithm 2) that is a modified Binary Mechanism called
BinaryMechanism-CD (see Algorithm 5). This subroutine is used to compute the summation stream sx ∈ {−1, 0, 1}T
representing the difference in the number of distinct elements at timesteps t− 1 and t which is computed from the output of
the KSET in Line 14 of Algorithm 2. The algorithm BinaryMechanism-CD injects Gaussian noise (similar to (Jain et al.,
2023)) — as opposed to Laplace noise used in the original versions of the Binary Mechanism (Chan et al., 2011; Dwork
et al., 2010) — proportional to the sensitivity of the summation stream.

We first note that if the input to BinaryMechanism-CD represented the exact difference in the number of distinct elements
over consecutive timesteps, then the sensitivity of the summation stream in terms of occurrency can be calculated in a
straightforward manner using arguments similar to (Jain et al., 2023). However, in for our use of BinaryMechanism-CD
in the algorithm COUNTING-KSET, BinaryMechanism-CD receives as input the difference in the number of distinct
elements from the output of the KSET. Importantly, the failure behavior of the KSET needs to be accounted for when
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Algorithm 4 KSET data structure (Ganguly, 2007)
Require: Capacity parameter k, failure probability β

1: Initialize 2D array H[log k
β × 2k]

2: R← ⌈log k
β ⌉, B ← 2k

3: Let hr : U → [B] be a pairwise independent function for r = 1, . . . , R
4: Initialize m = 0
5: Update(xt): {Process update xt}
6: if xt is an insertion then
7: m← m+ 1
8: else if xt is a deletion then
9: m← m− 1

10: end if
11: for r ∈ [R] do
12: H[r, hr(xt)].TSUPDATE(xt) {see Algorithm 6}
13: end for
14: ReturnSet():
15: Initialize set S = {}, ms = 0
16: for r ∈ [R] do
17: for b ∈ [B] do
18: if H[r, b].TSCARD()[0] == SINGLETON then
19: (x, c)← H[r, b].TSCARD()[1], H[r, b].TSCARD()[2] {see Algorithm 6}
20: Insert (x, fx) to S
21: ms ← ms + fx
22: end if
23: end for
24: end for
25: if ms = m and |S| ≤ k then
26: Return S
27: else
28: Return NIL
29: end if

Algorithm 5 BinaryMechanism-CD
Require: Count distinct summation stream y1, y2, . . . , yT ∈ {−1, 0, 1}T , privacy parameter ρ > 0, occurrency W > 0

1: Initialize each αi = 0 and α̂i = 0
2: Let ρ′ = ρ

2(W+1)(log T+1)

3: Update(yt):
4: for every update yt do
5: Express t in binary from: t =

∑
j Binj(t)2

j

6: Let i = min{j : Binj(t) = 1} be the least significant binary digit, and set αi =
∑i−1

j=0 αj + yt
7: for j = 0, 1, . . . , i− 1 do
8: Set αj = 0 and α̂j = 0
9: end for

10: Set α̂i = αi +N (0, 1/ρ′)
11: Return B(t) =

∑
j:Binj(t)=1 α̂j

12: end for

arguing about the sensitivity of the resulting summation stream computed from the KSET output (when it does not fail).
In order to do this, we use a coupling argument to show that the output stream of the algorithm COUNTING-KSET is
close to the output stream of an algorithm that exactly computes the number of distinct elements and feeds the difference
over consecutive timesteps to BinaryMechanism-CD as input. The privacy analysis for BinaryMechanism-CD in the
latter algorithm is similar to (Jain et al., 2023) and is given in Lemma D.4. The privacy guarantee of our application of
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BinaryMechanism-CD inside COUNTING-KSET is implicitly derived in the privacy analysis of COUNTING-KSET via
the coupling argument of Lemma 4.2 and the claim that COUNTING-KSET is DP in Corollary 4.4.

The accuracy guarantee of BinaryMechanism-CD follows from Lemma D.8 in which we consider the overall accuracy of
L instances of BinaryMechanism-CD as instantiated in Line 3 of COUNTING-KSET. Finally, the space complexity of
BinaryMechanism-CD is O(log(T )) and this follows from (Chan et al., 2011).

C. Additional Details on KSET

We describe the TESTSINGLETON data structure (Algorithm 6) which is a building block of the KSET data structure in
more detail.

Algorithm 6 TEST-SINGLETON data structure
Require: Input stream x1, x2, . . . , xT

1: Initialize m→ 0, U → 0, V → 0
2: TSUPDATE(xt):
3: if xt is an insertion of item i then
4: m← m+ 1, U → U + i, V → V + i2

5: else if xt is a deletion then
6: m← m− 1, U → U − i, V → V − i2

7: end if
8: TSCARD():
9: if m = 0 then

10: Return EMPTY
11: else if U2 = m · V then
12: Return (SINGLETON, U/m, m)
13: else
14: Return COLLISION
15: end if

The TESTSINGLETON data structure supports the following operations:

1. An update operation, TSUPDATE(xt), which updates three counters — mTS , U , and V (all initialized to zero)
preserving the following invariants throughout the stream:

mTS =
∑
a∈U

fa, U =
∑
a∈U

fa · a, V =
∑
a∈U

fa · a2.

More precisely, for an non-empty update xt corresponding to data item a, TSUPDATE(xt) performs the following
update:

mTS := mTS + 1, U = U + a, V = V + a2

(for an addition)

mTS := mTS − 1, U = U − a, V = V − a2

(for a deletion).

2. A check operation, TSCARD(), which determines whether the TESTSINGLETON data structure: (1) is empty, (2)
contains a single element, or (3) has more than a single element. The function returns, in each case respectively: (1)
EMPTY (this happens if mTS = 0); (2) the triplet SINGLETON, the element, and its frequency (this happens if
U2 = mTS · V ); or (3) COLLISION (if the last two checks fail). It is easy to see that the unique item returned (in the
SINGLETON case) has identity U

mTS
and has frequency mTS .

D. Omitted Proofs from Section 4
For ease of analysis, we define the streams produced after applying the hash function and the blocklisting procedure (in the
case when ob = false) as follows. These streams will be used as intermediate steps in the analysis of CountDistinct to
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separately reason about the hashing and blocklisting procedures, and their impact on sensitivity of the resulting streams.
Definition D.1. Define Si,g as the substream of x after applying hash function g. That is, let a be the item contained in the
update xt. Then Si,g[t] = xt if g(a) = i and Si,g[t] = ⊥ otherwise.
Definition D.2. Define Si,B as the stream of updates produced from Si,g after checking whether the item corresponding to
the update xt is in the blocklist B before time t or not. That is, if the item corresponding to xt is in B before time t, then
Si,B [t] = ⊥, otherwise Si,B [t] = Si,g[t].

D.1. Proof of Lemma 4.2 and Helper Lemma

Lemma 4.2. Fix the randomness used across runs of CountDistinct and CountDistinct’. Fix i ∈ [L], and let K and E de-

note the output distributions of COUNTING-KSETi and COUNTING-DICTi respectively. If k ≥ τ +O
(

polylog(T/β)
√
W√

ρ

)
,

then the total variation distance of the two distributions, dTV (K,E) ≤ β/L.

Proof. We start with the case when ob = false, which is the more involved case. Consider the randomness of COUNTING-
KSETi and COUNTING-DICTi. Observe that because of the fixed randomness of both hashing and blocklisting, the
resulting streams Si,B (see Definition D.2) that are respectively used to update the KSET (in the case of COUNTING-
KSETi) and the DICT data structure (in the case of COUNTING-DICTi) are identical.

Next, define the randomness of COUNTING-KSETi asRKCi
= RKSi

×RBMi
whereRKSi

denotes the randomness from
the KSET (Algorithm 4) andRBMi

denotes the randomness from BinaryMechanism-CD (Algorithm 5). On the other hand,
the only randomness in COUNTING-DICTi is due to the randomness of BinaryMechanism-CD, i.e., RECi

= RBMi
.

We emphasize that because the randomness from adding items to the blocklist has been fixed across CountDistinct and
CountDistinct’, the blocklist B passed to both COUNTING-KSETi and COUNTING-DICTi are identical.

We now want to argue that the outputs of COUNTING-KSETi and COUNTING-DICTi are the same except with probability
β. Let the BinaryMechanism-CD instance in COUNTING-KSETi be denoted as BinaryMechanism-CDKCi and the
BinaryMechanism-CD instance in COUNTING-DICTi as BinaryMechanism-CDECi , and fix the randomness used in
BinaryMechanism-CDKCi

and BinaryMechanism-CDECi
.

We claim that there are two bad events for which the outputs of COUNTING-KSETi and COUNTING-DICTi may differ.

• E1: There exists a timestep where the true count ≤ k and the KSET outputs NIL.

• E2: There exists a timestep where the true count is > k and the noisy count of COUNTING-DICTi ≤ k.

By setting k ≥ τ +O
(

polylog(T/β)
√
W√

ρ

)
, we argue that both events happen with probability at most β.

For the event E1, the probability of the KSET outputting NIL happens with probability at most β/2TL for one timestep. This
is because, in Line 4 of COUNTING-KSETi, we set k as the capacity of the KSET and β/2TL as the failure probability.
So by Item 2 in Lemma B.1 and union bound over all timesteps, this event happens with probability at most β/2L.

For the event E2, Lemma D.3 (below) bounds the probability of E2 as β/2L over all timesteps for our choice of k.

Now, conditioned on bad events E1 and E2 not occurring over all timesteps, we argue that the outputs of COUNTING-
KSETi and COUNTING-DICTi are identical. Let t1 be the first timestep that the true count is > k. Let t2 > t1 be the next
timestep that the true count is ≤ k. We next consider the outputs of the two algorithms by cases across timesteps.

• Case 1: 1 ≤ t < t1. Conditioned on event E1 not occurring, the KSET does not output NIL during this time epoch,
which means that the inputs to BinaryMechanism-CDKCi and BinaryMechanism-CDECi are identical, since both
BinaryMechanism-CDKCi and BinaryMechanism-CDECi will be updated with only the update from the previous
timestep. In this case, the resulting noisy outputs will be the same under the fixed randomness, and the output of
COUNTING-KSETi and COUNTING-DICTi after the thresholding step (comparison to τ ) is identical.

• Case 2: t1 ≤ t < t2. For timesteps in this epoch, both COUNTING-KSETi and COUNTING-DICTi will output
TOO-HIGH. Since the true count is > k for all t1 ≤ t < t2, and conditioned on E2 not occurring, the output of
COUNTING-DICTi must be TOO-HIGH. Also by Item 1 in Lemma B.1, the KSET outputs NIL for this time period
with probability 1, which means that the output of COUNTING-KSETi is also TOO-HIGH.
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• Case 3: t = t2. Next we argue about the output of COUNTING-DICTi and COUNTING-KSETi at timestep t2 when
the true count ≤ k. Conditioning on event E1 not occurring, the KSET does not output NIL at timestep t2 because
the true count ≤ k. Moreover, observe that BinaryMechanism-CDKCi is not updated over t1 < t < t2 and is only
updated at timestep t2 because the KSET does not output NIL. Also, by construction of COUNTING-KSETi, we
claim that BinaryMechanism-CDKCi

is fed a sequence of inputs (+1,−1, 0) at timestep t2 that result in the same
sum and the same length as in BinaryMechanism-CDECi

over t2 − t1 timesteps. This is because by definition, diff is
the difference in the number of distinct elements between times t1 − 1 and t2, and |diff| ≤ tdiff, as there can only be
≤ tdiff many distinct elements added (or removed) over t2 − t1. Since the length and sum of the sequence of inputs
to both BinaryMechanism-CDKCi and BinaryMechanism-CDECi at timestep t2 is the same, the outputs of both
COUNTING-KSETi and COUNTING-DICTi are the same at timestep t2 under the fixed randomness.

This argument can be extended over all timesteps by iteratively considering the next timestep when the true count is > k and
the following timestep when the true count is ≤ k. Thus when ob = true, except with probability β/L corresponding to the
events E1 and E2 occurring, COUNTING-KSETi and COUNTING-DICTi will produce identical outputs at each timestep.
That is, the distributions of COUNTING-KSETi and COUNTING-DICTi, denoted K and E respectively, will agree on all
outcomes except a subset of probability mass β/L, which implies that that dTV (K,E) ≤ β/L.

For the case when ob = true, the blocklisting step is not needed. Then the fixed randomness between CountDistinct and
CountDistinct’ means that the randomness of the hash functions of both algorithms will be the same, so the resulting
stream Si,g (see Definition D.1) that is used to update the KSET (in the case of COUNTING-KSETi) and the DICT data
structure (in the case of COUNTING-DICTi) is identical. The rest of the argument follows symmetrically to the case when
ob = false.

D.1.1. HELPER LEMMA

Lemma D.3. Let EBM be the event that there exists a timestep where the noisy count of BinaryMechanism-CDECi

is greater than k when the true count is less than τ , or the noisy count of BinaryMechanism-CDECi
is less than τ

when the true count is greater than k. The probability of EBM is at most β/2L over all timesteps when k ≥ τ +

2
√
2
(log T+1)3/2

√
W log(4T⌈log(T )⌉/β)
√
ρ .

Proof. For notational convenience, let ∆ = k− τ . From Algorithm 5, we know that the noise that we apply to the true count
is a summation of at most m ≤ log T +1 Gaussian random variables, each sampled fromN (0, 4W (log T +1)L/ρ). (Recall
that the input privacy parameter to the binary mechanism is ρ/L). Thus the overall noise added is N(0, 4mW (log T+1)L/ρ).
Now we want to bound the probability that |N (0, 4mW (log T + 1)L/ρ)| > ∆, which is an upper bound on the probability
of EBM occurring at a single timestep.

Applying a Chernoff bound (Lemma A.7) yields:

Pr(|N (0, 4mW (log T + 1)L/ρ)| > ∆) ≤ 2 exp(− ∆2ρ

8mW (log T + 1)L
)

We wish to bound the above term on the right by β/2TL, so that then by a union bound, the probability of EBM over all
timesteps is bounded by β/2L. This requires:

− ∆2ρ

8mWL(log T + 1)
≤ log(β/4TL)

⇐⇒ ∆ ≥ 2
√
2

√
mWL(log T + 1) log(4TL/β)

√
ρ

Recall that our goal is to set the value of ∆ = k − τ such that the above inequality always holds, and we want to set
∆ to be the upper bound of the right hand side. Since m ≤ log T + 1 and L = ⌈log T ⌉ ≤ log T + 1, then, choosing

k ≥ t+ 2
√
2
(log T+1)3/2

√
W log(4T⌈log(T )⌉/β)
√
ρ will ensure that ∆ is a valid upper bound, and hence that the probability of

EBM over all timesteps is bounded by β/2L.
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D.2. Proof of Lemma 4.3 and Helper Lemmas

Lemma 4.3. COUNTING-DICTi (Algorithm 3) is ρ/L-zCDP, if ob = true, and is β/L-approximate ρ/L-zCDP, if
ob = false.

Proof. We will prove the privacy claim for the more general case when ob = false. Note that when ob = true, we do
not need to deal with the failure event associated with blocklisting (Lemma D.5) and thus β = 0 and COUNTING-DICTi

(Algorithm 3) is ρ/L-zCDP.

The key point we must show is that when neighboring streams are input to COUNTING-DICTi, then the internal streams
passed to BinaryMechanism-CDi inside of COUNTING-DICTi will remain neighboring. Once this is shown, then we
can directly apply Lemma D.4, which shows that this instance of BinaryMechanism-CDi inside COUNTING-DICTi is
differentially private. Thus we must show that even after applying the hashing and blocklisting operations to the original
neighboring input streams, the resulting processed streams remain neighboring.

The randomness of CountDistinct’ can be viewed as a joint probability distributionRCD′ = Rg ×RBL ×REC1 × . . .×
RECL

where Rg denotes the randomness from picking a hash function g (in Line 7 of Algorithm 1), RBL denotes the
randomness from blocklisting, andRECi

denotes the randomness from the subroutine COUNTING-DICTi for i ∈ [L]. Let
x and x′ be neighboring streams that differ only at timestep t∗, in which the update (either deletion or addition) in x is for
item u, and in x′ is ⊥, and fix the randomness used in CountDistinct’ across runs on x and x′.

Let Si,g and S ′i,g be the substreams of x and x′ produced from the hash function g (see Definition D.1). Then with the fixed
randomness, Si,g and S ′i,g are neighboring. To see this, observe that for all updates except those inserting or deleting u, Si,g
and S ′i,g are exactly the same. For updates regarding item u, if u is hashed into substream i, then Si,g and S ′i,g will differ
only in time t∗. Otherwise Si,g and S ′i,g will be identical. Thus, Si,g and S ′i,g will be neighboring streams for all i ∈ [L].

Let Si,B and S ′i,B be the substreams of x and x′ produced after blocklisting (see Definition D.2). Under the fixed randomness,
the timesteps at which items are first blocklisted are the same for the neighboring streams, except (possibly) for item u.
Since the updates from substreams Si,B and S ′i,B are stored exactly as-is in DICT, and then fed to BM-Count-Distinct as
input, the input streams to BinaryMechanism-CDi are indeed neighboring.

By Lemma D.4, the output ŝi of BinaryMechanism-CDi is β/L-approximate ρ/L-zCDP. The remainders of the operations
in COUNTING-DICTi – including the thresholding step to output either the numerical value of ŝi or TOO-HIGH – are
simply postprocessing on the private outputs ŝi of BinaryMechanism-CDi, which will retain the same privacy guarantee.
Thus, COUNTING-DICTi is β/L-approximate ρ/L-zCDP as well.

D.2.1. HELPER LEMMAS

Lemma D.4. The BinaryMechanism-CD instance in COUNTING-DICTi is β/L-approximate ρ/L-zCDP.

Proof. Consider the binary tree produced by BM-Count-Distincti with log(T ) levels. We define a vector Gh of length
T/2h for each level h ∈ [log(T )] of the binary tree as

Gh[j] = si[j · 2h]− si[(j − 1) · 2h]

for all j ∈ [T/2h] and si[t] =
∑

u∈U 1DICTi[u][t]>0 as defined in Algorithm 3 of COUNTING-DICTi. Let G =
(G0, . . . , Glog(T )). To prove the claim, we will bound the sensitivity of the counts stored in the binary tree represented by G,
and then show that sufficient noise is added to each count to satisfy differential privacy. Similar to the original binary tree
mechanism of (Chan et al., 2011; Dwork et al., 2010), the output of BM-Count-Distincti at timestep t can be obtained from
G by considering the dyadic decomposition of the interval (0, t] as a sum of the individual nodes composing the interval,
and this output will be private by postprocessing.6

First, we claim that the binary tree described by G plus DP noise (which we will determine) produces the output ŝi. To see
this, first observe that ŝi[t] = si[t]− si[t− 1] + Z[t] where Z[t] is the noise term. Also G0[j] = ŝi[j]− Z[j]. The claim
follows by induction over h ∈ [log(T )].

6(Jain et al., 2023) used similar techniques to argue about the sensitivity of their binary tree mechanism. However, their argument is
more straightforward as it does not have to consider the randomness from hashing or blocklisting.
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Let G and G′ be the binary tree representation of neighboring streams x and x′ respectively. We will show that ∥G−G′∥2 ≤
2
√
(W + 1)(log(T ) + 1) with probability 1− β/L.

Fix h ∈ [log(T )] and j ∈ [T/2h]. For ease of notation, let j1 = (j − 1) · 2h and j2 = j · 2h. Then

|Gh[j]−G′
h[j]| = |si[j2]− si[j1]− s′i[j2] + s′i[j1]| ≤ 2, (1)

where the inequality is due to the fact that si and s′i can differ by at most 1 at both timesteps j1 and j2.

Next, observe that for a fixed h, the intervals (j1, j2] are disjoint, by definition. Also, for j ∈ [T/2h], Gh[j] ̸= G′
h[j] are

different in at most W + 1 intervals with probability 1− β (by Lemma D.6) where W = T 2/3.

Thus, with probability 1− β/L, the (squared) ℓ2-sensitivity of G is bounded:

∆2
2 ≤ ∥G−G′∥22 =

∑
h∈[log(T )]

∑
j∈[T/2h]

(Gh[j]−G′
h[j])

2 ≤ (log T + 1)(W + 1) · 22 (2)

By Theorem A.4, adding Gaussian noise sampled N (0, σ2) for σ2 =
∆2

2L
2ρ to each count stored in a node of the binary tree

represented by G will satisify ρ/L-zCDP with probability 1− β/L. Plugging in the bound on ∆2
2, it is sufficient to add

Gaussian noise with variance σ2 = (log T+1)(W+1)·L
ρ . In Algorithm 3, the BinaryMechanism-CD subroutine is instantiated

with privacy parameter ρ/L, which adjusts for the extra factor of L.

Finally, since the output of BinaryMechanism-CD can be obtained by postprocessing the noisy nodes of G, the output is
ρ/L-zCDP with probability 1− β/L.

Lemma D.5. Suppose ob = false. With probability at least 1− β/L, the maximum occurrency of the stream produced
from the blocklisting procedure (Definition D.2) is bounded by T 2/3.

Proof. Recall that the probability of blocklisting any element after an appearance in the stream is p = log(T 1/3L/β)
T 2/3 .

For any element x ∈ U , we can bound the failure probability of the blocklist to catch an element after the maximum number
of occurrences:

Pr[x /∈ B after T 2/3 appearances] = (1− log(T 1/3L/β)

T 2/3
)T

2/3

≤ e
−T 2/3· log(T

1/3L/β)

T2/3

= e− log(T 1/3L/β)

=
β

T 1/3L

The inequality in the second step comes from the fact that (1− a) ≤ e−a for all a ∈ R.

At most T/T 2/3 = T 1/3 elements can appear ≥ T 2/3 times in a stream of length T . Taking a union bound, the probability
that any of these elements is not blocklisted after T 2/3 appearances is at most β

T 1/3L
· T 1/3 = β/L.

Lemma D.6. Suppose ob = false. Let x and x′ be neighboring input streams and fix the randomness of CountDistinct’
across runs on x and x′. For any i ∈ [L], Si,B and S ′i,B differ in at most T 2/3 + 1 positions with probability 1− β/L.

Proof. Let neighboring streams x and x′ differ only at timestep t∗, in which the update (either deletion or addition) in x is
for item u, and in x′ is ⊥, and fix the randomness used in CountDistinct’ across runs on x and x′. As shown in the proof
of Lemma 4.3, the substreams Si,g and S ′i,g are neighboring and thus will also differ at timestep t∗ with respect to item u.
Thus under the fixed randomness, for all timesteps t ̸= t∗, the same items are blocklisted in Si and S ′i.

Let E0 be the bad event that there exists an item v that appears in the hashed substream at some timestep t ̸= t∗ and is not
blocklisted after T 2/3 occurrences. By Lemma D.5, the probability of E0 is bounded by β/L. We will condition on the
event E0 not occurring for the remainder of the proof. Note that if the items in Si,g and S ′i,g do not appear more than T 2/3

times for all i ∈ [L], then naturally E0 does not occur.
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Recall that the item u appears in exactly the same timesteps in Si,g and S ′i,g for t ̸= t∗. Suppose that the number of
appearances of u in those steps is ≥ T 2/3. The resulting blocklisted streams Si,B and S ′i,B can differ in at most T 2/3 + 1

timesteps because the item u may be blocklisted before it appears T 2/3 times, but conditioned on E0 not occurring, it must
be blocklisted after the T 2/3-th appearance. Since Si,g has an extra occurrence of u (at timestep t∗) relative to S ′i,g, this
means that S ′i,B can differ from S ′i,B in at most T 2/3 + 1 timesteps, after which both Si,B and S ′i,B will have 0’s for all
future occurrences of item u.

D.3. Proof of Theorem 4.6 (Accuracy)

We restate Theorem 4.6 below for convenience.

Theorem 4.6. Let F (t) be the correct number of distinct elements of the stream at time t and let λ =

2 log(40⌈log(T )⌉/β). When ob is true, let γ =
√

4(W+1)(log T+1)3 log(10(log T+1)/β)
ρ and when ob is false, let γ =√

4(T 2/3+1)(log T+1)3 log(10(log T+1)/β)
ρ +3T 1/3 log(T 1/3⌈log T ⌉/β). For a fixed timestep t ∈ [T ], with probability at least

1− β, the output of Algorithm 1 at time t with COUNTING-DICTi as the subroutine is a (1± 4η, 32max{γ/η, 32λ/η2})-
approximation of F (t) for any η ∈ (0, 0.5).

Proof of Theorem 4.6. When ob is true: The proof relies on the following lemmas, which ensure that for a specific timestep
t, the good events occur with high probability:

1. In all substreams i ∈ [L], the correct number of distinct elements in the substream i by hashing, denoted Fi(t), is also a
good estimator for the number of distinct elements in the entire stream at timestep t, denoted F (t) (Lemma D.7). That
is, for all i ∈ [L], the following two conditions hold at the same time for any specific timestep t with probability at
least 1− β/5 for any η ∈ (0, 0.5):

(a) ∀i ∈ [L] with F (t) ≥ 2i · 4λη2 , we have (1− η)F (t)
2i ≤ Fi(t) ≤ (1 + η)F (t)

2i

(b) ∀i ∈ [L] with F (t) < 2i · 4λη2 , we have F (t)
2i −

4λ
η ≤ Fi(t) ≤ F (t)

2i + 4λ
η .

2. BinaryMechanism-CD (Algorithm 5) is accurate (Lemma D.8). That is, for all i ∈ [L], we have |Fi(t)− ŝi(t)| ≤
γ =

√
4(W+1)(log T+1)3 log(10(log T+1)/β)

ρ with probability 1− β/5.

3. For any stream i, if the correct number of distinct elements in the subtream i is below a certain threshold then
COUNTING-DICTi will not output TOO-HIGH (Lemma D.3). Plugging in β/5L into Lemma D.3 yields that if
Fi(t) ≤ 16max{γ/η, 32λ/η2}, then COUNTING-DICTi will not output TOO-HIGH, i.e. the noisy count ŝi ≤ τ =

16max{γ/η, 32λ/η2}+ 2
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ , with probability at least 1− β/5.

To prove the desired accuracy claim, we will condition on all three high-probability events listed above occurring at timestep
t. Note that each of the three events occur with probability 1− β/5. Thus all three events will happen with probability at
least 1− 3

5β ≥ 1− β by a union bound.

We consider two cases for the number of distinct elements of the stream at time t denoted by F (t): (1) F (t) ≥
8max(γ/η, 32λ/η2), for which we show that the resulting approximation satisfies a multiplicative error of (1 ± 4η),
and (2) F (t) ≤ 8max(γ/η, 32λ/η2), for which we show that the resulting approximation has an additive error of
32max(γ/η, 32λ/η2). We now separately consider the two cases.

Case (1). F (t) ≥ 8max(γ/η, 32λ/η2). Let i∗ ∈ [L] be the largest i s.t. F (t)
2i∗
≥ 4max(γ/η, 32λ/η2). Note that

by Lemma D.7, (1 − η)F (t)
2i∗ ≤ Fi∗(t) ≤ (1 + η)F (t)

2i∗
. Therefore by the definition of i∗, Fi∗(t) ≤ 2F (t)

2i∗
≤ 2 ·

8max(γ/η, 32λ/η2) = 16max(γ/η, 32λ/η2). Since in this case the noisy count ŝi∗ at timestep t would not exceed τ by
Lemma D.3, so COUNTING-DICTi∗ will not output TOO-HIGH in the stream i∗. Then Si∗ [t] = ŝi∗(t)), and by Lemma D.8,
BinaryMechanism-CD will be accurate and Si∗ [t] ≥ Fi∗(t)− γ. Since Fi∗(t) ≥ (1− η)F (t)

2i∗ ≥ 2max(γ/η, 32λ/η2) by
Lemma D.7 and using the fact that η < 0.5:

Si∗ [t] ≥ 2max(γ/η, 32λ/η2)− γ ≥ max(γ/η, 32λ/η2). (3)
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Above we showed that Fi∗(t) ≤ 16max(γ/η, 32λ/η2). Then by Lemma D.3, the noisy count from i∗ will not exceed

τ = 16max{γ/η, 32λ/η2}+ 2
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ , so COUNTING-DICTi∗ will not output TOO-HIGH.

The only concern now is that the output from i∗ may not be output if the noisy count is smaller than max(γ/η, 32λ/η2)
(see Line 22 of Algorithm 1), but by Inequality (3), this is impossible because Si∗ [t] ≥ max(γ/η, 32λ/η2). Therefore,
Algorithm 1 with COUNTING-DICTi as the subroutine will produce a non-zero output, i.e. it will output some Si′ [t] · 2i

′

for some i′ ≥ i∗ instead of 0.

We now proceed in two steps: first, we derive a lower bound on the true count Fi′(t) in substream i′; then, we bound the
ratio between Algorithm 1’s output Si′ [t] · 2i

′
and the true count F (t), using Fi′(t) as an intermediate quantity.

We start with the lower bound on Fi′(t):

Fi′(t) ≥ Si′ [t]− γ by Lemma D.8
≥ (1− η)Si′ [t] because γ ≤ ηSi′ [t]
≥ 16λ/η2 because 32λ ≤ η2Si′ [t] and 0 < η < 0.5

Next we bound the ratio between Si′ [t] · 2i
′

and F (t). According to Lemma D.7, (1 − η)F (t)

2i′
≤ Fi′(t) ≤ (1 + η)F (t)

2i′
.

Then,

Si′ [t] ≤ Fi′(t) + γ by Lemma D.8

=⇒ Si′ [t] ≤
Fi′(t)

1− η
because γ ≤ ηSi′ [t]

≤ 1 + η

1− η

F (t)

2i′
by Lemma D.7

≤ (1 + 4η)
F (t)

2i′
because 0 < η < 0.5

To see the second inequality, we use the fact that γ ≤ ηSi′ [t], and plug this into Si′ [t] ≤ Fi′(t) + γ to get Si′ [t] ≤
Fi′(t) + ηSi′ [t]. Rearranging gives that Si′ [t] ≤ Fi′ (t)

1−η . The third inequality is from Lemma D.7, which gives that Fi′(t) ≤
(1 + η)F (t)

2i′
whenever F (t) ≥ 2i

′ · 4λη2 . We now show that because we are in Case 1 where F (t) ≥ 8max(γ/η, 32λ/η2),

then it must always be the case that F (t)/2i
′ ≥ 4λ

η2 . Assume towards a contradiction that F (t)/2i
′
< 4λ/η2. Then by

Lemma D.7 Fi′(t) ≤ F (t)/2i
′
+ 4λ/η. By the lower bound above Fi′(t) ≥ 16λ/η2. Combining these gives that,

16λ/η2 ≤ Fi′(t) ≤ F (t)/2i
′
+ 4λ/η < 4λ/η2 + 4λ/η ≤ 8λ/η2,

where the second to last step is from the assumption that F (t)/2i
′
< 4λ/η2 and the last step is because η ∈ (0, 0.5). Clearly

this is a contraction, so it must be that F (t)/2i
′ ≥ 4λ

η2 .

By symmetric arguments,

Si′ [t] ≥ Fi′(t)− γ ≥ Fi′(t)

1 + η
≥ 1− η

1 + η

F (t)

2i′
≥ (1− 4η)

F (t)

2i′
.

Thus in the case when F (t) > 8max(γ/η, 32λ/η2), Algorithm 1 produces a numerical output Si′ [t] · 2i
′

for some i′ > 0,
which will achieve a multiplicative error of 1± 4η with respect to the true count F (t).

Case (2). F (t) ≤ 8max(γ/η, 32λ/η2), in which case again Fi(t) ≤ 16max(γ/η, 32λ/η2) for all i, so the noisy count
would not exceed τ by Lemma D.3, so COUNTING-DICTi will not output TOO-HIGH. Then, Algorithm 1 either
outputs 0, which will result in additive error at most 8max(γ/η, 32λ/η2)), or it outputs Si′ [t] · 2i

′
for some i′, such that

Si′ [t] ≥ max(γ/η, 32λ/η2). In this latter case, by the same argument as in Case (1),

Fi′(t) ≥ Si′ [t]− γ ≥ (1− η)Si′ [t] ≥ 16λ/η2.

Having established a lower bound for Fi′(t), we now turn to derive an upper bound for the algorithm’s output Si′ [t] · 2i
′
.

By Lemma D.7, we know that if F (t)

2i′
≥ 4λ

η2 then Fi′(t) ≤ 2F (t)

2i′
, and otherwise, if F (t)

2i′
< 4λ

η2 , then 16λ/η ≤ 16λ/η2 ≤
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Fi′(t) ≤ F (t)

2i′
+ 4λ

η which implies that F (t)

2i′
≥ 12λ/η. Thus in this case Fi′(t) ≤ F (t)

2i′
+ 4λ/η ≤ 2F (t)

2i′
as well, since

F (t)/2i
′ ≥ 12λ/η. Hence under both conditions,

Si′ [t] · 2i
′
≤ (Fi′(t) + γ) · 2i

′
by Lemma D.8

≤ Fi′(t)

1− η
· 2i

′
because γ ≤ ηSi′ [t]

≤ 2 · 2 · F (t)

2i′
· 2i

′
because Fi′(t) ≤ 2

F (t)

2i′
and 0 < η < 1/2

= 4F (t)

≤ 32max(γ/η, 32λ/η2) by Case 2 condition

Therefore, in this case Algorithm 1 achieves an additive error of at most 32max(γ/η, 32λ/η2).

When ob is false: This proof is very similar to the case where ob is true. The main difference is that we need one extra
lemma about the size of the blocklist. There is also an additional error caused by the blocklist, which can be treated as part
of the error from the binary mechanism. The majority of the analysis stays the same; the only difference is that we will have
a larger error in this case because of the blocklist.

We will use the three same key lemmas as in the case where ob=true, and an additional lemma bounding the size of the
blocklist. These four lemmas will ensure that at a fixed timestep t, the desired good events will happen with high probability:

1. In all substreams i ∈ [L], the correct number of distinct elements in the substream i by hashing, denoted Fi(t), is also a
good estimator for the number of distinct elements in the entire stream at timestep t, denoted F (t) (Lemma D.7). That
is, for all i ∈ [L], the following two conditions hold at the same time for any specific timestep t with probability at
least 1− β/5 for any η ∈ (0, 0.5):

(a) ∀i ∈ [L] with F (t) ≥ 2i · 4λη2 , we have (1− η)F (t)
2i ≤ Fi(t) ≤ (1 + η)F (t)

2i

(b) ∀i ∈ [L] with F (t) < 2i · 4λη2 , we have F (t)
2i −

4λ
η ≤ Fi(t) ≤ F (t)

2i + 4λ
η .

2. BinaryMechanism-CD (Algorithm 5) is accurate (Lemma D.8). That is, for all i ∈ [L], we have |Fi(t)− ŝi(t)| ≤
γ =

√
4(W+1)(log T+1)3 log(10(log T+1)/β)

ρ with probability at least 1− β/5.

3. For any stream i, if the correct number of distinct elements in the subtream i is below a certain threshold then
COUNTING-DICTi will not output TOO-HIGH (Lemma D.3). We plug β/5L into Lemma D.3 to obtain that, if
Fi(t) ≤ 16max{γ/η, 32λ/η2}, then COUNTING-DICTi will not output TOO-HIGH, i.e. the noisy count ŝi ≤ τ =

16max{γ/η, 32λ/η2}+ 2
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ .

4. The blocklist has bounded size (Lemma D.9). With probability at least 1− β/5, the size of the blocklist is bounded by
3T 1/3 log(T 1/3⌈log T ⌉/β).

Conditioned on these good events and plugging in W = T 2/3, by Lemmas D.8 and D.9, for each instance of
BinaryMechanism-CD, the overall additive error stemming from the binary mechanism and blocklisting is γ =√

4(T 2/3+1)(log T+1)3 log(10(log T+1)/β)
ρ + 3T 1/3 log(T 1/3⌈log T ⌉/β).

To prove the desired accuracy claim, we will condition on all four high-probability events described above occurring at
timestep t. Note that each of the four events occur with probability 1−β/5. Thus all four events will happen with probability
at least 1− 4

5β ≥ 1− β by a union bound.

From here, we can again treat separately two cases based on F (t), the number of distinct elements of the stream at time t:
(1) F (t) ≥ 8max(γ/η, 32λ/η2) and (2) F (t) ≤ 8max(γ/η, 32λ/η2). As in the case where ob=true, we show in Case (1),
the resulting approximation satisfies a multiplicative error of (1± 4η), and in Case (2), the resulting approximation has an
additive error of 32max(γ/η, 32λ/η2). The analysis in both cases is identical to when ob=true as presented above, with the
correspondingly larger value of γ, and so is not repeated here.
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D.4. Proofs of Helper Lemmas for Theorem 4.6

Lemma D.7 bounds the number of elements in the substream after hashing. Lemma D.8 proves the accuracy of
BinaryMechanism-CD algorithm. Lemma D.9 bounds the size of the blocklist when ob is false. With the help of
these lemmas, we can show the accuracy of COUNTING-DICT, as an intermediate step in the analysis.

Lemma D.7 (Substream concentration bound). Let F (t) be the number of distinct elements of the stream at time t, and
let Fi(t) be the number of distinct elements of substream Si,g (Definition D.1) for any i ∈ [L]. If F (t) ≥ 2i · 4λη2 , then

Pr[|Fi(t)− F (t)
2i | > η · F (t)

2i ] ≤ β
5L . Otherwise, if F (t) ≤ 2i · 4λη2 , then Pr[|Fi(t)− F (t)

2i | >
4λ
η ] ≤ β

5L . This implies that
the following two conditions hold at the same time with probability at least 1− β/5:

1. ∀i ∈ [L] with F (t) ≥ 2i · 4λη2 , we have (1− η)F (t)
2i ≤ Fi(t) ≤ (1 + η)F (t)

2i

2. ∀i ∈ [L] with F (t) < 2i · 4λη2 , we have F (t)
2i −

4λ
η ≤ Fi(t) ≤ F (t)

2i + 4λ
η .

Proof. We start with the case of F (t) ≥ 2i · 4λη2 . Applying Lemma A.5 to the Fi(t) as a sum of F (t) λ-wise independent

Bernoulli(2−i) random variables, and with µ = F (t)
2i , A = η · F (t)

2i yields the following:

Pr

[
|Fi(t)−

F (t)

2i
| > η · F (t)

2i

]
< 8

(
λ · F (t)

2i + λ2

η2 · (F (t)
2i )2

)λ/2

= 8

(
λ

η2 F (t)
2i

+
λ2

η2(F (t)
2i )2

)λ/2

≤ 8

(
λ

η2(4λ/η2)
+

λ2

η2(4λ/η2)2

)λ/2

= 8

(
1

4
+

η2

16

)λ/2

,

where the third step is because of the case F (t) ≥ 2i · 4λη2 , and the fourth step simplifies terms.

We now wish to bound the right hand side by β
5L ; solving this inequality for λ yields the following bound:

8

(
1

4
+

η2

16

)λ/2

≤ β

5L

⇐⇒
(
1

4
+

η2

16

)λ/2

≤ β/40L

⇐⇒ λ

2
log(1/4 + η2/16) ≤ log(β/40L)

⇐⇒ λ ≥ 2 log(β/40L)

log(1/4 + η2/16)

⇐⇒ λ ≥ 2 log(40L/β)

log( 1
1/4+η2/16 )

The last step comes from multiplying both the numerator and denominator by −1, and − log(x) = log(1/x).

Since η < 0.5, then the denominator can be bounded by: log( 1
1/4+η2/16 ) > log(64/17) > 1. Since Algorithm 1 sets

λ = 2 log(40L/β), the above inequality will be satisfied.

Next we consider the second case, where F (t) < 2i · 4λη2 . Applying Lemma A.5 again to the Fi(t), now with A = 4λ
η , yields
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the following:

Pr

[
|Fi(t)−

F (t)

2i
| > 4λ

η

]
< 8

(
λ · F (t)

2i + λ2

( 4λη )2

)λ/2

< 8

(
λ · 4λ/η2 + λ2

16λ2/η2

)λ/2

= 8

(
1

4
+

η2

16

)λ/2

,

where the second step is because of the case F (t) < 2i · 4λη2 , and the third step simplifies terms.

We again wish to bound the right hand side by β
5L , and by the same steps as in the first case, the desired inequality holds if

and only if λ ≥ 2 log(40L/β)

log( 1
1/4+η2/16

)
, and using the requirement that η < 0.5, Algorithm 1’s choice of λ = 2 log(40L/β) will

satisfy the desired inequality.

Lemma D.8 (Binary mechanism accuracy). Fix a timestep t ∈ [T ], and recall that ŝi(t) is the noisy count of Fi(t) produced

by BinaryMechanism-CDi. Then |Fi(t) − ŝi(t)| ≤
√

4(W+1)(log T+1)3 log(10(log T+1)/β)
ρ simultaneously for all i ∈ [L]

with probability 1− β/5.

Proof. We will show that for a specific substream i ∈ [L], the error |Fi(t) − ŝi(t)| is bounded by the desired term with
probability 1− β/5L, and the lemma will follow by a union bound over all i ∈ [L].

Now consider the error of substream i at timestep t. Algorithm 5 (BinaryMechanism-CD) adds a total of Bin1(t)
independent Gaussian noise terms, where Bin1(t) is the number of ones in the binary representation of t. Hence, the error
|Fi(t) − ŝi(t)| is a sum of at most log T + 1 independent Gaussian random variables each distributed as N (0, 2L(W +

1)(log T + 1)/ρ), and so the error itself is also Gaussian with mean 0 and variance at most 2L(W+1)(log T+1)2

ρ .

Applying a Chernoff bound (Lemma A.7) to this random variable, gives that for any γ > 0,

Pr [|Fi(t)− ŝi(t)| > γ] ≤ 2 exp

(
−ργ2

4L(W + 1)(log T + 1)2

)
.

We wish to bound this probability by β/5L. Solving this inequality for γ yields γ ≥
√

4L(W+1)(log T+1)2 log(10L/β)
ρ . Since

L = ⌈log T ⌉ ≤ log T + 1, then choosing γ =
√

4(W+1)(log T+1)3 log(10(log T+1)/β)
ρ will satisfy the inequality.

Lemma D.9 (Bounded blocklist size). Suppose ob = false. Fix a timestep t ∈ [T ]. With probability at least 1− β/5, the
size of the blocklist B is bounded by 3T 1/3 log(T 1/3L/β), where L = ⌈log T ⌉.

Proof. The size of the blocklist is non-decreasing since elements are never removed, so it is sufficient to upper bound the
final size of the blocklist after T timesteps.

Define the random variable Yj to be 1 if the j-th arrival in the stream is blocklisted and 0 if otherwise. Then Y =
∑T

i=j Yj

is an upper bound on the size of the blocklist (because the arrivals may be updates of the same element). The sampling
rate for blocklisting is p = log(T 1/3L/β)

T 2/3 , so Yj ∼ Bern( log(T
1/3L/β)

T 2/3 ) and E[Y ] = T log(T 1/3L/β)
T 2/3 = T 1/3 log(T 1/3L/β).

Applying a multiplicative Chernoff bound (Theorem A.6) with η = 2 yields:

Pr
[
Y > 3T 1/3 log(T 1/3L/β)

]
≤ exp

(
−T 1/3 log(T 1/3L/β)

)
We would like to bound this probability by β/5, which occurs when T 1/3 log(T

1/3L
β ) ≥ log( 5β ). This inequality will clearly

hold if T 1/3L = T 1/3⌈log T ⌉ ≥ 5, which is true for T ≥ 8.
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D.5. Space Complexity

We restate Theorem 4.7 below for convenience.
Theorem 4.7. With probability at least 1 − β, assuming the universe size |U| = poly(T ): If ob is true, the space
complexity of Algorithm 1 is O(

√
W · polylog(T/β)) · poly( 1

ρη ). If ob is false, the space complexity of Algorithm 1 is
O(T 1/3 · polylog(T/β)) · poly( 1

ρη ).

Proof of Theorem 4.7. We condition on all the high-probability events used in the proof of Theorem 4.5; these events occur
with probability 1− β as shown in the proof of Theorem 4.5. The space usage comes from (1) the KSET data structure in
COUNTING-KSET, (2) BinaryMechanism-CD, and (3) the blocklist (when ob is false).

• From Lemma B.1, the L instantiations of COUNTING-KSET together have space complexity L · O(k(log T +
log |U|) log(k/β)) = O (log T · k · (log T + log |U|) log(k/β)) where λ = 2 log(40⌈log(T )⌉/β) and k =

16max{γ/η, 32λ/η2} + 4
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ (here W = T 2/3 when ob is false). We make the

standard assumption that the universe size |U| is poly(T ), so we can represent an item in poly(T ) bits. This means that
the space complexity simplifies to O(k · poly log(T ) · log(k/β)).

• As shown in (Chan et al., 2011), one instance of BinaryMechanism-CD uses O(log(T )) space, and therefore the L
copies of the BinaryMechanism-CD use space O(L · log(T )) = O(log2(T )).

• The blocklist when ob is false has size O(T 1/3 log(T/β)) when conditioned on the high-probability events.

The dominating term is the one from the KSET data structures, which is O(k · polylog(T ) · log(k/β)) for k =

16max{γ/η, 32λ/η2}+ 4
√
2
(log T+1)3/2

√
W log(20T⌈log T⌉/β)
√
ρ .

If ob is true, γ =
√

4(W+1)(log T+1)3 log(10(log T+1)/β)
ρ in which case the space complexity simplifies to

O(
√
W · polylog(T/β)) · poly( 1

ρη ); otherwise, when ob is false, γ =
√

4(T 2/3+1)(log T+1)3 log(10(log T+1)/β)
ρ +

3T 1/3 log(5T 1/3⌈log T ⌉/β), in which case the space complexity simplifies to O(T 1/3 · polylog(T/β)) · poly( 1
ρη ).

E. Blocklisting Problem: Space Upper and Lower Bounds
In this section, we formally define the problems of blocklisting items with high flippancy (and high occurrency) and prove a
space lower bound for both problems. Our lower bound is information theoretic and applies to any algorithm for blocklisting
(flippancy or occurrency), including exponential time algorithms and non-private algorithms. Then, we show that the
problem of blocklisting occurrency has an almost-matching space upper bound that is tight up to log factors, given by
Algorithm 1.

Recall that the flippancy of an item is defined in (Jain et al., 2023) as the number of timesteps where the item switches
between being present to absent or vice versa, while occurrency is defined by the number of timesteps where an item appears
in the stream (with any sign).

Informally, we define the blocklistflip(W) (resp., blocklistocc(W)) problem to be the problem of identifying, for each
timestep of a turnstile stream, whether the current element of the stream has flipped < W times (resp., occurred < W times)
before this timestep. More formally, let U be a universe of items and let x = (x1, . . . , xT ), be a turnstile stream where for
each time t ∈ [T ], the stream element xt is either an insertion (+u) or deletion (−u) for some u ∈ U , or xt =⊥ indicating
an empty update.
Definition E.1 (The blocklistflip(W) (resp., blocklistocc(W)) problem). For the turnstile stream x = (x1, . . . , xT ),
define the ground truth for x as the binary stream of outputs o∗(x) = (o∗1, . . . , o

∗
T ) where for each t ∈ [T ], o∗t = 0 if xt

has flippancy < W (resp., occurrency < W ) in the prefix stream (x1, . . . , xt−1) or if xt =⊥, and o∗t = 1 otherwise. Let
o(x) = (o1, . . . , oT ) be the output provided by an algorithm on the stream x. The algorithm has a false negative at time t if
ot = 0 and o∗t = 1, and has a false positive when ot = 1 and o∗t = 0.

Notice that algorithms using flippancy blocklisting such as (Jain et al., 2023), or occurrency blocklisting like our algorithm
are required to have no false negatives with high probability. This is because the max flippancy (and occurrency) bound is
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used to upper bound the sensitivity of the binary tree mechanism and thus needs to hold with probability at least (1− δ) to
achieve (ε, δ)-DP.

While false negatives affect the privacy of the algorithm, false positives must also be bounded to ensure accuracy. For this
reason, we ask if it is possible to design low-space blocklisting algorithms (for flippancy or occurrency) that guarantee (with
high probability) no false negatives, while bounding the number of false positives. In Section E.1, we prove a lower bound
on the space of any algorithm that bounds flippancy or occurrency. Then in Section E.2, we give a near-matching upper
bound by showing that Algorithm 1 solves the low-space occurrency blocklisting problem using space that matches the
lower bound up to log-factors.

E.1. Lower bound

We first show that any algorithm (including non-private and exponential-time algorithms) for blocklistflip(W) and
blocklistocc(W), with no false negatives and with bounded false positives must have a space that depends on the number
of false positives allowed. This space lower bound also extends to any algorithm for count distinct estimation that uses
blocklisting methods to control flippancy or occurrency, such as (Jain et al., 2023) or our work.
Theorem E.2. For any even integer W > 0, and any integer r > 0, let Aflip (resp., Aocc) be an algorithm for
blocklistflip(W) (resp., blocklistocc(W)) such that, given an arbitrary stream x of length T , with probability at
least 1− β, has no false negatives and has at most r false positives. Then algorithm Aflip and Aocc use space at least:

(1− β) ·
(
log(1− β) +

T

2W
log

WT

T + 2Wr

)
.

We provide a proof sketch here, and a full proof is deferred to Appendix F.1. Our lower bound proceeds by describing a
random process defining a stream distribution that is hard for the problems of blocklistflip(W) and blocklistocc(W).
For the element universe U = [T/2], the main idea is to define a distribution of problem instances as follows. First, generate
X ⊆ U as a uniformly random set of size T/2W . Then define a stream x(X) where for the first T/2 timesteps, each
element u ∈ X appears in W updates, alternating W/2 times between one insertion and one deletion of u. This results in
W flippancy and W occurrency for all elements of X at the end of the first half of the stream. In the second T/2 timesteps
of the stream, all elements in U are inserted once. Thus the correct output for this stream for both the blocklistflip(W) and
blocklistocc(W) problems is to always output 0 in the first half, and to output 1 in the second half only for elements in X .

We then use an information theory argument to show a space lower bound for any algorithmAflip that satisfies the conditions
of no false negatives and at most r false positives, with probability at least 1− β over this distribution of problem instances.

E.2. Upper bound for occurrency blocklisting

We now present an upper bound (Corollary E.3) based on Algorithm 1 for the space required to solve the occurrency
blocklisting problem with r false positives.
Corollary E.3. With probability 1− 2β and when |U| = poly(T ), Algorithm 1 with ob=false reports no false negatives
and r = 2T 1/3 log(T 1/3⌈log(T )⌉/β) false positives for the problem blocklistocc(W) for W = T 2/3, while using space
O(T 1/3 · polylog(T/β)) · poly( 1

ρη )).

Note that plugging r = 2T 1/3 log(T 1/3⌈log(T )⌉/β) and W = T 2/3 into the lower bound of Theorem E.2 gives an
near-matching space lower bound that is tight up to log factors.

The proofs for no false negatives and the space complexity follow from Lemma D.5 in Appendix D.2, which gives a high
probability bound on the maximum occurrency of the stream after blocklisting, and from Theorem 4.7, which bounds the
space used by Algorithm 1. The proof for the bounded number of false positives follows from a concentration bound the
probability of blocklisting an element too early. The full proof is deferred to Appendix F.2.

F. Omitted Proofs from Appendix E
F.1. Proof of Theorem E.2

Theorem E.2. For any even integer W > 0, and any integer r > 0, let Aflip (resp., Aocc) be an algorithm for
blocklistflip(W) (resp., blocklistocc(W)) such that, given an arbitrary stream x of length T , with probability at
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least 1− β, has no false negatives and has at most r false positives. Then algorithm Aflip and Aocc use space at least:

(1− β) ·
(
log(1− β) +

T

2W
log

WT

T + 2Wr

)
.

Proof. We now define a random process defining a stream distribution that is simultaneously hard for the the problem of
blocklistflip(W) and for blocklistocc(W). For notational convenience, set n = T/2, and m = n/W = T/(2W ). For
simplicity, we assume T,W such that n,m are integers.

Let the element universe be U = [n], over which we assume there is a total order. We define a distribution of problem
instances with the following process:

• A uniformly random set X ⊆ U of size m is sampled.

• Generate the first n = T/2 timesteps ensuring that all elements in X have W flippancy and W occurrency.

• Then generate the second n = T/2 timesteps ensuring that all elements in U are inserted once.

Define a stream x(X) to be a deterministic function of X as follows. For the first half, all updates related to each element in
X appear consecutively and in the total order. Each element u ∈ X has exactly W updates, alternating W/2 times between
one insertion and one deletion of u; this results in both W flippancy and W occurrency for all u ∈ X at the end of the first
half of the stream. Then, the second half of the stream has one insertion of each element in U , appearing according to the
total order.

It is easy to see that the correct output for this stream in both the blocklistflip(W) and blocklistocc(W) problems is to
always output 0 in the first half, and to output 1 in the second half only for elements in X: o∗(x(X))t = 0 for t ≤ n and
o∗(x(X))t = 1 iff xt ∈ X and t ≥ n+ 1.

We want to show a space lower bound for an algorithm Aflip (resp., Aocc) that will satisfy the conditions of no false
negatives, and at most r false positives, with probability at least 1 − β over this distribution, for the blocklistflip(W)
(resp., blocklistocc(W)) problem. The proof proceeds identically for both problems, so we prove it only for Aflip.

Without loss of generality, we assume Aflip is deterministic, since for any randomized algorithm, there will exist a random
seed to achieve no worse guarantee on the considered input distribution.

We prove this space lower bound via an information theory argument (see Section A.4 for information theory basics) by
considering three random variables in addition to X:

• S: A random variable representing the memory state of algorithm Aflip after observing the first n = T/2 timesteps.

• Y : The set of elements with an output 1 in the second half of the stream by algorithm Aflip.

• P : An indicator variable that is 1 if Aflip has no false negatives and at most r false positives, and 0 otherwise. By
definition we know Pr[P = 1] ≥ 1− β.

Since the algorithm Aflip is deterministic, then S, Y, P are all deterministic functions of X , since the stream itself is a
deterministic function of X . Since algorithm Aflip does not learn new information in the second half of the stream – since
the second half of the stream is the same for all streams – then Y is a deterministic function of S.

To start, the maximum size of S can be lower bounded by its entropy H(S). Then H(S) can be further lower bounded by
the mutual information between the input secret X and the random variable Y , which is part of algorithm Aflip’s output,
conditioned on P . This can be seen using inequalities from Fact A.12:

|S| ≥ H(S) ≥ H(S|P ) ≥ I(X;S|P ) ≥ I(X;Y |P ).

Next, we apply the definitions of condition mutual information and mutual information:

I(X;Y |P ) = Pr[P = 1] · I(X;Y |P = 1) + Pr[P = 0] · I(X;Y |P = 0)

≥ Pr[P = 1] · I(X;Y |P = 1)

= Pr[P = 1] · (H(X|P = 1)−H(X|P = 1, Y )) .
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For H(X|P = 1), since Aflip is deterministic and Pr[P = 1] ≥ 1− β, we know that X|P = 1 is distributed uniformly
across at least (1− β) ·

(
n
m

)
sets of universe elements7 , and therefore,

H(X|P = 1) ≥ log

(
(1− β) ·

(
n

m

))
.

Next we analyze H(X|P = 1, Y ). Conditioned on P = 1, by the no false negatives requirement, we know X ⊆ Y , and
by at most r false positives, we know |Y | ≤ m+ r. Therefore, for any y such that Pr[Y = y|P = 1] > 0, it must be that
|y| ≤ m+ r and that conditioned on P = 1 and Y = y, X is a subset of y of size m. Therefore X can take at most

(
m+r
m

)
different values. By Fact A.12,

H(X|P = 1, Y = y) ≤ log

(
m+ r

m

)
and

H(X|P = 1, Y ) =
∑
y⊆[n]

Pr[Y = y|P = 1] ·H(X|P = 1, Y = y) ≤ log

(
m+ r

m

)
.

Putting everything together:

|S| ≥ H(S) ≥ I(X;Y |P ) ≥ Pr[P = 1] · (H(X|P = 1)−H(X|P = 1, Y ))

≥ (1− β) ·
(
log

(
(1− β) ·

(
n

m

))
− log

(
m+ r

m

))
= (1− β) ·

(
log(1− β) + log

n× (n− 1)× · · · × (n−m+ 1)

(m+ r)× (m+ r − 1)× · · · × (r + 1)

)
≥ (1− β) ·

(
log(1− β) +m log

n

m+ r

)
= (1− β) ·

(
log(1− β) +

T

2W
log

WT

T + 2Wr

)
.

F.2. Proof of Corollary E.3

Corollary E.3. With probability 1− 2β and when |U| = poly(T ), Algorithm 1 with ob=false reports no false negatives
and r = 2T 1/3 log(T 1/3⌈log(T )⌉/β) false positives for the problem blocklistocc(W) for W = T 2/3, while using space
O(T 1/3 · polylog(T/β)) · poly( 1

ρη )).

Proof. For the space complexity of Algorithm 1, Theorem 4.7 says that when |U| = poly(T ) and ob=false, then with
probability at least 1− β, Algorithm 1 uses space O(T 1/3 · polylog(T/β)) · poly( 1

ρη ).

For the claim that Algorithm 1 has no false negatives with high probability, Lemma D.5 in Appendix D.2 shows that when
ob = false, with probability at least 1− β/L, the maximum occurrency of the stream produced from the blocklisting is
at most T 2/3. Since Algorithm 1 uses W = T 2/3, then with probability at least 1− β/L, Algorithm 1 will have no false
negatives, since it will never allow elements with occurrency larger than W = T 2/3 to persist without being blocklisted.
Plugging in the value of L = ⌈log(T )⌉, note that β/⌈log(T )⌉ ≤ β/2, therefore with probability 1− β/2, Algorithm 1 will
have no false negatives.

To see the false positive bound, let Xi be an indicator random variable where Xi = 1 if the element at timestep i is a false
positive in Algorithm 1, and let X =

∑T
i=1 Xi. Recall that Algorithm 1 samples elements for the blocklist with probability

p = log(T 1/3L/β)
T 2/3 at each occurrence. Note that Pr[Xi = 1] = Pr[(xi ∈ B) ∩ (xi < W )] ≤ Pr[(xi ∈ B)] = p, so then

7To see this, first observe that P (X) = 1 partitions the input space according to the event that Aflip has no false negatives and at
most r false positives. Let R denote the size of the support for X|P = 1. Then, since X is uniformly chosen, Pr[P (X) = 1] ≥ 1− β
means that R

(n
m)

≥ 1− β, and therefore R ≥ (1− β) ·
(
n
m

)
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E[X] =
∑T

i=1 Pr[Xi = 1] ≤ T · p = T 1/3 log(T 1/3L/β). Applying a multiplicative Chernoff bound (Theorem A.6) with
η = 1 yields:

Pr[X ≥ 2T 1/3log(T 1/3L/β)] ≤ exp(−(T 1/3/3) log(T 1/3L/β)) =

(
β

T 1/3L

)T 1/3/3

≤ β/2.

To see the last inequality, we first plug in L = ⌈log(T )⌉, so we wish to show
(

β
T 1/3⌈log(T )⌉

)T 1/3/3

≤ β/2. We observe
numerically that this holds for T ≥ 8.

Taking a union bound over the failure probability from the space complexity, false positive, and false negative bounds, then
with probability 1− 2β, Algorithm 1 solves the blocklistocc(W ) for the desired r and space conditions.
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