
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONSTRAINPROMPT: CODE-BASED ASSURANCE OF
PROMPT-DEFINED CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly used in applications where outputs
must satisfy hard, application–critical constraints (e.g., JSON format, lexical inclu-
sion, and length limits). When these constraints are violated, downstream parsers
may fail (e.g., invalid JSON), application behavior can become incorrect or unsafe
(e.g., missing required strings or forbidden terms), and automation pipelines may
halt. Although controlled text generation can mitigate violations, LLM outputs
still frequently breach constraints. Therefore, post-generation evaluation is essen-
tial. Common evaluators implemented by LLM-as-a-judge or rule-based scripts
under-penalize hard errors and lack robust, fine-grained evaluation control flow. We
propose ConstrainPrompt, a verification pipeline that induces semantics-agnostic,
code-verifiable constraints from natural-language prompts and compiles them into
executable validators. Our method extracts code-verifiable constraints from the
prompt, synthesizes a logical evaluation tree that orders global-to-local checks and
resolves conditional guards, and finally generates code to validate LLM outputs.
On a corpus of real-world prompts paired with LLM outputs, ConstrainPrompt
improves Constraint Compliance Accuracy by 24.3% and Violation Rationale by
40.8% over an LLM-as-a-judge baseline across three models.

1 INTRODUCTION

Large language models (LLMs) can produce fluent and contextually appropriate text. Yet in real-
world applications, semantic correctness alone is not sufficient. Agentic pipelines often chain multiple
LLM calls with tools, and each step expects the previous output to satisfy concrete output constraints
such as style, format, length limits, required fields, and lexical inclusion or exclusion (Zhou et al.,
2023; Han et al., 2024). In prompts, these requirements are commonly grouped into soft control and
hard control constraints (Liang et al., 2024). Soft constraints regulate properties like tone and topic:
they matter for safety, user trust, and policy adherence (red in Figure 1). Hard constraints govern
concrete elements of the output, such as structure, vocabulary, and numeric or length limits (blue in
Figure 1). When hard constraints are violated, downstream components may fail to parse or trust the
output, triggering cascading errors or halting the pipeline. Accordingly, rigorous quality assurance
of LLM outputs is essential for reliability and safety. In these settings, constraint compliance is as
critical as semantic correctness.

Please analyze the following dialogue and evaluate it based on the criteria provided. Assign a score from 1 to 5 for each category.
Scores should meaningfully distinguish quality levels. Please present your evaluation into the following JSON format:
{ “Relevance”: ___ , “Completeness”: ___ , “Correctness”: ___ }
Here is the dialog: {dialog}

Figure 1: A prompt example with soft and hard constraints.

A natural approach is to impose constraints during generation. Controlled text generation steers
models toward application-level requirements, including keyword inclusion or exclusion, tone or
style, length or numeric ranges, and machine-usable structures (e.g., JSON schemas and field
completeness) (Zhang et al., 2023). These are not aesthetic niceties: they are preconditions for
reliable parsing, storage, compliance, and safe execution. Despite substantial progress, control during
generation reduces the incidence of violations but cannot eliminate them, especially under diverse,
conditional, and task-specific constraints that arise in real prompts. Post-hoc verification is therefore
necessary. Existing evaluation typically relies on one of three options (Liang et al., 2024): (i) human

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

evaluation, which can produce high quality judgments but is expensive, time-consuming, hard to
reproduce, and prone to inconsistency (Liu et al., 2022); (ii) rule-based scripts, which are fast and
low-cost for hard constraints but often operate at a single granularity (the whole output), making it
difficult to express field or item level checks and conditional dependencies (Meng et al., 2022); and
(iii) LLM-as-a-judge, which tends to under-penalize hard, semantics-agnostic constraints such as
format, length, and required tokens, sometimes mirroring the same mistakes as the generator (e.g.,
miscounting or overlooking numeric limits) (Chen et al., 2024).

Compliance with hard control constraints is directly tied to application correctness: violating required
structure, ranges, fields, or lexical rules undermines parsing and trust, triggering cascading failures
or halting pipelines. Yet evaluation of hard constraints has received less attention than soft control,
even though practitioners depend on it as the first acceptance check in production. Moreover, as
discussed above, existing automated methods for hard-constraint evaluation have clear limitations.
Therefore, we focus on evaluating hard control constraints and address this gap with ConstrainPrompt,
a verification pipeline that separates compliance from semantic quality. ConstrainPrompt first induces
from a natural-language prompt the set of semantics-agnostic, code-verifiable constraints (structural,
quantitative, and lexical), together with their conditionality (whether triggered by specific input
use case or always applicable). We then introduce a logical evaluation tree as an intermediate
representation. It specifies the order of checks, their application scope, and input-side guards that
enable a check only when its condition holds. This captures precedences (e.g., parse structure before
validating fields and ranges) and yields a canonical control flow that prevents contradictory checks.
Finally, we compile this tree into an executable validator. At runtime, the system executes the
generated code in a sandbox environment and returns deterministic pass/fail outcomes together with
human-readable reasons and a reference to the defining span in the prompt. We evaluate the pipeline
on a dataset of real prompts paired with model outputs, reporting evaluation accuracy, along with
ablations that isolate the contribution of the tree-guided control flow.

Our main contributions are:

• A dataset of real prompts paired with model outputs and annotated violations of prompt-defined
hard constraints, and an empirical study that summarizes common constraint types in prompts.

• ConstrainPrompt, a method that induces code-verifiable constraints from prompts, synthesizes an
evaluation tree to guide ordering and scope, and compiles the result into executable validators.

• An experimental evaluation on three models showing improvements of 24.3% in Constraint
Compliance Accuracy and 40.8% in Violation Rationale over baseline methods.

2 TAXONOMY OF PROMPT CONSTRAINTS

To evaluate whether LLM outputs comply with prompt–specified constraints, we first characterize the
kinds of constraints that appear in real-world prompts. We conduct an empirical analysis to derive a
working taxonomy and to estimate the prevalence of each category.

Data collection. We build our corpus on PromptSet (Pister et al., 2024), a collection of prompts
extracted from LLM-based applications (LLMapps) in open-source GitHub projects. These projects
span a wide range of use cases and adoption levels from personal demos to widely deployed systems,
yielding substantial variability in prompt quality. To better reflect mature practice, we focus on widely
used prompt templates (predefined structures that combine static text with dynamic placeholders to
create adaptable prompts for LLMapps) in these apps (Schulhoff et al., 2024; Zhao et al., 2025). To
improve data quality, we follow the cleaning pipeline of Mao et al. (2025), filtering by factors such as
repository popularity and prompt length.

To identify constraints within prompts, we segment each prompt into seven components following
Mao et al. (2025). We then merge the original Constraint and Output format components into a single
Constraint category and retain prompts that contain at least one such component. This procedure
yields a subset of 1,232 prompts that explicitly specify constraints.

Constraint taxonomy induction. To characterize the constraint types that commonly appear in
real-world prompts, we adopt a hybrid deductive–inductive coding protocol (Saldaña, 2021). We
initialize a seed codebook from prior taxonomies (Zhang et al., 2023; Zhou et al., 2023) and then

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Category Subcategory Brief description Frequency

Structural Specific format Output must conform to a specific data format 26.1%

Quantitative Numerical Restrictions on output length, counts, or numerical ranges 8.9%

Lexical Lexical matching Output must contain, match, or adhere to a specific string
pattern 13.3%

Lexical exclusion Certain words, phrases, or character patterns are prohibited
in the output 11.2%

Semantic Semantic inclusion Output must semantically include certain concepts, entities,
or topics 25.8%

Semantic exclusion Output must not semantically mention certain concepts, en-
tities, or topics 7.4%

Qualitative The output must exhibit specific qualities or styles 7.3%

Table 1: Distribution of constraint categories.

perform open coding with constant comparison on a random sample of 300 prompts. Coding is
conducted by two professional annotators with more than two years of experience in prompt writing
and refinement. For each prompt, annotators assign an existing category when applicable. Otherwise,
a new category is proposed together with a concise definition and a canonical example (examples in
Appendix A). Disagreements are resolved through discussion to produce a single adjudicated label.
After each revision, the sample is recoded to verify that category boundaries remain stable. This
process yields seven leaf categories grouped into four higher-level families, summarized in Table 1.

Using the finalized taxonomy, we employ GPT-4o-2024-11-20 (Hurst et al., 2024) to label all
constraints in the full dataset. To assess labeling accuracy, annotators label a random sample of 100
prompts to create gold labels, which we compare against the GPT-4o outputs. On this set, GPT-4o
achieves 94% accuracy. Applying the taxonomy to the entire corpus, we find that specific format,
numerical, lexical matching, and lexical exclusion (the semantics-agnostic, code-verifiable families)
together account for 59.5% of all constraints (Table 1), indicating that code-verifiable requirements
constitute a large share of constraints in practice.

Within the code-verifiable families, specific format typically constrains the global structure of output,
whereas the other three families apply to local content. We study how often these global and local
constraints co-occur. Let S be the set of prompts that include a specific-format constraint. Within S,
58.1% of prompts also include at least one local constraint from {numerical (N), lexical matching
(M), lexical exclusion (E)}. Beyond this marginal, we observe nontrivial higher-order co-occurrence:
a substantial fraction contains two or more local families (Pr(K ≥ 2 | S) = 17.2%, with K ∈
{0, 1, 2, 3}), and a nonnegligible subset contains all three (Pr(N∩M∩E | S) = 3.9%). The average
number of local families per prompt within S is K̄ = 0.79. These statistics indicate that global
structural constraints are often accompanied by field-level and token-level constraints.

These findings have two implications for evaluation. First, hierarchical constraints are common in
practice, so reliable evaluation should separate global parsing from local checks and respect a coarse-
to-fine order. Second, because multiple local families frequently co-occur, a verifier must support
mixed constraints at different granularities and compose them deterministically. This motivates our
pipeline design, which introduces an evaluation tree to enforce a coarse-to-fine order, parsing the
global structure first and then applying field-level and item-level constraints via explicit branches.
The tree serves as an explicit ordering guide for the validator code generator.

3 METHOD

We implement ConstrainPrompt, a constraint verifier that determines whether an LLM output satisfies
the set of semantics-agnostic, programmatically checkable constraints specified by a prompt, covering
the code-verifiable families. As shown in Figure 2, the pipeline has three stages: (i) code-verifiable
constraint extraction, which identifies all constraints in a natural-language prompt and then filters
to those that are code-verifiable; (ii) evaluation tree synthesis, which orders these constraints and
assigns scopes to induce a canonical coarse-to-fine evaluation control flow; and (iii) evaluation code

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Prompt

Output should
Output should

If then

…

Constraints

Constraint
Taxonomy

Code-verifiable Constraints

Generate output in JSON format.
Value for each attribute should be a number.
If input does not contain {TARGET}, return null.

Code-verifiable constraints in prompt:

If then

Does input contain {TARGET}?

Is the output in JSON format?

Is the value of the JSON
attribute numeric?

Evaluation Execution Tree

def is_valid_output(llm_output: str, user_input: str):
if "TARGET" not in input

if output is "null":
return True

try:
data = json.loads(output)

except json.JSONDecodeError:
return False

for key, value in data.items():
if not isinstance(value, int):

return False
return true

Executable Code

Evaluation
Tree

User
Input

LLM
Output

Evaluation Result

Code-verifiable Constraint
Extraction

Evaluation tree synthesis Evaluation code generation

Figure 2: Pipeline overview

generation, which compiles the tree into an executable validator that returns deterministic pass/fail
decisions together with human-readable reasons and provenance.

3.1 PROBLEM SETUP

Let p be the prompt, x the user input, and y the model output. We represent each constraint c as a
pair (gc, rc), where gc : X →{0, 1} is an optional guard over the input (the condition under which
the constraint applies) and rc : X×Y→{0, 1} is the requirement over the output. Unconditional
constraints use gc(x) ≡ 1. The Boolean predicate realized by c is

ϕc(x, y) = ¬gc(x) ∨ rc(x, y),

so the requirement rc is enforced exactly when the guard holds.

We focus on the code-verifiable families from Table 1: specific format, numerical, lexical matching,
and lexical exclusion. Let Γ(p) be the set of such constraints induced from p (after extraction and
filtering). The verifier returns pass iff all constraints hold:

Verdict(p, x, y) =
∧

c∈Γ(p)

ϕc(x, y),

i.e., pass iff all constraints are satisfied.

3.2 CODE-VERIFIABLE CONSTRAINT EXTRACTION

Prompt 1: A Real-world Prompt example

Please analyze the following dialogue and evaluate it based on the criteria provided.
Assign a score from 1 to 5 for each category. Scores should meaningfully distinguish
quality levels. If the dialogue is less than 10 words, just return null.
After your assessment, provide an overall score for the dialogue along with a concise
summary. Please present your evaluation and comment into the following JSON format:
{

"Relevance": _,
"Completeness": _,
"Correctness": _,
"Overall": {"score": _, "comment": _}

}
Here is the dialog: {dialog}

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Constraint extraction. Given a prompt p, we first extract candidate constraints that specify require-
ments on the output. We prompt an LLM with our complete constraint taxonomy so that extracted
spans can be mapped to categories with high recall and consistent definitions. For each detected
constraint, the extractor returns (i) its category (we keep all families at this step), (ii) its conditionality
(unconditional vs. triggered by an input condition), and (iii) the exact source span in the prompt.

On the running example Prompt 1, the extractor yields:

• Specific format: Output must be valid JSON with the keys Relevance, Completeness, Correctness,
and Overall:{score, comment}.

• Numerical: Each score is an integer in [1, 5].

• Lexical (conditional): If the input dialogue has fewer than 10 words, the output must be “null”.

• Qualitative: Scores should meaningfully distinguish quality levels.

Code-verifiability filter. We retain only constraints whose satisfaction can be decided determin-
istically by code (e.g., parsing, pattern matching, numeric tests over raw strings). Concretely, we
first drop families outside the code-verifiable set (specific format, numerical, lexical matching/exclu-
sion), which removes the qualitative constraint above, ensuring all remaining rc are code-verifiable.
For conditional candidates with gc, we test whether the trigger is itself verifiable from the input x
via surface-form checks (e.g., keyword containment, length thresholds). Non-verifiable guards are
discarded. We prompt an LLM to judge this code-verifiability and return a Boolean verdict. In the
running example, this filter keeps the conditional guard in “return null if length<10”. The output of
Stage I is the set Γ(p) of code-verifiable constraints that will be ordered and compiled in later stages.

3.3 EVALUATION TREE SYNTHESIS

Benefit of tree. Two observations motivate using a tree. (i) Prompts mix global constraints (whole-
output format) with local ones (field/item rules). Local checks only make sense after the global
structure is valid (e.g., verify values only once the output is valid JSON). (ii) Prompts may contain
both conditional and unconditional rules. We check “conditional” constraints before “unconditional”
ones. In practice, these are often not truly unconditional, but act as the default that applies exactly
when no guard holds. For example: “Always return JSON ... If the dialogue has < 10 words, output
null.” Enforcing the JSON rule before evaluating the guard would incorrectly reject the intended
null output. Therefore, we synthesize a guard-first, coarse-to-fine evaluation tree that specifies the
correct order of constraint checks for subsequent step.

Definition. An evaluation tree T is a binary tree. Each internal node u carries a small tuple of
fields and has two outgoing edges: a pass branch (the check at u holds) and a fail branch (otherwise).
Leaves are labeled result ∈ {yes, no}. Every node exposes the following attributes:

• conditional: a bool indicating whether u is an input guard that applies only to a subset of user
inputs.

• parent_ok: a bool indicating whether, for a conditional node, the input guard is triggered; for an
unconditional node, the prerequisite check for u has been satisfied.

• scope: a string describes the granularity of the check (e.g., whole output, a specific key–value
pair, an item in a list).

• constraint_category: the category the constraint belongs to (i.e., specific format, numerical,
lexical matching, lexical exclusion).

• constraint: for a conditional node this is the input-side guard; for an unconditional node it is the
code-verifiable output check.

• source: the exact span in the prompt that states the constraint, used for traceability and diagnostics
that mirror the original wording.

Traversal of T proceeds as follows: If u is conditional, evaluate only its guard on x (e.g., “the input
has fewer than 10 words”) and take the corresponding branch; the required behavior (e.g., “then
return null”) is enforced in the pass child. If u is unconditional, evaluate the output constraint on y.
A pass continues along the pass branch to the next check, while a fail returns a no leaf.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Constraint ordering policy. We impose a canonical evaluation order for the tree:

1. By granularity: structure → field → value. Concretely, top-level format checks run before field
presence and type checks, which in turn precede string and numeric value checks.

2. Conditional-first within the same scope: evaluate all conditional guards first. If an unconditional
rule is intended as the default (i.e., it should apply only when no guard fires), place it on the fail
branch of the relevant guard. Otherwise, place the unconditional check after both branches so
that it is enforced regardless of the guard outcome.

3. By prompt order: any remaining checks follow their order of appearance in the prompt to
preserve human expectations.

Soundness. If a traversal of T reaches a leaf labeled yes, then every compiled predicate on the path
evaluated to true. Conversely, reaching no implies that at least one predicate failed, then we record
the failing node’s source span to support provenance.

Synthesis. Given the normalized constraint set from Stage I together with the node schema and
ordering policy above, we prompt an LLM to synthesize the evaluation tree: the model instantiates
nodes with (conditional, parent_ok, scope, constraint_category, constraint, source), arranges them
into a guard-first, coarse-to-fine control flow, and returns a well-formed binary tree that the compiler
consumes in the next stage. The evaluation tree provides an explicit control-flow specification that
the code generator follows.

3.4 COMPILATION TO EXECUTABLE VALIDATORS

Target interface and runtime. We compile the specification into a single function

is_valid_output(y : str, x : str) → (bool, reason, provenance),

executed in a sandbox. At runtime we pass the LLM output as y and the user input as x for the prompt
under evaluation:

• Input y (LLM output). The exact output string returned by the model.

• Input x (user input). The user query or input text bound to the prompt; used only to evaluate
input-side guards for conditional constraints.

• Return bool. True iff all code-verifiable constraints induced from the prompt are satisfied under
the control flow prescribed by the evaluation tree; otherwise False.

• Return reason. A human-readable diagnostic describing the first failing check along the traversal.

• Return provenance. The exact prompt span (source) that defined the failed constraint, enabling
traceability back to the original wording. Empty when the result is True.

Inputs to code generation. We synthesize code with an LLM by providing two inputs jointly: the
original prompt p and the evaluation tree from Stage II. The model is instructed to take ordering and
scoping of checks from the tree while reading the complete context of p. This pairing aligns checks
with the exact wording of p and enforces them in the intended order.

Generation rules. To avoid hidden dependencies and keep execution reproducible, the generator
must use only the Python standard library (e.g., json, re, typing). The generated code must not
import third-party packages, perform file or network I/O, or invoke dynamic code execution. The
output is a self-contained function with optional local helpers.

Realizing the tree as control flow. The synthesized function realizes the evaluation tree as directly
executable code: it traverses nodes in tree order, evaluating input guards over x to select the
applicable branch (e.g., the conditional “If the dialogue has fewer than 10 words” becomes if
word_count(x) < 10: and, on the pass branch, the code enforces the required behavior such as
emitting the literal “null”); within the chosen branch it checks global structure on y before any
local content (e.g., “The response must be a JSON object” becomes try: parsed = json.loads(y)
except: return (False, “not valid JSON”, source)), then enforces field presence and types

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(e.g., “Keys Relevance, Completeness, Correctness must exist and be integers” becomes req =
[“Relevance”, “Completeness”, “Correctness”]; ok = all(k in parsed for k in req) and
all(isinstance(parsed[k], int) for k in req)), and finally applies value-level predicates such
as ranges, counts, and patterns (e.g., “Each score is an integer in [1,5]” becomes all(1 <= parsed[k]
<= 5 for k in req)). Each predicate is evaluated at most once; the first failing check short-circuits
with False together with a concise reason and the originating source, whereas successful checks
continue along the pass edge until the traversal reaches a yes leaf and the function returns True.

Runtime usage. At runtime we apply the compiled validator to the pair (y, x). The system returns
True only if all constraints hold; otherwise it returns False with a concise reason and provenance.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. We construct our own evaluation dataset because assessing constraint compliance requires
prompt templates, instantiated inputs, model outputs, and ground-truth correctness labels with
violation rationales. To our knowledge, no public dataset jointly provides all these components. We
begin from the prompt corpus described in Section 2 (Data collection). The raw corpus consists of
prompt templates. To obtain complete, runnable instances we supply concrete user inputs. Following
the test–case generation pipeline of Sharma et al. (2025), we first filter for templates that contain only
one user–input placeholder, which simplifies controlled input synthesis. For each retained template,
we prompt an LLM to extract (i) input rules that characterize admissible user inputs for the template
and (ii) inverse rules that deliberately violate these expectations to form a challenge set. Given the
template and its rules, the LLM produces an initial pool of candidate inputs (three per template). A
human evaluator then reviews the candidates for plausibility and refines them as needed, yielding a
second–round set of inputs.

We instantiate the templates with these inputs and query target LLMs to obtain outputs. The
annotators then judge whether each LLM output satisfies the prompt’s code–verifiable constraints
and, for failures, labels the violated constraint (the original constraint text from the prompt that was
not met) and provides a minimal fix. For a given prompt there may be multiple violating output
records and typically one fully compliant output record. The final dataset stores tuples (Prompt, User
input, LLM output, Correctness ∈ {True, False}, Violation). In total, the evaluation set contains 61
labeled records.

Baselines. We compare our verifier against an LLM-as-a-judge baseline for constraint–compliance
evaluation: the target model is prompted to decide whether the output adheres to the prompt’s
code–verifiable constraints, and to justify its decision by returning the exact span of the original
constraint text from the prompt.

Implementation details. We use GPT-4o to synthesize user inputs from templates. For evaluation,
we instantiate our pipeline on three models for constraint extraction, evaluation–tree synthesis, and
code generation: GPT-4o-2024-11-20 (Hurst et al., 2024), Deepseek-v3.1-non-thinking (DeepSeek-
AI, 2024), and Claude-sonnet-4-20250514 (Anthropic, 2025). They cover both state-of-the-art
open-source and closed-source models. Furthermore, Claude-sonnet-4 is specifically optimized for
code generation, which aligns with our pipeline. For the LLM-as-a-judge baseline, we use the same
model family for fairness. All models are accessed via official APIs with temperature set to 0. During
code generation we allow up to three retries if the produced function fails to compile. All validators
run in a sandbox and use only the Python standard library.

Metrics. We report Constraint Compliance Accuracy for the accuracy of the system’s binary
decision on whether the output satisfies all code-verifiable constraints, compared to the gold label.
To assess explanation quality, we compute Violation Rationale, the BLEU similarity between the
system’s failure reason and the human–annotated rationale for the violated constraint. If the system’s
compliance decision disagrees with the gold label, we set Violation Rationale to 0. Otherwise, we
compute BLEU on the paired rationales and average over the dataset. Together, these metrics capture
both correct compliance decisions and the fidelity of the accompanying justification.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Constraint Compliance Accuracy Violation Rationale

LLM-as-a-judge Our method LLM-as-a-judge Our method

GPT-4o 62.3 86.9 (+39.5%) 0.3174 0.6137 (+93.4%)
Deepseek-v3.1 68.9 82.0 (+19.0%) 0.4361 0.4937 (+13.2%)
Claude-sonnet-4 80.3 91.8 (+14.3%) 0.5221 0.6042 (+15.7%)

Table 2: Main results.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Main results. As shown in Table 2, our method consistently outperforms a plain LLM-as-a-judge
baseline across all three models (GPT-4o, Deepseek-v3.1, Claude-sonnet-4) on both Constraint
Compliance Accuracy and Violation Rationale. Measured as a macro–average of per–model relative
gains, Constraint Compliance Accuracy improves by +24.3% overall (range from +14.3% to +39.5%),
and Violation Rationale improves by +40.8% (range from +13.2% to +93.4%). The largest gains
appear with GPT-4o: +39.5% on Constraint Compliance Accuracy (62.3→86.9) and +93.4% on
Violation Rationale (0.3174→0.6137), indicating that compiled, deterministic checks recover a
substantial number of hard–constraint violations that LLM-as-a-judge misjudges or overlooks. Gains
remain positive for Deepseek-v3.1 (+19.0% Constraint Compliance Accuracy, +13.2% Violation
Rationale) and Claude-sonnet-4 (+14.3%, +15.7%), demonstrating that the approach generalizes
across model families. Across the board, our method yields consistently higher or comparable
performance compared with each model’s strongest LLM-as-a-judge baseline on both metrics.

These improvements are most pronounced on two patterns: (i) Hybrid granularity: prompts that mix
global structure with field-level or item-level checks. In such cases, LLM-as-a-judge often mis-scopes
constraints. For example, consider the requirements “the output must be a list” and “the second
element must itself be a list of exactly five items”, given the output [‘True’, [‘CRISPR’, ‘genome’,
‘editing’, ‘bioinformatics’, ‘databases’], ‘100’], the baseline judged: “The output contains
6 words in the list for Part B instead of the required 5”, erroneously counting tokens from the outer
list rather than the nested list. Our method correctly parses the structure and checks the length on
the second element only. (ii) Closed-format exclusivity: prompts that impose both exclusivity (no
out-of-format content) and completeness (all specified elements present) at the same scope. For the
constraint “Only respond with the format below using curly brackets to encapsulate the variables
within a JSON dictionary object and no other text”, the baseline occasionally accepts outputs prefixed
with extra markers (e.g., a leading ```json tag) despite the “no other text” rule, whereas our compiled
checks flag any extraneous content outside the JSON object. By compiling prompt constraints into a
guard–first, coarse–to–fine control flow with explicit scopes and executing code-based checks, our
method reduces such misses and produces diagnostics that align closely with gold violation rationales.
Overall, making constraint verification explicit and executable proves model–agnostic, complements
LLM-as-a-judge judging, and yields robust improvements on real prompts.

Ablation study Table 3 isolates the contribution of the evaluation tree by comparing code gen-
erated from a flat list of constraints (“Without tree”) to tree–guided code generation (“With tree”).
Across all three models (GPT-4o, Deepseek-v3.1, Claude-sonnet-4), adding the tree improves both
Constraint Compliance Accuracy and Violation Rationale. Accuracy rises by +3.9% (GPT-4o),
+6.5% (Deepseek-v3.1), and +14.3% (Claude-sonnet-4), for an average gain of +8.2%. Explanation
quality (Violation Rationale) also increases consistently by +6.1%, +6.6%, and +5.6% respec-
tively (avg. +6.1%). The improvement is most pronounced for Claude-sonnet-4, whose strong
software–engineering capabilities enable it to precisely recognize and leverage the rich auxiliary con-
text provided during code generation (e.g., ordering hints, scope annotations, and schema comments),
yielding higher–quality validators.

Qualitatively, the tree reduces ordering and scoping errors that arise when checks are emitted from
a flat set of constraints: input guards are evaluated first, and global structure is verified before
field–level presence/typing and value–level limits. This guard–first, coarse–to–fine control flow
prevents false rejections of legitimate corner cases (e.g., outputs that should be the literal “null” and
avoids overlooking downstream violations (e.g., malformed JSON or range overruns). The explicit
branching also yields crisper, more reproducible rationales by tying each failure to the correct path
and constraint, which explains the consistent gains in both metrics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method Constraint Compliance Accuracy Violation Rationale
Without tree With tree Without tree With tree

GPT-4o 83.6 86.9 (+3.9%) 0.5786 0.6137 (+6.1%)
Deepseek-v3.1 77.0 82.0 (+6.5%) 0.4630 0.4937 (+6.6%)
Claude-sonnet-4 80.3 91.8 (+14.3%) 0.5723 0.6042 (+5.6%)

Table 3: Ablation on the evaluation tree. “Without tree” compiles validators directly from extracted
constraints; “With Tree” additionally uses the evaluation tree to order and scope checks.

5 RELATED WORK

Controlled text generation. A large body of research steers language models toward user–specified
constraints, spanning both decoding–time control and training–time control. Decoding–time methods
inject hard lexical requirements into search (Hokamp & Liu, 2017; Post & Vilar, 2018) or bias token
probabilities with auxiliary discriminators and predictors (Dathathri et al., 2020; Khanov et al., 2024;
Li et al., 2025; Yang & Klein, 2021; Lu et al., 2021). Training–time approaches encode control signals
directly in the model, either via control codes or preference–based fine–tuning (Keskar et al., 2019;
Krause et al., 2020; Ouyang et al., 2022). While these methods substantially reduce violations, they
rarely guarantee compliance in real prompts that mix global formats with field–level or item–level
rules and conditional exceptions. Our work is complementary: instead of steering generation, we
verify after the fact by inducing code-verifiable constraints from the prompt, organizing them with an
explicit control flow, and executing deterministic checks.

Evaluation of LLM outputs. LLM–as–a–judge has become a scalable alternative to costly, slow
human evaluation across many generation tasks (Gu et al., 2024). It is widely used to rate output
quality (e.g., semantic correctness, coherence, helpfulness, safety) (Liu et al., 2023; Kim et al.,
2024; Zhu et al., 2025) and to approximate human preferences for training and benchmarking (Dong
et al., 2023; Yuan et al., 2023; Dubois et al., 2023). However, recent work highlights unfairness and
sensitivity to prompt wording and presentation order (Wang et al., 2024; Zheng et al., 2023). In
practice, such judges excel at soft qualities but often under–penalize hard constraints (e.g., malformed
JSON, missing required fields, or length overruns), and their rationales can vary across prompts
and models. By contrast, rule–based scripts offer deterministic, reproducible checks for hard con-
straints (Jie et al., 2024; Carlsson et al., 2022; Wang et al., 2021), yet they are typically ad hoc and
coarse–grained, often operating at a single granularity that treats the output as a monolithic string
rather than aligning checks with constraint granularity or handling conditional guards. As a result,
such scripts become brittle and hard to maintain when constraints mix global structure, local fields,
and input–conditioned behaviors. We bridge this gap by compiling prompt–induced, code–verifiable
constraints into executable validators with a canonical coarse–to–fine order, yielding reproducible
pass/fail decisions and grounded rationales that complement the existing LLM output evaluation
methods while substantially improving coverage of hard constraints.

6 CONCLUSION

We introduce ConstrainPrompt, a verification pipeline for code-verifiable, semantics-agnostic con-
straints in LLM outputs. Our taxonomy study of 1,232 real prompts shows that hard constraints are
prevalent and often layered-global structure commonly co-occurs with field-level and item-level rules
and input-conditioned guards. ConstrainPrompt induces code-verifiable constraints from natural-
language prompts, synthesizes a logical evaluation tree to fix ordering and scope, and compiles the
result into executable validators that return deterministic pass/fail decisions with grounded rationales
and prompt-span provenance. On real prompts paired with model outputs, our method consistently
outperforms an LLM-as-a-judge baseline across three model families, improving Constraint Compli-
ance Accuracy by 24.3% and Violation Rationale by 40.8%. An ablation study confirms the evaluation
tree is pivotal for both accuracy and explanation quality. Overall, these findings demonstrate that
making constraint verification explicit and executable is an effective, model-agnostic method for
reliable constraint compliance in real-world LLM applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide an anonymized repository containing the full pipeline and scripts to reproduce all reported
results: https://anonymous.4open.science/r/ConstrainPrompt-C278/. The repository includes
implementations for constraint extraction, evaluation tree synthesis, and evaluation code generation.
All core prompts used for LLM interactions are included verbatim in the Appendix. The exact model
families and versions used in each experiment are specified in the Experiment Setup section, and the
released scripts invoke those versions by default.

REFERENCES

Anthropic. Introducing claude 4, May 2025. URL https://www.anthropic.com/news/claude-4.
Announcement of Claude Opus 4 and Claude Sonnet 4.

Fredrik Carlsson, Joey Öhman, Fangyu Liu, Severine Verlinden, Joakim Nivre, and Magnus Sahlgren.
Fine-grained controllable text generation using non-residual prompting. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6837–6857, 2022.

Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and Zhendong Mao. Benchmarking large language
models on controllable generation under diversified instructions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17808–17816, 2024.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled
text generation. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=H1edEyBKDS.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.19437.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=m7p5O7zblY.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36:30039–30069, 2023.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, and Zhaozhuo Xu. Llm multi-agent systems:
Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.

Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid beam
search. In Regina Barzilay and Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1535–1546, Vancouver,
Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1141. URL
https://aclanthology.org/P17-1141/.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Renlong Jie, Xiaojun Meng, Lifeng Shang, Xin Jiang, and Qun Liu. Prompt-based length controlled
generation with multiple control types. arXiv preprint arXiv:2406.10278, 2024.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

10

https://anonymous.4open.science/r/ConstrainPrompt-C278/
https://www.anthropic.com/news/claude-4
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=m7p5O7zblY
https://aclanthology.org/P17-1141/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. ARGS: Alignment as reward-guided search.
In The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=shgx0eqdw6.

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Gra-
ham Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source
language model specialized in evaluating other language models. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 4334–4353, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.248. URL
https://aclanthology.org/2024.emnlp-main.248/.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

Zongming Li, Tianheng Cheng, Shoufa Chen, Peize Sun, Haocheng Shen, Longjin Ran, Xiaoxin Chen,
Wenyu Liu, and Xinggang Wang. ControlAR: Controllable image generation with autoregressive
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=BWuBDdXVnH.

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
Shunyu Yao, Feiyu Xiong, et al. Controllable text generation for large language models: A survey.
arXiv preprint arXiv:2408.12599, 2024.

Guisheng Liu, Yi Li, Yanqing Guo, Xiangyang Luo, and Bo Wang. Multi-attribute controlled text
generation with contrastive-generator and external-discriminator. In Proceedings of the 29th
international conference on computational linguistics, pp. 5904–5913, 2022.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 2511–2522, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.153. URL https://aclanthology.org/2023.emnlp-main.153/.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
NeuroLogic decoding: (un)supervised neural text generation with predicate logic constraints. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 4288–4299, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.339. URL https://aclanthology.org/2021.
naacl-main.339/.

Yuetian Mao, Junjie He, and Chunyang Chen. From prompts to templates: A systematic prompt
template analysis for real-world llmapps. In Proceedings of the 33rd ACM International Conference
on the Foundations of Software Engineering, pp. 75–86, 2025.

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with neurally-
decomposed oracle. Advances in Neural Information Processing Systems, 35:28125–28139, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Kaiser Pister, Dhruba Jyoti Paul, Ishan Joshi, and Patrick Brophy. Promptset: A programmer’s
prompting dataset. In Proceedings of the 1st International Workshop on Large Language Models
for Code, pp. 62–69, 2024.

Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam allocation for
neural machine translation. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings

11

https://openreview.net/forum?id=shgx0eqdw6
https://openreview.net/forum?id=shgx0eqdw6
https://aclanthology.org/2024.emnlp-main.248/
https://openreview.net/forum?id=BWuBDdXVnH
https://aclanthology.org/2023.emnlp-main.153/
https://aclanthology.org/2021.naacl-main.339/
https://aclanthology.org/2021.naacl-main.339/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1314–1324, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/
N18-1119. URL https://aclanthology.org/N18-1119/.

Johnny Saldaña. The coding manual for qualitative researchers. 2021.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: a systematic
survey of prompt engineering techniques. arXiv preprint arXiv:2406.06608, 2024.

Reshabh K Sharma, Jonathan De Halleux, Shraddha Barke, and Benjamin Zorn. Promptpex: Auto-
matic test generation for language model prompts. arXiv preprint arXiv:2503.05070, 2025.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 9440–9450, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.511. URL https://aclanthology.org/2024.acl-long.511/.

Yufei Wang, Ian Wood, Stephen Wan, Mark Dras, and Mark Johnson. Mention flags (mf): Con-
straining transformer-based text generators. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 103–113, 2021.

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard,
Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 3511–3535, Online, June 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.276. URL https://aclanthology.org/2021.naacl-main.276/.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank
responses to align language models with human feedback. Advances in Neural Information
Processing Systems, 36:10935–10950, 2023.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable text
generation using transformer-based pre-trained language models. ACM Computing Surveys, 56(3):
1–37, 2023.

Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang. Llm app store analysis: A vision and
roadmap. ACM Transactions on Software Engineering and Methodology, 34(5):1–25, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan Wilcox, Ryan Cotterell, and Mrinmaya Sachan.
Controlled text generation with natural language instructions. In International Conference on
Machine Learning, pp. 42602–42613. PMLR, 2023.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. JudgeLM: Fine-tuned large language models are
scalable judges. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=xsELpEPn4A.

12

https://aclanthology.org/N18-1119/
https://aclanthology.org/2024.acl-long.511/
https://aclanthology.org/2021.naacl-main.276/
https://openreview.net/forum?id=xsELpEPn4A

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM CONTRIBUTION STATEMENT

In accordance with the ICLR policy, we disclose that large language models (e.g., OpenAI ChatGPT
and Google Gemini) were used solely as writing aids for: (i) improving grammar, fluency, and stylistic
consistency; (ii) rephrasing sentences for clarity; and (iii) polishing LaTeX table code. LLMs did not
generate research ideas, methods, experiments, analyses, figures/tables (beyond LaTeX formatting
templates), or claims, and no passages were adopted verbatim without manual review and editing
by the authors. All technical content, datasets, code, and results were produced and verified by the
authors, who take full responsibility for the paper’s contents.

B CONSTRAINT TAXONOMY EXAMPLES

Category Subcategory Examples

Structural Specific
format

- Return output in json format: “question_1”: “answer_1”, “question_2”:
“answer_2”, . . . , “question_n”: “answer_n”.
- Output a list with specific entries: Entry 1 as a string response to Part A,
Entry 2 as a list of 5 words from Part B, and Entry 3 as an integer response to
Part C converted to a string.

Quantitative Numerical - Keep your wording simple and short (less than 15 words).
- Provide your evaluation only as a consistency score where the consistency
score is an integer value between 0 and 5, with 5 indicating the highest level of
consistency.

Lexical Lexical
matching

- Respond to each question from the provided “questions”, using either “Yes”,
“No”, or “Unknown”, based on the given context.
- Give me only the sql query statement, starting with “SELECT * FROM
Verses WHERE” without any extra explanation or comment.

Lexical
exclusion

- Please write a quiz question for the word “horse” using single sentence
without mentioning the word itself.
- Please do not fill in “unknown”, but make an educated guess based on the
available information and fill in the specific content.

Semantic Semantic
inclusion

- Identify any controversial or heavily debated points in the video.
- Ensure to extract the key insights, theories, steps, revelations, opinions, etc
discussed in the video.

Semantic
exclusion

- You should not describe items in the image include people’s faces, hands,
text or animals, device screens or anything that could contain text.
- Remove any of the following sentences: Sentences that refer to grammar,
spelling or punctuation. Sentences that say the response is unclear or not
concise enough. Sentences that give away the correct answer explicitly.

Qualitative - The refined blog post text should be easy to read, and engaging.
- The analyzer should address all user’s queries about the TV show in a
concise, friendly, conversational style.

Table B1: Constraint taxonomy examples.

C PROMPTS

C.1 CONSTRAINT EXTRACTION

Constraint extraction prompt

You are a precision prompt constraint analyzer.

Given a prompt template, extract **all constraints** that specify what the model output
must or must not do. For each constraint:

- Determine whether it's **unconditional** or **conditional**:
- **unconditional**: This constraint applies universally to all outputs, regardless of

the input content.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

- **conditional**: The prompt specifies a trigger condition that determines whether the
constraint applies, and the trigger is either:
- Expressed using clear indicators like "if...", "when...", "only if...", "in case...",
or

- Explicitly tied to detectable input features (e.g., contains specific keywords,
matches a language code, exceeds a given length).

- Assign one of the following categories:
1. Output - Specific format constraint: The output must conform to a specific file or

data format (e.g., JSON, Markdown, HTML, key value pairs, defined data structures,
source code in a specific language).

2. Output - Numerical constraint: Restrictions on output length, counts, or numerical
ranges (e.g., character/word/token/sentence/paragraph counts, score values).

3. Output - Lexical matching constraint: The output must contain, match, or adhere to a
specific string pattern (e.g., selection from a predefined list, exact string match,
lowercase requirement).

4. Output - Lexical exclusion constraint: Certain words, phrases, string or character
patterns are explicitly prohibited in the output.

5. Output - Semantic inclusion constraint: The output must semantically include certain
concepts, entities, or topics. (not verifable by code)

6. Output - Semantic exclusion constraint: The output must not semantically mention
certain concepts, entities, or topics. (not verifable by code)

7. Output - Qualitative constraint: The output must exhibit specific non-quantitative
qualities or styles (e.g., concise, academic tone, persuasive, language). (not
verifable by code)

8. Others
- For each constraint, extract the **exact sentence** from the prompt that expresses it as

'source'
- Give a short justification for the category.

Return all constraints in a structured list using the function tool.

C.2 EVALUATION TREE SYNTHESIS

Evaluation tree synthesis prompt

You are a constraint-checking logic tree generator.

Your task is to construct a single decision tree for validating model output based on a
list of constraints.

Each node must include the following fields:
- conditional: true or false
- parent_ok: true or false
- constraint_category: one of the following: 'Output - Specific format constraint', '

Output - Numerical constraint', 'Output - Lexical matching constraint', 'Output -
Lexical exclusion constraint', or 'result' (used in leaf nodes)

- constraint: a concise human-readable description of what is being checked. **Also
clearly indicate whether this applies to the entire output or to a specific field/
section.** For example:

- "output must be valid JSON object"
- "output['queries'] must be a list of 1 to 5 unique strings"

- source: exactly copy the `source` field from the corresponding constraint object
provided in the corresponding constraint in the input constraint list.

- scope: A description of **which part of the output** this constraint applies to.
- Use "entire output" if the constraint applies to the whole response (e.g., length,

general formatting, string content).
- Use specific references (e.g., "JSON field 'questions'", "markdown header", "list

elements", "first sentence") when the constraint targets a **subsection or component**
of a structured output.

- children: a list of exactly two children unless this is a leaf node; children must
describe what happens when the constraint **is met** and **is not met**

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rules:
1. The tree must evaluate constraints **in this order**:

- First: all **conditional** constraints
- Then: all **unconditional** constraints
- Within each group: order by granularity - format - type/field - value
- This reflects a macro-to-micro validation order: check overall structure first (e.g.,

JSON), then expected output type, then more detailed content or length.

2. Each conditional constraint must have two child branches:
- If **condition is met** ('parent_ok=True'): its expected output behavior must be
explicitly checked as a child node. Only apply the behavior required by that
conditional constraint

- If **condition is not met** ('parent_ok=False'): evaluate all unconditional
constraints in order

3. For **every constraint node**, generate exactly **two children**:
- One where 'parent_ok = true' (constraint is satisfied)
- One where 'parent_ok = false' (constraint is not satisfied)

4. All **leaf nodes** must be of the form:
- 'conditional': false
- 'parent_ok': true or false
- `'onstraint_category': 'result'
- 'constraint': 'yes' or 'no'
- 'source': `None`
- 'scope': `None`
- 'children': empty list

5. For conditional constraints, only evaluate the condition at the current node.
- If the condition is met (parent_ok = true), generate a child node to check the
required action or constraint specified by the condition.

- If the condition is not met (parent_ok = false), proceed to check other related
constraints.

C.3 EVALUATION CODE GENERATION

Evaluation code generation prompt

You are a Python code generation agent specialized in logical validation.

Your task is to generate a Python function `is_valid_output(output: str, input_text: str)
-> Tuple[bool, Optional[str], Optional[str]]` that checks whether the model output
satisfies a set of constraints, which are organized as a decision tree.

The decision tree follows this format:
- Each node contains:

- 'conditional': whether this is a conditional constraint (True/False)
- 'parent_ok': whether the condition of its parent node was satisfied (True/False)
- 'constraint_category': the category of the constraint or 'result' if leaf node
- 'constraint': a human-readable string that describes the check
- 'source': the source constraint (the original sentence in prompt) that represents the

check in evaluation tree
- 'scope': the part of the output this constraint applies to
- 'children': list of child nodes

Rules:
1. Before any validation, normalize the `output` string to prevent false negatives from

insignificant whitespace:
- Strip leading and trailing blank lines
- Collapse multiple consecutive blank lines into a single blank line

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2. Traverse the tree starting from the root node. At each node:
- If `constraint_category == 'result'`, return `(True, None, None)` if `constraint == '
yes'`, else return `(False, <short reason>, <violation>)`, where <reason> is a
concise diagnostic describing what failed and <violation> is the constraint's `source
` value in evaluation tree (the original prompt constraint that was violated).

- If `conditional == True`, evaluate the *condition part only* of the constraint at
this level

- If the condition is **not directly verifiable in code**, return False by default
- If the condition is verifiable, use an `if` to decide which branch of `children`

to check
- If `conditional == False` and `parent_ok == True`, validate the constraint against
the output

- If it passes, recurse to `children[0]`; else recurse to `children[1]`
- If `parent_ok == False`, directly recurse to `children[1]`

3. The `output` is always the raw string returned by a language model. Any structural
checks (e.g., JSON parsing) or type checks (e.g., numeric value) must first convert or
parse this string appropriately.

4. The generated code must handle malformed output robustly (e.g., invalid JSON)

5. You may define helper functions for checking common patterns (e.g., word count, JSON
keys, exact match)

6. The constraint string should be used as a comment to make clear what each check is
doing.

7. Only use standard Python libraries (no external dependencies).

Output the complete Python function only. Do not include explanation or comments outside
the code.

D CASE STUDY

D.1 PROMPT, USER INPUT, LLM OUTPUT

Prompt

I will provide you with a prompt to a function below these instructions. You will output
exactly as follows, with the list as well. Text encased in <like this> will be
replaced by your response, and text encased in (like this) is just a description for
the response that you do not need to type up:

(a) <Boolean> (Is it bioinformatics related?)
(b) <words> (Give a list of 5 keywords of why it is bioinformatics related)
(c) <integer> (Your confidence from 0 to 100 that your response in A is accurate, so for

example, if you believe strongly that it is not bioinformatics related, you should
also rate a high confidence level)

The code must explicitly reference some bioinformatics methodology, terminology, or
process. For example, an AVL Tree would not be a valid bioinformatics function, while
a FASTQ processor would. The keywords are defined as important words that allowed you
to make the determination that the function is bioinformatics related. The confidence
should be your estimate of how confident you are of your responses.

Make sure that in your response is explicitly as follows in the directions. Part A
should only be one word and a boolean, either True or False. Part B should only be 5
words, no additional information, Part C should only be a single integer, from 0 to
100, it is a measure of your confidence in your response to Part A.

After selecting keywords, please reverify that the words you used to make the decision
for Part A is actually bioinformatics related.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Again, as clarification, I will be providing the function.

The responses should be formatted as a list:
Entry 1: The response to part A converted into a string
Entry 2: A list of 5 words which are strings from the response to Part B
Entry 3: The integer response to part C converted to a string
Therefore, your output should follow this guideline. This will be your only output,

there should be no additional outputs beyond the one highlighted in this prompt.

Prompt begins here:
{input_prompt}

Prompt ends here.
Give the output to the above code encased in "Prompt begins here:" and "Prompt ends here

." Your keyword search should only encompass the words in the prompt, and ensure that
keywords are related to bioinformatics, not statistics.

User input

The program processes CRISPR data to predict off-target effects in genome editing
applications, leveraging bioinformatics databases and algorithms.

Output

['True', ['CRISPR', 'genome', 'editing', 'bioinformatics'], '100']

D.2 EVALUATION TREE

Format: list

Whole output as a list

Entry1: a word + a boolean value

Entry2: list

Entry2: 5 words

Entry3: int 0 - 100 converted to string

YES NO

NO

NO

NO

NO

NO

Figure 3: Evaluation tree for the example.

D.3 GENERATED CODE

Generated code

from typing import Tuple , Optional
import re

Helper function to check if a string is a valid integer within a range

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

def is_valid_integer(s: str , min_value: int , max_value: int) -> bool:
try:

value = int(s)
return min_value <= value <= max_value

except ValueError:
return False

Main function to validate the output

def is_valid_output(output: str , input_text: str) -> Tuple[bool , Optional[
str], Optional[str]]:
Normalize the output
output = re.sub(r'\n+', '\n', output.strip())

Check if the output is a list of three entries
try:

entries = eval(output)
if not isinstance(entries , list) or len(entries) != 3:

return False , "Output is not a list of three entries", "The
responses should be formatted as a list: Entry 1: The
response to part A converted into a string Entry 2: A list
of 5 words which are strings from the response to Part B
Entry 3: The integer response to part C converted to a
string"

except:
return False , "Output is not a valid list", "The responses should

be formatted as a list: Entry 1: The response to part A
converted into a string Entry 2: A list of 5 words which are
strings from the response to Part B Entry 3: The integer
response to part C converted to a string"

Check Entry 1: Part A should only be one word and a boolean , either
True or False.

if not isinstance(entries [0], str) or entries [0] not in ["True", "False
"]:
return False , "Entry 1 is not a valid boolean string", "Part A

should only be one word and a boolean , either True or False."

Check Entry 2: Part B should only be 5 words , no additional
information.

if not isinstance(entries [1], list) or len(entries [1]) != 5 or not all(
isinstance(word , str) for word in entries [1]):
return False , "Entry 2 is not a list of 5 words", "Part B should

only be 5 words , no additional information."

Check Entry 3: Part C should only be a single integer , from 0 to 100.
if not isinstance(entries [2], str) or not is_valid_integer(entries [2],

0, 100):
return False , "Entry 3 is not a valid integer string", "Part C

should only be a single integer , from 0 to 100."

If all checks pass , return True
return True , None , None

18

	Introduction
	Taxonomy of prompt constraints
	Method
	Problem setup
	Code-verifiable constraint extraction
	Evaluation tree synthesis
	Compilation to executable validators

	Experiments
	Experiment setup
	Experimental results and analysis

	Related Work
	Conclusion
	Reproducibility Statement
	LLM Contribution Statement
	Constraint taxonomy examples
	Prompts
	Constraint extraction
	Evaluation tree synthesis
	Evaluation code generation

	Case study
	Prompt, User input, LLM output
	Evaluation Tree
	Generated code

