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ABSTRACT

This paper introduces VLAP, a novel approach that bridges pretrained vision
models and large language models (LLMs) to make frozen LLMs a model of
the non-linguistic visual world. VLAP transforms the embedding space of pre-
trained vision models into the LLMs’ embedding space using a single linear layer,
which is trained with the optimal transport-based assignment prediction objective.
Specifically, we harness well-established word embeddings to bridge two modal-
ity embedding spaces. We simultaneously assign the visual and text representa-
tions to a set of word embeddings within pretrained LLMs through the optimal
transport. We predict the assignment of one modality from the representation of
another modality data, enforcing consistent assignments for paired multimodal
data. This allows two modality representations to contain the same information,
grounding the frozen LLMs’ word embedding space in visual data. Moreover,
a robust semantic taxonomy of LLMs can be preserved with visual data since
the LLMs interpret and reason linguistic information from correlations between
word embeddings. Experimental results show that VLAP achieves substantial im-
provements over the previous linear transformation-based methods across a range
of vision-language tasks, including image captioning, visual question answering,
and cross-modal retrieval. We also demonstrate the learned visual representations
hold a semantic taxonomy of LLMs, making visual semantic arithmetic possible.

1 INTRODUCTION

Pretraining vision-language models (VLMs) has achieved significant progress in demonstrating re-
markable transfer and zero-shot capabilities on vision-language downstream tasks (Tan & Bansal,
2019; Lu et al., 2019; Chen et al., 2020; Huang et al., 2020; Radford et al., 2021; Jia et al., 2021).
Most cutting-edge VLMs have been developed with progressively scaled-up foundation models and
datasets. This trend underscores the demand for substantial computational resources and an exten-
sive collection of image-text pairs. Concurrently, pretrained unimodal foundation models, such as
vision transformers (Bao et al., 2022; Caron et al., 2021) and large language models (LLMs) (Brown
et al., 2020; Zhang et al., 2022; Raffel et al., 2020), have been developed, renewing the state-of-the-
art in vision and language downstream tasks respectively. To build effective and computationally
efficient VLMs, an interesting question has been drawn: Can pretrained unimodal models extend
their capabilities beyond the modality of pretraining data?

Recently, intriguing attempts have been made to assemble pretrained vision models and LLMs to
seem VLMs (Mokady et al., 2021; Tsimpoukelli et al., 2021; Alayrac et al., 2022; Patel & Pavlick,
2022; Eichenberg et al., 2022; Li et al., 2022; 2023; Guo et al., 2023). Most of these attempts sug-
gested ways to train relatively small-scale connection modules while freezing pretrained parameters.
By doing so, it is possible to efficiently make VLMs that leverage discriminative visual represen-
tations from pretrained image encoders, coupled with powerful language modeling and zero-shot
capabilities of pretrained LLMs. While the burden of training costs in those methods has signif-
icantly decreased compared to pretraining VLMs, they still require high computations (both time
and memory), which limits applicability (e.g. Flamingo (Alayrac et al., 2022) requires 15 days with
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Figure 1: Overview of VLAP. We train a single linear layer following two learning objectives: Assignments
prediction to bridge the modality gap between the visual and text representations; and image captioning to yield
the generative capability of frozen LLMs.

1535 TPUs to train 10.2B parameters, BLIP-2 (Li et al., 2023) requires 9 days with 16 A100 GPUs
to train 188M parameters).

Linear transformation-based approaches (Merullo et al., 2023; Koh et al., 2023) have facilitated effi-
cient cross-modal alignment with a cost-efficient linear transformation between vision and language
spaces. Merullo et al. (2023) has shown that visual representations can be linearly transformed into
LLMs’ input embedding as soft prompts, demonstrating that well-learned visual and text represen-
tations are functionally equivalent. Similarly, Koh et al. (2023) has proposed to generate free-form
text interleaved with images by learning additional trainable tokens and linear layers. These lin-
ear transformation-based cross-modal alignments have been achieved by the image captioning and
retrieval objectives, which directly compare the representations of image-text pairs and enforce in-
stance discrimination as contrastive learning (Chopra et al., 2005). However, the inherent modal-
ity gap between different modality data leads to the inconsistency of the two models’ embedding
space (as their pretraining has been solely on unimodal data) and makes cross-modal alignment
for frozen unimodal models difficult with the following challenges: (1) they are highly dependent
on the amount of linguistic supervision used during pretraining of vision models, showing limited
performance with vision-only image models (e.g. CLIP vs BEiT) (Merullo et al., 2023). (2) the con-
trastive objective (such as InfoNCE (van den Oord et al., 2018) in Koh et al. (2023)) is insufficient
to bridge complex embedding spaces because it inherently encourages the existence of the modality
gap (Liang et al., 2022).

In this paper, we propose a novel linear transformation-based method, which we call VLAP: bridg-
ing vision and language models with assignment prediction. VLAP learns a linear layer with a
novel optimal transport-based assignment prediction that compares intermediate assignments for
image and text data instead of directly comparing their representations. Specifically, visual and text
representations are assigned to the most relevant word embeddings within pretrained LLMs using
optimal transport. The assignment for one modality is predicted from the other modality represen-
tation, making two different modality representations contain the same linguistic information. We
exploit the readily available word embedding space, following two main advantages: (1) it does not
require additional learnable embedding space (e.g. prototypes in Asano et al. (2020b); Caron et al.
(2020)) and (2) it allows visual representations to keep abundant linguistic contextual information
and inherit a semantic taxonomy of LLMs. Our main contributions are four-fold:

• We propose a novel linear transformation-based method, called VLAP, to efficiently bridge
pretrained image models and LLMs. VLAP employs an optimal transport-based assign-
ment prediction objective to make visual and text representations compatible with each
other.

• VLAP leverages the word embeddings of pretrained LLMs as a fixed central space for
optimal transport. This allows us to easily bridge two pretrained frozen unimodal models
by exploiting the fundamental components of LLMs.

• Mapping visual data to LLMs’ word embeddings results in learned visual representations
that hold a semantic taxonomy of LLMs, facilitating the operation in a textual way for
visual data, e.g. visual semantic arithmetic operation.
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• VLAP substantially outperforms existing linear transformation-based methods (Merullo
et al., 2023; Koh et al., 2023) in a range of vision-language tasks, while also demonstrating
high computational and memory efficiency.

2 RELATED WORK

Pretraining vision-language models (VLMs) Tan & Bansal (2019); Lu et al. (2019); Chen et al.
(2020); Huang et al. (2020); Jia et al. (2021); Radford et al. (2021) has received tremendous inter-
est thanks to their robust zero-shot capability for vision-language tasks such as image captioning,
visual question answering, and cross-modal retrieval. Concurrently, in the past few years, large
language models (LLMs) have achieved significant success in generating human-like language con-
tent with growth in model size and datasets at scale (Devlin et al., 2019; Radford et al., 2018;
2019; Brown et al., 2020; Raffel et al., 2020; Chung et al., 2022). To conjugate this ability of
LLMs for vision-language research, recent works have attempted to adopt the visual embeddings as
prompts of LLMs (Tsimpoukelli et al., 2021; Eichenberg et al., 2022; Mokady et al., 2021; Alayrac
et al., 2022; Sung et al., 2022; Li et al., 2023). They accomplished this by tuning the visual en-
coder (Tsimpoukelli et al., 2021), introducing additional lightweight modules Mokady et al. (2021);
Alayrac et al. (2022); Sung et al. (2022); Cohen et al. (2022); Li et al. (2023), or employing both
approaches (Eichenberg et al., 2022).

Our work is highly related to LLaVA (Liu et al., 2023a), LiMBeR (Merullo et al., 2023), and FRO-
MAGe (Koh et al., 2023). Different from the modular-based methods, which require relatively a
high computational cost, they presented a linear transformation-based approach to project visual
embeddings into the text embedding space using only linear transformations. They demonstrated
that vision models and LLMs share non-trivial similar information even though two unimodal mod-
els are trained independently. However, their learning objectives, which directly compare the visual
and text representations, are restrictive solutions to bridge the modality gap (Liang et al., 2022). Un-
like the previous methods, we compare the assignments between image and text data by formulating
an optimal transport-based assignment prediction with word embeddings of pretrained LLMs. We
demonstrate that the modality gap between pretrained vision models and LLMs can be effectively
bridged while preserving high computational efficiency with the proposed assignment prediction.

3 METHOD
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Figure 2: Assignment prediction. The modal-
ity gap can be relaxed by predicting the word
assignments of one modality from the other
modality representations.

Our primary goal is to make pretrained LLMs compre-
hend visual inputs with minimum training for vision-
language tasks. More precisely, we aim to bridge pre-
trained vision models and LLMs using by learning
only a linear layer (i.e., keeping the original parame-
ters frozen) while preserving the representative power
of pretrained vision models and the generalization
ability of pretrained LLMs. To this end, we proposed
a novel linear transformation-based method VLAP:
bridging vision and language models with assignment
prediction. The key component to bridge pretrained vi-
sion and language models is mapping information be-
tween image and text representations to make frozen
LLMs interpret visual inputs as linguistic components. The previous linear transformation-based
methods (Merullo et al., 2023; Koh et al., 2023) linearly transform the visual representation from
pretrained image encoder into LLMs’ embedding space and directly compare representations of
paired multimodal data. In contrast, we resolve the linear cross-modal alignment using assignment
prediction (Asano et al., 2020b; Caron et al., 2020) that compares intermediate assignments to en-
force consistent assignments to multimodal data. VLAP learns a linear layer by optimizing two
objectives simultaneously: (1) optimal transport-based assignment prediction to enforce the visual
and text representations contain the same information and (2) image-to-text generation to incor-
porate the visual representation into the generative ability of LLMs. This section introduces each
component in detail, and the overview of VLAP is shown in Figure 1.
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3.1 ASSIGNMENT PREDICTION

We first assign visual and text representations into word embeddings using optimal transport as if
each data is clustered into the word embedding space of pretrained LLMs. The proposed assignment
prediction is performed to predict each other’s assignments. We notice that recent works for the
assignment prediction problem formulate a set of learnable embeddings (i.e., prototypes) to cluster
the given data into them (Caron et al., 2020; Xu et al., 2020; Liu et al., 2023b; Duan et al., 2022),
requiring additional memory and gradient computation. Contrary to this, VLAP utilizes readily
available word embeddings of LLMs. By employing the pretrained word embedding space of LLMs
as a fixed central space into which visual representations are mapped, the training process is more
stable and memory-efficient.

Visual and text representations from pretrained models. Given a set of B images, we ex-
tract the last hidden state from pretrained image encoder as the visual representations X =
{X1, ...,XB}, where the representation for each image contains dv-dimensional Np feature vec-
tors, i.e., Xn = {x1

n, ...,x
Np
n } ∈ RNp×dv . Similarly, we feed a set of B captions corresponding

to the images into pretrained LLM to obtain the text representations Zt = {Zt
1, ...,Z

t
B}, where

Zt
n = {zt,1n , ..., zt,Tn

n } ∈ RTn×d, Tn is the number of words in the n-th caption, and d is the embed-
ding dimension of LLM.

Word assignment. We project the visual representations X into the same dimension as the em-
bedding space of LLMs using a linear layer g(·):

Zv = {Zv
n ∈ RNp×d | Zv

n = g(Xn), n = 1, ..., B}. (1)

We assign the image and text to a set of words by mapping the averaged visual and text representa-
tions to the frozen word embeddings W = {w1, ...,wK} of LLM, where K is a vocabulary size.
Similar to the prior works (Asano et al., 2020b; Caron et al., 2020), we simultaneously optimize
the assignment Qv = {qv

1, ...,q
v
B} and Qt = {qt

1, ...,q
t
B} to maximize the similarity between the

representations for each modality and the word embeddings:

max
Qv∈Q

Tr(Qv⊤W⊤Z̄v) + ϵH(Qv), max
Qt∈Q

Tr(Qt⊤W⊤Z̄t) + ϵH(Qt),

where Z̄v = {z̄v1, ..., z̄vB}, z̄vn =
1

Np

∑
i

zv,in , Z̄t = {z̄t1, ..., z̄tB}, z̄tn =
1

Tb

∑
i

zt,in .
(2)

We denote the trace matrix as Tr(·), entropy function as H(Q) = −
∑

ij Qij logQij , and a smooth-
ness parameter of the mapping as ϵ. The previous methods assume that all samples are equally
assigned to each cluster by constraining the matrix Q to belong to the transportation polytope in the
whole dataset (Asano et al., 2020b) or the minibatch (Caron et al., 2020). However, the equiparti-
tion assumption can lead to impractical solutions in our work since the numbers of words are not
equally distributed in practice. Therefore, we restrict the transportation polytope with the following
constraints:

Q = {Q ∈ RK×B
+ | Q1B = µW ,Q⊤1K =

1

B
1B}, (3)

where 1B denotes the vector of ones in dimension B and µW is the marginal distribution of words,
i.e., µW (k) = Nk∑

k′ Nk′
, where Nk denotes the total number of the k-th word in the dataset. Formally,

µW can be represented as a vector with the length of LLM’s vocabulary size (e.g., 50,272 for
OPT (Zhang et al., 2022), 32,128 for T5 (Raffel et al., 2020)). By satisfying the constraints, the word
embeddings are selected according to their frequency in the dataset. The optimized assignments
Qv∗ and Qt∗ can be obtained over the set Q as the form of a normalized exponential matrix (Cuturi,
2013):

Qv∗ = Diag(µW ) exp (
W⊤Z̄v

ϵ
)Diag(c), Qt∗ = Diag(µW ) exp (

W⊤Z̄t

ϵ
)Diag(c), (4)

where c is a re-normalized vector in RB obtained using the iterative Sinkhorn-Knopp algorithm (Cu-
turi, 2013).
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Method Vis.
Encoder

Lang.
Model

NoCaps (CIDEr-D) NoCaps (All) MSCOCO

In Out Near All CLIP-S Ref-S CIDEr-D CLIP-S Ref-S

MAGMA CLIP RN50x16 GPT-J 30.4 43.4 36.7 38.7 74.3 78.7 47.5 75.3 79.6
LiMBeR BEiT GPT-J 20.3 16.3 26.9 28.5 62.0 69.1 22.3 63.6 70.0
LiMBeR CLIP RN50x16 GPT-J 34.3 48.4 41.6 43.9 74.7 79.4 54.9 76.2 80.4

VLAP BEiT OPT1.3B 31.1 45.4 40.6 42.2 72.1 77.3 50.7 73.7 76.4
VLAP BEiT T5Base 31.6 46.3 41.9 43.4 72.6 78.9 51.6 74.2 78.5
VLAP CLIP ViT-B/32 OPT1.3B 48.2 62.7 59.3 61.3 84.8 88.5 69.9 86.7 91.8
VLAP CLIP ViT-B/32 T5Base 48.3 62.7 59.6 61.6 85.1 88.7 69.4 87.6 92.0

Table 1: Performance comparisons between MAGMA (Eichenberg et al., 2022), LiMBeR (Merullo et al.,
2023), and VLAP for zero-shot image captioning on the NoCaps and MSCOCO datasets. We report the
architectures of visual and language models, CIDEr-D (Vedantam et al., 2015), CLIP-Score, and RefCLIP
Score (Hessel et al., 2021).

Relaxing the modality gap with assignment prediction. The objective of our method is to pre-
dict the assignment of one modality from the other modality representation, i.e., predicting Qv

from Z̄t and Qt from Z̄v . The assignment prediction can be formulated with the cross-entropy loss
between the assignment and the probability that the corresponding modality data belongs to each
word:

Lmap = − 1

B

B∑
n=1

K∑
k=1

[Qt
nk logP

v
nk +Qv

nk logP
t
nk],

where Pm
nk =

exp(z̄⊤nwk/τ)∑
k′ exp(z̄⊤nwk′/τ)

, m ∈ {v, t},

(5)

where τ is a temperature parameter (Wu et al., 2018). This loss function makes two different modal-
ity representations contain the same information.

3.2 IMAGE CAPTIONING WITH FROZEN LLMS

To connect the (projected) visual representations to a frozen LLM to yield the general capability of
LLM (i.e., generative ability), we train the linear projection layer g(·) with the image captioning
objective. Specifically, the visual representations Zv are prepended to the input text prompt (e.g. “A
photo of”), being active as soft prompts of LLM. Following the previous works (Merullo et al.,
2023; Koh et al., 2023), we employ the prefix language modeling loss as the objective:

Lcap = − 1

B

B∑
n=1

1

Nt

Nt∑
t=1

log ft(st | Zv
n, [prefix], s1, ..., st−1), (6)

where Nt is the number of words in the caption, [prefix] is the input text prompt, and st is a text
token of the t-th word.

The final objective function is a weighted sum of the assignment prediction loss and captioning loss:

L = λmapLmap + λcapLcap, (7)

where λmap and λcap control the importance of each objective. By minimizing the final objective, we
simultaneously make the visual and text representations contain the same information while keeping
the capability of LLM, allowing the frozen image encoder and LLM can be effectively connected
with only the linear transformation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We define the transport polytope in the assignment prediction with the word distribution of a given
dataset. This assumption poses one possible problem: VLAP often fails when the word distribution
of training data cannot cover real-world scenarios. However, to prevent the assignments from being
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Method Vis.Encoder Lang. Model n-shots

0 1 2 4

Frozen NFRN50 GPT-2 29.5 35.7 - 38.2
MAGMA CLIP RN50x16 GPT-J 32.7 40.2 42.5 43.8
LiMBeR BEiT GPT-J 24.9 34.4 34.7 31.7
LiMBeR CLIP RN50x16 GPT-J 33.3 39.9 40.8 40.3

VLAP BEiT OPT1.3B 34.5 44.2 45.1 45.7
VLAP BEiT T5Base 34.7 43.3 45.4 45.5
VLAP CLIP ViT-B/32 OPT1.3B 40.4 52.6 53.8 54.7
VLAP CLIP ViT-B/32 T5Base 41.1 51.3 51.9 52.6

Table 2: Performance comparisons between Frozen (Tsimpoukelli et al., 2021), MAGMA (Eichenberg et al.,
2022), LiMBeR (Merullo et al., 2023), and VLAP for zero-shot visual question answering on the VQA2
datasets. We report the architectures of visual and language models and accuracy (%).

Method Train.
Params.

Finetune
Data

IT2T T2I

NDCG MRR R@1 R@5 R@10 R@1 R@5 R@10

ViLBERT 114M 3.1M 11.6 6.9 2.6 7.2 11.3 - - -
CLIP ViT-L/14 300M 400M 10.9 8.5 3.1 8.7 15.9 17.7 38.9 50.2
ESPER 4M 0.5M 22.3 25.7 14.6 - - Incapable
FROMAGe 5.5M 3.1M 16.5 22.0 17.6 20.1 25.1 20.8 44.9 56.0

VLAP w/CLIP-T5Base 0.6M 3.1M 20.5 24.9 21.1 23.7 29.6 26.9 55.3 69.1

Table 3: Performance comparisons between ViLBERT (Lu et al., 2019), CLIP (Radford et al., 2021), ES-
PER (Yu et al., 2022), FROMAGe (Koh et al., 2023), and VLAP for zero-shot image-and-text-to-text (IT2T)
and text-to-image (T2I) retrieval on the Visual Dialog datasets. Following Koh et al. (2023), we report Normal-
ized Discounted Cumulative Gain (NDCG), Mean Reciprocal Recall (MRR), R@1, R@5, and R@10 for IT2T
retrieval and R@1, R@5, and R@10 for T2I retrieval.

collapsed to the word distribution, we preserve the soft assignments as in Caron et al. (2020). In
addition, we carefully argue that a large dataset (e.g. CC3M (Sharma et al., 2018)) is sufficient to
cover the real-world scenario. To validate this, we mainly investigate vision-language tasks with the
zero-shot setting, i.e., training and test data come from different datasets.

Datasets. We evaluate VLAP on three vision-language tasks, including zero-shot image caption-
ing, visual question answering (VQA), and cross-modal retrieval. We first train the model on the
CC3M (Sharma et al., 2018) and evaluate the performance on the following datasets for each task.
For zero-shot image captioning, we evaluate the performance on MSCOCO (Lin et al., 2014) and
NoCaps (Agrawal et al., 2019), following (Merullo et al., 2023). For visual question answering, we
evaluate the model on the VQA2 (Goyal et al., 2017) dataset from zero-shot to 4-shot settings. In
cross-modal retrieval, we use the Visual Dialog (Das et al., 2017) dataset for the comparability to
previous work (Koh et al., 2023).

Model architecture. For the frozen image encoders, we employ two different pretrained vision
transformer models according to their pretraining data configuration: BEiT (Bao et al., 2022) pre-
trained on image-only data and CLIP ViT/B-32 (Radford et al., 2021) jointly learned with the text
encoder on image-text data. For the frozen language models, we explore two types of LLMs accord-
ing to their architectural configuration: OPT1.3B (Zhang et al., 2022) as decoder-based LLMs and
T5Base (Raffel et al., 2020) as encoder-decoder-based LLMs.

4.2 ZERO-SHOT IMAGE CAPTIONING

We provide performance comparisons between Frozen (Tsimpoukelli et al., 2021),
MAGMA (Eichenberg et al., 2022), LiMBeR (Merullo et al., 2023), and VLAP for zero-shot
image captioning in Table 1. We mainly report CIDEr-D (Vedantam et al., 2015), CLIPScore,
and Ref-CLIPScore (Hessel et al., 2021), following (Merullo et al., 2023). The results show that
VLAP consistently outperforms the previous linear transformation-based approach (Merullo et al.,
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BEiT-OPT: A man riding a bike
BEiT-T5: A man is sitting on a bike on a grassy grass
CLIP-OPT: A man on a road riding a bike
CLIP-T5: A man in a red shirt is riding a motorcycle on a road<A photo of>

Input Groundtruth

A man riding on the back of a motorcycle

Prediction

BEiT-OPT: A laptop on a table
BEiT-T5: A laptop is sitting on a table
CLIP-OPT: A glass next to a laptop
CLIP-T5: A laptop with a glass of wine<A photo of>

Input Groundtruth

A beverage in a glass on a table next to a laptop

Prediction

Input Image Question: What color is the 
baby’s shoes?

Answer:
BEiT-OPT: A group of elephants 
BEiT-T5: A man is sitting on a bike on a grassy 
grass

Input Image Question: What is in the water?

Answer:
BEiT-OPT: A boat
BEiT-T5: A boat
CLIP-OPT: A man on a boat
CLIP-T5: Two men riding a boat

Input Image Question: What is the person 
doing?

Answer:
BEiT-OPT: He is in the water
BEiT-T5: He is riding a wave
CLIP-OPT: He is surfing the waves
CLIP-T5: He is surfing a wave

Input Image Question: What kind of animal is 
in the image?

Answer:
BEiT-OPT: A zebra
BEiT-T5: A group of zebras
CLIP-OPT: Zebras
CLIP-T5: Two zebras on a grassy grass

Input Image Question: What kind of animal is 
this?

Answer:
BEiT-OPT: A bear
BEiT-T5: A group of bears
CLIP-OPT: A bear
CLIP-T5: A group of bears on a rock

BEiT-OPT: A man standing on a white field
BEiT-T5: A man flying in the air
CLIP-OPT: A man on a ski on a snowy slope
CLIP-T5: A person is riding skis on a snowy slope surface<A photo of>

Input Groundtruth

A man riding skis down a snow covered slope

Prediction

BEiT-OPT: A group of people on a road
BEiT-T5: A man is sitting on a horse on a road
CLIP-OPT: A man in the middle of a road riding a horse
CLIP-T5: A man riding a horse in the middle of a street<A photo of>

Input Groundtruth

A gentleman riding a horse down a city street

Prediction

(a) Zero-shot image captioning

BEiT-OPT: A man riding a bike
BEiT-T5: A man is sitting on a bike on a grassy grass
CLIP-OPT: A man on a road riding a bike
CLIP-T5: A man in a red shirt is riding a motorcycle on a road<A photo of>

Input Groundtruth

A man riding on the back of a motorcycle

Prediction

BEiT-OPT: A laptop on a table
BEiT-T5: A laptop is sitting on a table
CLIP-OPT: A glass next to a laptop
CLIP-T5: A laptop with a glass of wine<A photo of>

Input Groundtruth

A beverage in a glass on a table next to a laptop

Prediction

Input Image Question: What is in the water?

Answer:
BEiT-OPT: A water
BEiT-T5: A man
CLIP-OPT: A boat
CLIP-T5: A boat

Input Image Question: What kind of animal is 
in the image?

Answer:
BEiT-OPT: A zebra
BEiT-T5: A zebra
CLIP-OPT: Zebras
CLIP-T5: A zebra

Input Image Question: What is the person 
doing?

Answer:
BEiT-OPT: Jumping
BEiT-T5: riding
CLIP-OPT: surfing
CLIP-T5: surfing

Input Image Question: What kind of animal is 
this?

Answer:
BEiT-OPT: A bear
BEiT-T5: A bear 
CLIP-OPT: A bear
CLIP-T5: A bear 

BEiT-OPT: A man standing on a white field
BEiT-T5: A man flying in the air
CLIP-OPT: A man on a ski on a snowy slope
CLIP-T5: A person is riding skis on a snowy slope surface<A photo of>

Input Groundtruth

A man riding skis down a snow covered slope

Prediction

BEiT-OPT: A group of people on a road
BEiT-T5: A man is sitting on a horse on a road
CLIP-OPT: A man in the middle of a road riding a horse
CLIP-T5: A man riding a horse in the middle of a street<A photo of>

Input Groundtruth

A gentleman riding a horse down a city street

Prediction

(b) Visual question answering

Question: how many people are there 
Answer: 1

Input Image and Dialogs Question: is it a male or female 
Answer: male

Question: is he outside 
Answer: yes

Question: what is he doing 
Prediction: looking at the giraffe

Question: what color is the giraffe 
Answer: brown and tan

Question: is the man happy 
Answer: he’s smiling so I would say yes

Question: is it sunny 
Answer: yes

Question: what color is his shoes 
Answer: I can only see chest up so I 

don’t know

Question: what color is his shirt Answer: orange

Question: is he white Answer: yes

Question: is this outside 
Answer: yes

Question: do you see any clouds 
Answer: no it’s too zoomed in

Question: is it day time 
Answer: yes

Question: about how old is the man 
Answer: maybe in his 30s

Question: what color is his hair 
Answer: brown

Question: what color is his shirt 
Answer: baby blue

Question: is he wearing shorts
Answer: yes

Question: can you see his shoes 
Answer: yes

Question: what color are his shorts 
Answer: black

Question: what color are his shoes 
Answer: white

Input Dialogs Selected Images

(c) Visual dialog (image-and-text to text (IT2T) retrieval)

Question: how many people are there 
Answer: 1

Input Image and Dialogs Question: is it a male or female 
Answer: male

Question: is he outside 
Answer: yes

Question: what is he doing 
Prediction: looking at the giraffe

Question: what color is the giraffe 
Answer: brown and tan

Question: is the man happy 
Answer: he’s smiling so I would say yes

Question: is it sunny 
Answer: yes

Question: what color is his shoes 
Answer: I can only see chest up so I 

don’t know

Question: what color is his shirt Answer: orange

Question: is he white Answer: yes

Question: is this outside 
Answer: yes

Question: do you see any clouds 
Answer: no it’s too zoomed in

Question: is it day time 
Answer: yes

Question: about how old is the man 
Answer: maybe in his 30s

Question: what color is his hair 
Answer: brown

Question: what color is his shirt 
Answer: baby blue

Question: is he wearing shorts
Answer: yes

Question: can you see his shoes 
Answer: yes

Question: what color are his shorts 
Answer: black

Question: what color are his shoes 
Answer: white

Input Dialogs Selected Images (Top 5)

(d) Text-to-image retrieval

Figure 3: Selected examples from VLAP for vision-language tasks, including (a) zero-shot image captioning,
(b) visual question answering (VQA), (c) visual dialog, and (d) text-to-image (T2I) retrieval.

2023) with large margins. Especially, VLAP with the BEiT with T5Base achieves 14.9% and
29.3% CIDEr-D improvements on each dataset. Remarkably, it achieves comparable performance
to LiMBeR with the CLIP image encoder, despite BEiT lacking linguistic supervision in its
pretraining. VLAP also attains significantly higher CLIPScores, which represent how the image
and generated caption are semantically similar, improving the CLIP-S by 10.4%, 11.4%, and
the RefCLIP-S by 9.3%, 11.6% on NoCaps and MSCOCO, respectively. In addition, we use a
much smaller number of parameters in LLMs (T5Base has 220M parameters, while GPT-J has 6B
parameters), demonstrating the effectiveness of the proposed method in grounding LLMs to visual
data. The performance evaluated with additional captioning metrics, including BLEU (Papineni
et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE (Lin, 2004), and SPICE (Anderson
et al., 2016), are shown in Appendix C.
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A man riding a 
motorcycle in a 

park

Generated Caption

+

Input

=
A group of people 

waiting a train in a 
train station

Generated Caption

+

Input

=

A wooden table 
with a view of the 

ocean

Generated Caption

+

Input

=

Input Generated Caption

=

A group of 
people sitting 
on a red table 

in a room

A group of 
people eating 
a pizza on a 

table

Generated Caption

+

Input

=

A group of 
people eating 
a sandwich
on a table

Generated Caption

+

Input

=

Input Generated Caption

=

Two people 
riding bikes on 
a boardwalk 
with boats

A beautiful 
view of the 

water

Generated Caption

-

Input

=
Two people 

riding bikes at 
sunset

Generated Caption

-

Input

=

Visual Semantic Subtraction

Visual Semantic Summation

Figure 4: Selected examples for visual semantic arithmetic.

We also provide the qualitative examples in Figure 3a. The results show impressive performance
of VLAP across all vision-language models. Even when applied to BEiT, it consistently generates
accurate captions, even if occasionally produces relatively simplified captions and provides some
wrong cases (e.g. ‘snow’ as ‘white field’ or ‘air’ in the example).

4.3 VISUAL QUESTION ANSWERING

We evaluate the performance with zero-shot and few-shot settings1 on visual question answer-
ing (VQA). In n-shot settings, we randomly prepend n complete examples before each question
as described in Tsimpoukelli et al. (2021); Eichenberg et al. (2022). We use the text prompt
“Question: {} Answer:” for the OPT model and “Question: {} Short Answer:” for
the T5 model, following Li et al. (2023). We provide the comparison between VLAP and three
baselines (Tsimpoukelli et al., 2021; Eichenberg et al., 2022; Merullo et al., 2023), as shown in
Table 2. VLAP outperforms the previous methods with large margins, showing the effectiveness of
the proposed method. Surprisingly, VLAP with the BEiT and T5Base, which is the most challenging
condition (in terms of pretraining data and the number of parameters), achieves higher performance
than the previous methods for all evaluation settings.

In Figure 3b, we provide the qualitative examples for zero-shot and 4-shot VQA. For zero-shot VQA,
the results show that while VLAP generally infers the correct answers with all image encoders and
language models, some failure cases are shown with the BEiT models.

4.4 CROSS-MODAL RETRIEVAL

For cross-modal retrieval, we compare the performance of ViLBERT (Lu et al., 2019), CLIP (Rad-
ford et al., 2021), ESPER (Yu et al., 2022), FROGMAGe (Koh et al., 2023), and VLAP evaluated
on Visual Dialog (Das et al., 2017) for two types of retrieval tasks: (1) visual dialog referred to as
image-and-text-to-text (IT2T) retrieval to reason the correct answer from given an image, a ques-
tion, and a dialog about an image. We report the Normalized Discounted Cumulative Gain (NDCG),
Mean Reciprocal Recall (MRR), and Recall@k, following Yu et al. (2022); Koh et al. (2023). (2)
text-to-image (T2I) retrieval to find the image from a given dialog. We report the Recall@k perfor-
mance for T2I retrieval. Since a dialog in the dataset consists of question-answer pairs for images,
we use the text prompt used in the VQA task. We provide the comparisons for cross-modal retrieval
in Table 3.

Image-and-text to text (IT2T) retrieval. For IT2T retrieval, we compute the loss (i.e. cross-
entropy loss) between the prediction and given answer candidates, and select the answer with the
lowest loss. VLAP outperforms the previous methods (Lu et al., 2019; Radford et al., 2021; Yu et al.,
2022; Koh et al., 2023), achieving 3.5%, 3.6%, and 4.5% improvements on R@1, 5, and 10, respec-
tively. While VLAP shows slightly lower NDCG and MRR performance than ESPER (Yu et al.,

1We follow the procedure of the official VQA 2.0 repo: https://github.com/GT-Vision-Lab/
VQA.
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2022), they train the model on the superset of Visual Dialog (i.e. MSCOCO), already containing in-
context information of the dataset. The comparison between VLAP and FROMAGe demonstrates
the effectiveness of our assignment prediction objective as the main difference between the two
methods is the learning objective. VLAP consistently outperforms FROMAGe (Koh et al., 2023)
even with fewer trainable parameters, improving 4.0% and 2.9% on NDGC and MRR, respectively.

Text-to-image (T2I) retrieval. As VLAP minimizes the modality gap between image and text
data, the visual and text representations can be directly used to retrieve each other. For T2I retrieval,
we first extract the text and visual representation for a given dialog and all images in the dataset.
We directly measure the similarity between the text and visual representations and select the image
with the highest similarity. VLAP substantially outperforms the prior works (Radford et al., 2021;
Koh et al., 2023) over all evaluation metrics, achieving 9.2% and 6.1% improvements on R@1 over
CLIP (Radford et al., 2021) and FROMAGe.

The experiments on cross-modal retrieval demonstrate the flexibility of VLAP for vision-language
tasks. We emphasize that VLAP provides competitive results even on the retrieval task, showing
that VLAP can be applied as a general model without being limited to tasks.

4.5 VISUAL SEMANTIC ARITHMETIC

The pretrained LLMs capture task-agnostic linguistic structures and lexical semantics (Jawahar
et al., 2019; Liu et al., 2019; Tenney et al., 2019; Hewitt & Manning, 2019; Vulić et al., 2019).
Recent work (Tewel et al., 2022) has shown this capability persists in VLMs (e.g. CLIP model)
so that the visual embeddings can be expressed in a textual way, which is called visual semantic
arithmetic. For example, the semantic direction between two images can be expressed by subtract-
ing one visual representation from another visual representation. Similarly, the summation of two
visual representations allows for guidance for text generation. Even though we leverage indepen-
dently pretrained image encoders and LLMs, the visual representations learned to be projected into
the word embedding space, holding a semantic taxonomy of LLMs. To demonstrate the arithmetical
ability of VLAP, we provide an analysis of visual semantic arithmetic (i.e., subtraction and summa-
tion operations), as shown in Figure 4.

In subtraction, the conceptual direction between two images can be obtained. For example, “A beau-
tiful view of the water” and “Two people riding bikes at sunset” are obtained from the same image
of “Two people riding bikes on a boardwalk with boats” by subtracting images containing “two peo-
ple” and “view of the ocean,” respectively. Meanwhile, the visual concepts can be guided by other
visual semantics with summation operations. For example, a scene of people sitting around a table
can be guided by the image of “pizza” and “sandwich”, generating a caption of “A group of people
eating a pizza (or sandwich) on a table”. These results demonstrate that the visual representations
from VLAP contain the semantic taxonomy of LLMs, allowing the VLAP’s visual representations
to be expressed in a textual way.

5 CONCLUSION AND FUTURE WORK

We propose VLAP, a novel linear transformation-based method that bridges pretrained vision en-
coders and LLMs using a single linear layer for vision-language tasks. VLAP efficiently and effec-
tively learns the linear mapping between image and text data by formulating optimal transport-based
assignment prediction using LLMs’ word embeddings. We show that VLAP holds a semantic taxon-
omy of LLMs, presenting the emerging flexibility and applicability of the proposed method. VLAP
achieves substantial performance improvement over the previous linear transformation-based meth-
ods on various vision-language tasks, demonstrating the effectiveness of VLAP.

While linear transformation-based methods have extremely high computation and memory effi-
ciency, there is still a substantial performance gap against modular-based methods, such as Flamingo
and BLIP-2. We attribute such gap to a lot of trainable parameters in their methods (10.2B in
Flamingo, 188M in BLIP-2) and larger training data (1.8B image-text pair in Flamingo, 129M
image-text pair in BLIP-2). Since the optimal transport-based assignment prediction can be easily
moved to the modular-based methods, scaling VLAP with the modular-based models and training
on larger multimodal datasets are promising directions for future work.
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6 REPRODUCIBILITY STATEMENT

VLAP employs the pretrained BEiT and CLIP image encoder as vision models and the pretrained
OPT1.3B and T5Base as LLMs, which can be accessed by anyone. We provide PyTorch implemen-
tation for VLAP at https://github.com/park-jungin/vlap. The implementations will
enable researchers to reproduce the results demonstrated in the paper as well as conduct additional
analysis for VLAP with other vision models and LLMs.
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Hyperparameter Model

BEiT-OPT1.3B BEiT-T5Base CLIP-OPT1.3B CLIP-T5Base

Warmup steps 1.5K 3K 1.5K 3K
Learning rate 1e-4 5e-3 1e-4 5e-3
Final learning rate 0
Batch size 128 256 128 256
Total steps 30K 15K 30K 15K
AdamW β (0.9, 0.999)
Text prompt A photo of

Table 4: Hyperparameters for training VLAP corresponding to each image encoders and LLMs.

A TRAINING DETAILS

We provide hyperparameters used during training in Table 4.

B INFERENCE DETAILS

As demonstrated in Section 4, VLAP presents the emerging flexibility and applicability to vari-
ous vision-language tasks. While VLAP is trained on a unified training procedure, the inference
provides output with a slightly different scheme with respect to the task. In Figure 5, we provide il-
lustrations for inference corresponding to each task to prevent confusion and help clearly understand
the inference procedure of VLAP.

B.1 IMAGE CAPTIONING

For image captioning, VLAP provides the text description for the given image. As shown in Fig-
ure 5a, we use “A photo of” as the input text prompt.

B.2 VISUAL QUESTION ANSWERING

For VQA, we use “Question: { } Short answer:” as the input text prompt.

B.3 CROSS-MODAL RETRIEVAL

Visual dialog (IT2T retrieval). In visual dialog (IT2T retrieval), the image and the sequence of
question-answer dialog are given as inputs. We prepend the visual representations to text represen-
tations of the dialog sequence and feed them into LLMs. As shown in Figure 5c, we measure the
cross-entropy loss between the generated output and the answer candidates, and select the one with
the lowest loss as the prediction.

Text-to-image (T2I) retrieval. Different from the other tasks, VLAP does not utilize the gener-
ative ability of LLMs for T2I retrieval. As shown in Figure 5d, we first extract the visual repre-
sentations for all images in the dataset. We extract the text representations for the input dialog and
directly measure the similarity between the text representations and all visual representations. We
select the target image with the highest similarity.

C ADDITIONAL RESULTS

C.1 IMAGE CAPTIONING

We provide the zero-shot image captioning performance on the NoCaps (Agrawal et al., 2019) and
MSCOCO (Lin et al., 2014) datasets with additional evaluation metrics, including BLEU (Papineni
et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE (Lin, 2004), and SPICE (Anderson
et al., 2016). As shown in Table 5, VLAP with CLIP ViT-B/32 (Radford et al., 2021) and two
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Figure 5: Illustrations for the inference on (a) image captioning, (b) visual question answering, (c) visual dialog,
and (d) text-to-image retrieval.

LLMs (Zhang et al., 2022; Raffel et al., 2020) persistently outperform the previous methods, in-
cluding MAGMA (Eichenberg et al., 2022), LiMBeR (Merullo et al., 2023), and FROMAGe (Koh
et al., 2023). In addition, VLAP with BEiT (Bao et al., 2022) achieves comparable or better per-
formance on several evaluation metrics than the previous approaches with CLIP image encoders,
demonstrating the effectiveness of the proposed assignment prediction objective.
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Method Vis.
Encoder

Lang.
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE SPICE

MAGMA CLIP RN50x16 GPT-J 0.432 0.300 0.203 0.137 0.159 0.376 0.117
LiMBeR BEiT GPT-J 0.319 0.187 0.105 0.060 0.106 0.299 0.093
LiMBeR CLIP RN50x16 GPT-J 0.400 0.278 0.187 0.126 0.161 0.376 0.121
FROMAGe CLIP ViT-L/14 OPT6.7B 0.477 0.293 0.172 0.102 0.287 - -

VLAP BEiT OPT1.3B 0.449 0.348 0.225 0.174 0.280 0.369 0.118
VLAP BEiT T5Base 0.458 0.357 0.266 0.176 0.287 0.382 0.120
VLAP CLIP ViT-B/32 OPT1.3B 0.567 0.429 0.343 0.291 0.310 0.482 0.135
VLAP CLIP ViT-B/32 T5Base 0.571 0.437 0.348 0.297 0.311 0.487 0.137

Table 5: Performance comparisons between MAGMA (Eichenberg et al., 2022), LiMBeR (Merullo et al.,
2023), FROMAGe (Koh et al., 2023), and VLAP for zero-shot image captioning on the NoCaps and MSCOCO
datasets. We report the architectures of visual and language models, CIDEr-D (Vedantam et al., 2015), CLIP-
Score, and RefCLIP Score (Hessel et al., 2021).
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Figure 6: Illustrations for the visual relation benchmark.

C.2 VISUAL SEMANTIC ARITHMETIC

Performance on the visual relation benchmark. To further explore the capability in visual se-
mantic arithmetic of VLAP, we evaluate VLAP on the visual relation (VR) benchmark (Tewel
et al., 2022). The VR benchmark consists of a total of 320 relations, including building→country,
country→capital, CEO→company, food→country, and leader→country. Since the relation of
leader→country includes out-of-date information (e.g. ‘Obama’-‘USA’), we exclude it from this
experiment. We illustrate examples for the VR benchmark in Figure 6. In Table 6, we compare the
performance between VLAP, ClipCap (Mokady et al., 2021), and ZeroCap (Tewel et al., 2022) in
terms of BLEU-1 (Papineni et al., 2002), Recall@5, and CLIP-Score (Hessel et al., 2021), following
Tewel et al. (2022). For fair comparisons, we identically use CLIP ViT-B/32 (Radford et al., 2021)
as the image encoder and GPT-2 (Radford et al., 2019) as the LLM. The results show that VLAP
outperforms the previous methods by large margins. In particular, we attain correlations of over
75% in all relations on the semantic distance-based metric, i.e., CLIP-Score.

Visualization. We provide UMAP visualization (Sainburg et al., 2021) for the representations
to analyze the visual arithmetic of VLAP in feature space, as shown in Figure 7. The blue and
green circles are the real pairs and the red circles denote the embeddings obtained by the visual
arithmetic operation. For example, the images of ‘the Eiffel Tower’-‘France’ and ‘the Leaning Tower
of Pisa’-‘Italy’ in Figure 7a have a ‘building-country’ relation. The direction from ‘building’ to
‘country’ can be obtained through a subtraction operation between visual features of ‘Italy’ and ‘the
Leaning Tower of Pisa.’ The summation of this direction with the embedding of ‘the Eiffel Tower’
allows us to derive the embedding corresponding to the same relation as ‘building-country,’ i.e.,
‘France.’ In practice, the embedding obtained by visual arithmetic operations is close to the image of
‘France’ in the feature space and the LLM generates the caption of ‘A photo of France’ with
the embedding obtained by visual arithmetic operations. Similarly, the direction for the relation of
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Method Building → Country Country → Capital CEO → Company Food → Country

B@1 R@5 CLIP-S B@1 R@5 CLIP-S B@1 R@5 CLIP-S B@1 R@5 CLIP-S

ClipCap 0.003 0.035 0.24 0.0 0.0 0.22 0.004 0.005 0.18 0.0 0.0 0.24
ZeroCap 0.1 0.32 0.7 0.14 0.32 0.68 0.1 0.3 0.64 0.03 0.33 0.66

VLAP 0.3 0.53 0.87 0.46 0.62 0.89 0.25 0.5 0.75 0.17 0.5 0.81

Table 6: Performance comparisons between ClipCap (Mokady et al., 2021), ZeroCap (Tewel et al., 2022), and
VLAP for visual semantic arithmetic on the Visual Relation dataset. Following Tewel et al. (2022), we report
BLEU-1, R@5, and CLIP-Score.
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Figure 7: UMAP visualization (Sainburg et al., 2021) of selected examples from the visual relation benchmark.

‘country-capital’ can be obtained by subtracting the image of ‘USA’ from the image of ‘Washington.’
The LLM generates the caption ‘A photo of London’ from the embedding of the summation
of the direction and the image of ‘England.’

D ABALATION STUDY

D.1 LOSS FUNCTION

λmap λcap
MSCOCO

CIDEr-D CLIP-S Ref-S

0 1 51.7 72.1 76.3
0.2 0.8 62.3 80.3 85.0
0.4 0.6 68.1 84.8 89.2
0.5 0.5 69.6 86.3 91.6
0.6 0.4 69.9 86.7 91.8
0.8 0.2 64.5 83.1 87.8
1 0 49.6 72.4 76.1

(a) Different ratios between λmap and λmap

Training Objective MSCOCO

Lcap LITM LITC Lmap CIDEr-D CLIP-S Ref-S

✓ 51.7 72.1 76.3
✓ ✓ 58.4 78.2 81.7
✓ ✓ ✓ 61.8 79.0 82.3
✓ ✓ ✓ ✓ 65.7 82.5 85.8
✓ ✓ 69.9 86.7 91.8

(b) Combinations of objectives

Table 7: Zero-shot image captioning performance on MSCOCO (Lin et al., 2014) corresponding to (a) different
ratios between the balancing parameters (i.e., λmap : λcap) and (b) combinations of learning objectives.

To validate the effectiveness of each component in VLAP, we evaluate the zero-shot image
captioning performance of VLAP trained with various combinations of learning objectives on
MSCOCO (Lin et al., 2014). All experiments are conducted with CLIP ViT-B/32 (Radford et al.,
2021) and OPT1.3B (Zhang et al., 2022) as the vision model and LLM, respectively.

Effectiveness of λmap and λcap. The balancing parameters in equation 7 control the importance
of Lmap and Lcap. In Table 7a, we report the performance corresponding to different ratios between
λmap and λcap while keeping the sum of two terms as 1. In the first row (i.e., λmap : λcap = 0 : 1),
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(d) w/Lcap+Lmap

Figure 8: UMAP visualization (Sainburg et al., 2021) of visual and text representations corresponding to the
combinations of objectives.

the final objective is L = Lcap, which is equivalent to the language modeling objective of LiM-
BeR (Merullo et al., 2023) and the first stage of LLaVA (Liu et al., 2023a). With this objective only,
VLAP performs significantly poorly, attaining 51.7 of CIDEr-D. While VLAP with only assignment
prediction (i.e., L = Lmap) performs worse than with only language modeling, Lmap improves the
performance even by a small portion, showing a performance improvement of 10.6 on the CIDEr-D
score. Increasing the ratio of λmap gradually improves the performance, achieving the best perfor-
mance of 69.9 with λmap : λcap = 0.6 : 0.4. Thus, the results demonstrate the effectiveness of the
proposed assignment prediction objective while emphasizing the necessity of the language modeling
objective to leverage the generative ability of LLMs.

With additional objectives. Image-text contrastive (ITC) and image-text matching (ITM) objec-
tives, which directly compare image and text representations, have been proposed for cross-modal
alignment (Li et al., 2021; 2022; 2023). We modify the ITC and ITM objectives to evaluate the
performance of VLAP trained with these objectives. For ITC, we contrast the similarity between
averaged image and text representations (i.e., Z̄v and Z̄t) of a positive pair against those of negative
pairs in a batch. The ITC objective LITC is defined as the cross-entropy loss between pairwise simi-
larities and the groundtruth one-hot similarities, where the positive pair has 1 and the negative pairs
have 0. For ITM, we learn an additional linear layer as a binary classifier to determine whether an
image-text pair is matched or not. We concatenate the averaged image and text representations and
feed them into the classifier with the softmax activation. Following Li et al. (2021; 2022; 2023), we
also employ the hard negative sampling strategy based on the pairwise similarity. The ITM objective
LITM is defined as the binary cross-entropy loss.

We evaluate VLAP trained with different combinations of learning objectives: (1) Lcap; (2)
Lcap + LITM; (3) Lcap + LITM + LITC; (4) Lcap + LITM + LITC + Lmap; and (5) the original ob-
jective of VLAP, Lcap + Lmap. As shown in Table 7b, LITM and LITC contribute to performance
improvement with Lcap, achieving 58.4 in (2) and 61.8 in (3). However, we notice that the ITM and
ITC objectives hurt overall performance, as shown in the performance comparison between (4) and
(5). We argue that ITM and ITC solely focus on direct pairwise comparisons without considering
the semantic correlation between predefined two embedding spaces. Namely, they enforce instance
discrimination and encourage the existence of the modality gap (Liang et al., 2022).

To further analyze the impact of each objective, we also provide UMAP visualization (Sainburg
et al., 2021) with the modality gap distance, as shown in Figure 8. Note that the blue and red
circles represent image and text embeddings and the gray lines refer to image-text pairs, respectively.
Formally, the modality gap ∆ is defined as the difference between the center of visual and text
representations (Liang et al., 2022):

∆ =
1

n

n∑
i=1

z̄vi −
1

n

n∑
i=1

z̄ti, (8)

where n is the total number of image-text pairs, z̄vi , and z̄ti are the i-th averaged visual and text
representations. As shown in Figure 8a, we can observe the obvious modality gap before training,
which separates two modality embeddings, and the default gap distance between CLIP ViT-B/32
and T5Base is ||∆|| = 1.378. Although the image captioning objective Lcap (Figure 8b) and the addi-
tional objectives (Figure 8c) reduce the modality gap distance to ||∆|| = 0.972 and ||∆|| = 0.870,
respectively, the modality gap still exists. In Figure 8d, the modality gap between two modality
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Method ϵ−MSCOCO (CIDEr-D)

0.1 0.05 0.01 0.005

(i) VLAP w/o word embed. 20.4 43.8 38.9 -
(ii) VLAP w/o word dist. 50.7 57.9 57.1 46.2

(iii) VLAP 61.8 68.0 69.9 67.7

Table 8: Ablation study for the components in assignment prediction. We evaluate the zero-shot image cap-
tioning performance on MSCOCO (Lin et al., 2014) and report the CIDEr-D score.

Method Vis.
Encoder

Lang.
Model

NoCaps (CIDEr-D) NoCaps (All) MSCOCO

In Out Near All CLIP-S Ref-S CIDEr-D CLIP-S Ref-S

MAGMA CLIP RN50x16 GPT-J 30.4 43.4 36.7 38.7 74.3 78.7 47.5 75.3 79.6
LiMBeR CLIP RN50x16 GPT-J 34.3 48.4 41.6 43.9 74.7 79.4 54.9 76.2 80.4

VLAP CLIP ViT-B/32 OPT1.3B 48.2 62.7 59.3 61.3 84.8 88.5 69.9 86.7 91.8
VLAP CLIP ViT-B/32 T5Base 48.3 62.7 59.6 61.6 85.1 88.7 69.4 87.6 92.0
VLAP CLIP RN50x16 GPT-J 53.8 67.5 65.7 64.5 88.3 90.1 75.3 90.6 92.2

Table 9: Performance comparisons between MAGMA (Eichenberg et al., 2022), LiMBeR (Merullo et al.,
2023), and VLAP for zero-shot image captioning. We report the architectures of visual and language models,
CIDEr-D, CLIP-Score, and RefCLIP-Score.

embeddings is significantly relaxed and the gap distance is further reduced to ||∆|| = 0.725 with
our assignment prediction objective.

D.2 OPTIMAL TRANSPORT

The assignment prediction of VLAP mainly differs from the previous optimal transport-based (or
clustering-based) approaches (Asano et al., 2020b; Caron et al., 2020; Asano et al., 2020a; Duan
et al., 2022) in the following aspects: (1) defining a fixed central space instead of a learnable central
space (i.e., prototypes) and (2) defining the transportation polytope with the word distribution of
the training dataset instead of the equipartition assumption. We conduct additional experiments to
validate the effectiveness of each component in our assignment prediction. As shown in Table 8,
we evaluate each model for zero-shot image captioning (CIDEr-D) on MSCOCO corresponding to
various ϵ. In (i) “VLAP w/o word embed.”, we first train VLAP with learnable prototypes as in
Asano et al. (2020b); Caron et al. (2020); Asano et al. (2020a); Duan et al. (2022). In this setting,
we define 3K prototypes following Caron et al. (2020) and apply the equipartition assumption. In
(ii) “VLAP w/o word dist.”, we also verify the effectiveness of the word distribution. In this set-
ting, we use the word embeddings as a fixed central space and perform the optimal transport with
the equipartition assumption. The comparison between (i) and (ii) shows that the word embedding
achieves substantial performance improvement, demonstrating the effectiveness of the word embed-
ding. In addition, VLAP without the word distribution is highly sensitive to the entropy parameter
ϵ, showing large performance fluctuation depending on the value of ϵ. The comparison between (ii)
and (iii) original VLAP shows that the transportation polytope with the word distribution achieves
additional performance improvement and provides more robust performance regarding ϵ.

D.3 DIFFERENT BACKBONES

While we used the transformer-based vision models (i.e., CLIP ViT-B/32 and BEiT) and the rela-
tively small scale of LLMs (i.e., OPT1.3B and T5Base) in the main paper, VLAP can be easily ap-
plied to other publicly available vision models and LLMs. Following MAGMA (Eichenberg et al.,
2022) and LiMBeR (Merullo et al., 2023), we additionally evaluate VLAP with the CNNs-based
vision model (i.e., CLIP RN50x16 (Radford et al., 2021)) and the larger LLM (i.e., GPT-J (Wang
& Komatsuzaki, 2021), which has 6B parameters) for zero-shot image captioning on NoCaps and
MSCOCO. Not surprisingly, as shown in Table 9, VLAP with the larger LLM performs better than
the smaller LLMs, significantly outperforming MAGMA and LiMBeR by large margins across all
metrics with the same backbones.
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Finetune
Data

Vis.
Encoder

Lang.
Model

NoCaps
(CIDEr-D)

MSCOCO
(CIDEr-D)

VQA2
(n = 0)

IT2T
(R@1)

T2I
(R@1)

CC3M CLIP ViT-B/32 T5Base 61.6 69.4 41.1 21.1 26.9
CC12M CLIP ViT-B/32 T5Base 62.4 70.1 41.3 23.0 28.2

Table 10: Performance comparisons of VLAP according to the pretraining dataset for several zero-shot vision-
language tasks.

D.4 PRETRAINING DATASET

VLAP formulates the transportation polytope in word assignment with the marginal distribution
of words in a training dataset. Therefore, we hypothesize that pretraining VLAP on a larger-scale
dataset, which covers a wider range of word distribution, has the potential to lead to better perfor-
mance. To demonstrate this, we train VLAP on the CC12M Changpinyo et al. (2021) dataset that
contains about 4 times more images than CC3M and evaluate the performance on several zero-
shot vision-language tasks, including image captioning, visual question answering (VQA), and
cross-modal retrieval. In Table 10, we present performance comparisons of VLAP according to
the pretraining dataset for each task. The results show that increasing the amount of training data
consistently improves the zero-shot capability of VLAP across tasks, supporting observations from
previous works Li et al. (2021; 2022).
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