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Abstract—Dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) is a promising method for the evaluation of
tissue perfusion. Current standard is fitting of a pharmacokinetic
model to the acquired signals. Most commonly, first generation
models are used (Tofts, extended Tofts model) providing stable
results, however, only a limited set of parameters. Second
generation models allow estimation of a larger parameter set,
thus a more complete description of the perfusion state, however,
they require high data quality and their application is more
computationally demanding. Overall, the lack of standardization
of DCE-MRI, its computational time and reliability hinders its
routine clinical application. Deep learning methods allow fast
parameter estimation and bring new possibilities into this field.
In this study, we have explored the application of a convolutional
neural network for the prediction of second-generation model
parameters. The network was tested for different noise levels
and sampling periods on a simulated dataset, and the results
were validated on a real preclinical dataset. The proposed
method provided more stable and robust results compared to
the conventional model fitting.

Index Terms—Deep learning, MRI, perfusion imaging

I. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a promising method for the evaluation of
perfusion and permeability changes in tissues. These changes
can be valuable for diagnosing and monitoring treatment
effects, particularly in oncology, neurology, and cardiology.
[1] For example, when monitoring tumor response to treat-
ment, morphological changes can typically be observed within
months, while perfusion changes emerge within days, bringing
very early insights into the treatment effects. [2]

In DCE-MRI, a paramagnetic contrast agent is administered
and its passage through tissue is tracked in a series of T1-
weighted MR images. The acquired image sequence is con-
verted to a contrast-agent concentration image sequence using
a pre-contrast sequence and a selected T1-mapping method.
The contrast-agent concentration in a tissue c(t) can be defined
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as a convolution of contrast-agent concentration in plasma
of the feeding artery cp(t), also known as the arterial input
function (AIF), and a so called tissue residue function H(t),

c(t) = (cp ∗H)(t). (1)

The tissue residue function H(t) is modeled with a phar-
macokinetic (PK) model, parametrized with a corresponding
set of perfusion and permeability parameters. The AIF can
be measured in a large artery from the acquired DCE-MRI
dataset, or population-based model can be selected. The only
unknown of the equation is the H(t) function with its pa-
rameters; therefore, by fitting of each voxel’s concentration
curve with a selected PK model, the sought perfusion and
permeability parameters can be obtained. [3]

The most commonly used PK models are the 1st-generation
models, describing the tissue with 2–3 parameters (e.g. Patlak,
Tofts, or extended Tofts model). More realistic description is
provided by the 2nd-generation models, which are defined by
4–5 parameters. Their usage usually requires higher temporal
resolution of the acquired image sequence, achievable e.g.
with compressed sensing approaches, reconstructing image
data from undersampled k-space. [4]

A common approach to fitting of a PK model to the
concentration curves is the non-linear least-squares (NLLS)
technique. For large datasets, this procedure can be very time-
consuming, taking tens of minutes to hours. This might be an
obstacle for the application of DCE-MRI in clinical practice,
where fast computation of results is highly desired to evaluate
patient data as quickly as possible. The computational time
increases with the number of model parameters; therefore, it
is an issue especially for the 2nd-generation models. [1]

With the advances in artificial intelligence, alternative ap-
proaches to NLLS techniques have also been introduced, in
particular the training of neural networks (NNs) to predict
the perfusion and permeability parameters from the DCE-MRI
data. Although the training of a NN is time-consuming, the
prediction is significantly faster than the NLLS techniques.
Also, there might be other advantages in terms of possibly



lower sensitivity to noise and to the problem of false local
optima.

The training of NNs to predict the perfusion and per-
meability parameters can occur in either a supervised or
self-supervised manner. In the supervised approach, the NN
is trained using a loss function that measures the distance
between the DL-based perfusion parameters and those ob-
tained from traditional NLLS-based methods. Alternatively,
when training on simulated data, the parameters used for the
generation of DCE-MRI data can be used as labels. [5]–[10]

In the self-supervised approach, the NN is trained based on
the quality of fit of the concentration curves generated from the
DL-estimated perfusion parameters compared to the original
concentration curves. This approach requires selection of a PK
model for generation of the DL-based concentration curves
for the loss function, but it should result in a more robust
parameter estimation. [11]–[13]

The architectures can be categorized into two main groups
— temporal and spatio-temporal. Temporal networks learn the
voxelwise parameter estimation, commonly employing recur-
rent architectures [5], [13] or convolutional neural networks
(CNNs) [14]. On the other hand, spatio-temporal networks
incorporate spatial information from the local neighborhood,
similarly to spatial regularization of the NLLS approach [15],
improving the parameter estimates. Presently, CNNs in various
configurations dominate the employed architectures [6]–[10].

DL approaches also diverge in handling of the input data.
Apart from the conventional preprocessing of the DCE data,
that is the conversion of MR signal intensity to concentration,
with the concentration curves supplied as the model input, the
preprocessing can be bypassed, with the image sequence fed
directly into the model. [7]–[9], [14]

The current studies vary in all the above-mentioned aspects,
but almost exclusively rely on the 1st-generation PK models.
To our knowledge, there is only one study focused on the
application of a 2nd-generation model [12], where a voxelwise,
physics-informed architecture was implemented. Therefore,
because this field remains mainly unexplored, our aim is
to design a convolutional model for prediction of the 2nd-
generation model-parameters and to estimate its accuracy and
precision in comparison with NLLS techniques under different
conditions.

II. MATERIALS AND METHODS

A. Model

For the task, we designed a CNN architecture depicted in
Fig. 1. The input of the network are concentration curves, the
output is a set of parameters {Fp, vp, ve,PS,BAT}, where Fp

is plasma flow, vp is plasma volume, ve is extravascular extra-
cellular volume, PS is the permeability–surface-area product,
and BAT is the bolus arrival time. This parameter set could be
output by the two-compartment exchange (2CX) model [3],
which was chosen for subsequent processing and analysis in
this study as one of the most common 2nd-generation PK
models.

Conv1d
(8,16)

Conv1d
(16,32)

Conv1d
(32.64)

Conv1d
(64,128)

Conv1d
(128,64)

Conv1d (1,8)

Conv1d
(64, 64)

Conv1d
(64,64)

FCN
(64*N,256)

Conv1d
(64,32)

Conv1d
(8,16,1)

Conv1d
(16,32,3)

Conv1d
(32,64,8)

Conv1d
(64,128,25)

Conv1d
(128,64,56)

Conv1d
(64,32,128)

FCN
(256,5)

Parameters

Concentration
curves

Fig. 1: Designed CNN architecture. Feature extraction and
merging is shown in blue, local pathway in green, global path-
way in red. Fully connected network extracting final perfusion
and permeability parameters is depicted in yellow. Numbers
refer to the number of input channels, output channels, and,
for the global pathway, the dilatation factor. N is the number
of timepoints of the input curves.

At first, low-level features are extracted from the concen-
tration curves using a 1D convolutional layer. The features are
passed in parallel into a local and global pathway, which is
known to provide good results for the estimation of parameters
from DCE-MRI data. [6], [8], [14] Each pathway consists of
6 convolutional layers. The local pathway is processing the
signals with a stride of 1, the global pathway uses dilated
convolution with increasing dilation factor to extract long-
term information. Zero-padding is applied in both patways
to ensure matching sizes of the input and output signals.
Outputs of both pathways are then concatenated and merged
by two more 1D convolutional layers. All the convolutional
layers are followed by a ReLU activation function. Finally, the
features are processed by two fully-connected layers; the first
is followed by a leaky ReLU activation function, the second



is followed by a sigmoid activation function.
The output parameters are scaled to the expected physiolog-

ical range; that is for Fp to [0, 5] mL/min/mL and for PS to
[0, 2] mL/min/mL, the vp and ve are kept to [0, 1] mL/mL. The
BAT is estimated in a given range around the precontrast scan
time, which is commonly manually or automatically set during
the processing of DCE-MRI data. The range was set between
-0.1 min and +0.2 min. The precontrast scan time, passed as
an input information, is added to the estimated value to obtain
the BAT.

B. Loss function and hyperparameters

The network was trained using a self-supervised approach;
that means, the predicted parameters were used for the gen-
eration of the concetration curves, and the loss function was
defined as a normalized mean square error between the original
and predicted concentration curves,

NMSE =
1

N

N∑
n=1

∑I
i=1(c(ti)− ĉ(ti))

2∑I
i=1 c(ti)

2
, (2)

where ti are the sampling time points of the concentration
curves, I is the number of the curves’ samples, and N is the
number of samples in a batch.

For the generation of the concentration curves, an imple-
mentation of the 2CX model was used. The curves were
simulated with a three gamma-variate function (3GVF) AIF,
designed to match the vascular-system dynamics of small
animals. [16]. The parameters of the AIF were found using
blind-deconvolution AIF estimation from a real dataset used
later for the testing of the model.

Based on hyperparameter optimization, batch size was cho-
sen as 512 and learning rate as 0.0001. For the training, Adam
optimizer combined with a scheduler with the patience of 3
epochs and factor 0.1 was chosen (number of epochs with
no improvement after which learning rate was reduced). The
network was trained for 50 epochs in total.

C. Training and validation data

For the training of the CNN, simulated concentration curves
with different levels of noise were used. The curves were
generated with the AIF mentioned above and the 2CX model.
The total of 500 000 curves with random parameters were
simulated, with parameter ranges as follows: Fp = [0.08, 5]
mL/min/mL, vp = [0.0005, 0.1] mL/mL, ve = [0.01, 0.7]
mL/mL, PS = [0.001, 2] mL/min/mL, and BAT = [0.4, 0.8]
min. To represent plasma flow value distribution in tissues
more accurately, we selected the plasma flow from a loga-
rithmic random distribution. For all other parameters, uniform
distributions were chosen. The sampling period Ts was set
to 1.2 s and the signal length to 256 seconds to match the
testing data. To mimic the in vivo conditions, we added zero-
mean Gaussian noise to the curves with the standard deviation
ranging randomly from 0 to 0.1 with a uniform distribution,
providing realistic levels of noise, as compared with our real
DCE-MRI datasets. The final dataset was split to the training
and validation set with a ratio of 0.8.

Fig. 2: Virtual phantom used for the generation of synthetic
DCE-MRI data. Left – all segmented tissues, right – main
regions: tumor (green), brain (blue), vessels (red), and muscles,
skin and other tissues (yellow).

D. Testing data

As the main application of DCE-MRI is the diagnosis of
oncological diseases, the implemented architecture was tested
on two tumor datasets – the first dataset was a synthetic DCE-
MRI of a glioblastoma-bearing rat, the second one was an in
vivo measurement of a mouse with a subcutaneously implanted
tumor.

1) Synthetic data: In-house made simulation software Perf-
Sim was used to generate realistic synthetic DCE-MRI data
[17]. The input of the simulation is a virtual phantom com-
posed of segmented tissue regions, based on real MR images.
Each tissue region is assigned a corresponding set of perfusion
parameters necessary for the simulation. The simulator gener-
ates the concentration curves using a predefined PK model and
an AIF for each region and converts them to the MR signal
intensity based on a model of the FLASH MR acquisition.
A synthetic image sequence with a high temporal and spatial
resolution is then created from the signal curves and the virtual
phantom, and weighted by input coil sensitivities (measured
using coils of a real MR scanner). Raw MR echo signals
are generated by transforming the synthetic image sequence
into the k-space. The simulator allows Cartesian, radial and
rosette acquisition. Gaussian noise may be added to the echo
signals. The software implements simulation of multi-flip-
angle, multi-repetiton-time and IRLL pre-contrast sequences
(scans needed to convert the MR image intensity to contrast-
agent concentration).

A virtual phantom representing an axial slice of a rat’s head
with glioblastoma was used in this study, shown in Fig. 2. A
compressed-sensing DCE-MRI acquisition was simulated with
the following parameters: RF-spoiled FLASH sequence with
radial golden angle (GA) sampling [4] acquired with a surface
rat-brain four-channel coil, TR = 8 ms, TE = 1.445 ms, FA
= 15°, 38400 projections, total acquisition time 256 seconds,
and matrix size of the reconstructed images 128×128.

Three datasets were simulated: 2D without noise, 2D with
realistic noise, and 3D with realistic noise (acquisition of
10 slices was simulated, i.e. image reconstruction was done
from 10× more undersampled MR data). We set the standard
deviation of Gaussian noise added to the echo signals as 0.022



to achieve a similar level of noise as in the original dataset,
from which the perfusion parameters used as ground-truth in
the software were estimated. The IRLL pre-contrast sequence
[18] was simulated with the following parameters: τ = 8.2 ms,
td = 12.1 ms, tr = 8.2 ms, FA = 3°, TE = 1.6762 ms, and
1500 projections per inversion.

The image sequences of both the dynamic and the pre-
contrast data were reconstructed from the synthetic k-space
data using the BART reconstruction toolbox [19]. The tem-
poral sampling of the DCE sequence was set to 1.2 seconds.
The reconstruction was performed with the total variation (TV)
regularization in both the spatial and the temporal domains,
with the weights set experimentally to 0.001 in the spatial
domain and 0.0001 in the temporal domain so that the optimal
results of the reconstruction and perfusion analysis were
achieved. The IRLL image sequence was reconstructed also
with TV regularization, with the weight set to 0.0004 for the
spatial domain.

To test the ability of the CNN to handle various sampling
periods, we reconstructed the 2D dataset with added noise
also with the temporal sampling period of 2.4 s and 4.8 s.
The regularization weights were set lower for the dataset with
4.8 s to prevent overregularization.

To obtain the concentration curves from the simulated MR
images for the testing of the CNN and to calculate the NLLS
perfusion maps, we processed the DCE-MRI sequences in the
PerfLab software [20], fitting the sequences with the 2CX
model in a voxelwise manner. The same AIF as for the
simulation of training data was used for the deconvolution.

2) Real data: A tumor-bearing mouse was imaged with a
9.4T Bruker BioSpec USR 94/30 (Bruker BioSpin, Ettlingen,
Germany) scanner and a surface eight-channel coil. A bolus
of 0.2 mmol/kg Gadovist® (Bayer AG, Germany) contrast
agent was administered into the tail vein after 45 seconds of
acquisition using a linear infusion pump (Harvard Apparatus)
with the injection speed of 1 mL/min. The experiments were
approved by the National Animal Research Authority.

A single axial slice was imaged using a custom-made 2D
GA multi-gradient echo sequence with parameters: TR/TE =
23/1.4, 3.4, 5.4, 7.7, 9.4, 11.5, 13.5, 15.5 ms, FA = 30°, acqui-
sition time 15 min, and matrix size of the reconstructed image
128×128. From the multi-gradient echo sequence, only the
first echo was picked for the analysis here as used commonly.
Multi-echo data were used only in the blind-deconvolution AIF
estimation. This gave more reliable results than for single echo
[21]. 2D IR GA precontrast sequence was captured for the T10
estimation with TE = 1.46 ms, TR = 23 ms, and FA = 30°.

The images were reconstructed using the BART toolbox
with Ts = 1.2 s. For the dynamic sequence, wavelet regular-
ization was used in the spatial domain with the weight set to
0.001 and TV regularization was used in the temporal domain
with the weight set to 0.005. The precontrast image sequence
was reconstructed with TV regularization with the weight set
to 0.001.

To obtain the concentration curves from the real MR im-
ages for the testing of the CNN and to calculate the NLLS

perfusion maps, we processed the DCE-MRI sequence in the
PerfLab software [20], with the same AIF as was used for the
simulations and the 2CX model fitted in a vowelwise manner.

III. RESULTS

A. Synthetic data

The results obtained from the synthetic datasets with differ-
ent noise levels are shown in Fig. 3. To improve the clarity of
the final parameter maps, we omitted the brain region and the
vessels from the analysis of all the simulated datasets, because
the 2CX model is not suitable for these specific tissue types.
In addition, we are not showing the BAT parameter, which
does not hold any significant diagnostic information and is
important mainly for the purpose of curve fitting.

For the noise-free dataset (2nd and 3rd column), both the
NLLS and the CNN-based approaches provided similar results,
corresponding with the ground truth. For the 2D dataset with
added noise, the CNN outperformed the NLLS parameter
estimation, which was clearly more sensitive to the present
noise. For the 3D dataset with noise, the results had shown
even more significant difference between the methods than for
the 2D noisy data, with the NLLS method providing incorrect
estimates predominantly in the muscles. The most noise-
sensitive parameters to estimate were Fp and vp. The best
results were obtained for the ve parameter; however, the CNN
still outperformed the NLLS method for these parameters in
the presence of noise.

The resulting maps in the region of interest, glioblastoma,
are shown in detail in Fig. 4. In contrast to the overall
noise-sensitivity of the NLLS method for the whole rat-
head phantom, composed mainly from muscles, the estimated
parameters in the glioblastoma were less influenced by noise
for this method. The most imprecise parameter estimates were
obtained for Fp. The remaining parameters were estimated
predominantly correctly for the NLLS method, even for the
noisy data. As for the whole phantom, the CNN provided
stable results for all the parameters under all tested conditions.

The error between the parameter estimates and the ground
truth was quantified using the mean absolute percentage error
(MAPE), and with the standard deviation (SD) is summarized
in Table I for the whole rat-head phantom and for the glioblas-
toma only. The results correspond with the differences observ-
able from the parameter maps. For the whole phantom and
noise-free data, the CNN achieved lower MAPE for Fp and
BAT, however, for the vp, ve and PS, the MAPE was slightly
higher. In the presence of noise, the CNN outperformed the
NLLS and the MAPE was lower for all the parameters. The
SD of the CNN estimates was lower for all parameters and
datasets, as was expected from the perfusion maps.

For the glioblastoma only, the CNN achieved lower MAPE
than the NLLS method for Fp estimates in all datasets; for
the remaining parameters, the deviations from the ground
truth were comparable for both methods, with the difference
between them being mostly less than a percent. The SD of the
estimates followed a similar trend.
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Fig. 3: Estimated parameters from the CNN and the NLLS method for 2D data without noise, 2D data with added Gaussian
noise, and 3D data with added Gaussian noise. The resulting maps are compared with the ground truth used for the simulation
of the synthetic data.
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The estimated perfusion maps from the datasets with differ-
ent sampling periods are shown in Fig. 5. When the sampling
period was prolonged to 2.4 s (4th and 5th column), the
results were comparable with the estimates from the datasets
with 1.2 s. For the longest sampling period, 4.8 s, (last two
columns), the NLLS method with the 2CX model failed due to

the insufficient sampling necessary for the 2nd-generation PK
models. In contrast, the CNN provided still correct parameter
estimates corresponding to the ground truth, with a lower SD.

The parameters estimated in the glioblastoma are shown
again in detail in Fig. 6. The results correspond with the
previously observed phenomenons – the Fp estimated by the
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Fig. 5: Estimated parameters from the CNN and the NLLS method for 2D data with added Gaussian noise and three sampling
periods, Ts = 1.2 s, 2.4 s, and 4.8 s. The resulting maps are compared with the ground truth used for the simulation of the
synthetic data.
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for the simulation of the synthetic data.

NLLS method was highly inaccurate for all the sampling
periods; for the longest Ts, the results of the NLLS method
were inaccurate due to the insufficient temporal resolution.
For the remaining parameters and the Ts = 1.2 s and 2.4 s,
the NLLS method provided results with low deviation from

the ground truth. The CNN provided quite stable results, also
with low deviation from the ground truth; however, for the
Fp, prolongation of the sampling period resulted in bias of
the estimated parameter.

The error was again quantified with the MAPE and SD, and



TABLE I: MAPE and SD of the CNN-estimated parameters and NLLS-estimated parameters compared to the ground truth
parameters for different acquisitions and noise levels.

Whole phantom

MAPE [%] 2D 2D with noise 3D with noise
NLLS CNN NLLS CNN NLLS CNN

Fp 383.6 ± 5529.6 23.0 ± 131.7 2002.9 ± 13104.5 25.1 ± 137.2 7055.5 ± 23265.9 36.4 ± 177.4
vp 17.5 ± 56.4 25.0 ± 45.3 55.4 ± 88.7 24.9 ± 44.4 90.1 ± 102.2 26.7 ± 36.8
ve 11.5 ± 24.2 11.6 ± 20.8 20.4 ± 32.8 12.1 ± 21.2 28.3 ± 43.6 14.9 ± 29.5
PS 12.0 ± 29.1 19.3 ± 20.2 28.3 ± 136.9 20.2 ± 22.4 44.2 ± 92.3 24.4 ± 24.0
BAT 4.1 ± 14.1 1.6 ± 2.9 4.7 ± 14.0 1.7 ± 2.9 6.4 ± 14.0 2.0 ± 3.0

Glioblastoma

MAPE [%] 2D 2D with noise 3D with noise
NLLS CNN NLLS CNN NLLS CNN

Fp 43.1 ± 138.9 20.7 ± 15.3 1524.8 ± 14518.5 21.1 ± 15.2 2066.4 ± 14376.2 27.0 ± 20.2
vp 19.8 ± 19.6 18.9 ± 19.6 21.4 ± 22.3 18.7 ± 16.6 26.1 ± 27.4 24.6 ± 20.0
ve 19.1 ± 21.7 20.0 ± 21.3 20.6 ± 21.6 21.2 ± 20.8 27.5 ± 21.6 28.0 ± 20.6
PS 24.6 ± 26.1 24.6 ± 24.4 24.7 ± 25.8 24.6 ± 24.4 28.0 ± 25.9 28.7 ± 26.2
BAT 2.3 ± 1.1 3.2 ± 2.1 2.7 ± 1.8 3.1 ± 2.1 3.0 ± 2.8 2.7 ± 1.9

TABLE II: MAPE and SD of the CNN-estimated parameters and NLLS-estimated parameters compared to the ground truth
parameters for different sampling periods.

Whole phantom

MAPE [%] Ts = 1.2 s Ts = 2.4 s Ts = 4.8 s
NLLS CNN NLLS CNN NLLS CNN

Fp 2002.9 ± 13104.5 25.1 ± 137.2 2641.9 ± 15408.9 24.3 ± 130.8 11915.6 ± 31847.5 49.8 ± 183.7
vp 55.4 ± 88.7 24.9 ± 44.4 57.6 ± 83.1 34.0 ± 49.6 110.4 ± 202.1 34.7 ± 108.3
ve 20.4 ± 32.8 12.1 ± 21.2 20.7 ± 27.6 13.4 ± 20.5 35.4 ± 74.9 17.3 ± 33.3
PS 28.3 ± 136.9 20.2 ± 22.4 27.7 ± 54.0 25.6 ± 20.2 67.4 ± 244.5 34.1 ± 57.4
BAT 4.7 ± 14.0 1.7 ± 2.9 5.9 ± 12.7 3.5 ± 2.4 10.2 ± 10.7 6.6 ±2.1

Glioblastoma

MAPE [%] Ts = 1.2 s Ts = 2.4 s Ts = 4.8 s
NLLS CNN NLLS CNN NLLS CNN

Fp 1524.8 ± 14518.5 21.1 ± 15.2 813.7 ± 10292.8 57.1 ± 58.1 18414.4 ± 45365.9 68.4 ± 84.7
vp 21.4 ± 22.3 18.7 ± 16.6 21.5 ± 21.8 18.8 ± 16.4 30.7 ± 29.9 22.4 ± 19.0
ve 20.6 ± 21.6 21.2 ± 20.8 20.9 ± 21.6 28.4 ± 20.7 22.9 ± 21.9 27.1 ± 19.8
PS 24.7 ± 25.8 24.6 ± 24.4 24.7 ± 25.6 25.2 ± 23.7 30.4 ± 31.4 29.7 ± 25.7
BAT 2.7 ± 1.8 3.1 ± 2.1 4.7 ± 2.2 0.9 ± 0.7 10.7 ± 7.0 3.2 ± 1.4

is summarized in Table II. The values support all the above-
mentioned observations.

B. Real data

The parameter maps estimated by the NLLS method and
the CNN in the mouse tumor are shown in Fig. 7. The tumor
contained necrotic tissue (at the bottom in the middle), where
the parameters could not be estimated reliably (because the
PK model is not valid in tissue with no vasculature). In the
remaining volume of the tumor, the CNN proved to be more
robust to the noise than the NLLS as in the case of synthetic
data, providing more visually consistent parameter maps.

IV. DISCUSSION AND CONCLUSION

In contrast to the NLLS method, the CNN provided more
robust results under all tested conditions. Thanks to the self-
supervised training of the CNN, the model should be able
to estimate the parameters similarly or even more reliably
than the NLLS method from various types of datasets. An
important factor is the computational time of the parameter
estimation, which was reduced approximately 500× for our
tested implementations of the CNN and the NLLS method
(for the 2D dataset with noise, the NLLS fitting took 9 min

24 s, the CNN parameter prediction took 4.96 s; the NLLS
fitting was parallelized with 64 workers). These results might
be promising for the clinical application of quantitative DCE-
MRI, introducing more reliable and faster solution with the
DL approach.

However, we are aware of several factors that could in-
fluence the results of the CNN and that we aim to solve in
our future work. First, the network was trained with a single
AIF, which was also used for the NLLS data processing.
In general, the AIF is examination-specific (although many
implementations of DCE-MRI analysis assume a standard
population-based AIF). The AIF selection has a significant
influence on the parameter estimates resulting from the NLLS
method. Hence the perfusion parameter estimates are expected
to be inaccurate when the CNN has been trained with an AIF
deviating from the true one. Therefore, this behaviour should
be tested in the future, and possibly the network should be
trained to accommodate for different AIFs. Alternatively, the
AIF could be treated as an additional input to the NN. [6],
[11], [14]

The network was successfully trained for different sampling
periods, and it was able to estimate parameters accurately even



Fp
 [m

L/
m

in
/m

L]

NLLS CNN

0.0

0.1

0.2

0.3
vp

 [m
L/

m
L]

0.00

0.02

0.04

0.06

0.08

ve
 [m

L/
m

L]

0.0

0.1

0.2

PS
 [m

L/
m

in
/m

L]

0.00

0.05

0.10

0.15

0.20

BA
T 

[m
in

]

0.5

1.0

1.5Fig. 7: Parameters maps estimated by NLLS and by CNN
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for the highest tested sampling period, Ts = 4.8 s, when the
NLLS method mostly failed. The processing of datasets with
different sampling periods required retraining of the model.
More general approach would be desirable, e.g. resampling
of the signals before processing with the CNN. Furthermore,
the acquisition time of the input sequence may vary. One
of the possible solutions for that might be cropping of the
signals to an estimated minimal signal length necessary for
the CNN to predict the parameters accurately. Alternatively,
another model, which is not dependent on signal length, might
be implemented, e.g. one of the recurrent architectures such
as GRU or LSTM. [5], [13]

In our work, we tested the model on simulated and preclin-
ical data. Testing on clinical datasets is necessary for further
development of this method. The AIFs differ significantly
between small animals and humans, therefore, the incorpora-
tion of AIF information would be beneficial for the accuracy
of the DL parameter estimates in clinical data. In addition,
better results on various real datasets may be achieved by the
incorporation of real data into the training dataset.
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“Spatially regularized estimation of the tissue homogeneity model pa-
rameters in DCE-MRI using proximal minimization,” Magnetic Reso-
nance in Medicine, vol. 82, pp. 2257–2272, 12 2019.
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