
Structural Knowledge Distillation for Object Detection

Philip de Rijk1,2 Lukas Schneider2 Marius Cordts2 Dariu M. Gavrila1

1TU Delft 2Mercedes-Benz AG

Abstract

Knowledge Distillation (KD) is a well-known training paradigm in deep neural
networks where knowledge acquired by a large teacher model is transferred to a
small student. KD has proven to be an effective technique to significantly improve
the student’s performance for various tasks including object detection. As such,
KD techniques mostly rely on guidance at the intermediate feature level, which is
typically implemented by minimizing an ℓp-norm distance between teacher and
student activations during training. In this paper, we propose a replacement for
the pixel-wise independent ℓp-norm based on the structural similarity (SSIM) [28].
By taking into account additional contrast and structural cues, feature importance,
correlation and spatial dependence in the feature space are considered in the loss
formulation. Extensive experiments on MSCOCO [16] demonstrate the effec-
tiveness of our method across different training schemes and architectures. Our
method adds only little computational overhead, is straightforward to implement
and at the same time it significantly outperforms the standard ℓp-norms. Moreover,
more complex state-of-the-art KD methods [13, 33] using attention-based sampling
mechanisms are outperformed, including a +3.5 AP gain using a Faster R-CNN
R-50 [21] compared to a vanilla model.

1 Introduction

Over the last decade, Convolutional Neural Networks (CNNs), have shown to be a very effective
tool in solving fundamental computer vision tasks [14]. One major application of CNNs includes
real-time perception systems found in e.g. autonomous vehicles, where object detection is often a
task of major importance. Deployment of CNNs into real-time applications, however, introduces
strict limitations on memory and latency. On the other hand, increased performance of state-of-the-art
detectors typically comes with an increase in memory requirements and inference time [12]. Thus,
the choice of network model and its according detection performance is strictly limited. Several
techniques have been proposed to tackle this problem, e.g. pruning [8], weight quantization [9],
parameter prediction [6] and Knowledge Distillation (KD) [11]. In this work we are particularly
interested in the latter, as it provides an intuitive way of performance improvement without the need
for architectural modifications to existing networks.

With KD, the knowledge acquired by a computationally expensive teacher model is transferred
to a smaller student model during training. KD has proven to be very effective in tasks such as
classification [11], segmentation [19], and in particular has seen considerable progress in detection
very recently [5, 7, 13, 33, 35]. Due to the complexity of the output space of a typical detection model,
it is necessary to apply KD at the intermediate feature level, as solely relying on output-based KD has
proven ineffective [3, 5, 7, 13, 15, 25, 33, 35]. In feature-based KD, in addition to existing objectives,
a training objective is introduced which minimizes the error between teacher and student activations
and is de-facto standard defined by the ℓp-norm distance between individual feature activations
[5, 7, 13, 25, 33, 35], as shown in fig. 1a. The ℓp-norm however ignores three important pieces of
information present in the feature maps: (i) spatial relationships between features, (ii) the correlation

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(a) Previous methods [5, 7, 25, 33,
35]. After sampling features an ℓp-
norm is applied between selected
feature activations.

(b) Our proposed method. We distill relational knowledge in the form
of local mean µ, variance σ2 and furthermore cross-correlation σST
between feature spaces.

Figure 1: Feature-based Knowledge Distillation (KD).

between the teacher and student features and (iii) importance of individual features. We notice recent
work has (implicitly) focused on bypassing the latter point through mechanisms that sample feature
activations by assuming that object regions are more "knowledge-dense" [5, 13, 25, 35]. However, as
demonstrated by Guo et al. [7] (2021), even distilling exclusively background feature activations can
lead to significant performance improvement, therefore it cannot be assumed that solely object regions
contain useful knowledge. Sampling mechanisms furthermore introduce additional drawbacks which
may limit their broader implementation into real-world applications, e.g. the need for labeled data
[7, 13, 25].

In this work, we propose Structural Knowledge Distillation, which aims to improve the downsides
associated with the ℓp-norm as a central driver for KD methods, rather than designing an ever more
sophisticated sampling mechanism. Our key insight is illustrated in fig. 1b: The feature space of a
CNN can be locally decomposed into luminance (mean), contrast (variance) and structure (cross-
correlation) components, a strategy that has seen successful application in the image domain in the
form of SSIM [28]. The new training objective becomes to minimize local differences in mean and
variance, and maximize local zero-normalized cross-correlation between the teacher and student
activations. Doing so allows us to capture additional knowledge contained in spatial relations and
correlations between feature activations of the teacher and additionally the student, rather than directly
minimizing the difference in individual activations.

In order to demonstrate the effectiveness of our method we perform extensive experiments using
various detection architectures and training schemes. Overall our contribution is as follows:

• We propose Structural Knowledge Distillation, which introduces ℓSSIM and variations as a
replacement of the ℓp-norm for feature-based KD in object detection models. This enables
the capture of additional knowledge manifested in local mean, variance and cross-correlation
relationships in the feature space of student and teacher networks.

• We illustrate through an analysis of the feature space that our method focuses on different areas
than ℓp-norms, and that therefore solely sampling from object regions is suboptimal as the entire
feature space can contain useful knowledge depending on the activation pattern.

• We demonstrate a consistent quantitative improvement in detection accuracy for various training
settings and model architectures by performing extensive experiments on MSCOCO [16]. Our
method even performs on par or outperforms carefully tuned state-of-the-art object sampling
mechanisms [13, 33], and fundamentally achieves this by only introducing one line of code.

2

2 Related Work

Knowledge Distillation KD aims to transfer knowledge acquired by a cumbersome teacher model
to a smaller student model. Bucilǎ et al. [1] (2006) demonstrate that the knowledge acquired by a
large ensemble of models can be transferred to a single small model. Hinton et al. [11] (2015) provide
a more general solution applied in a DNN in which they raise the temperature of the final softmax
until the large model produces a suitably soft set of targets. Most KD research in the computer vision
domain focuses on the classification task [24]. However, as our main interest lies in the real-time
domain we focus on the more relevant object detection task.

Object Detection Object detection is one of the fundamental computer vision tasks, where speed
and accuracy are often two key requirements. Object detectors can be classified into one-stage and
two-stage methods, in this work we investigate our approach for both variations. Generally, two-stage
detectors allow for higher accuracy at a higher computational cost, and one-stage detectors allow
for lower inference times and complexity in exchange for a penalty on accuracy [12]. This notion
is however highly dependent on the choice of feature extractor and hyperparameter configuration,
which is not a straightforward procedure. The main meta-architecture within the one-stage domain
is RetinaNet [17], with extensions including anchor-free modules and Reppoints [37, 32]. In the
two-stage domain Faster R-CNN [21] is regarded as the most widely used meta-architecture, where
iterations include Cascade R-CNN [2]. Furthermore, regardless of architecture, ResNet [10] back-
bones are very commonly used to extract features, which are furthermore fused at multiple scales
using e.g. a FPN [17].

Knowledge Distillation for Object Detection Several methods have been proposed that use KD
for object detectors, where it has been found that typically guidance at the intermediate feature
level rather than the output is critical due to the complex nature of the output space in detection
models [3, 5, 7, 13, 15, 25, 33, 35]. As the detection task requires the identification of multiple
objects at different locations, a major complexity introduced is the imbalance between foreground
and background, which manifests itself in the intermediate features. Typically, the assumption is
made that object regions are "knowledge-dense", and background regions less so. As a result, recent
work has implicitly focused on designing mechanisms which sample object-relevant features to distill
knowledge from [5, 13, 15, 25, 35].

Li et al. [15] (2017) mimic the features sampled from the region proposals in a two stage detector.
Wang et al. [25] (2019) propose imitation masks which locate knowledge dense feature locations
based on the annotated boxes. Dai et al. [5] (2021) propose a module which distills based on distance
between classification scores. Similarly, Zhixing et al. [35] (2021) use output class probability to
determine feature object probability. Recently Kang et al. [13] (2021) proposed a method in which
they encode instance annotations in an attention mechanism [23] to locate "knowledge-dense" regions.
Contrary to aforementioned methods, Zhang and Ma [33] (2021) propose a purely feature-based
method in which they aim to both mimic the attention maps [36] as a sampling mechanism, and
furthermore distill through non-local modules [26]. Regardless of the sampling technique, it has been
demonstrated by Guo et al. [7] (2021) that it is not necessarily the case that background features are
less important for distillation.

Objective Functions The objective in feature-based KD is to minimize the error between teacher
and student feature spaces during training, typically in addition to existing objectives. The most
widely used objective function in feature-based KD is the ℓp-norm with p = 2 [3, 5, 7, 15, 25, 33, 35],
and less commonly p = 1 [3]. The ℓp-norm however, ignores the spatial relationships between
features, the correlation between teacher and student and the importance of individual features, of
which the latter has been the main focus of previous work. To take into account spatial dependencies,
we need to furthermore compare features locally rather than pointwise. SSIM provides an elegant
way to take into account spatial dependencies by making local comparisons of intensity and contrast,
rather than just pointwise. It is further able to take into account the relationship between the teacher
and the student by integrating zero-normalized cross-correlation. Contrary to alternative image signal
quality metrics such as VIF [27], GMSD [31] and FSIM [34], SSIM is less complex to formulate
mathematically and is differentiable, making it suitable as an objective function.

3

3 Method

3.1 Overview

We start off by defining the general form of feature-based distillation loss. For the purposes of this
work, we divide a detector into three components: (i) the backbone, used for extracting features, (ii)
the neck, for fusing features at different scales (typically a FPN [17]), and (iii) the head, for generating
regression and classification scores. For feature-based KD, we select intermediate representations
T ∈ RC,H,W and S ∈ RC,H,W from the teacher and student respectively at the output of the neck.
The feature-based distillation loss between T and S can subsequently be formulated as:

Lfeat =

R∑
r=1

1

Nr

H∑
h=1

W∑
w=1

C∑
c=1

Lε (ν (ϕ (Sr,h,w,c)) , ν (Tr,h,w,c)) (1)

where H,W,C,R are the height, width, number of channels and number of neck outputs respectively,
Nr = HWC the total number of elements for the r-th output scale. Additionally we define ν(·)
as a normalization function which maps the values of T and S to [0, 1], in our case a min-max
rescaling layer, and ϕ(·) as an optional adaptation layer [3] which matches the dimensionality of
T and S, in our case a 1 × 1 convolutional layer. We introduce the shortened notation Lε which
represents the choice of difference measurement function at a single feature position r, h, w, c on
normalized features and including the adaptation layer, i.e. Lε = Lε (ν (ϕ (Sr,h,w,c)) , ν (Tr,h,w,c)).
Accordingly, we use S and T to denote normalized and adapted student and normalized teacher
activations respectively, e.g. S = ν (ϕ (Sr,h,w,c)).

3.2 Measuring Difference

As ascertained, the de-facto standard choice for Lε is the ℓp norm. p = 2 penalizes large errors, but
is more tolerable to smaller errors. On the other hand, p = 1 does not over-penalize large errors, but
smaller errors are penalized more harshly. The ℓp norm in its general form is given by:

ℓp : Lε = (|S − T |p)1/p (2)

Clearly such a function is not able to capture spatial relationships between features. In order to capture
second-order information we need to involve at least two feature positions, we therefore change the
problem statement from a point-wise comparison to a local patch-wise comparison. For each such
patch, we extract three fundamental properties: the mean µ, the variance σ2, and the cross-correlation
σST which captures the relationship between S and T . We follow [28] and compute these quantities
using a Gaussian-weighted patch FσF

of size 11× 11 and σF = 1.5. The proposed SSIM framework
[28] compares each of the properties, and is therefore composed of three components: luminance l,
contrast c and structure s, which are defined as follows:

l =
2µSµT + C1

µ2
S + µ2

T + C1
(3a) c =

2σSσT + C2

σ2
S + σ2

T + C2
(3b) s =

σST + C3

σSσT + C3
(3c)

where µS , µT refer to the mean, σS , σT refer to the variance and σST refers to the covariance within
the patch. Furthermore, to prevent instability C1 = (K1L)

2, C2 = (K2L)
2, C3 = C2/2, where L is

the dynamic range of the feature map and K1 = 0.01, K2 = 0.03. An important property of eq. (3)
is that it assigns more importance to relative changes in l and c due to the quadratic terms in the
denominator. Furthermore, s is a direct measurement of the zero-normalized correlation coefficient
between S and T , and hence is formulated as the ratio between their covariance and product of
standard deviations. As the range of eq. (3) is [−1, 1], combining the three components l, c, s results
in the following objective:

ℓSSIM : Lε = (1− SSIM)/2 = (1−
(
lα · cβ · sγ

)
)/2 (4)

where the prevalence of each function can be tuned, with α = β = γ = 1.0 as a default. As our
method is purely feature-based and therefore independent of the type of head or bounding box labels,
we simply add Lfeat to the existing detection objective function Ldet (typically Lcls and Lreg) using
weighting factor λ, which results in the following overall training objective:

L = λLfeat + Ldet (5)

4

4 Experiments

4.1 Experiment Settings

Following literature [7, 13, 25, 33, 35], we assess the performance of ℓSSIM on the MSCOCO [16]
validation dataset. We report mean Average Precision (AP) as the main evaluation metric, and
additionally report AP at specified IoU thresholds AP50, AP75 and object sizes APS , APM , APL.
Our central points of comparison are the two most widely used one- and two-stage meta-architectures,
RetinaNet (RN) [18] and Faster-RCNN (FRCNN) [21]. We use ResNet/ResNeXt-101 backbones [10,
30] for the teachers and R-50 [10] backbones for all students, with λ = 4, 2 respectively. We conduct
our experiments in Pytorch [20] using the MMDetection2 [4] framework on a Nvidia RTX8000 GPU
with 48GB of memory. Each model is trained using SGD optimization with momentum 0.9, weight
decay 1e-4 and batch size 8. The learning rate is set at 0.01 (RN) / 0.02 (FRCNN) and decreased
tenfold at step 8 and 11, for a total of 12 epochs. We additionally implement batch normalization
layers after each convolutional layer, and use focal loss [18] with γfl = 2.0 and αfl = 0.25. The
input images are resized to minimum spatial dimensions of 800 while retaining the original ratios,
and we add padding to both fulfill the stride requirements and retain equal dimensionality across each
batch. Finally the images are randomly flipped with p = 0.5 and normalized.

4.2 Comparison with ℓp-norms

In this first set of experiments we compare the performance of ℓp-norms to ℓSSIM. Table 1 shows the
results of the main experiments comparing the best performance of each Lε. It can be observed that:
(i) ℓSSIM outperforms ℓp-norms by a significant margin, boosting performance with up to +3.7AP. (ii)
Adopting any form of feature-based distillation results in an improvement over the vanilla network,
except in Faster R-CNN [21]. (iii) Even though previous work uses ℓ2, ℓ1 outperforms ℓ2 with AP
improvements of 2.3 vs. 0.4 and 1.2 vs. 0.0 respectively.

Table 1: Comparison of objective functions on MSCOCO [16].
Backbone Lε AP AP50 AP75 APS APM APL

RetinaNet [18]

Teacher R101 41.0 60.3 44.0 24.1 45.3 53.8
Vanilla R50 36.4 55.6 38.7 21.1 40.3 46.6
R50 ℓ2 36.8 (+0.4) 55.7 39.1 20.6 40.5 47.3
R50 ℓ1 38.7 (+2.3) 57.6 41.6 22.7 42.7 50.5
R50 ℓSSIM 40.1 (+3.7) 59.2 43.1 23.1 44.6 53.2

Faster R-CNN R50 [21]

Teacher X-101 45.6 64.1 49.7 26.2 49.6 60.0
Vanilla R50 37.4 58.1 40.4 21.2 41.0 48.1
R50 ℓ2 37.4 (+0.0) 57.6 40.9 21.2 41.3 48.1
R50 ℓ1 38.6 (+1.2) 58.8 42.1 21.8 42.1 49.9
R-50 ℓSSIM 40.9 (+3.5) 61.0 44.9 23.7 44.5 53.5

To investigate what this improvement in performance can be attributed to, we analyze the distribution
of the training stimulus in the feature space. Figure 2 illustrates the comparison between ℓssim and
ℓp (p = 2) for the magnitude of the loss, averaged over all channels and 12 training epochs in neck
r = 1. This tells us something about which regions in the feature space are focused on more. It can
be observed that with ℓ2, high loss is assigned to object regions in particular, and furthermore regions
with high brightness, such as the sky in fig. 2a or the window in fig. 2b. ℓssim however assigns the
loss differently, where not only object regions are focused, but additionally more diverse background
regions are targeted, while little importance is given to low-contrast background regions.

One of the issues highlighted by [7] is that losses are higher in object regions than in background
regions. As can be seen in fig. 2, the loss applied by ℓssim is much more distributed over the feature
space than ℓ2, which as a direct result causes a more distributed application of the gradient in the
feature space. As a result, is can be observed that the feature map of a ℓssim distilled model is much

5

(a) (b)

(c) (d)

Figure 2: Distribution of the magnitude of the loss in the feature space at output scale r = 1 for
various images, averaged over all channels and 12 epochs of training on MSCOCO [16]. From left to
right: Image, student trained with ℓ2, student trained with ℓssim. A darker color indicates a higher loss,
object regions have been highlighted with bounding boxes, and feature maps have been normalized.

more similar to the teacher than an ℓp distilled model, as shown in fig. 3, which directly translates to
the increase in performance.

(a) Vanilla (b) Teacher (c) ℓ2 (d) ℓssim

Figure 3: Qualitative comparison of a channel sampled randomly from RetinaNet [18] intermediate
neck output scale r = 1. Lighter colors indicate higher activation values.

4.3 Influence of Luminance, Contrast and Structure

(a) Luminance (α) (b) Contrast (β) (c) Structure (γ) (d) ssim (α, β, γ)

Figure 4: Distribution of the channel averaged magnitude of the loss for each individual component
luminance, contrast and stucture, averaged over 12 epochs of training on MSCOCO [16].

Next we compare the influence of the luminance, contrast and structure components by tuning α, β
and γ respectively (refer to eq.(4)), for this experiment we use the RetinaNet [18] teacher-student pair.
The results are shown in table 2. The main observation that can be made here is that the influence
of structure (γ) is more substantial than the other components, and even on its own provides an
increase of +3.2 AP. Furthermore, the comparisons of luminance α and contrast β alone result in
performance comparable or better than ℓp-norms (compare to table 1). In fig. 4 we furthermore
compare the average magnitude of the loss during training. The luminance provides a similar training
stimulus to the ℓp-norm (ref. to fig. 2c), but is more "smooth" due to the Gaussian kernel. Contrarily,
contrast mostly targets background areas, as it is more sensitive to differences where base contrast is
already low. Finally, it can be noticed that structure has the most influence over the total loss, both in
magnitude and spatial distribution.

6

Table 2: Comparison of objective functions for RetinaNet [18] on MSCOCO [16]. α tunes luminance,
β tunes contrast and γ tunes structure.

Backbone α β γ AP AP50 AP75 APS APM APL

Teacher ResNet-101 41.0 60.3 44.0 24.1 45.3 53.8
Vanilla ResNet-50 36.4 55.6 38.7 21.1 40.3 46.6

ResNet-50 1 0 0 38.7 (+2.3) 57.9 41.6 21.8 42.8 50.8
ResNet-50 0 1 0 38.9 (+2.5) 57.7 41.6 21.7 42.6 51.3
ResNet-50 0 0 1 39.6 (+3.2) 58.6 42.7 22.5 44.0 52.5
ResNet-50 0 1 1 40.0 (+3.6) 59.0 42.8 22.4 44.4 53.3
ResNet-50 1 1 1 40.1 (+3.7) 59.2 43.1 23.1 44.6 53.2

Additionally, in fig. 5 we illustrate the differences between student and teacher activations for the
differently trained models. It can be observed that the structure objective results in a feature space
that has converged to a very similar local optimum as the teacher, with few noisy or large differences.
Luminance contains more noisy differences, and especially in the last layer demonstrates high
differences. Although the contrast objective performs relatively well on its own, it seems to provide
different activations as the teacher, particularly in the object area, as the student network converged
to a different local minimum.

(a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4 (e) r = 5

Figure 5: Top row: Channel averaged activations in the RetinaNet R101 [18] Teacher. Subsequent
rows illustrate channel averaged differences in activations between teacher and student, distilled with:
2nd row: luminance (α). 3rd row: contrast (β). 4th row: structure (γ). r represents the output scales
of the feature map (eq. 1). Differences have been normalized, where darker color indicates a higher
value.

4.4 Comparison to State-of-the-Art Methods

Next, we compare to recent work, for which the following methods serve as baselines: (i) Zhang
and Ma [33] (2021), a purely feature-based approach leveraging attention masks [36] and non-local
modules [26], and (ii) Kang et al. [13] (2021), who encode labeled instance annotations in an attention
mechanism [23] and report state-of-the-art for distillation methods for RetinaNet [18] and Faster
R-CNN [21] on MSCOCO [16] at the time of writing. To further demonstrate the simplicity and
versatility of our method, we use the original code and teachers as the authors to compare to our
proposed method in the same experimental setup. [33] use the same MMDetection2 [4] framework,
while [13] use Detectron2 [29]. For the comparison with [13] we furthermore adopt inheritance,
a practice proposed by the authors in which the FPN [17] and head of the student are initialized
with teacher parameters. This leads to faster training convergence, but may not be applicable when

7

architectures differ between teacher and student. As the teachers and exact configurations slightly
vary, we split up the comparison into two parts, as shown in table 3.

Table 3: Comparison to state-of-the-art methods on MSCOCO [16]. † denotes inheritance.

Method RetinaNet [18] Faster R-CNN [21]
AP APS APM APL AP APS APM APL

Teacher 41.0 24.1 45.3 53.8 45.6 26.2 49.6 60.0
Vanilla 36.4 21.1 40.3 46.6 37.4 21.2 41.0 48.1
Zhang and Ma [33] 38.5 (+2.1) 21.7 42.6 51.5 38.9 (+1.5) 21.9 42.1 51.5
Ours 40.1 (+3.7) 23.1 44.6 53.2 40.9 (+3.5) 23.7 44.5 53.5
Teacher 40.4 24.0 44.3 52.2 42.0 25.2 45.6 54.6
Vanilla 37.4 23.1 41.6 48.3 37.9 22.4 41.1 49.1
Kang et al. [13] † 40.7 (+3.3) 24.6 44.9 52.4 40.9 (+3.0) 24.5 44.2 53.3
Ours † 40.7 (+3.3) 24.0 45.0 53.1 41.0 (+3.1) 23.8 44.5 53.7

It can be observed that: (i) the adoption of our ℓSSIM as the distillation function results in an
improvement of +3.7 AP, and outperforms [33] for all box sizes and IoU thresholds. (ii) Both our
ℓSSIM and [13] result in an improvement of +3.3 AP over the vanilla network. In particular, our
method scores high for APL, while [13] mainly show better performance in the small object APS

category. Additionally it can be observed that the student is able to outperform the teacher with
RetinaNet [18].

4.5 Ablation Studies

Generalizability to Detection Architectures and Schedules We perform additional studies on
several different detection architectures to demonstrate the generalizability of our method. We
evaluate our distillation method on the smaller ResNet-18 backbone and two alternative one-stage
architectures, Fsaf-RetinaNet [37], which extends RetinaNet [18] with an anchor-free module, and
Reppoints [32], which replaces the regular bounding box representation of objects by a set of sample
points. The results of our experiments are shown in table 4. It can be observed that: (i) For each
detection architecture our method significantly improves performance, with +3.5AP for the ResNet18
backbone, +2.3 AP for Fsaf-RetinaNet [37], +3.3 AP for Reppoints [32]. (ii) In general, our method
is modular and can significantly improve performance regardless of the detection framework used.

Table 4: Investigation of several popular detection architectures on MSCOCO [16].
Model AP AP50 AP75 APS APM APL

RetinaNet-R101 (Teacher) 41.0 60.3 44.0 24.1 45.3 53.8
RetinaNet-R18 (Vanilla) 32.6 50.6 34.6 17.8 35.2 43.5
RetinaNet-R18 (Ours) 36.1 (+3.5) 54.3 38.6 18.9 39.7 49.2
RetinaNet-R101 (Teacher) 41.0 60.3 44.0 24.1 45.3 53.8
RetinaNet-R50 (Vanilla, 2x) 37.4 56.7 39.6 20.0 40.7 49.7
RetinaNet-R50 (Ours, 2x) 40.6 (+3.2) 59.7 43.7 23.6 44.8 53.9
Fsaf-RetinaNeXt-X101 [37] (Teacher) 42.4 62.5 45.5 24.6 46.1 55.5
Fsaf-RetinaNet-R50 [37] (Vanilla) 37.4 56.8 39.8 20.4 41.1 48.8
Fsaf-RetinaNet-R50 [37] (Ours) 39.7 (+2.3) 59.3 42.4 22.0 43.3 52.0
Reppoints X-101[32] (Teacher) 44.2 65.5 47.8 26.2 48.4 58.5
Reppoints-R50 [32] (Vanilla) 37.0 56.7 39.7 20.4 41.0 49.0
Reppoints-R50 [32] (Ours) 40.3 (+3.3) 60.3 43.5 22.6 44.4 53.9

Effects of an Adaptation Layer Adaptation layers can be implemented when channel or spatial
dimensions between teacher and student do not match, and have shown to generally improve per-
formance in previous methods [3, 25, 33]. We implement the commonly used 1 × 1 convolution
to investigate the influence on performance with our method. We adopt the RetinaNet R101-50

8

teacher-student pair and the CRCNN X101 - FRCNN R50 teacher-student pair. The results are shown
in table 5. We notice that in table 5a there is no additional benefit of adopting an adaptation layer,
while in table 5b the difference is significant, and implementing the adaptation layer is critical. Our
method can therefore be used both with and without adaptation. However, when architectures and
backbones differ between teacher and student the adaptation layer is highly beneficial.

Table 5: Investigation of the effect of adaptation layers

(a) RetinaNet R101 - R50 [18]

Adap. layer AP APS APM APL

none 40.1 23.1 44.6 53.2
1× 1 40.1 23.1 44.4 53.4

(b) Cascade RCNN X101 [2] - FRCNN R50 [21]

Adap. layer AP APS APM APL

none 39.8 22.6 43.4 52.1
1× 1 40.9 23.7 44.5 53.5

Varying Patch Size F and Loss Prevalence λ We additionally investigate the two remaining
main hyperparameters that we introduce in this work, for which we use the RetinaNet R101-50 [18]
teacher-student pair. The influence of the prevalence of Lfeat tuned by λ is shown in fig. 6, where it
can be noticed that the choice of λ can cause a difference of up to +0.5 AP, with λ = 2, 4 providing
the best performance. Additionally the influence of the local patch size F over which we calculate
each component of ℓssim is investigated, the results are shown in fig. 6. It can be noticed that the
choice of kernel size does not have significant influence over performance.

Error Types Finally we are interested in the type of improvements made by our distillation method,
as illustrated in fig. 7. We can particularly observe improvements in the APL category (rightmost
set of columns), which can also be noticed in table 3 where we perform better in this category
than previous methods. One explanation is illustrated in fig. 5d, 5e where we can see that the
structural part ensures convergence towards the teacher, particularly in the deeper layers which
are responsible for detecting large objects. We furthermore observe that the main performance
improvements take place in localization, as seen in the AP75, AP50 and AP10 (Loc) categories in
fig. 7. The remaining categories refer to performance evaluation after removal of class supercategories
(Sim), all classifications (Oth) and all background FP’s, where across the board improvement remains
more limited than in the localization categories.

Figure 6: Performance differ-
ence when varying hyperpa-
rameters. Top: KD loss preva-
lence λ. Bottom: kernel size
F .

Figure 7: RetinaNet R-50 [18] AP score for varying box sizes.
Hatched areas represent the vanilla model, solid areas repre-
sent the performance increase obtained through our distillation
method.

9

5 Conclusion

This paper proposed ℓssim, a replacement for the conventional ℓp-norm as a building block for
feature-based KD in object detection. By taking into account additional contrast and structural cues,
feature importance, correlation and spatial dependence are considered in the loss formulation. ℓssim
outperforms ℓp-norms by a great margin and is able to reach performance on par or even surpass
state-of-the-art without the need for carefully designed and complex sampling mechanisms. Our
method is simple and can be implemented by replacing one line of code. We propose three main
directions for future work: First, using ℓssim as a building block for future KD methods within the
object-centric vision domain. Second, integrating and modifying ℓssim to work in other types of
(vision) tasks. Finally, an investigation from a theoretical point-of-view on the impact of convergence
trajectories and optimization performance of loss functions, not limited to those presented in this
paper, as applied in the feature space of a DNN.

Reproducibility Statement

All our experiments are based on publicly available frameworks [4, 29] and datasets [16]. An example
implementation of KD loss between teacher and student features is shown below. Omitting the import
and using a library such as Kornia [22], a change from ℓ2 to ℓSSIM only requires a change in one line
of code.

l2 implementation
from torch.nn.functional import mse_loss
def kd_loss(student_feats, teacher_feats):

inputs have shape [B, C, H, W]
kd_feat_loss = mse_loss(student_feats, teacher_feats)
return kd_feat_loss

ssim implementation
from kornia.losses import ssim_loss
def kd_loss(student_feats, teacher_feats):

inputs have shape [B, C, H, W]
kd_feat_loss = ssim_loss(student_feats, teacher_feats, window_size=11)
return kd_feat_loss

Acknowledgements

The research leading to these results is funded by the German Federal Ministry for Economic Affairs
and Climate Action within the project “KI Delta Learning“ (Förderkennzeichen 19A19013A). The
authors would like to thank the consortium for the successful cooperation.

10

References
[1] C. Bucilǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. SIGKDD, 2006.

[2] Z. Cai and N. Vasconcelos. Cascade R-CNN: high quality object detection and instance
segmentation. CVPR, 2018.

[3] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker. Learning efficient object detection
models with knowledge distillation. NeurIPS, 2017.

[4] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang,
D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi,
W. Ouyang, C. C. Loy, and D. Lin. MMDetection: Open MMLab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

[5] X. Dai, Z. Jiang, Z. Wu, Y. Bao, Z. Wang, S. Liu, and E. Zhou. General Instance Distillation for
Object Detection. CVPR, 2021.

[6] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas. Predicting parameters in deep
learning. NeurIPS, 2013.

[7] J. Guo, K. Han, Y. Wang, H. Wu, X. Chen, C. Xu, and C. Xu. Distilling object detectors via
decoupled features. CVPR, 2021.

[8] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient
neural networks. NeurIPS, 2015.

[9] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding. ICLR, 2016.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR,
2016.

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. NeurIPS
Deep Learning and Representation Learning Workshop, 2015.

[12] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song,
S. Guadarrama, and others. Speed/accuracy trade-offs for modern convolutional object detectors.
CVPR, 2017.

[13] Z. Kang, P. Zhang, X. Zhang, J. Sun, and N. Zheng. Instance-Conditional Knowledge Distillation
for Object Detection. NeurIPS, 2021.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. NeurIPS, 2012.

[15] Q. Li, S. Jin, and J. Yan. Mimicking very efficient network for object detection. CVPR, 2017.

[16] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft COCO: Common objects in context. ECCV, 2014.

[17] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection. CVPR, 2017.

[18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection.
CVPR, 2017.

[19] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, and J. Wang. Structured knowledge distillation for
semantic segmentation. CVPR, 2019.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. NeurIPS, 2019.

11

[21] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. NeurIPS, 2015.

[22] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski. Kornia: an Open Source Differen-
tiable Computer Vision Library for PyTorch. WACV, 2020.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polo-
sukhin. Attention is all you need. NeurIPS, 2017.

[24] L. Wang and K. J. Yoon. Knowledge Distillation and Student-Teacher Learning for Visual
Intelligence: A Review and New Outlooks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[25] T. Wang, L. Yuan, X. Zhang, and J. Feng. Distilling object detectors with fine-grained feature
imitation. In CVPR, 2019.

[26] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. CVPR, 2018.

[27] Z. Wang and Q. Li. Information content weighting for perceptual image quality assessment.
IEEE Transactions on image processing, 2010.

[28] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 2004.

[29] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2, 2019. URL https:
//github.com/facebookresearch/detectron2.

[30] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017.

[31] W. Xue, L. Zhang, X. Mou, and A. C. Bovik. Gradient magnitude similarity deviation: A highly
efficient perceptual image quality index. IEEE transactions on image processing, 2013.

[32] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin. Reppoints: Point set representation for object
detection. CVPR, 2019.

[33] L. Zhang and K. Ma. Improve Object Detection with Feature-based Knowledge Distillation:
Towards Accurate and Efficient Detectors. ICLR, 2021.

[34] L. Zhang, L. Zhang, X. Mou, and D. Zhang. FSIM: A feature similarity index for image quality
assessment. IEEE transactions on Image Processing, 2011.

[35] D. Zhixing, R. Zhang, M. Chang, S. Liu, T. Chen, Y. Chen, and others. Distilling Object
Detectors with Feature Richness. NeurIPS, 2021.

[36] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for
discriminative localization. CVPR, 2016.

[37] C. Zhu, Y. He, and M. Savvides. Feature selective anchor-free module for single-shot object
detection. CVPR, 2019.

12

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No] Because of resource limitations/training hardware, and it
is furthermore not commonplace in this domain.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, we only use

publicly available data and code: MSCOCO [16], PyTorch [20], MMDetection2 [4],
Detectron2 [29], Kornia [22].

(b) Did you mention the license of the assets? [No] Citing is sufficient according to the
authors.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Method
	Overview
	Measuring Difference

	Experiments
	Experiment Settings
	Comparison with p-norms
	Influence of Luminance, Contrast and Structure
	Comparison to State-of-the-Art Methods
	Ablation Studies

	Conclusion

