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ABSTRACT

Brain tumor segmentation and survivability prediction are crucial in neuro-
oncology, directly impacting clinical decision-making and patient management.
However, traditional deep learning-based segmentation approaches often lack
flexibility, interpretability, and adaptability to user-driven corrections, limiting
their clinical utility. To overcome these challenges, we introduce RadBot, a novel
vision-language model (VLM)-powered framework that integrates tumor segmen-
tation, interpretative analysis, and survivability prediction into a unified, interac-
tive pipeline. Moreover, prompt-based VLMs, such as CLIPSeg, exhibit sensitiv-
ity to linguistic variations inherent in English prompts, which often fail to span
the full vector embedding range for nuanced tumor morphologies. To mitigate
prompt sensitivity without retraining, we introduce model agnostic hybrid aug-
mentation (MAHA), an inference-time prompt ensemble method for brain tumor
analysis. To improve interpretability, we incorporate LLaVA, a multimodal large
language model (MMLLM), enabling interactive question-answering for tumor
analysis. Additionally, the RadBot Mask Editor provides an interactive refinement
tool, allowing radiologists to manually correct segmentation errors through brush-
ing and unbrushing tools, ensuring clinically precise results. For survivability
prediction, RadBot integrates LLaVA-based analysis of MRI and clinical data for
efficient prognosis estimation and decision-support. We validate proposed Rad-
Bot+MAHA on BraTS 2020 and 2021 datasets, achieving SOTA segmentation
performance. Our findings demonstrate that integrating VLMs and MMLLMs
enhances segmentation accuracy, interpretability, and clinical relevance. RadBot
bridges the gap between automated segmentation and expert-driven analysis, es-
tablishing a new paradigm for Al-assisted workflows.

1 INTRODUCTION

Brain tumor segmentation and survival prediction (Anand et al.| [2021) are critical tasks in neuro-
oncology that directly impact treatment planning and patient outcomes. The accurate delineation
of tumor regions from multimodal Magnetic Resonance Imaging (MRI) scans, enables clinicians
to make informed decisions about treatment strategies. However, these tasks present significant
challenges due to the heterogeneous appearance of brain tumors, the complexity of multimodal
MRI data, and the need to integrate clinical information for comprehensive analysis.

Annotation of brain tumor regions in MRI scans is a time-intensive and laborious task for radi-
ologists. Accurate segmentation requires meticulous effort to delineate tumor boundaries across
multiple slices and modalities, which can be both physically and cognitively demanding. While
convolutional neural networks (CNNs), generative adversarial networks (GANs) (Mukherkjee et al.,
2022; Nema et al.l 2020), transformers (Cao et al., |2022; Du et al.| [2022)), and ensemble-based
methods (Phophalia & Maji, [2017; |Gyorfi et al., [2019; [Hossain et al.2023)) have shown promise in
automating this process, they often lack the flexibility to accommodate user-driven corrections. This
limitation can be problematic in clinical workflows, where even minor inaccuracies in segmentation
may lead to suboptimal treatment planning. Moreover, existing methods (Mukherkjee et al.| 2022}
Nema et al.| [2020; |Cao et al., 2022 Du et al.| 2022} [Phophalia & Maji, 2017 |Gyorfi et al., 2019;
Hossain et al.| 2023) typically treat segmentation as a static process, offering little to no support
for post-prediction editing. These approaches fail to provide interpretability or interactivity, leaving
radiologists unable to refine the results to match clinical expectations. The inability to edit seg-
mentation masks directly within the pipeline creates a gap between automated tools and real-world
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Figure 1: RadBot — brain tumor segmentation and radiological analysis tool. The system leverages
MRI scans (FLAIR, T1CE, and T2) to assist in brain tumor analysis via automated or manually
selected slice processing. It delineates whole tumor, tumor core, and enhancing tumor, supports
visual question answering (VQA) for tumor insights, and offers interactive mask editing (brush-
ing/unbrushing) for clinical usability.

usability. Addressing this challenge requires a framework that not only delivers accurate segmenta-
tion but also empowers users with the ability to interactively modify and refine the results, ensuring
both precision and clinical relevance.

Recent advances in vision-language models (VLMs) (Agarwal et al} [2021) and multimodal large
language models (MMLLMs) (Liu et al.l 2023a) have shown promising results in medical image
analysis. These models offer unique advantages in terms of interpretability and flexibility through
their ability to process both visual and textual information. However, their potential for brain tu-
mor analysis, particularly in combining segmentation with survival prediction, remains largely un-
explored. Additionally, VLMs like CLIPSeg (Liiddecke & Ecker, 2022; |Chen et al., 2024) are
prompt-sensitive: a single English instruction often under-specifies heterogeneous tumor appear-
ance, especially in low-contrast ET and TC.

To surmount these hurdles, we propose RadBot, a pioneering interactive framework that orches-
trates VLM-driven segmentation, MMLLM-powered analysis, and survival prediction into a cohe-
sive, clinician-centric pipeline. At its core, RadBot harnesses CLIPSeg (Liiddecke & Ecker, [2022)
for multimodal feature extraction and three-channel mask generation (whole tumor, tumor core, en-
hancing tumor). To conquer the brittleness of single-prompt conditioning-stemming from English’s
semantic ambiguities that compress task context into narrow embeddings (Chen et al., 2024), we in-
troduce Model-Agnostic Hybrid Augmentation (MAHA) approach, an inference-time ensemble that
orchestrates diverse natural language prompts (e.g., variations on “delineate enhancing tumor core”)
via threshold-aware logits fusion. The main contributions of the proposed work are as follows:

* RadBot: An interactive, deployable multimodal framework enabling radiologists to gen-
erate segmented reports and inspect each pipeline step for transparency and interpretability
(see Section[3.1).

Unified pipeline: A single, streamlined system that performs segmentation (WT, TC, ET)
and downstream analysis, improving efficiency over cascaded or ensemble approaches (see

Section[3.2).

RadBot Mask Editor: An interactive editor to correct false positives/negatives with brush-
ing and erasing, adjustable brush sizes, continuous painting, and coordinate-precise edits
(see Section 4.5]).

MAHA: A hybrid prompting strategy that improves tumor segmentation by combining
multiple instructions through logit-level fusion and adaptive thresholding. It works entirely
at inference time, requires no retraining, and is compatible with any vision-language model

(see Section[3.3).

We conduct extensive experiments and ablation studies using state-of-the-art VLMs and MMLLMs.
Our framework is evaluated on the benchmark BraTS 2020 and 2021 datasets, demonstrating its
effectiveness for both brain tumor segmentation and survivability prediction. Figure [I| summarises
the main contributions of RadBot. below.



Under review as a conference paper at ICLR 2026

‘ SYSTEM
PROMPT

[user prowPT |

MAHA Ensemble.
Layer

‘ Trainable Parameters

Frozen Parameters Analysis Result

Figure 2: Overview of RadBot for brain tumor segmentation and radiological analysis. Given MRI
scans (FLAIR, TICE, and T2) and a textual prompt, RadBot extracts visual and textual features
using a frozen CLIP encoder. The CLIPSeg decoder generates tumor segmentation masks, which
are further enhanced by MAHA, an inference-time prompt ensembling method that improves seg-
mentation accuracy on subtle regions. The interactive mask editor enables manual refinements.
LLaVA-based analysis provides clinical insights, while a dual-branch model integrates imaging and
clinical data for survivability prediction, supporting radiological assessment and decision-making.

2 RELATED WORK

Brain tumor segmentation is a critical task in medical imaging, with significant advancements driven
by deep learning and multimodal approaches. In this section, we review prior work in brain tumor
segmentation, vision—-language models, and multimodal large language models.

Brain tumor segmentation has been extensively studied, with the BraTS challenges (Menze et al.,
2014; Bakas et al., 2018) serving as a benchmark for evaluating segmentation algorithms. The
advent of deep learning, particularly convolutional neural networks (CNNSs), revolutionized the
field, with U-Net (Ronneberger et al.| 2015)) and its variants (Isensee et al.,[2021)) becoming widely
adopted for medical image segmentation due to their encoder—decoder architecture. Recent advances
in brain tumor segmentation have explored various architectural innovations. Isensee et al. (Isensee
et al., 2021} 2024) proposed nnU-Net, a self-configuring framework that automates key aspects
of the segmentation pipeline including preprocessing, network architecture, and training strategy.
This approach adapts to dataset-specific characteristics, making it widely applicable across various
segmentation tasks. Jia et al. (Jia et al.| [2021) introduced H2NF-Net, leveraging hierarchical feature
extraction paired with non-local attention mechanisms to better capture spatial dependencies in mul-
timodal MRI data, securing second place in the BraTS 2020 Segmentation Challenge (Mehta et al.,
2022). Fidon et al. (Fidon et al.| [2018; 2021)) advanced a framework employing the Generalized
Wasserstein Dice Score with distributionally robust deep learning to better handle rare tumor classes
and mitigate class imbalance. Raza et al. (Raza et al., 2023) introduced DRESU-Net, a 3D deep
residual U-Net model that leverages residual connections to enhance feature propagation through
the network, facilitating the training of deeper architectures for multimodal MRI processing. Liu et
al. (Li et al.| 2022) proposed a multiscale lightweight 3D segmentation algorithm incorporating at-
tention mechanisms within a computationally efficient framework, enhancing feature representation
at various resolutions while balancing real-time processing requirements with high segmentation ac-
curacy. Schwehr and Achanta (Schwehr & Achantal 2025]) developed a region-of-interest detection
algorithm implemented during data preprocessing to locate salient features and remove extraneous
MRI data, decreasing input size and allowing for more aggressive data augmentations and deeper
neural networks. Despite these advances, existing methods (Mukherkjee et al., [2022; Nema et al.,
2020; |Cao et al., 2022} |Du et al., 2022; |Phophalia & Maji, 2017} |Gyorfi et al., [2019; Hossain et al.,
2023)) often face challenges related to computational complexity, interpretability, and integration of
multimodal data. Further, these approaches rely on cascaded or ensemble models, which can be
difficult to deploy in clinical settings due to their complexity and resource requirements.

Vision—language models (VLMs) such as CLIP (Agarwal et al., 2021) have demonstrated strong
performance in general image understanding by leveraging large-scale pretraining on paired image—
text datasets. The extension of VLMs to medical imaging has shown promise, particularly in tasks
requiring multimodal reasoning. For instance, CLIP-based models have been adapted for medical
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image classification and segmentation, as demonstrated by Liiddecke et al. (Liiddecke & Ecker,
2022)), who introduced CLIPSeg, a model that combines CLIP’s visual-textual understanding with
a segmentation-specific decoder. In the context of brain tumor segmentation, VLMs offer unique
advantages by incorporating textual prompts to guide the segmentation process. This approach
enhances model interpretability and allows for flexible adaptation to different tasks. However, the
application of VLMs in medical imaging remains underexplored, with limited studies addressing
their integration with clinical data for comprehensive analysis.

Recent works have further explored prompt engineering and ensembling to mitigate the brittleness
of single-prompt conditioning, where linguistic variations lead to inconsistent embeddings and sub-
optimal delineation of subtle tumor subregions like the enhancing tumor (ET) and tumor core (TC).
For example, Avogaro et al. (Avogaro et al., 2025) proposed PromptMatcher, a training-free fu-
sion of text and visual prompts for few-shot medical segmentation, achieving strong zero-shot per-
formance. Similarly, VLSM-Ensemble (Dietlmeier}, |2025) ensembles multiple CLIP-based VLMs
at the feature level to boost robustness in medical segmentation. Building on these foundations,
our MAHA advances inference-time prompt ensembling by orchestrating diverse natural language
prompts (e.g., semantic variations like “delineate necrotic core” vs. “outline enhancing rim”) and
fusing their probability maps via adaptive thresholding. Unlike PromptMatcher’s (Avogaro et al.,
2025)) static alignment or VLSM-Ensemble’s (Dietlmeier} [2025) model-level stacking, MAHA dy-
namically expands the embedding manifold-drawing from latent-space diversity principles to handle
low-contrast heterogeneities.

Survivability prediction in brain tumor patients is a challenging task that requires the integration
of imaging biomarkers and clinical data. Traditional approaches relied on statistical models and
handcrafted features, which often failed to capture the complex interactions between imaging and
clinical variables. Deep learning-based methods have shown significant improvements by leveraging
CNNss for feature extraction from MRI scans. For example, Pei et al. (Pei et al., |2020) proposed a
CNN-based model for survival prediction, demonstrating the importance of imaging biomarkers in
prognostic modeling. Multimodal approaches that combine imaging and clinical data have further
improved survivability prediction. For example, Chaddad et al. (Chaddad et al., | 2019) introduced a
framework that incorporates not only radiomic features but also clinical variables to achieve state-
of-the-art performance. However, these methods often lack scalability and generalizability due to
the small size of medical datasets.

Multimodal large language models (MMLLMs) such as LLaVA (Liu et al.,[2023a), GPT-4 (Achiam!
et al.| 2023), GPT-40 (Hurst et al.| |2024), and DeepSeek (Liu et al.| | 2024)) have recently emerged as
powerful tools for vision—language analysis. These models combine the capabilities of vision and
language understanding, enabling them to generate detailed insights from medical images. LLaVA,
in particular, has demonstrated strong performance in medical imaging tasks, including segmen-
tation and descriptive analysis. Despite significant progress in brain tumor segmentation, existing
approaches face challenges in computational complexity, interpretability, and integration of multi-
modal data. Our proposed RadBot addresses these limitations via VLM-driven segmentation and
MMLLM-based interpretative analysis, constituting a complete and efficient solution for brain tu-
mor analysis.

3 PROPOSED RADBOT

Our proposed framework, RadBot, integrates vision—language models for brain tumor segmentation
with a subsequent survivability analysis, leveraging both imaging and clinical data. The framework
processes MRI slices, generates segmentation masks, and performs downstream analysis using large
vision-language models (Figure [2).

3.1 TUMOR SEGMENTATION VLM ARCHITECTURE

We utilize the CLIPSeg architecture (Liiddecke & Ecker,2022) for brain tumor segmentation, which
combines the visual understanding capabilities of CLIP with a decoder specialized for segmentation
tasks. The model consists of a CLIP encoder that processes both image and text inputs, followed by
a decoder that produces segmentation masks.

In our implementation, we modify the decoder to output three segmentation channels corresponding
to distinct tumor regions, rather than the original single-channel output. Specifically, we replace the
final transposed convolution layer with a new layer that maintains the input channel dimension of
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32 but expands the output to three channels. Kernel size and stride are preserved at 4 x 4 and 4 x 4,
respectively, ensuring that output spatial dimensions remain consistent with the original architecture.

Weights of the new output layer are initialized with Xavier uniform initialization to promote sta-
ble optimization. During training, we freeze the entire CLIP encoder (image and text branches) to
preserve its large-scale pretraining representations. Only the 1.1M decoder parameters remain train-
able, allowing task-specific adaptation for brain tumor segmentation while leveraging robust frozen
features.

This approach substantially reduces the number of trainable parameters versus end-to-end training,
improving efficiency and mitigating overfitting risks on modest-sized medical datasets.

3.2 CLINICAL DATA HANDLING

The input to our segmentation model consists of three MRI modalities-FLAIR, T1CE, and T2 pro-
cessed as separate channels. These provide complementary tissue cues: FLAIR highlights edema,
T1CE emphasizes the enhancing tumor core via contrast, and T2 delineates overall tumor extent.
Each MRI slice is preprocessed and resized to 128 x 128. Segmentation is conditioned by a textual
prompt (“An MRI scan of the brain. Identify the tumor.”), which is encoded using the CLIP text
encoder. The decoder produces three output channels corresponding to segmentation masks: Chan-
nel O represents the non-enhancing tumor core, Channel 1 corresponds to the peritumoral edema,
and Channel 2 denotes the enhancing tumor core. From these outputs, we compute clinically rele-
vant aggregates that are used for evaluation and downstream analysis: Whole Tumor (WT), defined
as the union of all three channels; Tumor Core (TC), defined as the union of channels 0 and 2; and
Enhancing Tumor (ET), corresponding directly to channel 2.

3.3 MULTIMODAL LLM

For interpretative analysis, we evaluated several multimodal large language models (LLMs), in-
cluding LLaVA (Liu et al.| [2023a)), GPT-4 (Achiam et al., 2023)), GPT-40 (Hurst et al.| [2024)), and
DeepSeek (Liu et al) [2024). We selected LLaVA for its strong performance on medical image
understanding and rich descriptive outputs.

We design a structured system prompt for brain tumor reporting that instructs the model to act as
a radiology/neuro-oncology expert. Inputs to LLaVA are grid images that juxtapose original MRI
slices with segmentation masks for WT, TC, and ET, enabling context-aware reasoning over both
raw imaging and model outputs. This arrangement supports detailed, clinically relevant narratives
aligned with radiologists’ workflows and helps bridge automated segmentation with expert interpre-
tation.

3.4 SURVIVABILITY PREDICTION USING LLAVA

To extend RadBot beyond segmentation and interpretative analysis, we develop a survivability pre-
diction pipeline using LLaVA. We leverage BraTS 2020 survival metadata (survival days and extent
of resection; 236 patients) to form image—caption pairs: composite grid images (T1CE, FLAIR, T2,
plus ground-truth mask) with structured captions containing age, survival days, and resection extent.

This pairing allows the model to learn associations between imaging patterns and outcomes. We
fine-tune with Low-Rank Adaptation (LoRA) (Hu et al.,, [2022), updating only a small subset of
parameters so the base model retains general knowledge while adapting to survivability prediction.
This yields accurate predictions without heavy compute and facilitates practical deployment.

By integrating survivability prediction, RadBot offers a unified framework for segmentation, inter-
pretation, and prognosis, supporting informed clinical decision-making.

3.5 MODEL AGNOSTIC HYBRID AUGMENTATION (MAHA)

To enhance segmentation without retraining, we introduce MAHA as an inference-time module.
MAHA ensembles predictions from multiple natural-language prompts via threshold-aware proba-
bility fusion (mean, max, product, and soft-logic variants). This improves the performance across
WT/ET/TC while remaining compatible with any prompt-conditioned VLM. Because MAHA op-
erates entirely at inference time, it provides gains with negligible engineering overhead. MAHA
supports: mean (balanced), max (recall-oriented), product (soft-AND; precision-oriented), and a
soft-logic rule that upgrades voxels confident under one prompt and near-threshold under another.
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Figure 3: [lustration of the soft logic fusion rule. Left: predictions from Model 1 with high threshold
0.6 (red) and low threshold 0.4 (blue). Middle: predictions from Model 2 with high threshold 0.6
(green). Right: final binary mask. Pixels above 0.6 are kept directly; blue entries are rescued by the
soft logic rule when Model 1 is in the 0.4-0.6 range and Model 2 exceeds 0.6.

Thresholds are swept on validation and fixed per region (WT, TC, ET). Binary masks are then com-
posed into clinical aggregates for downstream analysis. For each prompt, MAHAM first derives
a probability map by applying a sigmoid function to the model logits. These maps can then be
combined through four different post hoc fusion strategies, each offering distinct trade-offs, and all
computable efficiently on CPU. In Mean Fusion, the probability maps are averaged, which smooths
out disagreements between prompts and generally results in strong overall Dice performance. Max
Fusion instead takes the voxel-wise maximum across maps; this aggressive approach tends to favor
recall, but may also increase false positives. Product Fusion (Soft-AND) computes the element-wise
product of maps, strongly penalizing disagreements and thereby boosting precision. Finally, a Soft
Logic Rule is applied in which

V=P >7)V (PL>7-8)AP>T1)), (1)

where 7 is the decision threshold and § allows leeway for voxels that are close to the threshold.
This rule balances strict thresholding with tolerance for borderline cases, improving robustness in
ambiguous regions. Figure [3]illustrates the soft logic fusion rule with two prediction models.

Advantages: The proposed approach offers several advantages: it is plug-and-play, making it ap-
plicable to any prompt-based segmentation model; incurs zero training cost since it is inference-only
with no gradient updates; and remains flexible, allowing prompts to be added or removed depending
on the use case. Moreover, it is model-agnostic, functioning across different VLM backbones, and
clinically meaningful, particularly in improving the segmentation of small or low-contrast ET and
TC regions.

4 EXPERIMENTAL ANALYSIS

To evaluate the effectiveness of our proposed RadBot, we conducted an extensive experimental
analysis for brain tumor segmentation, along with survivability prediction.

4.1 MRI DATA ACQUISITION

The proposed framework is trained on the BraTS 2020 challenge dataset (Mehta et al.}[2022)), which
is divided into three cohorts: Training, Validation, and Testing. The Training dataset consists of
multi-parametric MRI (mpMRI) scans from 369 diffuse glioma patients, split into 80 for training and
20 for testing, while the Validation dataset includes 125 cases. Each mpMRI scan comprises four
imaging sequences: native T1-weighted (T1) for anatomical structure visualization, post-contrast
T1-weighted (T1ce) for highlighting the active tumor region, T2-weighted (T2) for tumor core vis-
ibility excluding edema, and FLAIR (Fluid-Attenuated Inversion Recovery) for depicting the entire
tumor region, including edema, non-enhancing core, enhancing core, and necrotic or fluid-filled ar-
eas. All MRI volumes undergo skull-stripping (brain extraction), co-alignment to a standard anatom-
ical atlas (SRI24), and resampling to a uniform 1 x 1 x 1 mm? voxel resolution. Each scan has an
image size of 240 x 240 x 155, comprising 155 brain slices per patient.

4.2 TRAINING PIPELINE

Our training pipeline was designed to efficiently train the CLIPSeg model for brain tumor seg-
mentation while maintaining computational feasibility. All experiments were conducted on an
NVIDIA A6000 GPU (48 GB). We employed AdamW (Loshchilov & Hutter, 2017) with weight
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Figure 4: Brain tumor segmentation results for MRI scans from the BraTS 2020 database for whole,
core, and enhancing tumor regions. Seven sample MRI scans (FLAIR, TI1CE, T2, and combined)
and ground truth (GT) with their respective RadBot predictions. Note: red, white, and pink denote
whole, enhancing, and core tumor regions, respectively.

Table 1: Performance comparison between RadBot and existing state-of-the-art methods for WT,
TC, and ET segmentation (Dice Similarity Coefficient) on BraTS 2020.

Method WT TC ET Mean
nnU-Net (Isensee et al.:2021 ) 91.07 8797 8137 86.80
H2NF-Net (Jia et al., [2021) 91.30 85.50 78.80 85.20
nnU-Net Ensemble (Fidon et al., 2021) 91.00 8440 77.60 84.33
dResU-Net (Raza et al.|[2023) 86.60 83.57 80.04 83.40
ADHDC-Net (Liu et al.,2023b) 89.75 83.31 78.01 83.69
TransBTS (Wang et al.|[2021) 90.09 81.73 78.73  83.51
DR-Unet104 (Colman et al.}[2021) 86.73 79.06 75.14 80.31
RadBot (DeepLabV3+) (ours) 85.92 8249 76.05 81.48
RadBot (CLIPSeg)(ours) 89.94 89.25 83.65 87.59
RadBot(CLIPSeg)+MAHA (ours) 92.15 92.24 85.18 89.86

decay 1 x 102 and initial learning rate 1 x 10~%. The loss function is Binary Cross-Entropy with
Logits (BCEWithLogitsLoss). For segmentation, we compute Dice Similarity Coefficient (DSC) for
WT, TC, and ET.

4.3 BRAIN TUMOR SEGMENTATION RESULTS

We first evaluated our CLIPSeg-based vision—language model (VLM) on the BraTS 2020 dataset
(Mehta et al.l [2022)), a widely used benchmark for brain tumor segmentation. The quantitative
results are summarized in Table [T} where we report the Dice Similarity Coefficient (DSC) for the
three tumor sub-regions: Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), along
with the mean score. Our model achieves strong performance across all regions, attaining DSC
values of 92.15 for WT, 92.24 for TC, and 85.18 for ET, resulting in a mean DSC of 89.86. These
results indicate that the model is particularly effective in capturing both large-scale tumor structures
(WT) and clinically critical subregions (TC and ET). Figure [ illustrates representative qualitative
results, while additional visualizations are provided in the supplementary material for completeness.

Further, we evaluated the RadBot framework on the BraTS 2021 dataset (Baid et al., [2021). In
this setting, the model was fine-tuned on 80% of the training set and evaluated on the remaining
20%. Table2]reports the comparative performance with respect to SOTA methods. RadBot+MAHA
demonstrates competitive DSC, confirming the robustness of our pipeline. Moreover, when com-
bined with the proposed MAHA fusion strategy, the RadBot+MAHA configuration attains a DSC
of 92.01, thereby surpassing the previously reported SOTA result of 91.50. This improvement high-
lights the effectiveness of the proposed hybrid augmentation and fusion mechanism in enhancing
segmentation performance for challenging tumor.

4.4 ABLATION STUDY

We compare two VLM variants: CLIPSeg (Liiddecke & Ecker, [2022) and DeepLabV3+ (CLIP
decoder) (Chen et al., [2018)), both on BraTS 2020 (Mehta et al., 2022). DSC results (Table |1}y show
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Table 2: Performance comparison between the proposed RadBot and existing state-of-the-art meth-
ods for segmentation in terms of Dice Similarity Coefficient (DSC) on BraTS 2021 database.

Method DSC  Method DSC
nnU-Net (org.) (Isensee et al.|[2021) 91.24 SwinUNETR-V2 (He et al.,|2023) 90.74
nnU-Net RsEnM (Isensee et al., [2024) 91.26  nnFormer (Zhou et al.|[2021) 90.22
nnU-Net RsEnL (Isensee et al .|, [2024) 91.13  CoTr (Xie et al.}|2021) 90.73
nnU-Net RsEnXL (Isensee et al.,[2024) 91.18 Mamba Base (Ma et al., 2024) 91.26
MedNeXtLk3 (Roy et al.,[2023) 91.35 U-MambaBot (Ma et al.,|2024) 91.26
MedNeXtLkS (Roy et al.,2023) 91.50 U-MambaEnc (Ma et al.| [2024) 90.91
STU-NetS (Huang et al., 2023) 90.55 SwinUNETR (Tang et al.}[2022) 90.68
STU-NetB (Huang et al.;[2023) 90.85 RadBot (Ours) 90.61
STU-NetL (Huang et al.,|2023) 91.26 RadBot+MAHA (Ours) 92.01

Table 3: Impact of various segmentation mask
thresholds for CLIPSeg and DeepLabV3+

(Dice) on BraTS 2020 Table 4: Ablation of MAHA with various fu-
ice) on Bra .

sion strategies in terms of DSC on BraTS 2020.

1gILOI(TDesl Thrgs: = 8‘;’;{4 sggs sI;::s Strategy WI__ET  TC  Mean
°g : : - : RadBot (w/o MAHA) _89.94 83.65 8925 87.59
CLIPSeg 0.5 8273 8092 76.82
MAHA-Max 8629 8228 9101 86.52
CLIPSeg 0.7 8696 85.82 8135
MAHA-Product 88.95 8477 87.50 87.07
CLIPSeg 0.8 8273 8092 7682 N AHA-Soft Logic  92.15 85.18 9224 89.86
DeepLabV3+ 0.5 8192 8140 75.60
DeepLabV3+ 0.6 8592 8249 76.05

RadBot with CLIPSeg outperforms the DeepLabV3+ variant, especially on fine-grained subregions,
highlighting the benefit of multimodal features. Table 3] studies threshold effects for both models.

We also performed an ablation study to evaluate the impact of different fusion strategies within
MAHA. The results, presented in Table[d] report the segmentation performance of RadBot combined
with each fusion strategy. It can be observed that the Soft Logic strategy consistently outperforms
the other approaches, achieving a significant improvement in DSC on the BraTS 2020 dataset.

4.5 RADBOT MASK EDITOR

While the segmentation masks generated by the model are significantly accurate, they may some-
times include false positives or false negatives, which can impact downstream analysis and clinical
decision-making. To address this limitation, we introduce the RadBot Mask Editor, an interactive
tool that allows radiologists or users to manually refine the segmentation masks. This feature en-
sures that the final segmentation aligns with clinical expectations and provides a higher degree of
precision.

The RadBot Mask Editor enhances usability with adjustable parameters, including brush size con-
trol for precise or broad edits and a continuous painting mode for seamless modifications. A real-
time overlay preview (Figure [5) allows users to visualize changes instantly, ensuring accurate seg-
mentation refinement. Additionally, the editor supports coordinate-based editing, enabling precise
pixel-level adjustments for fine-grained modifications. By integrating interactive editing capabili-
ties, RadBot bridges the gap between automated segmentation and expert-driven refinement, ensur-
ing clinically meaningful and highly accurate brain tumor analysis.

4.6 INTERACTIVE RESPONSES OF RADBOT

RadBot extends beyond automated segmentation and survivability prediction by offering an inter-
active response system that enhances interpretability and clinical utility. Leveraging the capabilities
of MMLLMs, RadBot can generate detailed, context-aware explanations and insights based on the
segmented tumor regions and associated imaging data. As shown in Figure[6] RadBot is capable of
generating informative and contextually relevant inquiry responses. These responses are not limited
to predefined questions but also flexible to adapt to a variety of user inputs, enabling user to explore
the data in a more interactive and meaningful way. RadBot combines the segmentation with interac-
tive explanations, bridging automated analysis and expert interpretation. This establishes accurate,
interpretable outputs, enabling users to make confident and informed decisions.

8
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Mask Editor

Brushing with paintbrush

Figure 5: RadBot Mask Editor: manual refinement of segmentation masks to correct false pos-
itives/negatives. Yellow: brushing (add); red: unbrushing (remove). Adjustable brush size and
continuous-painting mode enable precise edits.

What are the expected survival outcomes for a tumor with these characteristics?

Generally, the prognosis for gliomas is poor, with a median survival of around 12-15 months for patients with high- grade gliomas, such as glioblastoma multiforme

In the case of this tumor, its location in the left frontal lobe and significant extent may pose nd survival. The presence of a necrotic/non-enhancing tumor core may also
indicate a more aggressive tumor behavior. Therefore, the expected survival outcomes for this patient would likely be in the lower range of the typical survival time for gliomas, with a median survival of around

12-15 months.

What s the likely grade of this tumor based on the imaging
characteristics?
Based on the imaging characteristics, the tumor appears to be a
mixed-type glioma, which is a type of brain tumor that contains
both and < The presence
of bright enhancement in the TICE scan, infiltrative tumor in the
FLAIR image, and the structural details and fluid content in the
T2 scan suggest that this is a high-grade tumor. High-grade
gliomas are typically more aggressive and have a poorer
prognosis compared to low-grade gliomas. /

Can you explain the enhanced tumor in the scan?
The enhanced tumor in the TICE scan is likely due to the presence of a
neoplasm, as indicated by the bright enhancement in areas of disrupted
blood-brain barrier. This enhancement is a result of the tumor cells'
increased vascularity and the leakage of contrast agent from the blood
vessels into the tumor tissue. The FLAIR image further supports the
presence of a by edema and i ive tumor,
which are common features of gliomas.

Could you explain the difference between enhancing and non-

enhancing tumor regions?
Enhancing tumor regions are brightly lit up in the T1CE scan due to
the contrast agent, indicating that the tumor cells are actively taking
up the agent. Non-enhancing tumor regions do not show significant
contrast_enhancement and may be less active in taking up the
contrast agent, possibly indicating less active tumor cells or a
different type of tumor.

W hat additional imaging studies would you recommend?
Given the presence of a mixed-type glioma, additional imaging
studies such as a contrast-enhanced T1-weighted MRI with and
without gadolinium, a T2-weighted MRI, and a magnetic
resonance spectroscopy (MRS) would be recommended to
further evaluate the tumor's characteristics, location, and extent.

Can you explain the whole tumor in the scan?
The tumor is located in the left frontal lobe and appears to be significant in size, as it is depicted in multiple MRI images. The segmentation masks in the T1CE, FLAIR, and T2 images accurately depict the tumor's
characteristics, including the enhancing tumor core, necrotic/non- tumor core, and p: edema.

Figure 6: Interactive results of RadBot on tumor characteristics, inter-tumor differences, tumor
grading, and survivability prediction.

5 CONCLUSION

In this work, we propose RadBot, a vision-language framework for brain tumor segmentation, inter-
pretative analysis, and survivability prediction. RadBot integrates CLIPSeg and LLaVA: CLIPSeg
leverages a frozen CLIP encoder for multimodal segmentation, and LLaVA contributes interactive
insights. Evaluations on BraTS 2020/2021 validate accurate segmentations, clinically relevant in-
terpretations, and robust survival predictions. A key contribution is the RadBot Mask Editor for
interactive refinement. Further, we also proposed model agnostic hybrid augmentation (MAHA), an
inference-time prompt ensemble method for brain tumor analysis. LLaVA-based question answer-
ing improves interpretability for decision support. By combining multimodal imaging and clinical
data, RadBot strengthens survivability prediction and bridges automated segmentation with clinical
workflow.
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