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ABSTRACT

Large language models (LLMs) are increasingly used in applications where outputs
must satisfy hard, application–critical constraints (e.g., JSON format, lexical inclu-
sion, and length limits). When these constraints are violated, downstream parsers
may fail (e.g., invalid JSON), application behavior can become incorrect or unsafe
(e.g., missing required strings or forbidden terms), and automation pipelines may
halt. Although controlled text generation can mitigate violations, LLM outputs
still frequently breach constraints. Therefore, post-generation evaluation is essen-
tial. Common evaluators implemented by LLM-as-a-judge or rule-based scripts
under-penalize hard errors and lack robust, fine-grained evaluation control flow. We
propose ConstrainPrompt, a verification pipeline that induces semantics-agnostic,
code-verifiable constraints from natural-language prompts and compiles them into
executable validators. Our method extracts code-verifiable constraints from the
prompt, synthesizes a logical evaluation tree that orders global-to-local checks and
resolves conditional guards, and finally generates code to validate LLM outputs.
On a corpus of real-world prompts paired with LLM outputs, ConstrainPrompt
improves Constraint Compliance Accuracy by 24.3% and Violation Rationale by
40.8% over an LLM-as-a-judge baseline across three models.

1 INTRODUCTION

Large language models (LLMs) can produce fluent and contextually appropriate text. Yet in real-
world applications, semantic correctness alone is not sufficient. Agentic pipelines often chain multiple
LLM calls with tools, and each step expects the previous output to satisfy concrete output constraints
such as style, format, length limits, required fields, and lexical inclusion or exclusion (Zhou et al.,
2023; Han et al., 2024). In prompts, these requirements are commonly grouped into soft control and
hard control constraints (Liang et al., 2024). Soft constraints regulate properties like tone and topic:
they matter for safety, user trust, and policy adherence (red in Figure 1). Hard constraints govern
concrete elements of the output, such as structure, vocabulary, and numeric or length limits (blue in
Figure 1). When hard constraints are violated, downstream components may fail to parse or trust the
output, triggering cascading errors or halting the pipeline. Accordingly, rigorous quality assurance
of LLM outputs is essential for reliability and safety. In these settings, constraint compliance is as
critical as semantic correctness.

Please analyze the following dialogue and evaluate it based on the criteria provided. Assign a score from 1 to 5 for each category. 
Scores should meaningfully distinguish quality levels. Please present your evaluation into the following JSON format:
{ “Relevance”: ___ , “Completeness”: ___ , “Correctness”: ___ }
Here is the dialog: {dialog}

Figure 1: A prompt example with soft and hard constraints.

A natural approach is to impose constraints during generation. Controlled text generation steers
models toward application-level requirements, including keyword inclusion or exclusion, tone or
style, length or numeric ranges, and machine-usable structures (e.g., JSON schemas and field
completeness) (Zhang et al., 2023). These are not aesthetic niceties: they are preconditions for
reliable parsing, storage, compliance, and safe execution. Despite substantial progress, control during
generation reduces the incidence of violations but cannot eliminate them, especially under diverse,
conditional, and task-specific constraints that arise in real prompts. Post-hoc verification is therefore
necessary. Existing evaluation typically relies on one of three options (Liang et al., 2024): (i) human
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evaluation, which can produce high quality judgments but is expensive, time-consuming, hard to
reproduce, and prone to inconsistency (Liu et al., 2022); (ii) rule-based scripts, which are fast and
low-cost for hard constraints but often operate at a single granularity (the whole output), making it
difficult to express field or item level checks and conditional dependencies (Meng et al., 2022); and
(iii) LLM-as-a-judge, which tends to under-penalize hard, semantics-agnostic constraints such as
format, length, and required tokens, sometimes mirroring the same mistakes as the generator (e.g.,
miscounting or overlooking numeric limits) (Chen et al., 2024).

Compliance with hard control constraints is directly tied to application correctness: violating required
structure, ranges, fields, or lexical rules undermines parsing and trust, triggering cascading failures
or halting pipelines. Yet evaluation of hard constraints has received less attention than soft control,
even though practitioners depend on it as the first acceptance check in production. Moreover, as
discussed above, existing automated methods for hard-constraint evaluation have clear limitations.
Therefore, we focus on evaluating hard control constraints and address this gap with ConstrainPrompt,
a verification pipeline that separates compliance from semantic quality. ConstrainPrompt first induces
from a natural-language prompt the set of semantics-agnostic, code-verifiable constraints (structural,
quantitative, and lexical), together with their conditionality (whether triggered by specific input
use case or always applicable). We then introduce a logical evaluation tree as an intermediate
representation. It specifies the order of checks, their application scope, and input-side guards that
enable a check only when its condition holds. This captures precedences (e.g., parse structure before
validating fields and ranges) and yields a canonical control flow that prevents contradictory checks.
Finally, we compile this tree into an executable validator. At runtime, the system executes the
generated code in a sandbox environment and returns deterministic pass/fail outcomes together with
human-readable reasons and a reference to the defining span in the prompt. We evaluate the pipeline
on a dataset of real prompts paired with model outputs, reporting evaluation accuracy, along with
ablations that isolate the contribution of the tree-guided control flow.

Our main contributions are:

• A dataset of real prompts paired with model outputs and annotated violations of prompt-defined
hard constraints, and an empirical study that summarizes common constraint types in prompts.

• ConstrainPrompt, a method that induces code-verifiable constraints from prompts, synthesizes an
evaluation tree to guide ordering and scope, and compiles the result into executable validators.

• An experimental evaluation on three models showing improvements of 24.3% in Constraint
Compliance Accuracy and 40.8% in Violation Rationale over baseline methods.

2 TAXONOMY OF PROMPT CONSTRAINTS

To evaluate whether LLM outputs comply with prompt–specified constraints, we first characterize the
kinds of constraints that appear in real-world prompts. We conduct an empirical analysis to derive a
working taxonomy and to estimate the prevalence of each category.

Data collection. We build our corpus on PromptSet (Pister et al., 2024), a collection of prompts
extracted from LLM-based applications (LLMapps) in open-source GitHub projects. These projects
span a wide range of use cases and adoption levels from personal demos to widely deployed systems,
yielding substantial variability in prompt quality. To better reflect mature practice, we focus on widely
used prompt templates (predefined structures that combine static text with dynamic placeholders to
create adaptable prompts for LLMapps) in these apps (Schulhoff et al., 2024; Zhao et al., 2025). To
improve data quality, we follow the cleaning pipeline of Mao et al. (2025), filtering by factors such as
repository popularity and prompt length.

To identify constraints within prompts, we segment each prompt into seven components following
Mao et al. (2025). We then merge the original Constraint and Output format components into a single
Constraint category and retain prompts that contain at least one such component. This procedure
yields a subset of 1,232 prompts that explicitly specify constraints.

Constraint taxonomy induction. To characterize the constraint types that commonly appear in
real-world prompts, we adopt a hybrid deductive–inductive coding protocol (Saldaña, 2021). We
initialize a seed codebook from prior taxonomies (Zhang et al., 2023; Zhou et al., 2023) and then

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Category Subcategory Brief description Frequency

Structural Specific format Output must conform to a specific data format 26.1%

Quantitative Numerical Restrictions on output length, counts, or numerical ranges 8.9%

Lexical Lexical matching Output must contain, match, or adhere to a specific string
pattern 13.3%

Lexical exclusion Certain words, phrases, or character patterns are prohibited
in the output 11.2%

Semantic Semantic inclusion Output must semantically include certain concepts, entities,
or topics 25.8%

Semantic exclusion Output must not semantically mention certain concepts, en-
tities, or topics 7.4%

Qualitative The output must exhibit specific qualities or styles 7.3%

Table 1: Distribution of constraint categories.

perform open coding with constant comparison on a random sample of 300 prompts. Coding is
conducted by two professional annotators with more than two years of experience in prompt writing
and refinement. For each prompt, annotators assign an existing category when applicable. Otherwise,
a new category is proposed together with a concise definition and a canonical example (examples in
Appendix A). Disagreements are resolved through discussion to produce a single adjudicated label.
After each revision, the sample is recoded to verify that category boundaries remain stable. This
process yields seven leaf categories grouped into four higher-level families, summarized in Table 1.

Using the finalized taxonomy, we employ GPT-4o-2024-11-20 (Hurst et al., 2024) to label all
constraints in the full dataset. To assess labeling accuracy, annotators label a random sample of 100
prompts to create gold labels, which we compare against the GPT-4o outputs. On this set, GPT-4o
achieves 94% accuracy. Applying the taxonomy to the entire corpus, we find that specific format,
numerical, lexical matching, and lexical exclusion (the semantics-agnostic, code-verifiable families)
together account for 59.5% of all constraints (Table 1), indicating that code-verifiable requirements
constitute a large share of constraints in practice.

Within the code-verifiable families, specific format typically constrains the global structure of output,
whereas the other three families apply to local content. We study how often these global and local
constraints co-occur. Let S be the set of prompts that include a specific-format constraint. Within S,
58.1% of prompts also include at least one local constraint from {numerical (N), lexical matching
(M), lexical exclusion (E)}. Beyond this marginal, we observe nontrivial higher-order co-occurrence:
a substantial fraction contains two or more local families (Pr(K ≥ 2 | S) = 17.2%, with K ∈
{0, 1, 2, 3}), and a nonnegligible subset contains all three (Pr(N∩M∩E | S) = 3.9%). The average
number of local families per prompt within S is K̄ = 0.79. These statistics indicate that global
structural constraints are often accompanied by field-level and token-level constraints.

These findings have two implications for evaluation. First, hierarchical constraints are common in
practice, so reliable evaluation should separate global parsing from local checks and respect a coarse-
to-fine order. Second, because multiple local families frequently co-occur, a verifier must support
mixed constraints at different granularities and compose them deterministically. This motivates our
pipeline design, which introduces an evaluation tree to enforce a coarse-to-fine order, parsing the
global structure first and then applying field-level and item-level constraints via explicit branches.
The tree serves as an explicit ordering guide for the validator code generator.

3 METHOD

We implement ConstrainPrompt, a constraint verifier that determines whether an LLM output satisfies
the set of semantics-agnostic, programmatically checkable constraints specified by a prompt, covering
the code-verifiable families. As shown in Figure 2, the pipeline has three stages: (i) code-verifiable
constraint extraction, which identifies all constraints in a natural-language prompt and then filters
to those that are code-verifiable; (ii) evaluation tree synthesis, which orders these constraints and
assigns scopes to induce a canonical coarse-to-fine evaluation control flow; and (iii) evaluation code
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Prompt

Output should 
Output should 

If then

…

Constraints

Constraint
Taxonomy

Code-verifiable Constraints

Generate output in JSON format.
Value for each attribute should be a number.
If input does not contain {TARGET}, return null. 

Code-verifiable constraints in prompt:

If then

Does input contain {TARGET}?

Is the output in JSON format?

Is the value of the JSON 
attribute numeric?

Evaluation Execution Tree

def is_valid_output(llm_output: str, user_input: str):
if "TARGET" not in input

if output is "null":
return True

try:
data = json.loads(output)

except json.JSONDecodeError:
return False

for key, value in data.items():
if not isinstance(value, int):

return False
return true

Executable Code

Evaluation 
Tree

User 
Input

LLM 
Output

Evaluation Result

Code-verifiable Constraint 
Extraction

Evaluation tree synthesis Evaluation code generation

Figure 2: Pipeline overview

generation, which compiles the tree into an executable validator that returns deterministic pass/fail
decisions together with human-readable reasons and provenance.

3.1 PROBLEM SETUP

Let p be the prompt, x the user input, and y the model output. We represent each constraint c as a
pair (gc, rc), where gc : X →{0, 1} is an optional guard over the input (the condition under which
the constraint applies) and rc : X×Y→{0, 1} is the requirement over the output. Unconditional
constraints use gc(x) ≡ 1. The Boolean predicate realized by c is

ϕc(x, y) = ¬gc(x) ∨ rc(x, y),

so the requirement rc is enforced exactly when the guard holds.

We focus on the code-verifiable families from Table 1: specific format, numerical, lexical matching,
and lexical exclusion. Let Γ(p) be the set of such constraints induced from p (after extraction and
filtering). The verifier returns pass iff all constraints hold:

Verdict(p, x, y) =
∧

c∈Γ(p)

ϕc(x, y),

i.e., pass iff all constraints are satisfied.

3.2 CODE-VERIFIABLE CONSTRAINT EXTRACTION

Prompt 1: A Real-world Prompt example

Please analyze the following dialogue and evaluate it based on the criteria provided.
Assign a score from 1 to 5 for each category. Scores should meaningfully distinguish
quality levels. If the dialogue is less than 10 words, just return null.
After your assessment, provide an overall score for the dialogue along with a concise
summary. Please present your evaluation and comment into the following JSON format:
{

"Relevance": _,
"Completeness": _,
"Correctness": _,
"Overall": {"score": _, "comment": _}

}
Here is the dialog: {dialog}
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Constraint extraction. Given a prompt p, we first extract candidate constraints that specify require-
ments on the output. We prompt an LLM with our complete constraint taxonomy so that extracted
spans can be mapped to categories with high recall and consistent definitions. For each detected
constraint, the extractor returns (i) its category (we keep all families at this step), (ii) its conditionality
(unconditional vs. triggered by an input condition), and (iii) the exact source span in the prompt.

On the running example Prompt 1, the extractor yields:

• Specific format: Output must be valid JSON with the keys Relevance, Completeness, Correctness,
and Overall:{score, comment}.

• Numerical: Each score is an integer in [1, 5].

• Lexical (conditional): If the input dialogue has fewer than 10 words, the output must be “null”.

• Qualitative: Scores should meaningfully distinguish quality levels.

Code-verifiability filter. We retain only constraints whose satisfaction can be decided determin-
istically by code (e.g., parsing, pattern matching, numeric tests over raw strings). Concretely, we
first drop families outside the code-verifiable set (specific format, numerical, lexical matching/exclu-
sion), which removes the qualitative constraint above, ensuring all remaining rc are code-verifiable.
For conditional candidates with gc, we test whether the trigger is itself verifiable from the input x
via surface-form checks (e.g., keyword containment, length thresholds). Non-verifiable guards are
discarded. We prompt an LLM to judge this code-verifiability and return a Boolean verdict. In the
running example, this filter keeps the conditional guard in “return null if length<10”. The output of
Stage I is the set Γ(p) of code-verifiable constraints that will be ordered and compiled in later stages.

3.3 EVALUATION TREE SYNTHESIS

Benefit of tree. Two observations motivate using a tree. (i) Prompts mix global constraints (whole-
output format) with local ones (field/item rules). Local checks only make sense after the global
structure is valid (e.g., verify values only once the output is valid JSON). (ii) Prompts may contain
both conditional and unconditional rules. We check “conditional” constraints before “unconditional”
ones. In practice, these are often not truly unconditional, but act as the default that applies exactly
when no guard holds. For example: “Always return JSON ... If the dialogue has < 10 words, output
null.” Enforcing the JSON rule before evaluating the guard would incorrectly reject the intended
null output. Therefore, we synthesize a guard-first, coarse-to-fine evaluation tree that specifies the
correct order of constraint checks for subsequent step.

Definition. An evaluation tree T is a binary tree. Each internal node u carries a small tuple of
fields and has two outgoing edges: a pass branch (the check at u holds) and a fail branch (otherwise).
Leaves are labeled result ∈ {yes, no}. Every node exposes the following attributes:

• conditional: a bool indicating whether u is an input guard that applies only to a subset of user
inputs.

• parent_ok: a bool indicating whether, for a conditional node, the input guard is triggered; for an
unconditional node, the prerequisite check for u has been satisfied.

• scope: a string describes the granularity of the check (e.g., whole output, a specific key–value
pair, an item in a list).

• constraint_category: the category the constraint belongs to (i.e., specific format, numerical,
lexical matching, lexical exclusion).

• constraint: for a conditional node this is the input-side guard; for an unconditional node it is the
code-verifiable output check.

• source: the exact span in the prompt that states the constraint, used for traceability and diagnostics
that mirror the original wording.

Traversal of T proceeds as follows: If u is conditional, evaluate only its guard on x (e.g., “the input
has fewer than 10 words”) and take the corresponding branch; the required behavior (e.g., “then
return null”) is enforced in the pass child. If u is unconditional, evaluate the output constraint on y.
A pass continues along the pass branch to the next check, while a fail returns a no leaf.
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Constraint ordering policy. We impose a canonical evaluation order for the tree:

1. By granularity: structure → field → value. Concretely, top-level format checks run before field
presence and type checks, which in turn precede string and numeric value checks.

2. Conditional-first within the same scope: evaluate all conditional guards first. If an unconditional
rule is intended as the default (i.e., it should apply only when no guard fires), place it on the fail
branch of the relevant guard. Otherwise, place the unconditional check after both branches so
that it is enforced regardless of the guard outcome.

3. By prompt order: any remaining checks follow their order of appearance in the prompt to
preserve human expectations.

Soundness. If a traversal of T reaches a leaf labeled yes, then every compiled predicate on the path
evaluated to true. Conversely, reaching no implies that at least one predicate failed, then we record
the failing node’s source span to support provenance.

Synthesis. Given the normalized constraint set from Stage I together with the node schema and
ordering policy above, we prompt an LLM to synthesize the evaluation tree: the model instantiates
nodes with (conditional, parent_ok, scope, constraint_category, constraint, source), arranges them
into a guard-first, coarse-to-fine control flow, and returns a well-formed binary tree that the compiler
consumes in the next stage. The evaluation tree provides an explicit control-flow specification that
the code generator follows.

3.4 COMPILATION TO EXECUTABLE VALIDATORS

Target interface and runtime. We compile the specification into a single function

is_valid_output(y : str, x : str) → (bool, reason, provenance),

executed in a sandbox. At runtime we pass the LLM output as y and the user input as x for the prompt
under evaluation:

• Input y (LLM output). The exact output string returned by the model.

• Input x (user input). The user query or input text bound to the prompt; used only to evaluate
input-side guards for conditional constraints.

• Return bool. True iff all code-verifiable constraints induced from the prompt are satisfied under
the control flow prescribed by the evaluation tree; otherwise False.

• Return reason. A human-readable diagnostic describing the first failing check along the traversal.

• Return provenance. The exact prompt span (source) that defined the failed constraint, enabling
traceability back to the original wording. Empty when the result is True.

Inputs to code generation. We synthesize code with an LLM by providing two inputs jointly: the
original prompt p and the evaluation tree from Stage II. The model is instructed to take ordering and
scoping of checks from the tree while reading the complete context of p. This pairing aligns checks
with the exact wording of p and enforces them in the intended order.

Generation rules. To avoid hidden dependencies and keep execution reproducible, the generator
must use only the Python standard library (e.g., json, re, typing). The generated code must not
import third-party packages, perform file or network I/O, or invoke dynamic code execution. The
output is a self-contained function with optional local helpers.

Realizing the tree as control flow. The synthesized function realizes the evaluation tree as directly
executable code: it traverses nodes in tree order, evaluating input guards over x to select the
applicable branch (e.g., the conditional “If the dialogue has fewer than 10 words” becomes if
word_count(x) < 10: and, on the pass branch, the code enforces the required behavior such as
emitting the literal “null”); within the chosen branch it checks global structure on y before any
local content (e.g., “The response must be a JSON object” becomes try: parsed = json.loads(y)
except: return (False, “not valid JSON”, source)), then enforces field presence and types

6
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(e.g., “Keys Relevance, Completeness, Correctness must exist and be integers” becomes req =
[“Relevance”, “Completeness”, “Correctness”]; ok = all(k in parsed for k in req) and
all(isinstance(parsed[k], int) for k in req)), and finally applies value-level predicates such
as ranges, counts, and patterns (e.g., “Each score is an integer in [1,5]” becomes all(1 <= parsed[k]
<= 5 for k in req)). Each predicate is evaluated at most once; the first failing check short-circuits
with False together with a concise reason and the originating source, whereas successful checks
continue along the pass edge until the traversal reaches a yes leaf and the function returns True.

Runtime usage. At runtime we apply the compiled validator to the pair (y, x). The system returns
True only if all constraints hold; otherwise it returns False with a concise reason and provenance.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. We construct our own evaluation dataset because assessing constraint compliance requires
prompt templates, instantiated inputs, model outputs, and ground-truth correctness labels with
violation rationales. To our knowledge, no public dataset jointly provides all these components. We
begin from the prompt corpus described in Section 2 (Data collection). The raw corpus consists of
prompt templates. To obtain complete, runnable instances we supply concrete user inputs. Following
the test–case generation pipeline of Sharma et al. (2025), we first filter for templates that contain only
one user–input placeholder, which simplifies controlled input synthesis. For each retained template,
we prompt an LLM to extract (i) input rules that characterize admissible user inputs for the template
and (ii) inverse rules that deliberately violate these expectations to form a challenge set. Given the
template and its rules, the LLM produces an initial pool of candidate inputs (three per template). A
human evaluator then reviews the candidates for plausibility and refines them as needed, yielding a
second–round set of inputs.

We instantiate the templates with these inputs and query target LLMs to obtain outputs. The
annotators then judge whether each LLM output satisfies the prompt’s code–verifiable constraints
and, for failures, labels the violated constraint (the original constraint text from the prompt that was
not met) and provides a minimal fix. For a given prompt there may be multiple violating output
records and typically one fully compliant output record. The final dataset stores tuples (Prompt, User
input, LLM output, Correctness ∈ {True, False}, Violation). In total, the evaluation set contains 61
labeled records.

Baselines. We compare our verifier against an LLM-as-a-judge baseline for constraint–compliance
evaluation: the target model is prompted to decide whether the output adheres to the prompt’s
code–verifiable constraints, and to justify its decision by returning the exact span of the original
constraint text from the prompt.

Implementation details. We use GPT-4o to synthesize user inputs from templates. For evaluation,
we instantiate our pipeline on three models for constraint extraction, evaluation–tree synthesis, and
code generation: GPT-4o-2024-11-20 (Hurst et al., 2024), Deepseek-v3.1-non-thinking (DeepSeek-
AI, 2024), and Claude-sonnet-4-20250514 (Anthropic, 2025). They cover both state-of-the-art
open-source and closed-source models. Furthermore, Claude-sonnet-4 is specifically optimized for
code generation, which aligns with our pipeline. For the LLM-as-a-judge baseline, we use the same
model family for fairness. All models are accessed via official APIs with temperature set to 0. During
code generation we allow up to three retries if the produced function fails to compile. All validators
run in a sandbox and use only the Python standard library.

Metrics. We report Constraint Compliance Accuracy for the accuracy of the system’s binary
decision on whether the output satisfies all code-verifiable constraints, compared to the gold label.
To assess explanation quality, we compute Violation Rationale, the BLEU similarity between the
system’s failure reason and the human–annotated rationale for the violated constraint. If the system’s
compliance decision disagrees with the gold label, we set Violation Rationale to 0. Otherwise, we
compute BLEU on the paired rationales and average over the dataset. Together, these metrics capture
both correct compliance decisions and the fidelity of the accompanying justification.
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Model Constraint Compliance Accuracy Violation Rationale

LLM-as-a-judge Our method LLM-as-a-judge Our method

GPT-4o 62.3 86.9 (+39.5%) 0.3174 0.6137 (+93.4%)
Deepseek-v3.1 68.9 82.0 (+19.0%) 0.4361 0.4937 (+13.2%)
Claude-sonnet-4 80.3 91.8 (+14.3%) 0.5221 0.6042 (+15.7%)

Table 2: Main results.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Main results. As shown in Table 2, our method consistently outperforms a plain LLM-as-a-judge
baseline across all three models (GPT-4o, Deepseek-v3.1, Claude-sonnet-4) on both Constraint
Compliance Accuracy and Violation Rationale. Measured as a macro–average of per–model relative
gains, Constraint Compliance Accuracy improves by +24.3% overall (range from +14.3% to +39.5%),
and Violation Rationale improves by +40.8% (range from +13.2% to +93.4%). The largest gains
appear with GPT-4o: +39.5% on Constraint Compliance Accuracy (62.3→86.9) and +93.4% on
Violation Rationale (0.3174→0.6137), indicating that compiled, deterministic checks recover a
substantial number of hard–constraint violations that LLM-as-a-judge misjudges or overlooks. Gains
remain positive for Deepseek-v3.1 (+19.0% Constraint Compliance Accuracy, +13.2% Violation
Rationale) and Claude-sonnet-4 (+14.3%, +15.7%), demonstrating that the approach generalizes
across model families. Across the board, our method yields consistently higher or comparable
performance compared with each model’s strongest LLM-as-a-judge baseline on both metrics.

These improvements are most pronounced on two patterns: (i) Hybrid granularity: prompts that mix
global structure with field-level or item-level checks. In such cases, LLM-as-a-judge often mis-scopes
constraints. For example, consider the requirements “the output must be a list” and “the second
element must itself be a list of exactly five items”, given the output [‘True’, [‘CRISPR’, ‘genome’,
‘editing’, ‘bioinformatics’, ‘databases’], ‘100’], the baseline judged: “The output contains
6 words in the list for Part B instead of the required 5”, erroneously counting tokens from the outer
list rather than the nested list. Our method correctly parses the structure and checks the length on
the second element only. (ii) Closed-format exclusivity: prompts that impose both exclusivity (no
out-of-format content) and completeness (all specified elements present) at the same scope. For the
constraint “Only respond with the format below using curly brackets to encapsulate the variables
within a JSON dictionary object and no other text”, the baseline occasionally accepts outputs prefixed
with extra markers (e.g., a leading ```json tag) despite the “no other text” rule, whereas our compiled
checks flag any extraneous content outside the JSON object. By compiling prompt constraints into a
guard–first, coarse–to–fine control flow with explicit scopes and executing code-based checks, our
method reduces such misses and produces diagnostics that align closely with gold violation rationales.
Overall, making constraint verification explicit and executable proves model–agnostic, complements
LLM-as-a-judge judging, and yields robust improvements on real prompts.

Ablation study Table 3 isolates the contribution of the evaluation tree by comparing code gen-
erated from a flat list of constraints (“Without tree”) to tree–guided code generation (“With tree”).
Across all three models (GPT-4o, Deepseek-v3.1, Claude-sonnet-4), adding the tree improves both
Constraint Compliance Accuracy and Violation Rationale. Accuracy rises by +3.9% (GPT-4o),
+6.5% (Deepseek-v3.1), and +14.3% (Claude-sonnet-4), for an average gain of +8.2%. Explanation
quality (Violation Rationale) also increases consistently by +6.1%, +6.6%, and +5.6% respec-
tively (avg. +6.1%). The improvement is most pronounced for Claude-sonnet-4, whose strong
software–engineering capabilities enable it to precisely recognize and leverage the rich auxiliary con-
text provided during code generation (e.g., ordering hints, scope annotations, and schema comments),
yielding higher–quality validators.

Qualitatively, the tree reduces ordering and scoping errors that arise when checks are emitted from
a flat set of constraints: input guards are evaluated first, and global structure is verified before
field–level presence/typing and value–level limits. This guard–first, coarse–to–fine control flow
prevents false rejections of legitimate corner cases (e.g., outputs that should be the literal “null” and
avoids overlooking downstream violations (e.g., malformed JSON or range overruns). The explicit
branching also yields crisper, more reproducible rationales by tying each failure to the correct path
and constraint, which explains the consistent gains in both metrics.
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Method Constraint Compliance Accuracy Violation Rationale
Without tree With tree Without tree With tree

GPT-4o 83.6 86.9 (+3.9%) 0.5786 0.6137 (+6.1%)
Deepseek-v3.1 77.0 82.0 (+6.5%) 0.4630 0.4937 (+6.6%)
Claude-sonnet-4 80.3 91.8 (+14.3%) 0.5723 0.6042 (+5.6%)

Table 3: Ablation on the evaluation tree. “Without tree” compiles validators directly from extracted
constraints; “With Tree” additionally uses the evaluation tree to order and scope checks.

5 RELATED WORK

Controlled text generation. A large body of research steers language models toward user–specified
constraints, spanning both decoding–time control and training–time control. Decoding–time methods
inject hard lexical requirements into search (Hokamp & Liu, 2017; Post & Vilar, 2018) or bias token
probabilities with auxiliary discriminators and predictors (Dathathri et al., 2020; Khanov et al., 2024;
Li et al., 2025; Yang & Klein, 2021; Lu et al., 2021). Training–time approaches encode control signals
directly in the model, either via control codes or preference–based fine–tuning (Keskar et al., 2019;
Krause et al., 2020; Ouyang et al., 2022). While these methods substantially reduce violations, they
rarely guarantee compliance in real prompts that mix global formats with field–level or item–level
rules and conditional exceptions. Our work is complementary: instead of steering generation, we
verify after the fact by inducing code-verifiable constraints from the prompt, organizing them with an
explicit control flow, and executing deterministic checks.

Evaluation of LLM outputs. LLM–as–a–judge has become a scalable alternative to costly, slow
human evaluation across many generation tasks (Gu et al., 2024). It is widely used to rate output
quality (e.g., semantic correctness, coherence, helpfulness, safety) (Liu et al., 2023; Kim et al.,
2024; Zhu et al., 2025) and to approximate human preferences for training and benchmarking (Dong
et al., 2023; Yuan et al., 2023; Dubois et al., 2023). However, recent work highlights unfairness and
sensitivity to prompt wording and presentation order (Wang et al., 2024; Zheng et al., 2023). In
practice, such judges excel at soft qualities but often under–penalize hard constraints (e.g., malformed
JSON, missing required fields, or length overruns), and their rationales can vary across prompts
and models. By contrast, rule–based scripts offer deterministic, reproducible checks for hard con-
straints (Jie et al., 2024; Carlsson et al., 2022; Wang et al., 2021), yet they are typically ad hoc and
coarse–grained, often operating at a single granularity that treats the output as a monolithic string
rather than aligning checks with constraint granularity or handling conditional guards. As a result,
such scripts become brittle and hard to maintain when constraints mix global structure, local fields,
and input–conditioned behaviors. We bridge this gap by compiling prompt–induced, code–verifiable
constraints into executable validators with a canonical coarse–to–fine order, yielding reproducible
pass/fail decisions and grounded rationales that complement the existing LLM output evaluation
methods while substantially improving coverage of hard constraints.

6 CONCLUSION

We introduce ConstrainPrompt, a verification pipeline for code-verifiable, semantics-agnostic con-
straints in LLM outputs. Our taxonomy study of 1,232 real prompts shows that hard constraints are
prevalent and often layered-global structure commonly co-occurs with field-level and item-level rules
and input-conditioned guards. ConstrainPrompt induces code-verifiable constraints from natural-
language prompts, synthesizes a logical evaluation tree to fix ordering and scope, and compiles the
result into executable validators that return deterministic pass/fail decisions with grounded rationales
and prompt-span provenance. On real prompts paired with model outputs, our method consistently
outperforms an LLM-as-a-judge baseline across three model families, improving Constraint Compli-
ance Accuracy by 24.3% and Violation Rationale by 40.8%. An ablation study confirms the evaluation
tree is pivotal for both accuracy and explanation quality. Overall, these findings demonstrate that
making constraint verification explicit and executable is an effective, model-agnostic method for
reliable constraint compliance in real-world LLM applications.
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7 REPRODUCIBILITY STATEMENT

We provide an anonymized repository containing the full pipeline and scripts to reproduce all reported
results: https://anonymous.4open.science/r/ConstrainPrompt-C278/. The repository includes
implementations for constraint extraction, evaluation tree synthesis, and evaluation code generation.
All core prompts used for LLM interactions are included verbatim in the Appendix. The exact model
families and versions used in each experiment are specified in the Experiment Setup section, and the
released scripts invoke those versions by default.
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A LLM CONTRIBUTION STATEMENT

In accordance with the ICLR policy, we disclose that large language models (e.g., OpenAI ChatGPT
and Google Gemini) were used solely as writing aids for: (i) improving grammar, fluency, and stylistic
consistency; (ii) rephrasing sentences for clarity; and (iii) polishing LaTeX table code. LLMs did not
generate research ideas, methods, experiments, analyses, figures/tables (beyond LaTeX formatting
templates), or claims, and no passages were adopted verbatim without manual review and editing
by the authors. All technical content, datasets, code, and results were produced and verified by the
authors, who take full responsibility for the paper’s contents.

B CONSTRAINT TAXONOMY EXAMPLES

Category Subcategory Examples

Structural Specific
format

- Return output in json format: “question_1”: “answer_1”, “question_2”:
“answer_2”, . . . , “question_n”: “answer_n”.
- Output a list with specific entries: Entry 1 as a string response to Part A,
Entry 2 as a list of 5 words from Part B, and Entry 3 as an integer response to
Part C converted to a string.

Quantitative Numerical - Keep your wording simple and short (less than 15 words).
- Provide your evaluation only as a consistency score where the consistency
score is an integer value between 0 and 5, with 5 indicating the highest level of
consistency.

Lexical Lexical
matching

- Respond to each question from the provided “questions”, using either “Yes”,
“No”, or “Unknown”, based on the given context.
- Give me only the sql query statement, starting with “SELECT * FROM
Verses WHERE” without any extra explanation or comment.

Lexical
exclusion

- Please write a quiz question for the word “horse” using single sentence
without mentioning the word itself.
- Please do not fill in “unknown”, but make an educated guess based on the
available information and fill in the specific content.

Semantic Semantic
inclusion

- Identify any controversial or heavily debated points in the video.
- Ensure to extract the key insights, theories, steps, revelations, opinions, etc
discussed in the video.

Semantic
exclusion

- You should not describe items in the image include people’s faces, hands,
text or animals, device screens or anything that could contain text.
- Remove any of the following sentences: Sentences that refer to grammar,
spelling or punctuation. Sentences that say the response is unclear or not
concise enough. Sentences that give away the correct answer explicitly.

Qualitative - The refined blog post text should be easy to read, and engaging.
- The analyzer should address all user’s queries about the TV show in a
concise, friendly, conversational style.

Table B1: Constraint taxonomy examples.

C PROMPTS

C.1 CONSTRAINT EXTRACTION

Constraint extraction prompt

You are a precision prompt constraint analyzer.

Given a prompt template, extract **all constraints** that specify what the model output
must or must not do. For each constraint:

- Determine whether it's **unconditional** or **conditional**:
- **unconditional**: This constraint applies universally to all outputs, regardless of

the input content.
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- **conditional**: The prompt specifies a trigger condition that determines whether the
constraint applies, and the trigger is either:
- Expressed using clear indicators like "if...", "when...", "only if...", "in case...",
or

- Explicitly tied to detectable input features (e.g., contains specific keywords,
matches a language code, exceeds a given length).

- Assign one of the following categories:
1. Output - Specific format constraint: The output must conform to a specific file or

data format (e.g., JSON, Markdown, HTML, key value pairs, defined data structures,
source code in a specific language).

2. Output - Numerical constraint: Restrictions on output length, counts, or numerical
ranges (e.g., character/word/token/sentence/paragraph counts, score values).

3. Output - Lexical matching constraint: The output must contain, match, or adhere to a
specific string pattern (e.g., selection from a predefined list, exact string match,
lowercase requirement).

4. Output - Lexical exclusion constraint: Certain words, phrases, string or character
patterns are explicitly prohibited in the output.

5. Output - Semantic inclusion constraint: The output must semantically include certain
concepts, entities, or topics. (not verifable by code)

6. Output - Semantic exclusion constraint: The output must not semantically mention
certain concepts, entities, or topics. (not verifable by code)

7. Output - Qualitative constraint: The output must exhibit specific non-quantitative
qualities or styles (e.g., concise, academic tone, persuasive, language). (not
verifable by code)

8. Others
- For each constraint, extract the **exact sentence** from the prompt that expresses it as

'source'
- Give a short justification for the category.

Return all constraints in a structured list using the function tool.

C.2 EVALUATION TREE SYNTHESIS

Evaluation tree synthesis prompt

You are a constraint-checking logic tree generator.

Your task is to construct a single decision tree for validating model output based on a
list of constraints.

Each node must include the following fields:
- conditional: true or false
- parent_ok: true or false
- constraint_category: one of the following: 'Output - Specific format constraint', '

Output - Numerical constraint', 'Output - Lexical matching constraint', 'Output -
Lexical exclusion constraint', or 'result' (used in leaf nodes)

- constraint: a concise human-readable description of what is being checked. **Also
clearly indicate whether this applies to the entire output or to a specific field/
section.** For example:

- "output must be valid JSON object"
- "output['queries'] must be a list of 1 to 5 unique strings"

- source: exactly copy the `source` field from the corresponding constraint object
provided in the corresponding constraint in the input constraint list.

- scope: A description of **which part of the output** this constraint applies to.
- Use "entire output" if the constraint applies to the whole response (e.g., length,

general formatting, string content).
- Use specific references (e.g., "JSON field 'questions'", "markdown header", "list

elements", "first sentence") when the constraint targets a **subsection or component**
of a structured output.

- children: a list of exactly two children unless this is a leaf node; children must
describe what happens when the constraint **is met** and **is not met**
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Rules:
1. The tree must evaluate constraints **in this order**:

- First: all **conditional** constraints
- Then: all **unconditional** constraints
- Within each group: order by granularity - format - type/field - value
- This reflects a macro-to-micro validation order: check overall structure first (e.g.,

JSON), then expected output type, then more detailed content or length.

2. Each conditional constraint must have two child branches:
- If **condition is met** ('parent_ok=True'): its expected output behavior must be
explicitly checked as a child node. Only apply the behavior required by that
conditional constraint

- If **condition is not met** ('parent_ok=False'): evaluate all unconditional
constraints in order

3. For **every constraint node**, generate exactly **two children**:
- One where 'parent_ok = true' (constraint is satisfied)
- One where 'parent_ok = false' (constraint is not satisfied)

4. All **leaf nodes** must be of the form:
- 'conditional': false
- 'parent_ok': true or false
- `'onstraint_category': 'result'
- 'constraint': 'yes' or 'no'
- 'source': `None`
- 'scope': `None`
- 'children': empty list

5. For conditional constraints, only evaluate the condition at the current node.
- If the condition is met (parent_ok = true), generate a child node to check the
required action or constraint specified by the condition.

- If the condition is not met (parent_ok = false), proceed to check other related
constraints.

C.3 EVALUATION CODE GENERATION

Evaluation code generation prompt

You are a Python code generation agent specialized in logical validation.

Your task is to generate a Python function `is_valid_output(output: str, input_text: str)
-> Tuple[bool, Optional[str], Optional[str]]` that checks whether the model output
satisfies a set of constraints, which are organized as a decision tree.

The decision tree follows this format:
- Each node contains:

- 'conditional': whether this is a conditional constraint (True/False)
- 'parent_ok': whether the condition of its parent node was satisfied (True/False)
- 'constraint_category': the category of the constraint or 'result' if leaf node
- 'constraint': a human-readable string that describes the check
- 'source': the source constraint (the original sentence in prompt) that represents the

check in evaluation tree
- 'scope': the part of the output this constraint applies to
- 'children': list of child nodes

### Rules:
1. Before any validation, normalize the `output` string to prevent false negatives from

insignificant whitespace:
- Strip leading and trailing blank lines
- Collapse multiple consecutive blank lines into a single blank line
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2. Traverse the tree starting from the root node. At each node:
- If `constraint_category == 'result'`, return `(True, None, None)` if `constraint == '
yes'`, else return `(False, <short reason>, <violation>)`, where <reason> is a
concise diagnostic describing what failed and <violation> is the constraint's `source
` value in evaluation tree (the original prompt constraint that was violated).

- If `conditional == True`, evaluate the *condition part only* of the constraint at
this level

- If the condition is **not directly verifiable in code**, return False by default
- If the condition is verifiable, use an `if` to decide which branch of `children`

to check
- If `conditional == False` and `parent_ok == True`, validate the constraint against
the output

- If it passes, recurse to `children[0]`; else recurse to `children[1]`
- If `parent_ok == False`, directly recurse to `children[1]`

3. The `output` is always the raw string returned by a language model. Any structural
checks (e.g., JSON parsing) or type checks (e.g., numeric value) must first convert or
parse this string appropriately.

4. The generated code must handle malformed output robustly (e.g., invalid JSON)

5. You may define helper functions for checking common patterns (e.g., word count, JSON
keys, exact match)

6. The constraint string should be used as a comment to make clear what each check is
doing.

7. Only use standard Python libraries (no external dependencies).

Output the complete Python function only. Do not include explanation or comments outside
the code.

D CASE STUDY

D.1 PROMPT, USER INPUT, LLM OUTPUT

Prompt

I will provide you with a prompt to a function below these instructions. You will output
exactly as follows, with the list as well. Text encased in <like this> will be
replaced by your response, and text encased in (like this) is just a description for
the response that you do not need to type up:

(a) <Boolean> (Is it bioinformatics related?)
(b) <words> (Give a list of 5 keywords of why it is bioinformatics related)
(c) <integer> (Your confidence from 0 to 100 that your response in A is accurate, so for

example, if you believe strongly that it is not bioinformatics related, you should
also rate a high confidence level)

The code must explicitly reference some bioinformatics methodology, terminology, or
process. For example, an AVL Tree would not be a valid bioinformatics function, while
a FASTQ processor would. The keywords are defined as important words that allowed you
to make the determination that the function is bioinformatics related. The confidence
should be your estimate of how confident you are of your responses.

Make sure that in your response is explicitly as follows in the directions. Part A
should only be one word and a boolean, either True or False. Part B should only be 5
words, no additional information, Part C should only be a single integer, from 0 to
100, it is a measure of your confidence in your response to Part A.

After selecting keywords, please reverify that the words you used to make the decision
for Part A is actually bioinformatics related.
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Again, as clarification, I will be providing the function.

The responses should be formatted as a list:
Entry 1: The response to part A converted into a string
Entry 2: A list of 5 words which are strings from the response to Part B
Entry 3: The integer response to part C converted to a string
Therefore, your output should follow this guideline. This will be your only output,

there should be no additional outputs beyond the one highlighted in this prompt.

Prompt begins here:
{input_prompt}

Prompt ends here.
Give the output to the above code encased in "Prompt begins here:" and "Prompt ends here

." Your keyword search should only encompass the words in the prompt, and ensure that
keywords are related to bioinformatics, not statistics.

User input

The program processes CRISPR data to predict off-target effects in genome editing
applications, leveraging bioinformatics databases and algorithms.

Output

['True', ['CRISPR', 'genome', 'editing', 'bioinformatics'], '100']

D.2 EVALUATION TREE

Format: list

Whole output as a list

Entry1: a word + a boolean value

Entry2: list

Entry2: 5 words

Entry3: int 0 - 100 converted to string

YES NO

NO

NO

NO

NO

NO

Figure 3: Evaluation tree for the example.

D.3 GENERATED CODE

Generated code

from typing import Tuple , Optional
import re

# Helper function to check if a string is a valid integer within a range
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def is_valid_integer(s: str , min_value: int , max_value: int) -> bool:
try:

value = int(s)
return min_value <= value <= max_value

except ValueError:
return False

# Main function to validate the output

def is_valid_output(output: str , input_text: str) -> Tuple[bool , Optional[
str], Optional[str]]:
# Normalize the output
output = re.sub(r'\n+', '\n', output.strip())

# Check if the output is a list of three entries
try:

entries = eval(output)
if not isinstance(entries , list) or len(entries) != 3:

return False , "Output is not a list of three entries", "The
responses should be formatted as a list: Entry 1: The
response to part A converted into a string Entry 2: A list
of 5 words which are strings from the response to Part B
Entry 3: The integer response to part C converted to a
string"

except:
return False , "Output is not a valid list", "The responses should

be formatted as a list: Entry 1: The response to part A
converted into a string Entry 2: A list of 5 words which are
strings from the response to Part B Entry 3: The integer
response to part C converted to a string"

# Check Entry 1: Part A should only be one word and a boolean , either
True or False.

if not isinstance(entries [0], str) or entries [0] not in ["True", "False
"]:
return False , "Entry 1 is not a valid boolean string", "Part A

should only be one word and a boolean , either True or False."

# Check Entry 2: Part B should only be 5 words , no additional
information.

if not isinstance(entries [1], list) or len(entries [1]) != 5 or not all(
isinstance(word , str) for word in entries [1]):
return False , "Entry 2 is not a list of 5 words", "Part B should

only be 5 words , no additional information."

# Check Entry 3: Part C should only be a single integer , from 0 to 100.
if not isinstance(entries [2], str) or not is_valid_integer(entries [2],

0, 100):
return False , "Entry 3 is not a valid integer string", "Part C

should only be a single integer , from 0 to 100."

# If all checks pass , return True
return True , None , None
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