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ABSTRACT

This paper introduces ConvStabNet, a convolutional neural network that pre-
dicts optimal stabilization parameters for the Streamline Upwind Petrov Galerkin
method (SUPG) stabilization scheme. To enhance the accuracy of SUPG in solv-
ing partial differential equations (PDE) with interior and boundary layers, Con-
vStabNet incorporates a loss function that combines a strong residual compo-
nent and a cross-wind derivative term. ConvStabNet utilizes a shared parame-
ter scheme, enabling the network to learn the correlations between cell properties
and their respective stabilization parameters while effectively managing the pa-
rameter space. Comparative evaluations against state-of-the-art neural network
solvers based on variational formulations demonstrate the superior performance
of ConvStabNet. The results affirm ConvStabNet as a promising approach for ac-
curately predicting stabilization parameters in SUPG, thereby establishing it as an
improvement over neural network-based SUPG solvers.

1 INTRODUCTION

The scalar advection-diffusion equation describes various scalar quantities, including species con-
centration, temperature, and electron continuity in semiconductors. In such equations, the advection
term typically dominates over diffusion, leading to what is known as Singularly Perturbed Partial
Differential Equations (SPPDEs) Tobiska & Verfurth (1996). Solving these equations using finite
element or finite volume methods poses challenges due to the emergence of boundary and interior
layers, often resulting in spurious oscillations in the numerical solution. Researchers have proposed
stabilization techniques to overcome this issue and eliminate these undesirable oscillations Yadav
& Ganesan (2019; 2021). However, the effectiveness of these stabilization techniques relies on a
user-defined parameter called the stabilization parameter (τK). In practice, determining an optimal
value for τK is difficult, as closed-form formulas are unavailable for most cases. Among the various
stabilization techniques proposed in the literature, one widely adopted approach is the Streamline
Upwind Petrov-Galerkin (SUPG) technique, discussed by Brooks and Hughes Brooks & Hughes
(1982); Hughes et al. (1989). The SUPG technique aims to stabilize the weak form of the given
PDE by introducing additional diffusion in the upwind direction. The amount of stabilization can
be adjusted by controlling the user-defined stabilization parameter (τK). Choosing an appropriate
value for τK is crucial, as a high value can excessively smooth out oscillations, while a small value
may not effectively eliminate the oscillations. To enhance the accuracy of the SUPG technique for
SPPDEs, we propose utilizing a convolutional neural network (CNN) to predict the value of τK .
This prediction is achieved by minimizing an error function, as proposed in John et al. (2011). By
incorporating this approach, we can improve the accuracy of the SUPG technique when applied to
SPPDEs. Before delving into the details of the proposed technique, we will review existing deep-
learning solvers for PDEs and explore how these solvers can be adapted for SPPDEs.

In recent years, significant research has been on utilizing deep learning for solving partial differ-
ential equations (PDEs). Deep learning can be applied in two ways: as a direct PDE solver or as
an additional tool alongside traditional PDE-solving techniques such as the finite element method
(FEM), finite difference method (FDM), and finite volume method (FVM). When deep learning is
used as a PDE solver, the problem is formulated as an optimization problem since labeled data for
supervised training is generally unavailable.
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One commonly employed approach for solving PDEs using neural networks is the Physics-Informed
Neural Network (PINN). PINN was introduced in Raissi et al. (2019). Unlike traditional neural
network-based supervised learning, where accurate reference data is available, PINN adopts a data-
driven strategy that incorporates the underlying physical laws of the problem to formulate the loss
function for training the neural network. PINN provides an approximation of the numerical solution
by minimizing the residual of the equation while satisfying the imposed boundary conditions.

To illustrate the concept, let’s consider a PDE defined on a bounded domain Ω ∈ Rd for d = 1, 2,
with the following boundary conditions:

D(u(x)) = 0, x ∈ Ω,

B(u(x)) = f, x ∈ ∂Ω.
(1)

In Equation equation 1, u represents the unknown solution, ∂Ω denotes the domain boundary, D rep-
resents a linear or nonlinear differential operator, and B denotes the boundary condition of the given
PDE (e.g., Dirichlet, Neumann, or Robin boundary condition). In PINN, an approximate solution
û to the equation is estimated using a feed-forward neural network M , which can be represented as
follows:

û = M(x; θ). (2)
Here, x represents the input coordinates, and θ denotes the parameters of the neural network. The
goal is to find the optimal values of θ that minimize the loss function. The loss function in PINN
consists of two components: the mean squared error (MSEu) between the approximate solution û
and the true solution u at interior points, and the mean squared error (MSEf ) between the residual
term f and zero at boundary points. The overall loss function can be written as follows:

Loss(θ) = MSEu +MSEf ,

MSEu =
1

Nu

Nu∑
i=1

|ûi − u(xi
u)|2,

MSEf =
1

Nf

Nf∑
i=1

|f(xi
f )|2.

(3)

In Equation equation 3, xi
u, x

i
f are the spatially collocated points in Ω and ∂Ω respectively, Nf , Nu

is the number of boundary and interior points, respectively. Lossequation 3 is minimized to obtain an
optimal θ. While PINN was one of the pioneering neural network architectures introduced for PDE
solving, its accuracy had certain limitations. As a result, significant progress has been achieved since
the development of PINN. One notable advancement in this field is the introduction of Variational
Neural Networks (VarNet) for PDE solutions, as presented in Khodayi-mehr & Zavlanos (2020). In
the subsequent section, we will delve into the details of VarNet and its application in solving PDEs.

1.1 VARIATIONAL NEURAL NETWORKS

Variational Neural Networks (VarNet) for the Solution of Partial Differential Equations were intro-
duced in Khodayi-mehr & Zavlanos (2020). VarNet is a PDE solver based on neural networks that
employ a unique loss function relying on the PDE’s variational (integral) form, in contrast to the
differential form used by Physics-Informed Neural Networks (PINNs). The novel loss function of
VarNet effectively approximates the solution by incorporating lower-order derivatives. However,
both PINNs and VarNet have limitations when applied to Singularly Perturbed Partial Differential
Equations (SPPDEs). We propose incorporating a classical stabilization technique into the solvers’
loss function to overcome these limitations and improve the accuracy of neural network-based PDE
solvers for SPPDEs.

1.2 AI-AUGMENTED STABILIZED FEM (AISTAB-FEM)

AI-augmented stabilized FEM (AIStab-FEM) is a technique proposed by Sangeeta et al. in their
paper Yadav & Ganesan (2022) to predict a global stabilization parameter τK for 2D Singularly
Perturbed Partial Differential Equations (SPPDEs) using neural networks. This approach utilizes the
strong form of the residual and incorporates the cross-wind derivative term into the loss function.
However, there are some limitations associated with this technique.
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One limitation of AIStab-FEM is that it can only predict a global τ value, which is then localized
by dividing it with the norm of gradients of the standard solution. This approach does not provide
a truly local solution, so it does not work effectively for SPPDEs with spatially varying equation
parameters. Additionally, the normalization step assumes that the stabilization parameter has a
solution gradient in the denominator. This assumption is not always ideal and can lead to artificially
high values of τK in regions with low gradients. To address these limitations, our proposed method
aims to predict the stabilization parameter locally for each cell using convolutional neural network
(CNN). By doing so, we can overcome the limitations of AIStab-FEM and provide a more accurate
and localized solution for SPPDEs. Contributions
The contributions of this research work are outlined below:

• A convolution neural network is introduced for predicting cell-wise stabilization parame-
ters for Streamline Upwind Petrov-Galerkin (SUPG) in two-dimensional Singularly Per-
turbed Partial Differential Equations (SPPDEs). The CNN architecture is designed to ef-
fectively capture spatial dependencies and provide accurate predictions of the stabilization
parameters.

• An error functional, based on the cross-wind derivative term, is utilized as the loss function
for the proposed CNN, referred to as ConvStabNet. The error functional, proposed in John
et al. (2011), enables the CNN to learn the optimal stabilization parameters by minimizing
the discrepancy between predicted and true values.

• The proposed technique is compared with existing approaches to highlight its effectiveness.
The following contemporary ideas are considered for comparison:

– AIStab-FEM: Ai-Augmented Stabilized Finite Element Method Yadav & Ganesan
(2022).

– VarNet: Variational Neural Networks Kharazmi et al. (2019).
– SUPG Stabilized Finite Element Method N. & R. (1982).

The structure of the paper is outlined as follows: In Section 2, the necessary mathematical prelimi-
naries are presented to facilitate understanding of the proposed method. The details of the proposed
method, including the network architecture and the error functional as the loss function, are elabo-
rated in Section 3. Subsequently, a discussion on two prominent neural network-based PDE solvers
is presented. Finally, the paper concludes in Section 5.

2 MATHEMATICAL PRELIMINARIES

SPPDEs are a class of differential equations with a small diffusion parameter (ϵ > 0) multiplied
with the second order differential term. A small value of ϵ often induces spurious oscillations in the
standard Galerkin solution. For a given bounded domain Ω ⊂ Rd, where d ∈ N, an SPPDE is given
as follows:

−ϵ∆u+ b · ∇u = f(x), in Ω ⊂ Rd,

u = g, on ∂Ω,
(4)

where ϵ > 0 is the diffusion coefficient, also called a perturbation parameter, b = (b1, b2)
T is the

convective velocity, f ∈ L2(Ω) is the external source term, u is the unknown scalar term, g is the
known boundary value. For smooth b and f(x), equation equation 4 has a unique solution. We will
consider the convection-dominated problems, that is, ϵ ≪ |b|.

2.1 WEAK FORMULATION

We utilize the FEM to solve the equation equation 4. The initial step in FEM involves deriving the
weak form of the given equation. To derive the weak form equation of equation 4, we multiply it by
a function v ∈ V := H1

0 (Ω), integrate it over Ω, and then apply integration by parts. The objective
is to find a function u ∈ H1(Ω) that satisfies the following condition for all v ∈ V :

a(u, v) = (f, v). (5)
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Here, the bilinear form a(·, ·) : H1(Ω) ×H1
0 (Ω) → R and the linear form f(v) : H1

0 (Ω) → R are
defined as:

a(u, v) =

∫
Ω

ϵ∇u · ∇v dx+

∫
Ω

b · ∇u v dx,

f(v) =

∫
Ω

f v dx.

Let Ωh be an admissible decomposition of Ω and let K represent a single cell in Ωh. Let
H1(Ωh) ⊂ H1(Ω) and Vh ⊂ H1

0 (Ω) be finite-dimensional spaces comprising piece-wise con-
tinuous polynomials. The discrete form of the equation reads:
Find uh ∈ H1(Ωh) such that for all vh ∈ Vh we have

ah(uh, vh) = (f, vh), (6)
where

ah (uh, vh) := ϵ (∇uh,∇vh) + (b · ∇uh, vh) .

2.2 STABILIZED WEAK FORMULATION USING SUPG

In the Streamline Upwind Petrov-Galerkin (SUPG) method, a residual term is incorporated into the
equation’s weak form in the streamline’s direction. We define R(u) as the residual of Equation
equation 4, given by:

R(u) = −ϵ∆u+ b · ∇u− f (7)
The term R(u) is added to the discretized weak formulation given in equation equation 6. Now, the
modified discrete weak form reads:

Find uh ∈ Vh such that:
aSUPG (uh, vh) = (f, vh) , (8)

where
aSUPG(uh, vh) = ϵ(∇uh,∇vh) + (b · ∇uh, vh)

+
∑

K∈Ωh

τK(−ϵ∆uh + b · ∇uh − fh,b · ∇vh)K .

In this work, we focus on the non-negative stabilization parameter τK , which plays a crucial role
in determining the quality of the approximated solution. The value of τK is of utmost importance
as it can significantly impact the accuracy and behavior of the solution. A large value can result in
unexpected smearing, while a small value may fail to remove spurious oscillations.

By leveraging the power of deep learning, we aim to develop a model that can effectively estimate
τK based on the given input data. This approach allows us to automate the selection process and
improve the overall performance and stability of the solution.

2.3 STANDARD STABILIZATION PARAMETER

In the literature, several expressions exist for the stabilization parameter (τ ); the most commonly
used relation in one-dimensional problems is provided below:

τstd|K =
hK

2|b|

(
coth (PeK)− 1

PeK

)
(9)

Here, PeK = |b|h/2ϵ is the local Peclet number and hK is the diameter of the cell K. How-
ever, the conventional expression for τstd is insufficient for solving all Singularly Perturbed Partial
Differential Equations (SPPDEs), and it lacks extendability to high-dimensional problems.

We propose a novel technique based on convolutional neural networks (CNNs) to address this lim-
itation to predict a more generalizable τK value. This approach aims to achieve a lower numerical
error in the solution compared to the standard τK approach.

By leveraging the capabilities of CNNs, we aim to capture intricate patterns and dependencies in the
data, enabling us to develop a predictive model that can effectively estimate optimal τ values. This
approach is expected to yield improved accuracy and reliability in solving SPPDEs, particularly in
scenarios where the conventional τstd fails to provide satisfactory results.
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2.4 ERROR METRICS

We use the following metrics to calculate numerical errors in the solution obtained with the τK pre-
dicted from ConvStabNet. We use them for comparison against the standard τ (equation equation 9),
VarNet, and AIStab-FEM as explained in section 1.

L2-error: ∥eh∥0 = ∥uh − uexact∥L2(Ω) =

(∫
Ω

(uh − uexact)
2dx

) 1
2

Relative l2-error:∥eh∥0,ℓ =
N∑
i=1

∥uh(xi)− uexact(xi)∥0,ℓ
∥uexact∥0,ℓ

, xi ∈ Ωh

H1-seminorm error: |eh|1 = ∥∇uh −∇uexact)∥L2(Ω) =

(∫
Ω

(∇uh −∇uexact)
2dx

) 1
2

L∞-error: ∥e∥L∞(Ω) = ess sup{|uh − uexact| : x ∈ Ω}.

Here, uexact is the exact solution.

3 PROPOSED METHOD: CONVSTABNET

We introduce ConvStabNet, a convolutional neural network (CNN) designed for predicting the value
of τK . The algorithmic explanation of ConvStabNet can be found in Algorithm 1, and a schematic
representation is depicted in Figure 1. The error indicators inspire the loss function employed by the
CNN proposed in John et al. (2011), explicitly utilizing the SUPG stabilized weak form (equation
equation 8) of the equation.

τK(θ) = ConvStabNetθt(ϵ
K , bK1 , bK2 , hK , ||∇uK

h ||0,K)

Loss(uh(θ)) =
∑
K∈Ω

(|| − ϵ∆uh + b · ∇uh − f ||20,K + ||q(|b⊥ · ∇uh|)||0,1,K)

where, q(s) =
{√

s s > 1

2.5s2 − 1.5s3 otherwise

and, b⊥(x) =


[b2(x),−b1(x)]

|b(x)|
if |b(x)| ≠ 0

0 else |b(x)| = 0.

(10)

Here, uh represents the numerical solution obtained using the predicted τK . The function q(s)
corresponds to the cross-wind derivative term, which plays a crucial role in limiting the smearing
effect in the numerical solution.

The ConvStabNet architecture consists of three one-dimensional convolutional layers with sizes [64,
32, 32] respectively. Each layer employs a convolutional filter with a stride of one. The network
takes as input the diffusion coefficient (ϵ), convective velocity (b1(x, y), b2(x, y)), mesh size (h),
and the norm of the gradient of the solution. The network is implemented from scratch using the
PyTorch Paszke et al. (2019) and FEniCS A. Logg (2012); Logg & Wells (2010) libraries.

In Algorithm 1, we augment the cell-wise input by including the gradient of the norm of the numer-
ical solution and predict the cell-wise τ values for the entire domain. During each epoch, we check
if the strong form residual of the equation is below the threshold βthres. If the residual exceeds the
threshold, the training process is halted.

3.1 IMPACT OF CROSSWIND DERIVATIVE TERM IN THE LOSS FUNCTION

One significant addition in the cost function is the utilization of an a posteriori error indicator term,
which includes the crosswind derivative term, in the loss function. This term plays a crucial role
in controlling the smearing effect in the solution. Figure ?? illustrates the impact of including the
crosswind derivative term on the L2-error in the numerical solution obtained by minimizing the loss
function. It is evident that incorporating the crosswind derivative term leads to a noticeable reduction
in the L2-error for all the considered examples.
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Figure 1: Network Architecture of ConvStabNet.

Algorithm 1 ConvStabNet algorithm

1: Initialize learning rate η0, nepochs, IK = {(ϵK , bK1 , bK2 , hK , ||∇uK
h ||0,K)}

2: Initialize the weights, θ0, of ConvStabNet with random values
3: Initialize the optimizer (Adam in this case) and stepLR scheduler
4: Solve equation equation 6 to get uh and ||∇uK

h ||0,K . Add ||∇uK
h ||0,K to IK .

5: for t = 0 to nepochs do
6: τK(θt) = ConvStabNetθt(I

K)
7: ηt = stepLR(t)
8: Solve equation equation 8 with τK to get uh

9: Loss(uh(θ)) =
∑

K∈Ω(|| − ϵ∆uh + b · ∇uh − f ||20,K + ||q(|b⊥ · ∇uh|)||0,1,K)

10: if

(
βh =

∑
K∈Ω

∥ − ϵ∆uh + b · ∇uh − f∥20,K

)
< βthres then

11: break
12: else
13: loss(θt) = βh +

∑
K∈Ω

∥q(|b⊥ · ∇uh|)∥0,1,K

Backpropogate: θt+1 = θt − ηt∇θt loss(θt)
14: end if
15: end for

4 NUMERICAL EXPERIMENTS

To assess the robustness of ConvStabNet, we conduct experiments using various examples. In this
section, we provide the details of these examples, which are outlined below:
Example 1: Constant source term
We consider the equation equation 4 with following data:

ϵ = 10−8, b = (1, 0), f = 1, Ω = (0, 1)2, g = 0.

This example is taken from John & Knobloch (2007). The solution has an exponential layer at
x = 1 and two parabolic layers at y = 0 and y = 1 respectively. The source function is constant
and the analytical solution for this problem to test the performance of the proposed technique on this
problem.
Example 2: Variable source term
We consider the convection-diffusion equation equation 4 with following equation coefficients and
boundary conditions as given in Knobloch (2009):

ϵ = 10−8, b = (2, 3), g = 0.

The source term f depends on x, y and is calculated by substituting the following analytical solution

u(x, y) =xy2 − x exp

(
3(y − 1)

ϵ

)
− y2 exp

(
2(x− 1)

ϵ

)
+ exp

(
2(x− 1) + 3(y − 1)

ϵ

)
.
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This solution contains two outflow boundary layers. one at x = 1.0 and another at y = 1.0.
Example 3: No source term
Next, we consider the convection-diffusion equation equation 4 with the following coefficients and
boundary conditions:

ϵ = 10−8, θ = −π/3, b = (cos(θ), sin(θ)), f = 0,

g =

{
0, for x = 1 or y ≤ 0.7

1, otherwise.

This solution contains both exponential and boundary layers and is taken from John et al. (2011).
Example 4: Discontinuous source term
We consider the convection-diffusion equation equation 4 with the following coefficients and bound-
ary conditions:

ϵ = 10−8, b = (1, 0), g = 0,

f =

{
0, if |x− 0.5| ≥ 0.25 ∪ |y − 0.5| ≥ 0.25

−32(x− 0.5), otherwise,

u =

{
0, if |x− 0.5| ≥ 0.25 ∪ |y − 0.5| ≥ 0.25,

−16(x− 0.25)(y − 0.75), otherwise.

This example differs from Example 1 in the source function f . It has previously been employed
in Knobloch (2008) as a benchmark case. In this scenario, the solution exhibits two interior char-
acteristic layers in the convection direction, specifically between the spatial points (0.25, 0.25) and
(0.25, 0.75). The Peclet number associated with this example is 1.77× 106.
Example 5: Variable convective velocity
The proposed ConvStabNet is designed to handle SPPDEs with variable coefficients by incorporat-
ing the local convective velocity as an input. In order to validate its effectiveness, we consider the
convection term as a spatially varying function:

ϵ = 10−8, b = (−y, x)T , f = 0, Ω = (0, 1)2,

g =

{
1 if 1

3 ≤ x ≤ 2
3 and y = 0,

0 else.

4.1 MESH CONVERGENCE ANALYSIS

In FEM, the accurate simulation of complex physical phenomena and the attainment of reliable
numerical solutions heavily rely on mesh resolution. Mesh refinement involves dividing the com-
putational domain into smaller cells to capture finer details of the problem being studied. Increas-
ing the number of cells in the areas of interest, such as regions with steep gradients or high-stress
concentrations, enhances the accuracy of the solution. A refined mesh allows for a more precise
representation of geometric features, boundary conditions, and material behavior, resulting in more
accurate predictions of the system’s response. However, mesh refinement comes at the expense of
increased computational requirements since a larger number of cells need to be handled. Therefore,
it is crucial to strike a balance between mesh size and computational efficiency to ensure accurate
results without excessive computational overhead. In the case of ConvStabNet, we conducted a mesh
refinement analysis, and the results are summarized in Table 1. It shows we have obtained optimal
order of convergence.

Table 1: Errors in the numerical solution of Example 2

Ncells h Residual L2-error Relative H1-Seminorm L∞-error Order
l2-error

10 1.41e-1 8.71e-1 4.75e-4 3.83e-1 1.06e-2 1.04e-3
20 7.07e-2 5.12e-1 2.93e-5 9.28e-2 1.34e-3 5.92e-5 4.02
40 3.54e-2 2.88e-1 3.63e-6 4.60e-2 3.29e-4 7.35e-6 3.01
80 1.77e-2 1.76e-1 4.51e-7 2.29e-2 8.14e-5 9.20e-7 3.01

7



Under review as a conference paper at ICLR 2024

4.2 THE CHOICE OF FINITE ELEMENTS

In addition to mesh refinement, the accuracy of the solution can also be improved by increasing the
order of the finite elements. Opting for elements with higher polynomial order allows for a more
precise representation of complex geometries and smooth solutions. However, this improvement
often comes at the cost of increased computational requirements and a larger number of degrees
of freedom to solve for. Additionally, higher order finite elements may introduce oscillations near
interior and boundary layers.Therefore, it is crucial to carefully consider the behavior of the selected
finite elements under different conditions and ensure they are suitable for capturing the relevant
physics of the problem at hand. This involves assessing their ability to accurately represent the
anticipated solution characteristics and evaluating their performance in capturing important features
such as discontinuities, gradients, and boundary conditions. By selecting appropriate finite elements,
one can strike a balance between accuracy and computational efficiency while ensuring the faithful
representation of the underlying physics. In table 2, we show the performance of ConvStabNet for
different pairs of finite elements, in terms of all error metrics. We found that the best pair is (P2,
DG0) for the considered example as all the error metrics are least for (P2, DG0) pair of choice.

Table 2: Choice of finite elements for uh and τK

Pair of elements Residual L2-error Relative l2-error H1 error L∞Error
(τK , uh)

DG0, P1 3.76e+0 9.35e-6 9.56e-2 8.72e-4 7.32e-5
DG1, P1 2.54e+0 7.43e-6 8.53e-2 7.54e-4 5.45e-5
DG1, P2 1.78e+0 5.34e-6 4.88e-2 5.32e-4 3.21e-5
DG0, P2 2.62e-1 1.51e-6 1.27e-2 1.23e-4 1.23e-5

4.3 PERFORMANCE ANALYSIS

In order to assess and compare the effectiveness of ConvStabNet with VarNet, standard τstd, and
AIStab-FEM, a comprehensive analysis is conducted, and the results are presented in Table 3. The
error metrics associated with ConvStabNet were examined, revealing consistent outperformance
compared to VarNet and standard τstd. This significant improvement in performance demonstrates
the superiority of ConvStabNet over the other two techniques.

Table 3: Comparison of ConvStabNet with other techniques for the Example 2.

L2-error Relative l2-error H1-seminorm L∞ error

Standard τ 6.77e-6 1.36e-1 6.74e-4 7.29e-5
VarNet 2.37e-4 1.62e+0 1.87e-3 3.55e-4
AI-stab FEM 5.04e-6 9.73e-2 4.80e-4 4.05e-5
ConvStabNet 3.04e-6 8.36e-2 3.20e-4 4.03e-5

4.4 QUALITATIVE COMPARISON

To comprehensively evaluate the performance of ConvStabNet and AIStab-FEM, the first four ex-
amples are considered. Figures 3 and 4 visually represent the predicted values of τK obtained from
ConvStabNet and AIStab-FEM, respectively, for each of the examples. Notably, the predictions
derived from ConvStabNet exhibit intricate local details, enhancing the fidelity of the results.

To exemplify the efficacy of ConvStabNet in handling equations with variable coefficients, we
specifically present the solutions obtained for Example 5, in Figure 2. This figure demonstrates
ConvStabNet’s ability to accurately capture the varying coefficients and provide precise predictions.
By observing the figure, it becomes evident that ConvStabNet effectively handles the complexities
introduced by variable coefficients, showcasing its versatility and robustness across different scenar-
ios. The difference between the τK predicted from AIStab-FEM and ConvStabNet is shown in Fig.
5, and we can see that ConvStabNet improves the predictions by a significant margin.

5 SUMMARY

In this study, we introduce ConvStabNet, a convolutional neural network designed to predict stabi-
lization parameters for solving two-dimensional SPPDEs using the SUPG technique. The network
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Figure 2: ConvStabNet for equation with variable coefficients (convection velocity).
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Figure 3: τ̂K predicted from ConvStabNet
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Figure 4: τ̂ predicted from AIStab-FEM
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(d) Example 4

Figure 5: Difference of τ̂K predicted from AIStab-FEM and ConvStabNet

utilizes localized cell features to predict cell-wise τK . To assess the performance of ConvStabNet,
we conducted several experiments, including mesh refinement analysis and generalizability testing.
The proposed technique was compared against other approaches, such as Std. τstd, VarNet, and
AIStab-FEM in terms of various evaluation metrics including Residual, L2 Error, Relative l2-error,
H1 Error, and L∞ Error. The results demonstrate that ConvStabNet outperforms all of these meth-
ods. Furthermore, ConvStabNet addresses the limitations of AIStab-FEMYadav & Ganesan (2022)
by showcasing good performance even in scenarios where equation coefficients vary. This highlights
the robustness and versatility of the proposed approach in handling variable equation coefficients.
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