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Abstract

Sparse data is fundamental to scientific simulations in biology and physics, from
single-cell gene expression to particle calorimetry, where exact zeros encode
physical absence rather than weak signal. However, existing diffusion models
lack the physical rigor to faithfully represent this sparsity. This work introduces
Sparse Data Diffusion (SDD), a generative method that explicitly models exact
zeros via Sparsity Bits, unifying efficient ML generation with physically grounded
sparsity handling. Empirical validation in particle physics and single-cell biology
demonstrates that SDD achieves higher fidelity than baseline methods in capturing
sparse patterns critical for scientific analysis, advancing scalable and physically
faithful simulation.

1 Introduction

Sparse data—i.e., data where most values are zero—is fundamental to scientific simulations in
biology and physics. Sparsity arises naturally from physical principles: in calorimeter images from
high-energy experiments, energy deposits occur only in localized regions corresponding to particle
interactions; in scRNA data, each cell expresses only a subset of genes [23, 24, 18].

Formally, we focus on data that is continuous yet exhibits a discrete sparsity pattern:

x ∈ Rd, where |x|0 ≪ d.

That is, most entries of the vector x with continuous values are exactly zero.

In scientific contexts, exact zeros encode physical meaning—a silent gene represents biological
absence, not weak expression; an empty calorimeter cell indicates no particle interaction, not low
energy. This physical interpretation makes sparsity a fundamental constraint rather than merely a
statistical pattern. As Donoho [4] noted in compressed sensing, most data “can be thrown away”,
and Tibshirani [43] emphasized with the Lasso that sparsity reflects reality: only a small subset of
variables is truly relevant.

While machine learning has accelerated scientific simulation, generative models—including Genera-
tive Adversarial Networks (GANs) [6], Variational Autoencoders (VAEs) [17], and Diffusion Models
(DMs) [39, 14, 40, 1]—fundamentally mismatch physically sparse data. Adding Gaussian noise
to every dimension assumes smooth, recoverable perturbations, but true zeros encode meaningful
physical absence and become indistinguishable from weak signal once noised. Their isotropic noise
processes, smooth denoising networks, and activations (ReLU [28], Tanh, Sigmoid [20]) bias outputs
toward density, compromising physical fidelity. DDIM produces only 49% sparsity on data that is
95% sparse (Fig. 1), and thresholding (DDIM-T) to match dataset sparsity still fails to recover the
clustered structures observed in real particle physics data. This underscores the need for generative
models that treat sparsity as a physical constraint rather than a post-hoc correction.
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(a) Muon Signal
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(b) Muon Background

Figure 1: Calorimeter images from the muon isolation study: signal images (left) and background
images (right). Rows show samples from (1) real data, (2) SDD (ours), (3) DDIM, (4) DDIM with post-
hoc thresholding to match dataset sparsity (DDIM-T), and (5) the domain-specific SARM baseline.
Pixel intensity (GeV) visualizes energy deposition per cell (white=zero). SDD uniquely recovers the
distinct, sparse, and clustered patterns characteristic of real data, whereas DDIM completely misses
the sparsity, and DDIM-T and SARM show unrealistic isolated energy deposits.

To bridge this gap, we introduce Sparse Data Diffusion (SDD), a physically-grounded generative
framework that explicitly models sparsity as a fundamental constraint. At its core, SDD uses Sparsity
Bits (SBs)—discrete latent variables that indicate, for each output dimension, whether it should
be active or zero based on the underlying physical structure. Dense values are modeled using a
continuous state-space diffusion process, preserving scalability while maintaining physical fidelity.
During sampling, SBs enforce exact zeros, ensuring generated data respects the physical constraints
of scientific data. We validate SDD primarily on challenging scientific datasets from particle physics
and single-cell biology, with additional evaluation on computer vision benchmarks to demonstrate
generality. In summary, we make the following contributions:

• We introduce SDD, a physically-grounded DM that bridges scalable ML with physical
accuracy by explicitly modeling sparsity as a physical constraint in DMs.

• We propose Sparsity Bits—discrete latent variables that encode physical structure—and
integrate them with continuous DMs for dense values, enabling joint modeling.

• We validate SDD on scientific datasets from physics and biology, achieving substantial
improvements over standard DMs and domain-specific baselines while maintaining physical
fidelity, with additional demonstrations on computer vision tasks.

2 Related work

As no broadly applicable generative model for sparse data exists, our section on related work
summarizes existing domain-specific works on sparse data generation, related concepts in diffusion
models, and enforcing sparsity in neural model parameters (and not the data itself).

Sparse data generation Past work on sparse, continuous data generation focuses on simple
architectures and specific applications, such as calorimeter sensor data in physics, which are difficult to
compare to general-purpose generative models as they incorporate lots of domain-specific knowledge.
They decouple the sparsity information for generating data by introducing decoupled generative
models where the sparsity is introduced as a learnable Dirac delta mass at zero [23, 24]. Other works
focusing on sparse, discrete data generation use Poisson or negative binomial distributions to model
sparse count data with bursts [47, 37]. There are also deep variants [5, 9, 38]. However, as already
indicated, they do not apply to our setting, which has continuous sparse data that do not exhibit the
traits of a Poisson or negative binomial distribution.

Diffusion models Diffusion models can be broadly categorized into continuous state-space models
[39, 14, 40, 41, 30] for continuous data and discrete state-space models [1, 8] for discrete data.
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While discrete models can represent sparse discrete data exactly, they are not applicable to our
sparse continuous setting. Some continuous models, such as Bit Diffusion [2], perform strongly on
discrete data, and others like Unigs [32] and DefectSpectrum [46] handle mixed variable types by
first mapping discrete variables into continuous embeddings. Recent work has also explored diffusion
under unconventional data characteristics, including heavy-tailed distributions [31]. However, these
approaches do not jointly diffuse continuous and discrete variables, whereas our method enables their
simultaneous diffusion within a unified framework.

Enforcing sparsity Sparsity is not just an inherent trait in datasets that can be, e.g., exploited
to store data efficiently. Sparsity can also help in the model architecture. Previous work [12, 44]
shows that neural networks are greatly overparameterized and multiple methods [27, 22, 42, 21] inter
alia have been introduced to mitigate this overparameterization by sparsifying the underlying neural
network weights. Others [15] leverage this property to efficiently train low-rank decomposition
matrices, which are added as sparse weight updates to the existing model weights. However, these
methods focus on enforcing sparsity in the model weights and are therefore not applicable to our
setting, where we enforce sparsity in the model output.

3 Method

This section presents Sparse Data Diffusion (SDD), a novel framework designed for the generation
of sparse data. We begin by introducing the underlying statistical model, followed by an in-depth
explanation of the forward and backward diffusion processes, and the overall training and sampling
procedure.

3.1 Statistical model

The following statistical model forms the basis for SDD: Let x0 ∼ p with E [x0] < ∞ and x0 ∈ Rd,
where p is unknown and arbitrary. We infer the sparsity for each dimension by applying the indicator
function element-wise to x0:

x̄0 = 2 ∗ 1x̸=0(x0)− 1 (1)

As a result, x̄0 ∈ {−1, 1}d is a binary vector that encodes, for each element in x0, whether it is zero
or represents a dense value. Therefore, we refer to each element in x̄0 as a Sparsity Bit (SB). We
obtain the extended input x̂0 ∈ R2d, where x̂0 ∼ p̂, by concatenating x0 ∈ Rd and x̄:

x̂0 =

[
x0

x̄0

]
(2)

Unlike prior methods, our forward–backward process diffuses continuous and discrete variables
jointly. Previous work operated either only on continuous variables [39, 14, 40, 41] or on discrete
variables [2].

Forward diffusion The forward diffusion process follows previous work [39, 14, 40, 41]. It
consists of a predefined series of transitions from the input space x̂0 ∈ R2d to pure noise ϵ ∈ R2d,
where ϵ ∼ N (0, I). The transition from x̂0 to x̂t is defined as

x̂t =
√
α(t)x̂0 +

√
1− α(t)ϵ, (3)

where ϵ ∼ N (0, I), t ∼ U(0, T ) is a continuous time variable, and α is the noise schedule, a
monotonically decreasing function from 1 to 0. In the limit, we obtain:

lim
T→∞

x̂T = ϵ ∼ N (0, I), (4)

Backward diffusion The backward diffusion process consists of steps that reverse the forward
diffusion process: x̂T → x̂T−∆ → ... → x̂0. These steps follow a normal distribution:

x̂t−1|x̂t ∼ N (µt(x̂t, x̂0), σ
2
t ) (5)

where x̂0 is the denoised input. Since x̂0 is not given in the backward diffusion process, we train a
denoising neural network fθ to predict x̂0. We describe the training process in the following Section
3.2 and illustrate our model in Figure 2.
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Figure 2: Shown is an illustration of our method SDD. Compared to other diffusion models, we
expand the continuous input by discrete Sparsity Bits for forward diffusion and use them in backward
diffusion and sampling to enforce sparsity in the data.

3.2 Training

In order to perform the steps x̂T → x̂T−∆ → ... → x̂0 of the backward diffusion process, we train
a denoising network fθ to predict x̂0, which is part of the distribution p(x̂t−1|x̂t). The predicted
value of x̂0 is approximated by x̃0 = fθ(x̂t, t) (alternative formulations predict the noise ϵ).

We use self-conditioning [2] to incorporate the previously computed x̃0 (or ϵ̃) from time step t+ 1
to compute the next x̃0 (or ϵ̃). The training is realized using an l2 regression loss on the continuous
inputs and a cross entropy loss (CE on labels in {−1, 1}) on SBs:

L(θ) = E
[
∥fθ,0:d−1(x̂t, t, x̃0)− x̂0,0:d−1∥2

+ CE (fθ,d:2d−1(x̂t, t, x̃0), x̂0,d:2d−1)
]
,

(6)

where x̂0 ∼ p̂, t ∼ U(0, T ), ϵ ∼ N (0, I) and xt =
√
α(t)x̂0 +

√
1− α(t)ϵ. We summarize the

SDD training process in Algorithm 1 in Appendix A.

3.3 Sampling

To draw samples, we use the same state transitions as described in the backward diffusion process:
x̂T → x̂T−∆ → ... → x̂0, following p(x̂t−1|x̂t) using fθ(x̂t, t, x̃0). There are multiple ways to
perform these steps. Here, we focus on Denoising Diffusion Probabilistic Models (DDPM) [14] and
Denoising Diffusion Implicit Models (DDIM) [40].

We perform one final step: x̂0 → x0. Since the first d dimensions in x̂0 contain the dense and
second d dimensions in x̂0 contain the SBs, we quantize the SB output dimensions x̂0;d:(2d−1) using
the heaviside step function H applied element-wise to extract the SBs. Afterward, we apply an
element-wise product to get the sparsified output:

x0 = x̂0;0:(d−1) ⊙H(x̂0;d:(2d−1)) (7)

We summarize the sampling algorithm in Algorithm 2 in Appendix A.

4 Experiments

To evaluate SDD for sparse data generation, we first assess the overall sparsity of generated data,
then report results on challenging scientific applications in physics and biology, and conclude with an
analysis of sparse image generation.

4.1 Experimental setup

Baselines We compare SDD to two well-known diffusion models—DDPM [14] and DDIM
[40]—which are designed for dense data generation. We provide architectural and training de-
tails in Appendix B. To evaluate the performance on sparse outputs, we create thresholded variants
DDPM-T and DDIM-T that apply iteratively increasing thresholds (linearly spaced between zero
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and maximum output value) to match training data sparsity. This provides a pragmatic baseline for
adapting diffusion models to sparse domains without explicit sparsity modeling during training.

For particle physics, we benchmark against SARM D+C [24], a domain-specific model that autore-
gressively samples calorimeter data using spiral patterns informed by inner and outer regions. For
scRNA, we include scDiffusion [25], which uses an autoencoder pretrained on a large cell corpus but
lacks explicit sparsity enforcement.

Datasets In physics, we use calorimeter images from a muon isolation study [23], represented
as 32×32 pixel grids with 95% sparsity. Pixel intensity represents the transverse momentum (PT )
deposited in each cell. The dataset contains 33,331 signal images of isolated muons and 30,783
background images of muons with jets. For biology, we use two scRNA datasets: Tabula Muris
[36] with 57K cells (90% sparsity, 98% when filtered to 1000 highly variable genes) and Human
Lung Pulmonary Fibrosis [10] with 114K cells (91% sparsity, 96% filtered). For vision, we use
MNIST [19] (60K images, 81% sparsity) and Fashion-MNIST [45] (60K images, 50% sparsity), both
28×28 grayscale. All datasets are linearly scaled to [−1, 1] following Ho et al. [14], with inverse
transformation applied after inference.

Evaluation We evaluate sparsity distribution matching and use domain-specific metrics. For
physics, we compute the normalized Wasserstein distance WP between distributions of transverse
momentum PT and invariant mass for the dataset and 50,000 generated images [23, 24]. For scRNA,
following [25], we use Spearman Correlation (SCC), Pearson Correlation (PCC), Maximum Mean
Discrepancy (MMD) [7], and Local Inverse Simpson’s index (LISI) [11], comparing real data to
10,000 generated cells. For images, we measure sparsity after discretizing logit values from [−1, 1]
to [0, 255] and compute Fréchet Inception Distance (FID) [13] between 50,000 generated images and
training data. Note that FID’s validity is limited for sparse data as the Inception network was trained
on dense ImageNet images [3].

4.2 Evaluating the recovery of ground truth sparsity patterns

0.00 0.25 0.50 0.75 1.00
0

5

10

15

Muon Signal

0.00 0.25 0.50 0.75 1.00
0

5

10

15

20
Tabula Muris

0.00 0.25 0.50 0.75 1.00
0

2

4

Fashion-MNIST

0.00 0.25 0.50 0.75 1.00
0

5

10

15

20
Muon Background

0.00 0.25 0.50 0.75 1.00
Fraction of zero values

0

5

10

15

20
Human Lung PF

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

MNISTDe
ns

ity

Dataset
DDIM

DDIM-T
SARM

scDiffusion
SDD (ours)

Figure 3: Sparsity distribution of real and generated data. Histograms (20 bins) and average sparsity
levels (dashed lines) compare real data to samples from DDIM, DDIM-T, SARM, scDiffusion, and
SDD. DDIM and scDiffusion underestimate sparsity; DDIM-T matches the average but lacks diversity
and overshoots at high sparsity. SARM also underestimates sparsity, while SDD accurately matches
both average value and distribution.
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How well do models match ground-truth sparsity? We analyze the sparsity distribution of
generated samples in Figure 3 for DDIM, with DDPM results in Appendix D largely consistent with
DDIM. Across all datasets, DDIM and the domain-specific scDiffusion tend to underestimate sparsity,
producing outputs denser than the real data. While DDIM-T matches average sparsity by design, it
often overshoots in the upper range and truncates the lower end of the distribution, especially for
sparse image datasets. The particle physics-specific SARM also slightly underestimates sparsity
despite domain knowledge. In contrast, SDD stands out by accurately capturing both the average
sparsity and the overall sparsity distribution, achieving realistic and faithful sparsity patterns without
relying on domain-specific knowledge or post-hoc processing.

In general, diffusion models struggle to generate sparse data. If the standard post-processing
step—clipping values to the range [−1, 1] followed by rescaling—is omitted, the resulting sam-
ples exhibit near-zero sparsity across all datasets. As this clipping step is standard practice in
diffusion-based models, we retain it and focus our subsequent analyses on clipped outputs.

Consequences of sparsity mismatch in scientific and vision tasks In particle physics, identifying
particle sources from detector signatures is crucial [23, 24]. DDIM and DDIM-T fail to reproduce
data sparsity (Figure 1), producing overly dense outputs that inflate particle detections and lead to
incorrect interpretations. In scRNA data, sparsity reflects biologically meaningful dropout events.
DDIM captures only half the true sparsity, misrepresenting dropout patterns critical for clustering
and imputation [33]. While DDIM-T matches average sparsity, it underperforms quantitatively
(Section 4.4), as does the domain-specific scDiffusion. For sparse images, sparsity mismatch
trivializes fake image detection, as generated images lacking authentic sparsity patterns become easily
identifiable, compromising robustness in security applications.

Sharpness of generated SBs As SBs are central to SDD and our model is the first one to simulta-
neously diffuse the discrete SBs and continuous (dense) inputs, we further examine the distribution of
the logits for the SBs in Figure 7 in Appendix D. As can be seen, SBs are sharply distributed towards
-1 and 1, indicating the model’s confidence in predicting these pixel values as zero or non-zero. This
indicates that discrete variables can be reliably diffused alongside continuous variables. The last bin
with an upper bound of 1.0 shows almost precisely the pixel sparsity of the respective dataset.

4.3 Physics: calorimeter image generation

Table 1: Shown are the results for sparse calorimeter image generation. SDD performs better in
preserving the key structural properties of the data—sum of momenta transverse to the beam PT and
invariant mass—and achieves results on par with the domain-specific SARM baseline, demonstrating
its competitive performance without relying on domain-specific design.

SIGNAL BACKGROUND
MODEL ↓ PT ↓ MASS ↓ PT ↓ MASS

DDPM 219.30 79.19 227.00 81.43
DDIM 251.79 89.96 259.43 92.20

DDPM-T 23.21 11.30 27.83 12.52
DDIM-T 25.36 12.16 31.28 13.81

SARM D+C 27.96 7.29 12.50 5.39
SDD DDPM (OURS) 15.00 6.50 13.92 5.44
SDD DDIM (OURS) 14.67 6.43 13.01 5.41

Quantitative evaluation The results are summarized in Table 1. The Wasserstein Distance WP

between the distributions of the sum of momenta transverse to the beam (PT ) and the invariant mass
for both signal and background images is substantially larger for DDPM, DDIM, and their thresholded
variants (DDPM-T, DDIM-T) compared to SDD DDPM and SDD DDIM, indicating that sparsity-
aware SDD generates outputs more closely aligned with the real data. SDD performs exceptionally
well on signal images, where the WP for PT is worse for SARM. SARM achieves slightly better
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Figure 5: Shown are two-dimensional UMAPs of Tabula Muris and Human Lung Pulmonary Fibrosis,
and the respective DDIM, DDIM-T, and SDD generated samples. DDIM, DDIM-T, and the domain-
specific scDiffusion show little to no overlap with the respective dataset while SDD shows significant
overlap, demonstrating that SDD more accurately captures the underlying structure and diversity of
the real data distributions.

results for background images, but SDD remains competitive overall. These findings suggest that
SDD’s sparsity-aware modeling effectively captures key domain-specific features without relying on
extensive prior knowledge, resulting in improved fidelity and realism of generated calorimeter data.

0.00

0.05

0.10

0.15

Pi
xe

l E
T (

Ge
V)Si
gn

al
Ba

ck
gr

ou
nd

Dataset SDD (ours) DDIM DDIM-T SARM

Figure 4: Shown are the average calorimeter im-
ages for Muon Signal and Muon Background.
DDIM and DDIM-T fail to generate realistic data,
while SDD succeeds. Linear scale to reveal the
signal and background differences.

Qualitative evaluation Figure 1 shows Muon
Signal and Background calorimeter images gen-
erated by DDIM (similar DDPM results in Ap-
pendix E). DDIM fails to capture clustered en-
ergy deposits, while thresholded DDIM-T and
SARM produce many isolated single-pixel de-
posits lacking the clustered deposits of real data.
In contrast, SDD accurately reproduces these
clusters, consistent with physical interactions.
Pixel-wise averages in Figure 4 confirm this:
DDIM and DDIM-T show almost uniform sig-
nals across the image, and SARM underesti-
mates the pixel intensity. For signal images,
SDD models the near-uniform energy spread of
the calorimeter; for backgrounds, it captures en-
ergy near muons from jets. Though DDIM-T and DDPM-T approximate overall sparsity (Section
4.2), they fail to preserve realistic sparsity patterns and spatial coherence. Similarly, despite SARM’s
domain knowledge, it also shows the circular shape of energy deposits but misses the intensity.

4.4 Biology: scRNA data generation

Quantitative evaluation Table 2 shows scRNA generation results. Across both Tabula Muris
and Human Lung Pulmonary Fibrosis datasets, SDD outperforms standard DDPM/DDIM and their
thresholded variants (DDPM-T/DDIM-T) by orders of magnitude. SCC and PCC scores show SDD
better preserves gene expression ordering and linearity. MMD distances indicate SDD’s distributions
are significantly closer to real data, and LISI scores reflect improved mixing between real and
generated samples. Notably, SDD outperforms scDiffusion—despite its pretrained autoencoder on a
large cell corpus—demonstrating that explicit sparsity modeling captures biological data distributions
more effectively than domain-specific pretraining alone.

Qualitative evaluation In our qualitative evaluation for scRNA data, we provide UMAPs [26]
for Tabula Muris and Human Lung Pulmonary Fibrosis in Figure 5 for DDIM, with further analysis
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Table 2: The results for sparse data generation on scRNA data are shown. SDD outperforms DDPM
and DDIM, the thresholded DDPM-T and DDIM-T, and the task-specific scDiffusion in all considered
metrics.

TABULA MURIS HUMAN LUNG PF
MODEL ↑ SCC ↑ PCC ↓ MMD ↑ LISI ↑ SCC ↑ PCC ↓ MMD ↑ LISI

DDPM 0.49 0.72 3.58 0.00 0.31 0.85 3.35 0.00
DDIM 0.50 0.74 3.62 0.00 0.30 0.87 3.34 0.00

DDPM-T 0.53 0.68 0.35 0.01 0.31 0.82 0.69 0.00
DDIM-T 0.56 0.73 0.34 0.01 0.28 0.85 0.65 0.00

SCDIFFUSION 0.71 0.71 1.54 0.00 0.77 0.79 1.02 0.00

SDD DDPM (OURS) 0.96 0.95 0.12 0.21 0.95 0.99 0.18 0.08
SDD DDIM (OURS) 0.97 0.97 0.12 0.23 0.95 0.99 0.18 0.08

showing similar results for DDPM in Appendix F. Both subfigures in Figure 5 show almost no overlap
between real data and DDIM-generated data. For DDIM-T, the generated cell cluster shifts closer to
the real cells but exhibits little diversity. The domain-specific scDiffusion model also demonstrates
little to no overlap with real cells, indicating it fails to capture the true biological structure despite its
pretraining on a large cell corpus. In contrast, SDD shows significant overlap between real cells and
those sampled from SDD, further underlining the high quality and biological fidelity of the generated
cells.

4.5 Vision: sparse image generation

Quantitative evaluation For sparse image generation, we summarize our results in Table 4 in
Appendix G. We observe similar FID scores for all settings considered. However, the validity of FID
for evaluating sparse images is questionable, as the standard Inception network used to compute FID
was trained only on dense images from ImageNet [3], which may limit its effectiveness for sparse
data. Therefore, we report these values only for completeness.

Qualitative evaluation The quality of generated images on Fashion-MNIST and MNIST (see
Figures 11 and 12 in Appendix G) is largely indistinguishable across DDIM, DDPM, their thresholded
variants (DDIM-T, DDPM-T), and SDD using DDPM and DDIM. Visually, all models produce
plausible samples. However, a closer inspection of the sparsity patterns reveals meaningful differences.
In particular, SDD more faithfully reproduces the sparsity structure of the real data. For Fashion-
MNIST, thresholded models like DDIM-T and DDPM-T tend to suppress fine-grained noisy regions
near the edges. Similarly, in MNIST, the digits generated by DDIM-T and DDPM-T are generally
narrower than those in real data. These subtle differences highlight that, while thresholding may yield
visually appealing outputs, it often fails to preserve key structural properties of the data, particularly
in challenging regions where sparsity transitions are critical. SDD, by contrast, maintains these
characteristics more reliably, capturing both visual fidelity and underlying data distribution properties
by explicitly modeling the sparsity.

5 Conclusion

We introduce SDD, a physically-grounded method for generating sparse scientific data using DMs.
By representing sparsity through Sparsity Bits—discrete variables diffused alongside continuous
values—SDD explicitly encodes the physical structure of sparse data. We demonstrate high fidelity
across physics and biology applications, with additional validation on computer vision tasks. SDD
achieves superior sample quality compared to standard DMs and their thresholded variants, matching
the domain-specific SARM in particle physics and surpassing the biologically pre-trained scDiffusion
for scRNA data. This demonstrates that explicit sparsity modeling is more effective than approaches
relying solely on domain knowledge or pretraining. The underlying concept of Sparsity Bits can be
integrated into other generative models, including GANs [6], VAEs [17], and Normalizing Flows [34],
opening new research directions for physically-grounded generative modeling in scientific simulation.
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A Training and sampling algorithms

In this section, we present SDD’s training procedure in Algorithm 1 and the sampling in Algorithm 2.

Algorithm 1 SDD training algorithm.

def train_loss(x):
# Create & concat sparsity bits
x_sb = (x != 0).float()
x_sb = (x_sb * 2 - 1)
x = (x * 2 - 1)
x = cat((x, x_sb), dim=1)

# Forward diffusion steps
t = uniform(0, 1)
eps = normal(mean=0, std=1)
x_t = sqrt(alpha(t)) * x + (1 - sqrt(alpha(t)) * eps

# Compute self-cond estimate.
x_0 = zeros_like(x_t)
if uniform(0, 1) > 0.5:
x_0 = net(cat([x_t, x_0], -1), t)
x_0 = stop_gradient(x_0)

# Predict and compute loss.
x_0 = net(cat([x_t, x_0], -1), t)
l2_loss = (x_0[:, :sb] - x[:, :sb]) ** 2
ce_loss = cross_entropy_loss(x_0[:, sb:] - x[:, sb:])
return l2_loss.mean() + ce_loss.mean()

Algorithm 2 SDD sampling algorithm.

def sample(steps, interm=False):
x_t = randn(mean=0, std=1)
x_pred = zeros_like(x_t)

for step in range(steps):
# Get time for current & next states.
t_now = 1 - step / steps
t_next = max(1 - (step + 1)/steps, 0)

# Predict x_0.
x_pred = net(cat([x_t, x_pred], -1), t_now)

# Estimate x at t_next.
x_t = ddim_or_ddpm_step(x_t, x_pred, t_now, t_next)

# Return sparsified data point
x_pred.clamp_(-1,1)
x_dense = (x_pred[:, :sb] + 1) / 2
x_sb = (x_pred[:, sb:] > 0).float()
x_sparse = x_dense * x_sb
return x_sparse
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B DM architecture & training

We use a CNN-based U-Net architecture [14, 35, 29] for all DMs on calorimeter and sparse image
data, with a base channel size of 256, three stages, two residual blocks per stage, and 37M parameters.
For scRNA data, which lacks spatial structure, we adopt a skip-connected MLP following scDiffusion
[25] with 5M parameters. Parameter counts and runtime overhead are detailed in Appendix C. We
use Adam [16] with a constant learning rate of 0.0002 and batch size 256. Models are trained for
300K steps, using an exponential moving average of parameters (decay 0.9999). Sampling for DDIM
and DDPM uses 1,000 steps.

C Compute resources and runtime analysis

Our experiments were executed on a NVIDIA DGX-A100 server with eight A100 (40GB) GPUs,
an AMD Epyc 7742 CPU with 64 cores and 2TB of main memory. The server runs NVIDIA DGX
Server Version 7.1.0 (GNU/Linux 6.8.0-60-generic x86_64) and has CUDA 12.9 and torch 2.7.0
installed. Due to the large scale and high computational cost of the deployed DMs, we were only
able to run each experiment once. Each run requires substantial GPU resources and time making
multiple runs or significance testing infeasible. Additionally, sampling is particularly expensive,
further limiting repetition. While we acknowledge the importance of variance analysis, these practical
constraints necessitated a single-run evaluation.

SDD enforces sparsity in the generated data and does not exploit the data sparsity to make the
computations more efficient. Depending on the underlying U-Net architecture, we have more
trainable parameters. We use CNNs with a total of 37M parameters for the calorimeter and the sparse
images. However, for SDD, we observe an increase of only 0.07% in the number of parameters. For
sparse data generation of scRNA data with an MLP with a total of 5M parameters, we observe an
increase of 38.37% in the number of parameters. The increase in the number of parameters is much
higher, as we have to double the size of the input and output layers. At the same time, we only need
to double the number of input and output channels for the CNN-based U-Net for images.

We summarize the training runtime of DDPM and SDD in Table 3. We omit DDIM as the DDPM
and DDIM variants have the same training procedure. We measured runtimes per training step on one
A100 (40GB) that show minimal overhead for SDD compared to DDPM, as additional computations
are efficiently parallelized.

Table 3: Shown are the runtimes of DDPM compared to SDD. The overhead for SDD is minimal.
UNET DATASET DDPM SDD

CNN MNIST 0.57 S 0.56 S
CNN FASHION-MNIST 0.50 S 0.51 S

CNN MUON SIGNAL 0.56 S 0.56 S
CNN MUON BACKGROUND 0.59 S 0.58 S

MLP TABULA MURIS 0.02 S 0.02 S
MLP HUMAN LUNG PF 0.02 S 0.02 S

D Further evaluating the recovery of ground truth sparsity patterns

How well do models match ground-truth sparsity? We present the sparsity distribution of samples
generated by DDPM in Figure 6, complementing the main text’s analysis of DDIM (Figure 3). The
trends observed largely mirror those of DDIM. Specifically, DDPM also tends to underestimate
sparsity across all datasets. Similar to DDIM-T, DDPM-T produces samples with an exaggerated
upper tail in the sparsity distribution and a compressed lower end, particularly noticeable in the
sparse image generation datasets. SDD remains the most faithful to the real data’s sparsity profile: it
mildly overshoots in the physics datasets (Muon Signal and Muon Background) and does so more
substantially in the scRNA datasets (Tabula Muris and Human Lung Pulmonary Fibrosis), though still
less severely than DDPM-T. On the vision datasets (Fashion-MNIST and MNIST), SDD continues to
generate a wider and more accurate sparsity distribution.
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Figure 6: Sparsity distribution of real and generated data. Histograms (20 bins) and average sparsity
levels (dashed lines) compare real data to samples from DDPM, DDPM-T, SARM, scDiffusion,
and SDD. DDPM and scDiffusion underestimate sparsity; DDPM-T matches the average but lacks
diversity and overshoots at high sparsity. SARM also underestimates sparsity, while SDD accurately
matches both average value and distribution.

Sharpness of generated SBs Figure 7 illustrates the distribution of the sparsity bit (SB) logits
across datasets. The histograms show that the logits are sharply concentrated near -1 and 1, indicating
high model confidence when classifying each dimension as corresponding to a zero or non-zero pixel.
This supports the feasibility of jointly diffusing discrete and continuous components. Moreover, the
final bin (with upper bound 1.0) closely aligns with the true sparsity levels of each dataset: 95.2% for
Muon Signal, 97.9% for Tabula Muris, 50.2% for Fashion-MNIST, 95.2% for Muon Background,
95.9% for Human Lung Pulmonary Fibrosis, and 80.9% for MNIST.

E Further results for particle physics: calorimeter image generation

Figure 8 displays representative calorimeter images generated by DDPM for two distinct cases:
isolated muons (signal) and muons produced in association with jets (background). These qualitative
results reveal behaviors similar to those observed for DDIM in Figure 1, illustrating fundamental
limitations inherent in standard diffusion models when applied to sparse data. Specifically, DDPM-
generated images fail to faithfully reproduce the localized and clustered energy depositions that
characterize true muon interactions in the calorimeter. Instead, the energy distribution appears more
diffuse and lacks the sharp, spatially coherent patterns critical for meaningful physics interpretation.

The thresholded variant, DDPM-T, which applies a post-hoc procedure to enforce dataset-level
sparsity by zeroing out low-intensity pixels, mitigates some of these issues by producing more
spatially isolated activations. However, these tend to manifest largely as single-pixel hits scattered
across the calorimeter grid rather than physically plausible clusters, indicating that simple thresholding
does not recover the underlying complex sparsity structure or spatial correlations.

In stark contrast, SDD-DDPM generates highly realistic calorimeter images that significantly improve
these shortcomings. By explicitly modeling sparsity through Sparsity Bits and jointly diffusing
continuous and discrete latent representations, SDD-DDPM reproduces the expected clustered energy
patterns with remarkable fidelity. This confirms that incorporating sparsity awareness directly into the
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Figure 7: The histogram distribution shows 50 bins of the logits for sparsity bits for datapoints
using SDD. The sparsity bits are extremely concentrated towards -1 and 1, which shows that discrete
variables can be reliably diffused alongside continuous variables.
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(a) Muon Signal
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(b) Muon Background

Figure 8: Calorimeter images from the muon isolation study: signal images (top) and background
images (bottom). Rows show samples from (1) real data, (2) SDD (ours), (3) DDPM, (4) DDPM
with post-hoc thresholding to match dataset sparsity (DDPM-T), and (5) the domain-specific SARM
baseline. Pixel intensity (GeV) visualizes energy deposition per cell (white=zero). SDD uniquely
recovers the distinct, sparse, and clustered patterns characteristic of real data, whereas DDPM
completely misses the sparsity, and DDPM-T and SARM show unrealistic isolated energy deposits.

generative process enables the model to capture the intricate spatial dependencies and zero patterns
intrinsic to the data.

Complementary evidence is provided by the pixel-wise average calorimeter images illustrated in
Figure 9. These averages further underscore the qualitative differences: both DDPM and DDPM-T
exhibit relatively uniform, blurred activations across the image, indicative of non-specific and diffuse
energy distributions that do not differentiate between zero and non-zero values effectively. By
contrast, the averages constructed from SDD-DDPM samples reveal well-defined and physically
meaningful spatial structures. For signal images, SDD-DDPM captures the characteristic uniform
cylindrical energy distribution observed in isolated muon events. In contrast, in the background case,
the energy is correctly concentrated near the muon’s expected location rather than dispersed randomly.
These distinct and interpretable patterns closely mirror the true physical phenomena measured by the
calorimeter, substantiating the advantage of SDD in sparse data generation.
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Figure 9: Averaged calorimeter images for Muon Signal and Background. SDD-generated averages
closely match the actual data’s spatial structure and sparsity. DDPM and DDPM-T produce almost
uniform images, while the domain-specific SARM baseline fails to capture the actual intensity.
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Figure 10: Shown are two-dimensional UMAPs of Tabula Muris and Human Lung Pulmonary
Fibrosis, and the respective DDPM, DDPM-T, and SDD generated samples. DDPM, DDPM-T, and
the domain-specific scDiffusion show little to no overlap with the respective dataset while SDD
shows significant overlap, demonstrating that SDD more accurately captures the underlying structure
and diversity of the real data distributions.

F Further results for biology: scRNA data generation

Figure 10 shows UMAP visualizations for the Tabula Muris and Human Lung Pulmonary Fibrosis
datasets generated using DDPM. The trends mirror those observed with DDIM (Figure 5). Specifically,
DDPM-generated samples show minimal overlap with the real cell populations, indicating limited
biological realism. The thresholded variant, DDPM-T, moves the generated cluster closer to the real
data manifold but at the cost of reduced diversity. In contrast, SDD-DDPM samples exhibit substantial
overlap with the true cell populations, capturing both structure and diversity more faithfully. These
results confirm that the benefits of sparsity-aware diffusion extend to DDPM-based models in the
biological domain.

G Further Results for Sparse Image Generation

As discussed in Section 4.5, the visual quality of generated images for Fashion-MNIST and MNIST
is largely comparable across all methods—DDIM, DDPM, their thresholded counterparts (DDIM-T
and DDPM-T), and SDD. To complement these observations, Figures 11 and 12 provide detailed
visualizations of the corresponding sparsity patterns. While DDIM, DDPM, and their thresholded
versions produce images that appear visually plausible, closer examination reveals discrepancies in
how well they capture the underlying sparsity structure of the datasets.
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Table 4: Shown are the FID scores for sparse image generation. The results are similar for all
considered settings.

FASHION-MNIST MNIST

DDPM 25.62 23.35
DDIM 24.11 23.68

DDPM-T 25.83 23.82
DDIM-T 25.72 24.04

SDD DDPM (OURS) 27.81 25.37
SDD DDIM (OURS) 26.37 25.69

In particular, thresholded models such as DDIM-T and DDPM-T often fail to reproduce the fine-
grained noise and soft sparsity transitions present in real data. For Fashion-MNIST, these models
tend to eliminate subtle pixel activations near the edges, leading to overly clean object contours. In
MNIST, the digits generated by DDIM-T and DDPM-T are noticeably narrower, lacking some of
the variability found in true samples. These limitations underscore the fact that simple thresholding,
while improving sparsity alignment on average, can suppress important structural variation in the
data.

By contrast, SDD not only maintains competitive visual quality but also more accurately reproduces
the sparsity distributions and edge-region behavior of real images. This highlights the advantage of
explicitly modeling sparsity rather than relying on post-hoc thresholding to enforce it.
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(a) Dataset

(b) DDPM

(c) DDIM

(d) DDPM-T

(e) DDIM-T

(f) SDD DDPM (ours)

(g) SDD DDIM (ours)

Figure 11: Shown are, from top to bottom: Fashion-MNIST images sampled from the dataset, DDPM
and DDIM sampled images, thresholded DDIM and DDPM sampled images (DDPM-T, DDIM-T),
and SDD (DDPM, DDIM) sampled images. The first column contains the samples, and the second
contains the respective sparsity information. Despite highly visually similar images, DDIM and
DDPM fail to reflect the sparsity, while the thresholded variants DDIM-T and DDPM-T miss fine-
grained details on the edges. The proposed SDD more faithfully reflects these fine-grained details.
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(a) Dataset

(b) DDPM

(c) DDIM

(d) DDPM-T

(e) DDIM-T

(f) SDD DDPM (ours)

(g) SDD DDIM (ours)

Figure 12: Shown are, from top to bottom: MNIST images sampled from the dataset, DDPM and
DDIM sampled images, thresholded DDIM and DDPM sampled images (DDPM-T, DDIM-T), and
SDD (DDPM, DDIM) sampled images. The first column contains the samples, and the second
contains the respective sparsity information. Despite highly visually similar images, DDIM and
DDPM fail to reflect the sparsity, while the thresholded variants DDIM-T and DDPM-T miss fine-
grained details on the edges, resulting in narrower digits (and the respective sparsity information).
The proposed SDD more faithfully reflects these fine-grained details.
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