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ABSTRACT

Few-shot transfer has been made possible by stronger pre-trained models and
improved transfer algorithms. However, there lack of a unified, rigorous evalu-
ation protocol that is challenging yet meets real-world usage. To this end, we
carefully review previous evaluation principles and establish new standards with
recipes from different aspects following our empirical findings, including the re-
port of confidence intervals, the standard for hyperparameter tuning, and variation
of ways and shots, etc. With these standards, we create FEWTRANS, a few-shot
transfer benchmark containing 10 challenging datasets from diverse domains with
three sub-benchmarks: one that compares pre-trained models, one that compares
transfer algorithms for vision-only models, and one that compares transfer al-
gorithms for multimodal models. To facilitate future research, we reimplement
and compare some of the recent pre-trained models and transfer algorithms. We
observe that, while stronger pre-trained models bring significant performance im-
provement, the performance of most transfer methods is quite close, and simply
finetuning the whole backbone performs well enough, especially for multi-modal
models. We hope that the release of FEWTRANS benchmark will streamline re-
producible and rigorous advances in few-shot transfer learning research.

1 INTRODUCTION

Recent progress on computer vision (Kolesnikov et al., 2020; Radford et al., 2021; Islam et al.,
2021; Dehghani et al., 2023) suggests that good performance on a variety of vision tasks can be
achieved at low cost by transferring a pretrained, large-scale model with only a few labeled samples,
facilitating downstream scenarios where labeled data can be expensive or difficult to obtain. This
few-shot transferability of pre-trained models can be further improved by adopting recently proposed
transfer algorithms that are claimed to be better than vanilla finetuning in terms of accuracy or
efficiency, such as partial finetuning (Zaken et al., 2022), low-rank adaptation (Hu et al., 2022),
adapter tuning (Houlsby et al., 2019; Chen et al., 2022; Li et al., 2022b), meta-learning (Shysheya
et al., 2023), prompt tuning (Jia et al., 2022; Zhou et al., 2022c; Khattak et al., 2023) and so on.

However, the evaluation criteria of few-shot transfer have not been unified and diverge across sep-
arate threads of research, which hinders newly proposed pretrained models or transfer algorithms
from being accurately evaluated and compared with previous ones. To build a unified, reasonable
evaluation protocol, we first review previous evaluation setups for few-shot transfer with careful ex-
periments. We find several inappropriate aspects caused by the specific few-shot nature of few-shot
transfer problems overlooked by previous evaluation criteria.

In particular, we find two major deficiencies in previous evaluation setups. First, we observe that a
single few-shot task has large performance variation caused by random sampling of training data,
thus previous reports of few-shot performance with few tasks are unreliable: just by changing seeds
that generate tasks, one can obtain high performance with arbitrary methods. This problem can be
handled easily by sampling more tasks. We then note that current hyperparameter selection crite-
rion that sets an additional validation dataset from the target domain is not realistic for real-world
few-shot problems. We argue that model selection should be either dependent on a dataset irrele-
vant to the target dataset, or should be only dependent on the downstream task at hand. Our further
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analysis shows that the optimal hyperparameters of few-shot transfer change from task to task and
from dataset to dataset, thus designing a reasonable model selection criterion that reflects the real
performance of models/methods while being fair is difficult. We thus propose to use hyperparam-
eter ensemble (Wenzel et al., 2020) which avoids looking for a single hyperparameter but instead
classifies test samples using several adapted classifiers obtained from a range of hyperparameters.

Integrating all our solutions to major and minor deficiencies of previous evaluation protocols, we
construct FEWTRANS, a few-shot transfer benchmark containing 10 diverse downstream datasets,
with the ability of sampling class-imbalanced tasks with varying numbers of classes and shots.
FEWTRANS has three sub-benchmarks for comparing pretrained models, transfer algorithms for
vision-only models, and transfer algorithms for multimodal models respectively. To facilitate future
research, we have reimplemented and compared a bunch of pretrained models and transfer algo-
rithms. We have several interesting observations. We observe that while a larger pretraining dataset
contributes significantly to the downstream few-shot performance, different transfer algorithms have
quite close performance. A simple all-parameter finetuning performs surprisingly well and seems
not to meet overfitting problems especially for multimodal models, calling into question whether we
are making progress on the problem.

2 RELATED WORK

Few-shot transferability of pre-training models improves with larger training datasets, architectures,
and better pre-training algorithms. Kornblith et al. (2019) verify that models transferred from su-
pervised ImageNet models generally perform much better than those trained from scratch on down-
stream tasks, especially under few-shot settings. Self-supervised ImageNet models were then shown
to be better source models on few-shot transfer tasks than supervised models (Islam et al., 2021; Luo
et al., 2023). Recent studies (Kolesnikov et al., 2020; Zhai et al., 2022; Dehghani et al., 2023) further
show that scaling up pre-training datasets to hundreds of millions and parameters to billions leads
to stably increasing few-shot transfer performance. On the other hand, the CLIP model (Radford
et al., 2021) leverages multimodal data for pre-training and achieves very impressive zero/few-shot
performance on a suit of visual classification datasets using hand-crafted text prompts.

Unlike many-shot transfer learning literature where standard benchmarks like VTAB (Zhai et al.,
2019) exist, most papers that evaluate few-shot transferability of pretrained models do not use bench-
marks but instead self-select datasets for evaluation (Kornblith et al., 2019; Kolesnikov et al., 2020;
Radford et al., 2021). One exception is the few-shot transfer benchmark of transfer algorithms for
multimodal models (Zhou et al., 2022c) that has 11 downstream datasets. Some evaluation principles
of our benchmark were largely inspired by Meta-Dataset (Triantafillou et al., 2020), a benchmark
for classical few-shot classification problems. There are several reasons for why we do not build our
benchmark on the top of Meta-Dataset, including no class names in some datasets, unnatural image
preprocessing in some datasets, having too many shots in a task, etc.

3 THE PROBLEM OF FEW-SHOT TRANSFER LEARNING

In transfer learning, we have a pretrained model fθ : Rd → Rm mapping inputs x ∈ Rd to fea-
tures z ∈ Rm. The goal of transfer learning is to transfer the pretrained model fθ to a specified
downstream task. Any downstream task τ can be described as a combination of a training set
Dtr = {(xi, yi)}Ni=1 and a test set Dte = {(x∗

j , y
∗
j )}Mi=1, where yi, y

∗
j ∈ {1, ..., ncls} are class

labels. The task τ is called a K-shot task if there are exactly K samples per class in Dtr. During
transfer, the pretrained model f will be adapted to task τ using the training set Dtr through a transfer
algorithm such as finetuning, producing a new classifier mapping images to labels of the new task.
To evaluate the effectiveness of transfer, the produced classifier will be evaluated on the test set Dte.

In a typical transfer learning evaluation setup (Zhai et al., 2019), the downstream task involves an
entire downstream dataset, so the number of samples per class can be quite large, deviating from
some practical transfer scenarios where downstream data is difficult to obtain. Under few-shot
transfer scenario, the number of samples per class can be quite small, usually less than 20 or 10.
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4 INAPPROPRIATE EVALUATION OF PREVIOUS METHODS

In this section, we point out several flaws of previous few-shot transfer evaluation protocols. For all
experiments done in this section, we use fine-tuning as the transfer algorithm. Following Luo et al.
(2023), we separately set the learning rates for the backbone of the pretrained model and the linear
head for improved performance. By default, we use Adam (Kingma & Ba, 2015) as the optimizer.

4.1 LARGE PERFORMANCE FLUCTUATION CAUSED BY SAMPLING
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DINOv2 transferred to EuroSAT

Figure 1: Average accuracy and 95% confi-
dence intervals of single-task few-shot trans-
fer evaluation of a pretrained DINOv2-small
model on EuroSAT (Helber et al., 2019).

Different from the typical transfer learning setup
where an entire dataset is used as the downstream
task, in few-shot transfer, a randomly sampled small
part of the dataset is used as the downstream task.
Previous works that evaluate pretrained models on
few-shot transfer tasks (Kolesnikov et al., 2020;
Radford et al., 2021; Zhou et al., 2022c) sample a
single or a few (usually 3) tasks and only report the
average performance on the sampled tasks without
error bars. This can be problematic because the per-
formance can be largely influenced by the choice of
sampled data especially under few-shot settings. To
illustrate this, we give the single-task transfer perfor-
mance of DINOv2-small (Oquab et al., 2023) on the
EuroSAT dataset (Helber et al., 2019) along with the
95% confidence intervals in Figure 1. As seen, when
the number of shots is small, the spread of the error

bar can be very large. For 1-shot task, the performance can vary from less than 50% to more than
80% within the confidence interval. This is caused by the randomness of the training set, where a
change to a single sample can lead to large fluctuations in performance (Agarwal et al., 2021). Thus
the comparison in previous works using only a few tasks is inappropriate because the change of seed
can determine the rank of pretrained models/transfer methods completely. To make the comparison
meaningful, we should at least sample more tasks to make the confidence interval small enough.

4.2 UNREALISTIC MODEL SELECTION

In the typical transfer learning setting, the downstream dataset is so large that we can partition it into
a training set for adptation, and a validation set for selecting hyperparameters like learning rates and
number of epochs for adaptation. When it comes to the evaluation of few-shot transferability of pre-
trained models, previous works either tune hyperparameters on a large validation set (possibly from
different classes) from the same dataset (Radford et al., 2021; Luo et al., 2023) or set hyperparame-
ters to some default “magic” values dependent on downstream datasets (Kolesnikov et al., 2020; Li
et al., 2022b; Xu et al., 2022; Zhou et al., 2022c). While it seems valid to tune hyperparameters on a
separated validation set as what is done in the traditional many-shot transfer learning literature, we
point out that doing so is inappropriate in the few-shot setting because it deviates from real-world
scenarios where additional labeled data from the same dataset for validation is hard to obtain.

Thus to make the evaluation protocol realistic while being fair for comparison, we have two choices:
(1) determine hyperparameters of transfer algorithms in advance on a held-out dataset that is both
different from the pretraining dataset and target downstream dataset; (2) determine hyperparameters
based on the few training samples of the target downstream dataset on the fly. We will next evaluate
the validity of these two choices.

Optimal hyperparameters change from task to task. If we determine hyperparameters on a
separate dataset, then the hyperparameters will be the same for all tasks. Is this appropriate? In
Table 1, we show the optimal hyperparamters of ten tasks sampled from the same dataset. We
can observe that, even when sampled from the same dataset with the same set of classes, tasks
with different training samples can have different optimal hyperparamters. The optimal number of
epochs varies from 15 to 40; the optimal learning rate for pretrained backbone varies from 2e − 06
to 5e− 05; the optimal learning rate for linear classifier varies from 0.01 to 0.2.
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Table 1: Optimal hyperparameters vary from task to task. The pretrained model is DINOv2-small,
and all tasks are 1-shot sampled from EuroSAT.

Task ID 0 1 2 3 4 5 6 7 8 9

Epoch 15 15 15 40 15 40 30 20 20 30

Backbone lr 5e-05 5e-06 5e-06 1e-05 2e-06 5e-06 1e-05 2e-05 2e-05 1e-05

Head lr 0.05 0.01 0.2 0.02 0.01 0.05 0.01 0.05 0.05 0.2
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Figure 2: The heatmaps showing how the few-shot transfer performance of a single 1-shot task
sampled from EuroSAT changes with hyperparameters. We fix the number of epochs to 50 in the
left plot, and fix the head lr to 0.01 in the second plot. The black rectangles highlight the optimal
hyperparameter areas.

Few-shot transfer performance is sensitive to the choice of hyperparameters. Only showing
that the optimal hyperparameters change from task to task is not enough to conclude that the few-
shot transfer performance will change from task to task if we use the same hyperparameters for all
tasks. We still need to show that few-shot transfer performance is sensitive to hyperparameters. We
show how sensitive few-shot transfer performance is to the choice of hyperparameters in Figure 2.
We plot the heatmaps of few-shot transfer performance of a single 1-shot task when varying two of
the hyperparameters. As we can see, the variation of accuracy can be very large in the considered
ranges, from around 20% to more than 60%. In particular, the performance can drop very quickly
when we move out of the optimal area (highlighted in the black rectangle). For example, in the
left plot, if we go down or right from the black rectangle, that is, increasing the learning rate of the
backbone or the linear head, we will go into a chaotic area, where the accuracy oscillates up and
down irregularly and often drops to half or even less. This phenomenon seems not that evident for
the number of epochs in the right plot where the accuracy seems to be smoother, but we can still see
a 10% performance fluctuation around the optimal area.

Optimal hyperparameters change from dataset to dataset. Even if we can tolerate the perfor-
mance variation per task, we show that the “average optimal hyperparameters”—the hyperparame-
ters that give the highest average performance over several tasks sampled from a dataset—can still
vary from dataset to dataset in Table 2. For example, the optimal number of epochs when transferred
to Plant Disease (Mohanty et al., 2016) is 50, while the optimal number of epochs when transferred
to UCF101 (Soomro et al., 2012) is 10. Among the six downstream datasets, the backbone learning
rate ranges from 1e− 06 to 2e− 05, and the head learning rate ranges from 5e− 04 to 1e− 02.

Combining the analysis above, we can conclude that single hyperparameters will lead to unstable
few-shot transfer performance from task to task and from dataset to dataset. So this hyperparame-
ter selection criteria will cause large uncertainty of few-shot transfer performance and thus cannot
reflect the true performance of different methods. Thus a proper hyperparameter selection criteria
should rely only on the training set of the downstream dataset at hand, which we will explore next.

Cross-validation fails to provide reliable estimation of hyperparameters. A representative way
of estimating the hyperparameters using the training set of downstream tasks is cross-validation
which has a long history of use in machine learning (Kohavi et al., 1995; Arlot & Celisse, 2009).
The main idea behind l-fold cross-validation is to split data l times, each time into a training part
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Table 2: Average optimal hyperparameters of few-shot transfer vary from dataset to dataset. The
pretrained model is DINOv2-small, and all tasks are 1-shot.

CIFAR-100 UCF Plant Disease Aircraft DTD EuroSAT

Epoch 30 10 50 30 20 30

Backbone lr 1e-05 1e-05 2e-05 1e-06 1e-05 1e-05

Head lr 0.0005 0.01 0.005 0.005 0.001 0.01
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Figure 3: Cross-validation cannot find good hyperparameters when the number of shots is small,
regardless of the domain shift between pretraining and downstream dataset. We use a subset class of
ImageNet as the training set, and use the remaining part as the downstream dataset for the left plot.

and a validation part. For each time of split, the training part is used to adapt the model and the
validation part is used to evaluate the adaptation. The hyperparameters are chosen such that the
average error over all splits is small. While cross-validation can work well when there is abundant
data, we find that it will meet difficulties when data for adaptation is scarce, because (1) the number
of samples per class is too small to split. For example, when the number of samples is below 5, it
is only possible to use the leave-one-out strategy, that is, the validation part only has 1 sample for
each spilt, leading to unreliable performance estimation. For extreme 1-shot case, we cannot apply
cross-validation because there is no data to split; (2) l-fold cross-validation changes the number of
shots from K to K(l − 1)/l. As we have shown previously, optimal hyperparameters for few-shot
transfer can change when the task has changed, thus the hyperparameters found by cross-validation
can be biased. We verify our considerations in Figure 3, where we show that there is a gap between
the accuracy obtained by 5-fold cross-validation and the accuracy obtained by using the “average
optimal hyperparameters” of the dataset for both in-domain and out-of-domain transfer, especially
when the number of shots is small.

In conclusion, figuring out the optimal hyperparameters for few-shot transfer is very important and
is, if not impossible, very difficult under real-world settings. Because of this difficulty, a good
few-shot transfer method should not only have high performance at its optimal hyperparameters,
but should also have resistance to the change of hyperparameters, that is, the test loss landscape
around the optimal hyperparameters should be flat such as we can tolerate an inevitable deviation of
hyperparameter estimations. Thus a good evaluation protocol should evaluate both the performance
that a pretrained model can reach, as well as its sensitivity to the choice of hyperparameters.

4.3 OTHER CONSIDERATIONS

Apart from the aforementioned two major defects of previous evaluation of few-shot transferability
of pretrained models, we also notice several other points that can be improved, with some of them
inspired by the few-shot learning literature (Triantafillou et al., 2020).

No variation of the number of classes. Following transfer learning literature, papers that evalu-
ates the few-shot transferability of pretrained models often use all classes of the target downstream
dataset (Kolesnikov et al., 2020; Radford et al., 2021) to form a task, thus the capability of pretrained
models transferring to less number of classes which forms more specific fine-grained category struc-
tures is not considered.

No class imbalance. For simplicity, almost all previous few-shot transfer evaluations use class-
balanced settings, where the number of shots in each class of the training set is exactly the same
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Table 3: Average 1-shot transfer performance of pretrained DINOv2-small over 50 tasks: hyperpa-
rameter ensemble vs. individual hyperparameter configurations. See appendix for details.

configuration (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Avg lr ensemble lr+epoch ensemble

EuroSAT 67.52 67.23 68.00 70.75 71.01 61.87 45.44 45.55 42.48 59.98 70.21 70.72

Aircraft 61.92 61.55 61.44 61.49 61.79 61.23 61.44 61.31 60.45 61.40 63.39 63.28

for all classes. However, we cannot guarantee that this will still hold in real-world few-shot transfer
scenarios and thus models and algorithms should be evaluated on class-imbalanced scenarios.

Datasets lack diversity, are too easy, and may have errors. Take the widely-used few-shot transfer
benchmark for multimodal pretrained models (Radford et al., 2021; Zhou et al., 2022c) that contains
11 datasets as an example. Images from most datasets in this benchmark are taken from modern
cities, thus being similar to parts of ImageNet and the tasks are not difficult to solve even when there
are only a few samples per class. This can be seen from recent papers (Khattak et al., 2023) where
the average few-shot accuracy of 5 datasets reaches more than 90%, in the condition that some of
the datasets have more than 100 classes, which should have been difficult to classify correctly with
few samples per class. In addition, the benchmark has StanfordCars (Krause et al., 2013) as one of
its datasets, which has proven to have tons of mislabeled images and outliers (Cleanlab, 2023).

5 INTRODUCING THE FEWTRANS BENCHMARK

In this section, we introduce several evaluation standards to solve the aforementioned issues of few-
shot transfer, which constitutes the key components of our proposed FEWTRANS benchmark.

5.1 HYPERPARAMETER ENSEMBLE FOR ROBUST FEW-SHOT EVALUATION

To overcome the difficulty of estimating hyperparameters with a few samples, we propose to not
search for single hyperparameters, but instead use hyperparameter ensemble (Momma & Bennett,
2002; Wenzel et al., 2020) that utilizes several hyperparameters for prediction. Specifically, let
H = {hi}mi=1 be a set of m hyperparameter configurations, where hi = {hi

1, h
i
2, ..., h

i
n} is a single

configuration that includes values of n hyperparameters. Suppose that the classifier produced by
adapting a pre-trained model to a downstream task by hyperparameter configuration hi is ghi , which
maps images to classification scores. Then for any given test image x of the downstream task, the
classification score of x wrt hyperparameter ensemble H is defined as the sum of all scores obtained
by each hyperparameter configuration, i.e.,

∑
h∈H gh(x).

One advantage hyperparameter ensemble offers is its robustness to individual bad hyperparameter
configurations. We can observe this in the first row of Table 3: the accuracies of some hyperpa-
rameter configurations are very low (less than 50%), but the hyperparameter ensemble still reaches
70.21% accuracy, very close to the optimal performance 71.01% achieved by the optimal individual
configuration. Thus as long as the good hyperparameters are included in H, the few-shot trans-
fer performance with hyperparameter ensemble will be very close to the performance obtained by
the good hyperparameters. As we have seen before, the variations of hyperparameters of a given
pretrained model are not beyond several orders, thus as long as we set a large enough range of
hyperparameters, every evaluated task can provably approach its optimal performance and the eval-
uation is thus stabilized to some extent. In addition, it does not introduce additional computation
overhead compared to cross-validation.

Another advantage of using hyperparameter ensemble is that it can measure the sensitivity of the
few-shot transfer performance to the choice of hyperparameters. As seen from the second row of
Figure 3, when the loss landscape around the optimal hyperparameters is flat, the performance given
by the ensemble will be higher, while not causing too strong fluctuations.

According to what we have just discussed, the two criteria that we require for a good hyperparameter
searcher are both satisfied by hyperparameter ensemble. We thus use it in FEWTRANS. For prac-
tical usage, we still need to determine how to set the range of hyperparameters for each pretrained
models/transfer algorithm. Since we know that the hyperparameters won’t usually change too much
from dataset to dataset, we determine the range on a held-out dataset by finding the best average
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Table 4: Sub-benchmark of FEWTRANS that compares the few-shot transferability of different pre-
trained models. We use all-parameter finetune as the transfer algorithm for all models. We tem-
porarily do not evaluate pretrained models that use larger architectures.
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ResNet-50 IN-1M 63.6±1.5 69.3±1.1 74.3±1.1 84.1±1.1 76.7±1.2 84.1±1.0 64.8±1.3 47.6±1.4 72.5±1.4 51.7±1.4 68.9±1.3

MAE-base IN-1M 72.3±1.5 74.0±1.1 86.3±0.8 92.1±0.6 88.2±0.8 88.1±0.9 72.6±1.2 62.1±1.3 85.9±0.8 52.3±1.3 77.4±1.1

Swin-B IN-1M 71.5±1.5 74.7±1.1 87.0±0.8 90.9±0.8 87.8±0.8 87.6±0.9 74.2±1.1 60.7±1.3 86.1±0.8 55.4±1.4 77.6±1.1

EsViT-SwinB IN-1M 69.7±1.5 75.3±1.0 84.7±0.9 93.6±0.6 88.0±0.8 87.8±0.9 70.8±1.2 62.9±1.3 86.2±0.8 57.7±1.5 77.7±1.1

ConvNext-B IN-1M 74.6±1.5 73.9±1.1 88.3±0.7 90.8±0.8 89.1±0.8 86.4±1.0 75.1±1.1 60.8±1.3 84.2±0.9 55.7±1.4 77.9±1.1

IBOT-ViT IN-1M 69.7±1.5 74.9±1.1 89.6±0.7 93.6±0.6 89.1±0.8 89.1±0.8 69.9±1.2 60.8±1.3 86.3±0.8 56.7±1.5 78.0±1.1

BiT-R101 IN-14M 68.2±1.5 77.3±1.0 85.3±0.8 99.6±0.1 89.4±0.7 87.0±0.9 71.9±1.2 67.9±1.2 91.1±0.6 57.5±1.4 79.5±1.0

CLIP-base WIT-400M 80.4±1.3 83.5±0.8 94.9±0.3 96.9±0.3 95.4±0.3 88.5±0.7 76.5±0.9 54.8±1.4 77.2±1.0 78.8±1.0 82.7±0.9

DINOv2-small LVD-142M 75.1±1.4 81.3±0.9 89.8±0.7 99.6±0.1 90.3±0.7 87.0±0.9 78.1±1.0 69.9±1.2 89.8±0.7 67.3±1.4 82.8±1.0

DINOv2-base LVD-142M 79.8±1.3 82.6±0.9 93.0±0.5 99.9±0.0 93.9±0.5 87.7±0.9 79.6±1.0 74.9±1.1 91.8±0.6 70.3±1.3 85.3±0.9

optimal hyperparameters on this dataset, setting it as the center of the hyperparameter range, and
expanding it to a full range. For pretrained models not trained on ImageNet, we choose the valida-
tion set of ImageNet as the held-out dataset, while for ImageNet models, we choose CUB (Welinder
et al., 2010) as the held-out dataset.

5.2 OTHER COMPONENTS OF FEWTRANS

Datasets. We choose datasets such that the sampled tasks are not too easy, cover different domains,
and do not have many errors. In addition, in order to evaluate multimodal models, we require
that each class of chosen datasets should have a text name. We finally choose ten datasets that
satisfy these criteria: ImageNet-Sketch (Wang et al., 2019), DTD (Cimpoi et al., 2014), CIFAR-100
(Krizhevsky et al., 2009), VGG Flowers (Nilsback & Zisserman, 2008), UCF-101 (Soomro et al.,
2012), EuroSAT (Helber et al., 2019), Quick Draw (Jonas et al., 2016), Fungi (Schroeder & Cui,
2018), Plant Disease (Mohanty et al., 2016) and Aircraft (Maji et al., 2013).

Base-novel split. Following literature of transfer algorithms for multimodal models (Zhou et al.,
2022c; Khattak et al., 2023), we split the classes of each dataset into a base set of classes and a novel
set of classes. For base evaluation, the pretrained multimodal model will be adapted to the training
set sampled from base set and evaluated on the test set sampled from base set. For base-to-novel
evaluation, the pretrained multimodal model will still be adapted to the training set sampled from
the base set, but evaluated on the test set sampled from the novel set of classes. This is possible
since multimodal models like CLIP (Radford et al., 2021) do not need a tunable classification head,
but classify images dependent on text names of classes only. For unimodal models, we only conduct
base evaluation. The base-novel split is approximately 4 : 1 for each dataset.

Sampling criteria. We follow the task sampling criteria adopted in Meta-Dataset (Triantafillou
et al., 2020) with some small differences. Specifically, to sample a task, we first sample a random
number of classes from the target task. The number of classes is sampled uniformly from [2, 15] for
all datasets except for ImageNet-Sketch, whose classes per task are hierarchically sampled from one
node in WordNet to improve the quality of sampled tasks. Then images in the task are sampled with
an imbalance of shots for each class. In Meta-Dataset, the average number of shots can be large
(20 or more), deviating from the true few-shot settings. We thus restrict the maximum number of
training samples in each class to 10, constructing “true” few-shot tasks. To have a well estimation
of performance, we sample 600 tasks per dataset and report the 95% confidence intervals.

5.3 EXPERIMENTS ON FEWTRANS

We use the aforementioned evaluation protocols to evaluate the few-shot transferability of pretrained
models and compare different transfer algorithms. This results in three sub-benchmarks that (1)
compares different pretrained models, (2) compares different transfer algorithms for pure vision
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Table 5: Sub-benchmark of FEWTRANS that compares different transfer algorithms for pure vision
pretrained models. The visual encoder of CLIP-base is chosen as the pretrained model.
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Linear 72.1±1.5 76.7±1.1 83.7±0.8 95.5±0.4 91.6±0.7 81.5±1.0 70.8±1.1 56.8±1.4 75.3±1.1 68.0±1.3 77.2±1.1

Finetune 73.1±1.5 79.9±1.0 88.0±0.8 95.9±0.5 93.0±0.6 87.6±0.9 78.9±1.0 58.9±1.4 83.7±0.9 70.7±1.3 81.0±1.0

LoRA 73.8±1.5 80.7±1.0 88.7±0.7 96.1±0.4 93.3±0.6 87.7±0.9 78.0±1.1 59.4±1.4 83.3±0.9 71.0±1.3 81.2±1.0

BitFit 73.6±1.5 79.7±1.0 89.3±0.7 96.8±0.4 93.3±0.6 86.5±0.9 77.3±1.1 61.3±1.3 83.5±0.9 71.0±1.2 81.2±1.0

SSF 74.2±1.5 80.3±1.0 89.0±0.7 96.7±0.4 93.2±0.6 87.4±0.9 77.3±1.1 60.8±1.3 84.4±0.9 70.7±1.3 81.4±1.0

Adapter 74.1±1.5 80.5±1.0 89.8±0.7 96.9±0.4 93.6±0.5 86.5±0.9 77.3±1.0 61.2±1.3 83.2±0.9 70.9±1.2 81.4±1.0

Adaptformer 74.1±1.5 80.8±1.0 90.0±0.7 97.0±0.3 93.8±0.5 87.0±0.9 77.7±1.0 61.8±1.3 83.6±0.9 71.0±1.2 81.7±1.0

VPT 73.2±1.5 82.1±0.9 90.2±0.7 97.0±0.4 93.6±0.5 87.3±0.9 78.2±1.0 61.9±1.3 85.7±0.9 71.6±1.2 82.1±1.0

TSA 74.3±1.5 80.0±1.0 89.5±0.7 96.9±0.4 93.5±0.6 87.5±0.9 78.3±1.0 64.5±1.3 86.2±0.8 72.2±1.2 82.3±1.0

Table 6: Sub-benchmark of FEWTRANS that compares different transfer algorithms for base evalu-
ation of multi-modal pretrained models. CLIP-base is chosen as the pretrained model.
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Zero-shot 72.6±1.5 73.0±1.0 92.9±0.4 86.3±0.9 90.5±0.6 64.4±1.2 57.4±1.2 38.7±1.5 46.0±1.4 69.2±1.2 69.1±1.2

CoOp 79.3±1.3 83.8±0.8 93.8±0.4 97.8±0.2 95.1±0.4 84.3±0.8 73.8±0.9 51.9±1.5 70.9±1.2 70.0±1.4 80.1±1.0

ProGrad 79.4±1.3 82.3±0.8 93.9±0.4 96.2±0.3 94.7±0.4 84.1±0.8 72.5±0.9 53.8±1.4 71.6±1.1 73.2±1.2 80.2±0.9

VPT 78.8±1.3 81.3±0.8 94.5±0.3 95.5±0.4 94.5±0.4 88.3±0.7 75.1±0.9 47.4±1.5 72.9±1.1 76.5±1.1 80.5±0.9

MaPLe 79.2±1.3 82.5±0.8 94.6±0.3 96.5±0.4 95.1±0.4 88.8±0.7 76.3±0.9 48.9±1.5 74.6±1.1 74.5±1.1 81.1±0.9

KgCoOp 79.9±1.2 84.1±0.7 94.1±0.4 97.5±0.2 95.3±0.4 84.7±0.8 74.1±0.9 55.2±1.5 72.9±1.1 73.9±1.2 81.2±0.9

CoCoOp 79.8±1.2 83.4±0.8 93.8±0.4 97.4±0.3 95.4±0.4 86.3±0.7 76.0±0.9 52.2±1.6 76.7±1.1 74.1±1.2 81.5±1.0

AllFT 80.4±1.3 83.5±0.8 94.9±0.3 96.9±0.3 95.4±0.3 88.5±0.7 76.5±0.9 54.8±1.4 77.2±1.0 78.8±1.0 82.7±0.9

VisualFT 80.0±1.2 83.0±0.8 95.1±0.3 96.6±0.4 95.1±0.4 89.9±0.7 78.3±0.8 52.7±1.4 80.1±0.9 77.7±1.0 82.9±0.9

TextFT 80.9±1.2 85.4±0.7 94.2±0.4 98.3±0.2 96.0±0.3 85.6±0.8 75.8±0.9 62.5±1.4 80.3±0.9 79.0±1.0 83.8±0.9

models, and (3) compares different transfer algorithms for multimodal models for base evaluation
and base-to-novel evaluation.

Evaluated models and algorithms. For pretrained models, we evaluate supervised models in-
cluding ResNet-50 (He et al., 2016), SwinTransformer-base (Liu et al., 2021), ConvNext-base (Liu
et al., 2022) trained on ImageNet 1K, and BiT-R101 (Kolesnikov et al., 2020) trained on ImageNet
21K; self-supervised ImageNet models including MAE-base (He et al., 2022), IBOT-ViT-base (Zhou
et al., 2022a) and EsViT-Swin-base (Li et al., 2022a); multimodal pretrained model CLIP (Radford
et al., 2021) trained on 400 millions image-text pairs; and self-supervised models DINOv2-small,
DINOv2-base (Oquab et al., 2023) trained on 142M curated images. For transfer algorithms for pure
vision models, we evaluate linear probing (Zhang et al., 2016), Finetune (He et al., 2022), and sev-
eral parameter-efficient finetuning methods including LoRA (Hu et al., 2022), BitFit (Zaken et al.,
2022), SSF (Lian et al., 2022), Adapter (Houlsby et al., 2019), Adaptformer (Chen et al., 2022),
VPT (Jia et al., 2022) and TSA (Li et al., 2022b). For transfer algorithms for multimodal models,
we evaluate CoOp (Zhou et al., 2022c), CoCoOp (Zhou et al., 2022b), VPT (Jia et al., 2022), MaPLe
(Khattak et al., 2023), KgCoOp (Yao et al., 2023), ProGrad (Zhu et al., 2023), Finetune of visual
encoder, Finetune of text encoder and Finetune of both encoders. We give results in Table 4-7. We
make following observations.

The size of the pretraining dataset matters. As seen from Table 4, models trained on ImageNet-
1K have very similar performance when well-tuned (except for ResNet-50 which does not use most
of the training tricks), regardless of the training algorithm and architecture used. The difference
between the worst-performing MAE and best-performing IBOT is 0.6, smaller than the range of
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Table 7: Sub-benchmark of FEWTRANS that compares different transfer algorithms for base-to-
novel evaluation of multi-modal pretrained models. CLIP-base is chosen as the pretrained model.
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CoCoOp 67.5±1.4 66.7±1.1 86.8±0.5 77.5±1.1 87.9±0.7 67.5±1.3 61.4±1.1 21.8±1.2 59.4±1.4 47.9±1.7 64.4±1.2

CoOp 64.3±1.5 71.5±1.0 86.5±0.6 85.0±0.8 86.1±0.7 71.5±1.2 60.9±1.2 31.5±1.4 65.0±1.2 46.2±1.9 66.8±1.2

ProGrad 65.0±1.5 71.7±1.0 86.7±0.5 85.0±0.8 86.3±0.7 72.0±1.2 61.1±1.2 32.5±1.4 65.7±1.2 49.7±1.8 67.6±1.2

VPT 71.7±1.3 67.7±1.0 87.5±0.6 84.5±0.8 86.4±0.7 68.1±1.4 56.7±1.2 37.0±1.3 56.9±1.4 61.5±1.3 67.8±1.1

MaPLe 70.4±1.3 62.1±1.2 88.3±0.5 82.4±0.8 87.3±0.6 77.1±1.3 60.8±1.1 34.3±1.3 62.2±1.3 56.2±1.4 68.1±1.1

KgCoOp 68.9±1.4 72.7±0.9 87.0±0.5 86.6±0.7 87.8±0.7 70.6±1.2 60.6±1.1 33.9±1.4 66.7±1.2 51.9±1.8 68.7±1.2

Zero-shot 73.9±1.3 68.7±1.1 86.8±0.5 87.0±0.7 89.0±0.6 69.7±1.4 58.1±1.2 39.3±1.4 59.2±1.2 61.5±1.3 69.3±1.1

VisualFT 74.0±1.3 69.0±1.0 88.3±0.5 86.7±0.7 89.0±0.6 70.2±1.4 60.4±1.1 38.9±1.4 67.5±1.3 62.2±1.3 70.6±1.1

TextFT 74.2±1.3 69.8±1.0 87.0±0.5 87.5±0.7 89.8±0.6 72.2±1.4 59.9±1.2 39.2±1.4 70.2±1.2 61.7±1.3 71.2±1.1

AllFT 74.1±1.3 69.4±1.0 88.1±0.5 87.2±0.7 89.5±0.6 72.3±1.4 60.9±1.1 39.6±1.4 68.9±1.2 62.8±1.3 71.3±1.1

confidence interval. However, when the dataset size increases, we see a very clear improvement in
few-shot transfer performance.

CLIP meets problems with uncommon class names. From Figure 4, we see that CLIP exhibits
promising performance on most datasets, but performs badly on Fungi and Plant Disease, two fine-
grained datasets whose category names are mostly rare words. This is something like a “text domain
shift” which requires significant updates for the text encoder. We expect that such problems can be
relieved when the number of shots increases, but for few-shot evluation on these two datasets, only
using the visual encoder of CLIP (see Table 5) can be better than using both encoders (see Table 6).

Visual-only transfer algorithms perform similar. From Table 5, we can see that except for linear
probing, all transfer algorithms for pure visual pretrained models have very similar performance
and have intersected confidence intervals. This is in contrast to the benchmark of many-shot trans-
fer learning like VTAB (Zhai et al., 2019), where different transfer algorithms are shown to have
significant performance gaps (see Chavan et al. (2023) for example).

Finetune performs surprisingly well on all sub-benchmarks for transfer algorithms as shown in
Table 5-7, especially for multimodal models. Intuitively, finetuning all parameters of the pretrained
model with a few samples should meet overfitting problems. Such a phenomenon needs deeper
understanding.

Are we making progress on few-shot multimodal transfer? While we observe in Table 6 that
all specifically designed transfer algorithms for CLIP perform better than zero-shot baseline in base
evaluation, they all perform worse than zero-shot baseline in base-to-novel evaluation in Table 7,
different from what some of the methods claimed in their paper with the old benchmarks. In contrast,
simple finetune, either finetuning a single encoder or finetuning both, surpasses all these methods
in both evaluation settings. This indicates we are not making progress in this field and we should
rethink what’s the thing that leads to real improvement of few-shot multimodal transfer performance.

6 CONCLUSION AND FUTURE WORK

We have introduced FEWTRANS, a unified, realistic, rigorous benchmark for evaluating few-shot
transferability of pretrained models. Our initial exploration of this benchmark shows that transfer-
ring from a better pretrained model trained on a large pretraining dataset seems to be much more
important than using a better transfer algorithm. However, we believe that with rigorous evalu-
ation, comparison and further investigations on FEWTRANS, good transfer algorithms will finally
emerge. We are now implementing more algorithms and trying to include more pretrained models in
the benchmark. In addition to comparing few-shot performance, we plan to add a comparison of the
number of tunable parameters and the time needed for a complete adaptation for transfer algorithms.
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7 REPRODUCIBILITY STATEMMENT

We do our best to ensure the reproducibility of our benchmark. We include most details of our
empirical investigations and the benchmark in the two sections of Appendix. The code for the
benchmark can be found at https://anonymous.4open.science/r/FewTrans-7FB5.
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A EXPERIMENT DETAILS OF SECTION 4

For all empirical investigations in this section, when looking for the optimal hyperparameters for a
single task or average optimal hyperparameters for several tasks, we set the overall search space of
the number of epochs to be [1, 2, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100]. For learning rates, we
do not set an upper limit for the search, and for each exponent of 10, we search over its multiples of
1, 2, and 5. For example, for the 1e − 05, we search over 1e − 05, 2e − 05, and 5e − 05. We set
the lower limit for the search as 1e − 08. To reduce the search space, we first empirically initialize
a coarse-grained search grid. For example, for ViTs, the search space for the number of epochs is
[30, 50, 70], while for the backbone learning rate it is [1e − 06, 1e − 05, 1e − 04], and for the head
learning rate is [0.001, 0.01, 0.1]. We then adjust this coarse-grained search grid such that we can
find a coarse-grained “optimal” point inside it. Then we switch to the fine-grained search mode. We
start from this coarse-grained point and search over its nearby points to find the “true” optimal one.
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For cross-validation on each task, to avoid introducing too much computation overhead, we do not
set fine-grained search grid for hyperparameters, and just set a coarse-grained search grid. The deter-
mination of the range of the search grid is the same as that of hyperparameter ensemble introduced
in Section 5.1.

For hyperparameter configurations in Table 3, we use 1e − 06, 1e − 05, 1e − 04 as the backbone
learning rates for EuroSAT and 1e− 07, 1e− 06, 1e− 05 for aircraft; we use 0.001, 0.01, 0.1 as the
head learning rates for EuroSAT and 5e − 04, 5e − 03, 5e − 02 for EuroSAT. The epoch is fixed at
30 for all settings except for lr+epoch ensemble where 13, 26, 40 are used as epoch candidates.

B MORE DETAILS OF FEWTRANS

B.1 DATASETS

1. ImageNet-Sketch (Wang et al., 2019) is a variant of ImageNet (Deng et al., 2009) that contains
50000 sketches of all 1000 classes in ImageNet-1K. The leaves of the wordnet that are reachable
from ‘carnivore’ and ‘device’ form all 288 classes of novel set and other 712 classes belong to
the base set.

2. DTD (Cimpoi et al., 2014) is a texture database containing 5640 classes with 47 classes. We
randomly choose 37 classes as the base classes, and the other 10 classes as the novel classes.

3. CIFAR-100 (Krizhevsky et al., 2009) is a real-world dataset that has 100 classes containing 600
images each. We randomly choose 80 classes as the base classes, and the other 20 classes as the
novel classes.

4. VGG Flowers (Nilsback & Zisserman, 2008) is a dataset of natural images of 102 flower cat-
egories. Each category contains 40 - 258 images. We randomly choose 82 classes as the base
classes, and the other 20 classes as the novel classes.

5. UCF-101 (Soomro et al., 2012) is an action recognition data set of realistic action videos, col-
lected from YouTube, having 101 action categories with 13320 videos. We use sampled frames
from these videos to form an image dataset. We randomly choose 81 classes as the base classes,
and the other 20 classes as the novel classes.

6. EuroSAT (Helber et al., 2019) is based on Sentinel-2 satellite images covering 13 spectral bands
and consisting of 10 classes with in total 27000 labeled and geo-referenced images. We randomly
choose 6 classes as the base classes, and the other 4 classes as the novel classes.

7. Quick Draw (Jonas et al., 2016) is a dataset of black-and-white drawings across 345 categories.
We use its smaller version used in DomainNet (Peng et al., 2019) that contains 172500 images.
We randomly choose 276 classes as the base classes, and the other 69 classes as the novel classes.

8. Fungi (Schroeder & Cui, 2018) is a dataset of 1394 categories of mashrooms species, with ap-
proximately 100K images. We randomly choose 1115 classes as the base classes, and the other
279 classes as the novel classes.

9. Plant Disease (Mohanty et al., 2016) is a dataset that covers 38 categories of plant diseases. We
randomly choose 30 classes as the base classes, and the other 8 classes as the novel classes.

10. Aircraft (Maji et al., 2013) is a dataset containing 100 aircraft categories, with 100 images each.
We randomly choose 80 classes as the base classes, and the other 20 classes as the novel classes.

B.2 IMPLEMENTATION DETAILS

To determine the range of hyperparameters for hyperparameter ensemble, we first need to find the
average optimal hyperparameters on the held-out dataset. This procedure is exactly the same as the
procedure we use in Section 4 (see Section A for details). Then for unimodal models that have two
learning rates to be tuned, we expand the optimal hyperparameters into a 3 × 3 × 3 grid. For the
learning rate, we multiply the optimal hyperparameter found on the held-out dataset by 5 times and
then divide it by 5 times to form the axis. For the number of epochs, we add 10 to the optimal
hyperparameter, and expand it with its one-third and two-thirds to form the axis. For multimodal
models and transfer algorithms that have only one learning rate to be tuned, we expand the optimal
hyperparameters into a 5×3 grid, where the other rules remain unchanged. All points in the obtained
grid will be used as hyperparameter configurations for the hyperparameter ensemble.
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We conducted all experiments on 16 GeForce GTX 1080 Ti. For each evaluation of 600 tasks,
the time cost on one GPU ranges from several hours to several days, depending on the pretrained
models and transfer algorithms used. For all algorithms, we do not use weight decay for adaptation,
and use default hyperparameters of Adam. For all transfer algorithms, we use their default settings
of all other hyperparameters except for learning rates and the number of epochs. We set the batch
size of the transfer process to be the maximum number that the GPU memory permits. During the
evaluation, we fix the seed all the time, so in fact, the sequence of sampled tasks, and even the
sequence of batch sampling inside each task, are exactly the same for all evaluation tasks, which
ensures absolutely fair comparison throughout the process.
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