
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC GRADIENT ALIGNMENT
FOR ONLINE DATA MIXING

Anonymous authors
Paper under double-blind review

ABSTRACT

The composition of training data mixtures is critical for effectively training large
language models (LLMs), as it directly impacts their performance on downstream
tasks. Our goal is to identify an optimal data mixture to specialize an LLM for a
specific task with access to only a few examples. Traditional approaches to this
problem include ad-hoc reweighting methods, importance sampling, and gradient
alignment techniques. This paper focuses on gradient alignment and introduces
Dynamic Gradient Alignment (DGA), a scalable online gradient alignment algo-
rithm. DGA dynamically estimates the pre-training data mixture on which the
models’ gradients align as well as possible with those of the model on the specific
task. DGA is the first gradient alignment approach that incurs minimal overhead
compared to standard pre-training and outputs a competitive model, eliminating the
need for retraining the model. Experimentally, we demonstrate significant improve-
ments over importance sampling in two key scenarios: (i) when the pre-training set
is small and importance sampling overfits due to limited data; and (ii) when there
is insufficient specialized data, trapping importance sampling on narrow pockets of
data. Our findings underscore the effectiveness of gradient alignment methods in
optimizing training data mixtures, particularly in data-constrained environments,
and offer a practical solution for enhancing LLM performance on specific tasks
with limited data availability.

1 INTRODUCTION

Large Language Models (LLMs) are typically pre-trained on extensive, generic corpora sourced from
a variety of data domains (Brown et al., 2020b; Touvron et al., 2023; Zhang et al., 2022), with the
composition of these corpora often depending on domain availability or heuristics (Gao et al., 2020;
Together AI Team, 2023). While the diversity of natural texts allows the model to learn from various
knowledge sources, not all data domains are equally beneficial according to the targeted tasks. The
uncurated nature of web-crawled contents could lead to sub-optimal outcomes due to the variations
in data quality (Longpre et al., 2023). Plus, some domains may contain misinformation and biases, as
one potential source of hallucinations in language generation (Lin et al., 2022; Huang et al., 2023).

To better generalize to the downstream target tasks, it is critical to identify the most beneficial
subset from large, generic pretraining corpora. While sample-level selection can be costly, domain
reweighting offers an efficient group-level approach. Domain reweighting methods assume that
samples from the same domain share similar features and search for optimal sampling weights across
domains (Xie et al., 2023a; Fan et al., 2024; Liu et al., 2024; Kang et al., 2024; Grangier et al., 2024).
The domains that most positively impact the target tasks should be assigned higher weights.

In this work, on top of a large, generic pretraining corpus, we assume we have access to a few
examples representative of the downstream task on which we want the model to generalize, a so-
called specialized set. For this setup, Grangier et al. (2024) recently proposed a simple and scalable
importance sampling based method to domain reweighting, where the weight of a domain is given by
the frequency of samples in the specialized set closest to the domain, where distance is measured
with SentenceBert (Reimers & Gurevych, 2019) embeddings. This method determines the domain
weights before any training and is model-agnostic.

Likewise, prior gradient-alignment methods determine a static domain weights for large-scale LM
training, often relying on a small-scale proxy model (Xie et al., 2023a; Fan et al., 2024) or fitting
a scaling law (Liu et al., 2024; Kang et al., 2024). While these methods show improvements over
training on the natural distribution of a generic corpus, they do not dynamically update domain

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

weights during training to adapt to the current model state. In practical training scenarios, a large
model may quickly overfit on certain domains with high weights. In such cases, an online weighting
method can respond by shifting emphasis to other domains.

We propose Dynamic Gradient-Alignment (DGA), an online domain reweighting method that
estimates step-wise optimal domain weights during model training. Inspired by DOGE (Fan et al.,
2024), at each reweighting step, DGA upweights the data domain whose gradient aligns more with
the model’s gradient on the specific set. From the optimization perspective, training the model on
the most-aligned data domain yields the greatest reduction in the targeted loss. By incorporating
an exponential-moving-average (EMA) term in online domain weights updates, DGA effectively
mitigates overfitting and prioritizes the domains that currently benefit the target task the most. Since
the domain weights and model parameters are updated concurrently, inaccurate domain weights can
potentially drive the model into suboptimal states, which further leads to snow-balled errors. In
such cases, the EMA term serves as a correction factor, guiding the model back to a more stable
state. As an additional contribution, we scale the domain reweighting methods into extremely fine-
grained domains (e.g. 262k domains) by introducing a novel distribution reweighting mechanism.
Rather than directly reweighting 262k data domains, distribution reweighting reparameterizes the
high-dimensional domain weights as a convex combination of weight vectors derived from a set of
distributions estimated from embedding-based importance sampling (Grangier et al., 2024). With
the number of distributions less than the number of training data domains, it allows DGA to scale to
thousands of domains and make the most of the fine-grained group-level features.

Our experiments demonstrate the effectiveness of DGA compared to standard pre-training and
importance sampling baselines in two challenging cases: (1) the resource of training tokens in each
domain is limited instead of infinite (§ 3.1), and (2) the domain granularity is extremely large, which
introduces intractable computation overheads on the domain reweighting problem (§ 3.2).

2 DATA MIXING WITH SPECIALIZED TARGET

2.1 GENERIC DATASET AND SPECIFIC TASKS

We consider a generic training corpus Dgen = {D1, . . . , Dk}, which is partitioned into k distinct
data domains. We can sample from each of the k domains to train a model. Consequently, we can
sample from a mixture of these domains and draw a batch of data following the law x ∼ mix(α) ≜∑k

i=1 αiDi, where α ∈ Rk is the mixture weights, belonging to the simplex α ∈ ∆k ≜ {α ∈
Rk|

∑k
i=1 αi = 1 and αi ≥ 0 for all i}. Here, getting one sample from mix(α) means first getting a

random index i ∈ {k} from the categorical distribution corresponding to the vector of probabilities α,
and then outputting a random sample from the domain Di. Sampling from this law is computationally
efficient if we can efficiently sample from each domain. Next, we consider a model, parameterized
by θ ∈ Rp, and a loss function ℓ(θ,x) defined for x ∈ Dgen. To simplify notation, given a set of
samples S (which can be either a full dataset Di, or a mini-batch), we denote the average over S of the
loss ℓ(θ, S) ≜ 1

#S

∑
x∈S ℓ(θ,x). Since we focus on LLMs, ℓ is typically the next-token-prediction

loss. For a given mixture weight α, we can update θ by doing optimization steps on the generic loss

Lgen(θ,α) ≜ Ex∼mix(α)[ℓ(θ,x)] =

k∑
i=1

αiLi(θ) with Li(θ) ≜ ℓ(θ, Di) (1)

In this paper, our goal is to use this data-mixture to train a model that performs well a specific task.
We assume to have access to samples from this task, split into train and test sets. We call the train set
the specific dataset Dspe that we use to train models. The performance on the specific set is measured
with the specific loss

Lspe(θ) ≜ ℓ(θ, Dspe). (2)
We assume that the specific set Dspe is small; hence, optimizing Lspe directly leads to overfitting: the
loss on the test data would be much higher than Lspe. Instead, to get to a low specific loss, we aim to
find the optimal data mixing across k data domains α at each training step to get a good model while
training on the reweighted generic distribution mix(α).

The target specialization task can be flexible according to the application domains, ranging from
reasoning, instruction following, etc., corresponding to various objective loss functions, including the
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next-token prediction loss and preference-based losses when applied on pair-wise datasets. In this
paper, we focus on next-token prediction on another dataset. Next, we introduce a general bilevel
formulation of the data mixing problem.
2.2 BILEVEL FORMULATION

Since the lack of data forbids optimizing directly Lspe, we look for the mixture α such that optimizing
the generic loss Lgen(θ,α) yields the smallest specific loss (Grangier et al., 2023). This is formalized
by the following bilevel optimization problem (Bracken & McGill, 1973; Dagréou et al., 2022):

α⋆ ∈ argmin
α∈∆k

Lspe(θ
⋆(α)), such that θ⋆(α) ∈ argmin

θ
Lgen(θ,α) (3)

This bilevel formulation is intuitive: for a given weight α, the parameters obtained by minimizing the
generic loss Lgen are θ∗(α), and we want those weights to yield a small specific loss. Notably, if
the specific loss is a mixture of generic data with an unknown weight α̃, the bilevel formulation is
guaranteed to recover it. In other words:
Theorem 1. Assume that there exists α̃ such that Dspe = mix(α̃) . Then, α̃ is a solution to the
bilevel problem in Equation 3.

Proof. We let θ̃ the minimizer of Lspe. Then, for all α, we have by definition that Lspe(θ
∗(α)) ≥

Lspe(θ̃). Furthermore, since Dspe = mix(α̃), we have that Lgen(θ, α̃) = Lspe(θ) for all θ, hence
minimizing this yields θ∗(α) = θ̃. Putting these results together, we have proven that for all α, it
holds Lspe(θ

∗(α)) ≥ Lspe(θ
∗(α̃)), so that α̃ is a solution to Equation 3.

We consider two types of methods to solve Equation 3. Static methods construct a single mixture
weight vector α and then minimize Lgen(θ,α); we describe in the next section how to obtain this
vector α. Online methods modify the weights dynamically during model training. They produce a
sequence of weights α(t) where t is the optimization iterate. In that case, at each training step, the
parameters θ(t) are updated by doing an optimization step — with gradient descent or Adam — on
the function Lgen(θ,α

(t)). We now discuss methods to obtain a weight vector α or a sequence α(t).

2.3 A STRONG BASELINE: IMPORTANCE SAMPLING

A sensible strategy is to train the model on a data mixture that most resembles the composition of the
targeted specialization data distribution. This is the philosophy behind importance sampling (Kloek
& Van Dijk, 1978). We estimate the importance sampling weights αIS using the method of Grangier
et al. (2024). The core idea is to embed each generic domain using SentenceBert (Reimers &
Gurevych, 2019), and then compute the centroid of each domain bi =

1
#Di

∑
x∈Di

Bert(x). This
defines a simple and cheap to compute selection function c(x) ∈ {1 . . . k}, assigning x to its closest
centroid, i.e., c(x) = argmini ∥Bert(x) − bi∥ for x ∈ Dgen ∪ Dspec. We use it to predict the
closest generic data domain for each data instance from the specific set. The importance sampling
weights are obtained as the ratio of examples falling in each bin: αIS

i ≜ #{x∈Dspe|c(x)=i}
#Dspe

. One
of the main advantages of this method is its simplicity: the computation of the weights αIS is
decoupled from model optimization and can be performed before training. It is expected to work
well when the specialization set can be well approximated by the reweighted generic set, i.e., when
Lspe(θ) ≃ Lgen(θ,α

IS). When this is not the case, it might not lead to a good specific loss. Another
potential issue with this method arises when it assigns a large weight to a generic domain Di with
little available data. In this case, training a model on mix(αIS) will overfit on that domain Di, and
it would have been better to reduce the weight of that domain to mitigate overfitting. A last issue
arises when the number of specific examples, #Dspe, is significantly smaller than the number of
domains k. In this situation, the importance weights become sparse, as they can have at most #Dspe

non-zero coefficients. This sparsity could be problematic, as some domains with zero weights might
still be close to Dspe. We illustrate these shortcomings in our experiments and explain how gradient
alignment methods — which we introduce next — overcome them.
2.4 DGA: DYNAMIC GRADIENT ALIGNMENT

Algorithm. We introduce the DGA: Dynamic Gradient Alignment method for data reweighting
to approximately solve the bilevel problem in Equation 3. This algorithm builds upon DoGE (Fan
et al., 2024) and we give a precise account of their differences later. DGA keeps track of the model’s
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parameters θt and dynamic weights αt. Once every Tr steps, we compute the gradient alignments
at, by doing

at
i = ⟨∇ℓ(θt,xi),∇ℓ(θt, z)⟩ where xi ∼ Di and z ∼ Dspe. (4)

and update the weights by mirror descent on the simplex (Beck & Teboulle, 2003) with step η > 0:

αt+1 =
α̂∑k

i=1 α̂i

where α̂ = αt ⊙ exp(ηat) (5)

We optionally store an EMA version of the weights αt parameterized by β ∈ [0, 1] to stabilize the
training dynamics of the model’s parameters, and define αt+1

EMA = (1− β)αt
EMA + βαt+1. Finally,

at each step, we update the model’s parameters θt by doing an optimization step on Lgen(θ,α
t
EMA).

The full algorithm pseudo-code is given in Algorithm 1.

Rationale. This algorithm can be seen as a heuristic to solve the bilevel problem in Equation 3.
Indeed, each update on θ optimizes the inner loss. The update rule on α can be seen as a mirror-
descent step on Lspe(θ

∗(α)) with several approximations. The first approximation consists of
approximating the solution of the inner problem with one gradient descent step with step-size ρ:
θ∗(α) ≃ θt − ρ

∑k
i=1 αi∇Li(θ

t). We then approximate the specific loss at θ∗ by the post-update
specific loss function: Lspe(θ

∗(α)) ≃ f(α, ρ) ≜ Lspe(θ
t − ρ

∑k
i=1 αi∇Li(θ

t)), that is, the drop
on the specific loss after an update. When the step size ρ is small, a Taylor expansion gives

f(α, ρ) = Lspe(θ
t)− ρ

k∑
i=1

αi⟨∇Li(θ
t),∇Lspe(θ

t)⟩+ o(ρ) (6)

Similarly, we get that the gradient of f is the gradient alignment:

∂f

∂αi
(α, ρ) = −ρ⟨∇Li(θ

t),∇Lspe(θ
t)⟩+ o(ρ) (7)

We want to use this gradient of f to implement a mirror-descent method. Unfortunately, the gradients
involved in the alignment are full-batch, so we approximate them with stochastic gradients obtained
from mini-batches, yielding the alignments at from Equation 4. Overall, we get the approximation
∇αLspe(θ

∗(α)) ≃ −ρat; and the update rule in Equation 5 is a mirror descent step with this
approximated gradient and step η/ρ.

We have explained the link between our algorithm and the bilevel problem in Equation 3. Proofs
showing convergence of our method require assumptions violated in practice, e.g. most theoretical
work assumes that the function θ → Lgen(θ,α) is convex (Ghadimi & Wang, 2018; Arbel & Mairal,
2021; Dagréou et al., 2022). Nevertheless, successful applications of related bilevel algorithms to
non-convex neural networks have been reported recently (Fan et al., 2024; Grangier et al., 2023).

Computational cost and memory overhead. The computation cost of DGA is compared to the cost
of a regular pre-training run. For a base run iteration, the main cost is tg, the cost of computing a
gradient with a mini-batch B. For DGA, we need to add the cost of updating the domain weights α,
which only happens every Tr iterations. This update requires computing the k + 1 gradients (one
per domain, one for Lspe). Hence the average cost of one iteration of DGA is (1 + (k + 1)T−1

r )tg.
Therefore, DGA’s compute overhead is small when Tr is large compared to the number of domains k.

During training, the memory is used by the optimizer state, the model gradients and its activations.
We assume the same precision for storing all vectors. The optimizer state (the model parameters and
the two EMA terms for Adam) and the gradients have a storage cost of 4mg , where mg denotes the
cost of storing the model parameters. The cost of storing the activations during backpropagation is
mb. Regular pretraining with Adam therefore costs 4mg+mb. DGA computes the required gradients
sequentially and does not require more memory to store activations. It simultaneously stores two
gradients instead of one (one domain gradient and one specific gradient). DGA, therefore, costs
5mg +mb: DGA memory overhead ranges from 0 (when mb ≫ mg) to 25% (when mg ≫ mb).

Comparison with DOGE. While our method is heavily inspired by DoGE (Fan et al., 2024), there
are several key differences. First, DGA samples from the mixture: the weights θt are updated using
samples drawn from the mixture mix(αt), with the gradient ∇ℓ(θt,x) where x ∼ mix(αt); this
is the same gradient that one would use during pre-training with weight αt. In contrast, DoGE’s
weights are updated using a reweighted gradient

∑k
i=1 α

t
i∇ℓ(θt,xi), where each xi are drawn from
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Algorithm 1 Dynamic Gradient Alignment method

1: Input: Generic domains D1, . . . , Dk, specific set Dspe, inner optimizer state ω0, optimizer
function Optimizer such as Adam or SGD, initial weights α0, outer learning rate η, EMA
parameter β, weight update frequency Tr

2: Initialize EMA weights: α0
EMA = α0

3: for t = 0 . . . T do
4: Sample a batch from EMA generic mixture: x ∼ mix(αt

EMA)

5: Update the parameters θt+1,ωt+1 ← Optimizer(θt,ωt,∇θℓ(θ
t,x))

6: if t%Tr = 0 then
7: Sample a batch from each domain: xi ∼ Di for i = 1 . . . k and y ∼ Dspe

8: Compute gradient alignements at
i ← ⟨∇ℓ(θt+1,xi),∇ℓ′(θt+1,y)⟩

9: Update instantaneous weights: αt+1 ← α̂∑k
i=1 α̂i

with α̂ = αt ⊙ exp(−ηat)

10: Update EMA weights: αt+1
EMA ← βαt

EMA + (1− β)αt+1

11: else
12: Do nothing: αt+1

EMA ← αt
EMA, and αt+1 ← αt

13: end if
14: end for
15: Return Optimized parameters θ(T ) and weights trajectory αt, t = 0 . . . T

the domain Di. For a fixed number of samples available at each draw, DGA’s gradient estimate has a
lower variance (Seiffert et al., 2008). As explained above, DGA has a small overhead compared to
regular pre-training, while DoGE updates the weights at each iteration. These two key differences
mean that DGA is much closer to regular pre-training than DoGE. For instance, DGA never requires
retraining a model from scratch using the mixture weights estimated from a previous run, while this
is the costly strategy used for DoGE. Finally, the EMA strategy described above is novel.

Towards a convergence theory for DGA. It is hard to prove the convergence of algorithms for data
reweighting with neural networks because of the non-convexity of the loss functions and the unknown
link between generic and specialist datasets. We prove the convergence of DGA in a simplified setting
where the generic losses are deterministic quadratic functions, and the specialist dataset is exactly a
mixture of generic datasets with unknown proportions α̃. We have:
Theorem 2. Let µ1, . . .µk ∈ Rd some target vectors, and define the losses on the ith generic domain
as Li(θ) =

1
2∥θ − µi∥2 . Let α̃ ∈ ∆k a target mixture vector, and assume that the specific loss is

Lspe(θ) =
∑k

i=1 α̃iLi(θ). Let M = [µ1, . . . ,µk] ∈ Rd×k, assume that λmin(M
TM) > 0. Then,

running DGA for T iterations with gradient descent as the optimizer function with step size 1, and
outer learning rate η = O(1/

√
T ) yields iterates αt such that mint=1...T ∥αt − α̃∥2 = O(1/

√
T ).

This theorem demonstrates that DGA converges at the same rate as mirror descent for a simple
problem and recovers the true mixture weights. To the best of our knowledge, this is the first
theoretical convergence result for a gradient alignment descent.

3 EXPERIMENTS
Our experiments focus on two challenging cases. First, given limited token resources within each
training domain, the model would risk overfitting with weights concentrated on a few domains.
Second, given large number of training domains, applying DGA on domain reweighting could
introduce intractable computation overheads linearly increasing according to the domain granularity.

Generic Datasets and Domains. For all the experiments, we use Redpajama-v2 (Together AI
Team, 2023) as the generic training set Dgen. This is one of the largest public corpus for LLM
pretraining. Redpajama-v2 contains 30 trillion filtered and deduplicated tokens from web-crawled
dumps. Since this corpus does not come pre-segmented into domains, we obtain individual generic
domains from Dgen with clustering. Specifically, we use the embedding-and-clustering pipeline
from Grangier et al. (2024). We first embed all the training sequences x ∈ Dgen with SentenceBert
(all-MiniLM-L6-v2), yielding a 384 dimensional embedding Bert(x). We then apply k-means
clustering on the sentence embeddings into k = 64 clusters yielding k domains D1, . . . , Dk.

5
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To get fine-grained generic domains, we apply hierarchical clustering on the top of the first level of
k1 = 64 clusters. Specifically, each domain is further clustered once again into 64 smaller clusters.
We apply this strategy twice to get domains with granularity k2 = 642 = 4096 and k3 = 643 = 262k.

Model Architecture. We train small (125M), medium (350M) and large (750M) models with decoder-
only transformers (Vaswani et al., 2017). We adopt most of the training settings and architectures
from (Brown et al., 2020a). Their details are provided in Appendix C. For optimization, we use the
AdamW optimizer (Loshchilov, 2017).

3.1 DOMAIN REWEIGHTING WITH LIMITED RESOURCES
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Figure 1: Comparing data reweighting methods with free law as a specific set in a low generic
data regime. When there are not enough tokens, importance sampling quickly overfits, while DGA
manages to explore the training distributions to avoid overfitting. We see the importance of the EMA
to stabilize DGA in the low data regime. When there is no token limit, adding an EMA (β = 0.1)
does not negatively affect the performance.

Previous works on domain reweighting implicitly assume infinite token resources from all training
domains (Xie et al., 2023a; Fan et al., 2024; Liu et al., 2024) while it is not always applicable in
real-world cases. The scenario with limited training resources is challenging for online domain
reweighting. Indeed, if the weights are concentrated on a few domains, e.g. on a single domain Di, a
large model will quickly overfit when the number of tokens in Di is small.

We expect DGA to mitigate overfitting by dynamically adjusting the domain weights. Specifically,
once a model starts overfitting on Di, the magnitude of the gradients ∇ℓ(θ, Di) decreases as its
training loss ℓ(θ, Di) is low, i.e. the domain knowledge from Di is well-learned. Consequently, the
corresponding gradient alignment score ai = ⟨∇ℓ(θ, Di),∇ℓ(θ, Dspe)⟩ decreases as well and DGA
explores other domains with higher alignment scores. In other words, DGA down-weights domains
once they are well-learned, thereby achieving a balance between exploration – by learning from
diverse data domains – and exploitation, by intensively training on the most relevant domains.

However, with limited data per domain, we remark that DGA without EMA demonstrates drastic
changes at each domain weight update, focusing heavily on one domain at a time. Quickly changing
domain weights is problematic since we want to use the same domain weights for Tr steps in the
future. This motivates the introduction of the EMA update in Algorithm 1, which regularizes the
model and domain weights with the previous state when it starts to overfit.

Experiment Setup. We consider the generic domain split into k = 64 domains. We construct three
scales of generic sets, either taking the full dataset or randomly sub-sampling 30M, 0.1B tokens
per domain. For the targeted specific set Dspe, we use 5 subsets from the Pile (Gao et al., 2020)
covering common specialized data types for LM applications: Math (dm mathematics), Code (github,
stackexchange), Medical (pubmed central), Legal (free law) and Scientific articles (arxiv).

We implement the importance sampling baseline described in subsection 2.3. We also compare to the
uniform baseline with the domain weights αuniform as the natural proportion of each data domain in
the generic Redpajama-v2 dataset. For importance sampling and uniform baselines, the domain
weights are fixed throughout the entire training run. For both vanilla DGA and DGA with an EMA
(β = 0.1), we update domain weights α every Tr = 100 steps. We provide the ablation results on
the step size η, frequency Tr and ema factor β in Appendix C. We use 125M models for experiments.
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Results. We report the validation loss on the specialized set under various token constraints in
Figure 1 for free law and the results on other domains in Appendix A. With 30M tokens per domain,
DGA with EMA effectively stabilizes the training, while vanilla DGA exhibits several loss spikes,
suggesting a lack of robustness. Under a 0.1B token constraint, both DGA and DGA with EMA are
able to dynamically adjust domain weights to mitigate overfitting. In contrast, fixed domain weights
from importance sampling consistently lead to overfitting in token-limited scenarios, demonstrating
the limitations of static weighting strategies in comparison to dynamic approaches like DGA. It is
worth noting that adding the EMA has no negative effect on the learning efficacy when there is no
token limit, which can be used as a robust regularization in the online domain reweighting context.

Domain Weights Evolution. In the experiments with a limited generic token budget (subsection 3.1),
DGA without EMA often assigns excessive weight to one generic domain, leading to overfitting
due to the restricted number of training tokens. This iterative over-weighting pattern on generic
domain weights aligns with the observed loss spikes on the specific set (Figure 3a). In contrast, the
EMA helps to regularize the weight dynamics, effectively preventing the model from overfitting by
maintaining more balanced domain weights throughout the training process.

3.2 DISTRIBUTION REWEIGHTING: SCALING-UP DATA MIXING ON EXTREMELY
FINE-GRAINED DATA DOMAINS

The computational overhead from DGA scales linearly with the number of domain k. This is
intractable for datasets segmented in many fine-grained domains and, consequently, prior domain
reweighting methods (Xie et al., 2023a; Fan et al., 2024; Liu et al., 2024; Kang et al., 2024) have
not been applied in that setting. The fine-grained setting motivates distribution reweighting as an
alternative to direct domain reweighting.

Distribution reweighting leverages the strength from both embedding-based (importance sampling)
and gradient-based (DGA) strategies. We consider a generic training set partitioned into k domains
with a large k (e.g. 4096, 262k). We also have a set of N auxiliary datasets {S1, . . . , SN}, called
basis sets, each from a specific domain of interest. We compute the importance sampling histograms
for each basis set as P = {p1, . . . ,pN}, pi ∈ ∆k, P ∈ Rk×N . We then use DGA to search over
a reparameterized space leveraging this basis. We define the domain weights αdomain ∈ ∆k as a
convex combination of N k−dimensional distributions derived from importance sampling,

αdomain ≈ Pαdist = αdist,1 · p1 + αdist,2 · p2 + . . .+ αdist,N · pN (8)

where the low-dimensional weights αdist ∈ ∆N are learned by DGA. This allows the use of fine-
grained domain features while eliminating intensive gradient computation on each generic domain.
Compared to the (k + 1)/Tr overheads from domain reweighting, applying distribution reweighting
only incurs (N + 1)/Tr extra budget, where N is typically much smaller than k. Importantly, this is
equivalent to applying DGA with the N generic domains D̃1, . . . , D̃N where D̃i = mix(pi). Hence,
it does not require any modification to the base DGA algorithm; it suffices to be able to sample
according to each mix(pi). We provide the pseudo-code for the distribution reweighting with DGA
in Appendix D.

Experiment Setup. We demonstrate the efficacy of distribution reweighting on the MMLU bench-
mark (Hendrycks et al., 2021). MMLU consists of 57 tasks from various knowledge fields, which
serves as a testbed of multi-domain language modeling; by measuring the downstream accuracy, we
can assess whether the improvements obtained in language modeling transfer to reasoning abilities.

We construct two specific datasets with different amounts of accessible samples: (1) MMLU a: we
take half of the examples from each task used as Dspe. We denote the other half of datapoints as
MMLU b, which is used for evaluation; (2) MMLU dev: we randomly select 5 samples from each
task, simulating the few-shot learning scenario. MMLU a has 7.1k samples while MMLU dev only
has 285 samples, which yields sparse importance sampling histograms. For evaluation, we assess the
language modeling performance by computing perplexity on MMLU b. We also measure the accuracy
for multiple choice question answering on MMLU b with llm-eval (Gao et al., 2024).

We use generic domain splits with k=64, 4096, 262k domains. We rely on 22 auxiliary sub-
domains from The Pile (Gao et al., 2020) as our basis sets. For each auxiliary set, we
take 15M tokens and compute their importance-sampling histograms as p1, . . . ,pN ∈ ∆k.
To search for the optimal balance between diversity and specificity, we extend the basis
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sets with the importance sampling histogram from the specific set itself (i.e. MMLU a or
MMLU dev), yielding N = 23 distributions. For this experiment, we use 750M models.

Uniform
Importance S., k=4096
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(b) MMLU dev (5 examples per task)

Figure 2: Specialized and General Loss
on Distribution Reweighting

DGA greatly accelerates task-adaptive language model-
ing. We evaluate the model’s ability to acquire specialized
knowledge on the target task (MMLU) in Appendix (Fig-
ure 12). DGA achieves substantial training speed-ups
compared to uniform sampling, accelerating by 6.5× on
MMLU a and 4.3× on MMLU dev. Moreover, with finer-
grained clustering (k=262k), DGA outperforms impor-
tance sampling, which suffers from sparse histograms and
performance degradation, achieving 2× and 3.2× faster
training on MMLU a and MMLU dev, respectively. These
results highlight DGA’s ability to effectively utilize fine-
grained domain information while avoiding overfitting,
demonstrating its robustness in scenarios with limited spe-
cialized samples. We include details in subsection B.1
with the fine-tuning results in subsection G.1.

Distribution reweighting makes better specialist and
generalist. While many task-adaptive algorithms are
prone to catastrophic forgetting of general knowledge,
we demonstrate that DGA with distribution reweighting
effectively balances the acquisition of specialized knowl-
edge while preserving general knowledge. To evaluate this,
we report the loss on MMLU b, representing specialized
knowledge, alongside the average validation loss across
22 domains in The Pile, which reflects general knowledge
drawn from broad and diverse domains (Figure 2). Com-
pared to both importance sampling and uniform sampling
baselines, DGA with distribution reweighting achieves a
superior Pareto front, illustrating an improved trade-off
between specialized performance and general knowledge.

4 DISCUSSION AND LIMITATIONS

Comparison between domain reweighting and distribution reweighting. As an efficient alterna-
tive of direct domain reweighting, we assess distribution reweighting in terms of specialized task
adaptation and general domain losses. As shown in Figure 13, distribution reweighting outper-
forms domain reweighting in both specialized and general domain losses on k=64 clusters, while
also incurring lower compute overhead. Furthermore, distribution reweighting exhibits remarkable
scalability, with substantial improvements in specialized task perplexity as cluster granularity in-
creases (k=4096,262k). In contrast, domain reweighting struggles with scalability due to its high
computational complexity, underscoring the efficiency and robustness of distribution reweighting in
fine-grained settings.

DGA outperforms DoGE on both specialized task adaptation and general knowledge. We
compare DGA with DoGE (Fan et al., 2024) in the context of task-adaptive pretraining. Comparing
to both proxy model with online tuned domain weights and the base model with fixed optimized
domain weights, DGA greatly outperforms DoGE in both specialized loss and general loss evaluated
on the generic set. We present more details in Appendix F.

Language modeling capability cannot be fully translated into reasoning accuracies. According to
Table 1, both importance sampling and DGA reweighting greatly outperform the uniform baseline on
reasoning accuracy scores. However, despite the superior language modeling ability, DGA performs
comparably as importance sampling in terms of accuracy scores. It indicates that better language
modeling ability may not be fully transferable to better reasoning capabilities. We report the full
results with different model scales in Appendix B with a detailed discussion on potential reasons.

Weights Evolution on Distributions. We present the evolution of domain weights for each basis
distribution from DGA in Figure 3. Comparing different levels of granularity, with k=262k, the impor-
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Figure 3: The top row presents the specific loss over time, with the two bottom rows illustrating the
evolution of domain (dist.) weights from DGA correspondingly, with each line representing a distinct
domain. Left: Weights from the limited generic token experiment (subsection 3.1). Middle and
Right: Weights from the distribution reweighting experiment (subsection 3.2). The thick black line
highlights the dynamic weights assigned by DGA on the MMLU importance sampling distribution,
which serves as a fixed training distribution for the importance sampling runs.

tance of the MMLU distribution is more emphasized than with k=4096, with the help of fine-grained
domain features. Additionally, with sufficient samples from the specific domain (MMLU a, Figure 3b),
the MMLU distribution is consistently up-weighted across 262k generic domains. In contrast, on
MMLU dev, while the distribution on MMLU is initially up-weighted, it declines gradually in the late
stage of training. Owing to the number of accessible samples from the specific set, the importance
sampling distribution on MMLU dev across 262k generic domains is very sparse. During the training,
the learnability of the few activated generic domains diminishes, making other distributions more
beneficial to the model.

In addition to the importance sampling distribution from the specific sets (MMLU a and MMLU dev),
DGA effectively identifies other relevant distributions from The Pile that contribute to the learn-
ing on MMLU. These influential distributions, which include phil papers, free law, and
dm mathematics, are all considered to contain high-quality, academic-related contents. We
present detailed curves with domain labels in subsection B.4. This ability to adaptively select benefi-
cial distributions enhances the model’s generalization and helps mitigate overfitting by leveraging a
broader yet pertinent set of data sources during pretraining.

Impact of generic domain granularity. In Figure 4, we present the validation loss on the specific
domain according to the number of clusters within the generic dataset. From k = 64 to 4096,
both DGA and importance sampling demonstrate significant improvement in language modeling in
terms of validation loss (i.e., log of perplexity). However, when the number of clusters exceeds the
scale of the accessible specific set, the importance sampling method overfits the limited number of
activated generic domains, failing to capture broader domain knowledge. In contrast, DGA effectively
leverages extremely fine-grained domain information across 262k generic domains with only 7k
samples from MMLU a. In the few-shot context (MMLU dev), DGA mitigates a large performance
degradation by utilizing diverse domain knowledge from other relevant distributions.

Scaling performance of DGA on model scales. To examine the scaling performance of the
DGA algorithm, we train three models of varying scales (125M, 350M, and 750M) using both
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uniform sampling and DGA on k=64 generic clusters. Model pretrained on DGA consistently
outperforms uniform sampling baseline on specialized loss while exhibits degradation in general loss,
i.e. validation loss on RedPajama-v2. We provide more details in subsection G.2.

5 RELATED WORK
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Figure 4: Impact of the generic set gran-
ularity for the distribution reweighting
(subsection 3.2). We report the specific
loss obtained after training for different
granularities of the base clustering.

Task-adaptive Data Selection for Domain-Specific
LLMs. Many works have shown that one can effectively
improve the LLM’s performance on a specific downstream
task with data selection according to the relevance of
generic data for the targeted data domain. Gururangan
et al. (2020) show that continued pretraining on data with
high vocabulary overlap can boost its performance on the
specific end-task. On machine translation task, Aharoni &
Goldberg (2020) identify task-relevant pretraining datasets
from a generic corpus using nearest neighbor of a small
specialist dataset based on SentenceBert sentence repre-
sentation. Wang et al. (2020); Grangier et al. (2023) train a
small proxy model to give an importance weight per sam-
ple. Xie et al. (2023b) proposed DSIR as a lexical-based
importance sampling method using n-gram features.

Other than feature-based importance sampling (Grang-
ier et al., 2024), influence function-based method select
data points which leads to the greatest loss drop on the
target from the optimization perspective (Koh & Liang,
2020; Kwon et al., 2024; Agarwal et al., 2017). However,
these methods often introduce intensive computational
overheads from the second-order gradient computations,
which is not applicable on large generic pretraining corpus.

Data Resampling through Domain Reweighting.
Given the large scale of the generic pretraining corpus,
sample-level selection strategies are hard to implement for
LLM pretraining. Alternatively, domain reweighting meth-
ods (Xie et al., 2023a; Fan et al., 2024; Liu et al., 2024;
Kang et al., 2024) apply group-level selection by adjusting data sampling weights across different
domains to reflect their importance. Based on the weak-to-strong generalization strategy (Burns et al.,
2023), existing domain re-weighting methods typically estimate the optimal domain weights for a
larger model based on the preferences of a small-scale proxy model. Xie et al. (2023a) apply group
distributed robust optimization to optimize the worst-case loss gap between two small-scale proxies.
Fan et al. (2024) use gradient alignment to dynamically adjust domain weights during proxy model
training. Specifically, it identifies the most beneficial domains by aligning the gradients of the training
data with the target task. However, it trains the proxy model on reweighted domain gradients to
simulate the resampling scenario, which introduces more variance in the domain weights estimation.

6 CONCLUSION

To tackle two key challenges of online domain reweighting, we introduce Dynamic Gradient Align-
ment (DGA) as a stable and scalable data mixing method for LLM pretraining. Given a target
task, DGA is an online algorithm that adjusts the training data distribution according to the current
model status. This adaptation relies on an estimate of the progress on the target task from gradient
alignments. We show that under limited tokens within generic domains, DGA with EMA can notably
mitigate overfitting and yields superior performance on the end-task by balancing exploitation and
exploration. We also propose a novel distribution reweighting strategy, which enables DGA to scale
up to extremely fine-grained data domains without incurring intensive computations. Our experiments
on MMLU show that applying distribution reweighting with DGA effectively leverages fine-grained
domain knowledge to balance specialty and diversity during training. Our work demonstrates the
scalability of gradient-alignment-based data reweighting methods, as well as their efficiency in
data-constrained settings.
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A TRAINING WITH LIMITED GENERIC TOKENS

A.1 VALIDATION LOSS ON THE TARGETED END-TASK

We present the complete results on all six target domains (arxiv, free law, dm mathematics,
pubmed central, github, stackexchange) as follows. Across all six target domains, DGA
with EMA (β = 0.1) consistently stablize the training and yields better language modelling perfor-
mance under token-limited contexts.
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Figure 5: Results on all the domains for the low data experiment (subsection 3.1). The specific
domain is free law.
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Figure 6: Results on all the domains for the low data experiment (subsection 3.1). The specific
domain is arxiv
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Figure 7: Results on all the domains for the low data experiment (subsection 3.1). The specific
domain is dm-mathematics
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Figure 8: Results on all the domains for the low data experiment (subsection 3.1). The specific
domain is github
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Figure 9: Results on all the domains for the low data experiment (subsection 3.1). The specific
domain is pubmed-central
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Figure 10: Results on all the domains for the low data experiment (subsection 3.1). The specific
domain is stackexchange
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A.2 DOMAIN WEIGHTS EVOLUTION

We present the domain weights evolution on 64 generic domains from DGA with and w.o. EMA
regularization. With both stackexchange and free law as the specific set, EMA effectively
smoothes the spiky domain weights, which therefore stablize the training process.
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Figure 11: Comparing data reweighting methods with stackexchange (resp. free law) as the
specific set, in a low generic data regime. When there are not enough tokens, importance sampling
quickly overfits, while DGA manages to explore the training distributions to avoid overfitting. We
see the importance of the EMA to stabilize DGA in the low data regime.
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B DISTRIBUTION REWEIGHTING

B.1 DGA WITH DISTRIBUTION REWEIGHTING ACCELERATE TASK-ADAPTIVE TRAINING

We evaluate the perplexity on the target task (MMLU) in Figure 12, which reflects the model’s ability
to acquire specialized knowledge. Notably, DGA achieves significant acceleration compared to
uniform sampling, with training speed-ups of 6.5× and 4.3×when targeting MMLU a and MMLU dev,
respectively. Comparing to the importance sampling baseline, DGA achieves comparable performance
when trained with MMLU a on k = 4096 generic clusters. However, with specialized dataset as
MMLU dev, where samples from the specialized task are limited, DGA demonstrates a 2× speed-up
on k = 4096 clusters. Additionally, with a finer-grained generic clustering (k = 262k), DGA
accelerates training by 2× with MMLU a and 3.2× with MMLU dev. The remarkable improvements
highlight DGA’s capability to effectively leverage fine-grained domain information and mitigate
overfitting issues often seen with importance sampling with insufficient samples from specialized
task.
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Figure 12: Perplexity on the Specific Task (MMLU). (a,c) present the specialized perplexity over
time with target at MMLU a; (b,d) present the results with target at MMLU dev.
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B.2 COMPARISON BETWEEN DOMAIN REWEIGHTING AND DISTRIBUTION REWEIGHTING

In Figure 13, we compare distribution reweighting and domain reweighting according to the task-
adaptive capability and the general knowledge preserved during task-adaptive training process.
With distribution reweighting on N = 23 distributions and k = 64 domains, both specialized
and generic perplexity are improved above domain reweighting on k = 64 domains. Meanwhile,
the computational overheads are reduced from k/Tr = 64% to N/Tr = 23%. The perplexity
on the specialized domain can be significantly improved by increasing the domain granularity
(k = 64→ 4096→ 262k), while the domain reweighting algorithm cannot scale up to large number
of domains because of its high complexity.
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Figure 13: Comparison between Domain Reweighting and Distribution Reweighting. (a,c)
present the perplexity across 22 domains in The Pile, which defined as the generic perplexity; (b,d)
present the specialized perplexity on MMLU.
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B.3 EVALUATION RESULTS ON MMLU

B.3.1 REASONING ACCURACY

Despite the superior performance on language modeling, DGA can hardly outperform importance
sampling in terms of accuracy scores on MMLU benchmark (Table 1), which indicates the improvement
on language modeling ability may not be able to fully translated to reasoning capacities. For the
limited improvement on accuracy, we provide two potential explanations: (1) since the target objective
in the outerloop (Lspe in Equ. 3) is the next token prediction loss for language modeling, the language
modeling performance is expected to be improved. However, it does not necessarily translate to the
improved reasoning accuracy (2) MMLU is considered to be a challenging reasoning task, where the
accuracies can hardly be improved when the model capacity is below some specific threshold. This
phenomenon is well-illustrated by Figure 11. (G) in (Wei et al., 2022). How to derive an optimization
objective which directly benefits the reasoning accuracy would be a compelling future direction.

Table 1: MMLU accuracies with domain reweighting methods. Both importance sampling and
DGA reweighting greatly improve the accuracy above uniform baseline, while DGA does not show
significant improvement above importance sampling.

Method MMLU a MMLU dev

Uniform 26.1 % 26.1 %

Importance S. k = 4096 27.7 % 27.7 %
k = 262k 28.4 % 27.0 %

DGA dist. reweighting k = 4096 26.8 % 27.4 %
k = 262k 28.0 % 27.0 %
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B.3.2 FULL EVALUATION RESULTS ACROSS DIFFERENT MODEL SCALES

We present the complete evaluation results on MMLU benchmark on small- (125M) and large-
(750M) scale models. k denotes the number of generic domains, N denotes the number of reweighted
importance sampling distributions from basis sets. N=22 indicates we only reweight 22 distributions
from 22 The Pile subsets, while N=23 includes the importance sampling histgram from the specific
set (MMLU). Since the 125M model shows marginal difference in accuracy because of limited
capacity, we only scored 750M model on MMLU reasoning accuracies.

Table 2: Results on the domain reweighting experiment, with half MMLU as train set. The best
results is Bolded and the second best is Underlined.

125M model MMLU loss MMLU acc. avg. Pile loss

Uniform 3.56 - 3.27
Importance S. (k=4096) 3.32 - 3.16
Importance S. (k=262k) 3.22 - 3.19
DGA domain reweighting (k=64) 3.31 - 3.10
DGA dist. reweighting (N=22, k=4096) 3.34 - 3.13
DGA dist. reweighting (N=22, k=262k) 3.34 - 3.05
DGA dist. reweighting (N=23, k=4096) 3.33 - 3.13
DGA dist. reweighting (N=23, k=262k) 3.25 - 3.10

750M model MMLU loss MMLU acc. avg. Pile loss

Uniform 3.03 26.1 % 2.82
Importance S. k=4096 2.82 27.7 % 2.75
Importance S. k=262k 2.82 28.4 % 2.81
DGA domain reweighting (k=64) 2.97 27.1 % 2.77
DGA dist. reweighting (N=22, k=4096) 2.86 27.2 % 2.73
DGA dist. reweighting (N=22, k=262k) 2.84 27.0 % 2.66
DGA dist. reweighting (N=23, k=4096) 2.83 26.8 % 2.73
DGA dist. reweighting (N=23, k=262k) 2.74 28.0 % 2.76

Table 3: Results on the domain reweighting experiment, with 5 examples per task of MMLU as train
set. We score only the 750M models.

125M model MMLU loss MMLU acc. avg. Pile loss

Uniform 3.56 - 3.27
Importance S. (k=4096) 3.40 - 3.16
Importance S. (k=262k) 3.41 - 3.29
DGA domain reweighting (k=64) 3.46 - 3.19
DGA dist. reweighting (N=22, k=4096) 3.37 - 3.12
DGA dist. reweighting (N=22, k=262k) 3.36 - 3.03
DGA dist. reweighting (N=23, k=4096) 3.37 - 3.14
DGA dist. reweighting (N=23, k=262k) 3.35 - 3.08

750M model MMLU loss MMLU acc. avg. Pile loss

Uniform 3.03 26.1 % 2.82
Importance S. k=4096 2.96 27.7 % 2.75
Importance S. k=262k 3.13 27.0 % 2.99
DGA domain reweighting (k=64) 3.01 27.0 % 2.77
DGA dist. reweighting (N=22, k=4096) 2.89 26.8 % 2.76
DGA dist. reweighting (N=22, k=262k) 2.93 27.0 % 2.68
DGA dist. reweighting (N=23, k=4096) 2.88 27.4 % 2.75
DGA dist. reweighting (N=23, k=262k) 2.90 27.0 % 2.70
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B.4 WEIGHTS EVOLUTION ON DISTRIBUTIONS

We present the weights assigned to each distribution over time corresponding to the loss on the
specialized task in Figure 14. The top-10 up-weighted distributions include one from the specific
dataset Dspe and other academic related domains (e.g. pubmed central, phil papers,
dm mathematics), which are greatly relevant to the sub-topics in MMLU benchmark.
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Figure 14: The top row presents the specific loss over time, with the two bottom rows illustrating the
evolution of domain (dist.) weights from DGA correspondingly, with each line representing a distinct
domain.
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C HYPERPARAMETERS

Table 4 provides the model architectures and hyperparameters used in this paper.

Table 4: Architecture hyperparameters for various model scales used in the paper. All models are
vanilla Transformer decoder-only models.

Layers Attention heads Embed dim Hidden dim Context limit learning rate

125M 12 12 768 3072 1024 1× 10−4

350M 24 16 1024 4096 1024 1× 10−4

750M 36 20 1280 5120 1024 1× 10−4

D DGA FOR DISTRIBUTION REWEIGHTING

Algorithm 2 explains the distribution reweighting with DGA. The implementation can be easily
adapted from domain reweighting DGA with minor modifications.

Algorithm 2 Distribution Reweighting w. DGA. (Difference from domain reweighting are marked in blue)

1: Input: Generic domains D1, . . . , Dk, I.S. distributions Adist ≜ [p1, . . . ,pN ], specific set Dspe,
inner optimizer state ω0, optimizer function Optimizer such as Adam or SGD, initial weights
α0, outer learning rate η, weight update frequency Tr

2: Initialize distribution weights: α0
dist = α0, i.e. init. domain weights: α0

domain = α0
dist⊗Adist.

3: for t = 0 . . . T do
4: Sample batch from generic mixture: x ∼ mix(αt

domain)

5: Update the parameters θt+1,ωt+1 ← Optimizer(θt,ωt,∇θℓ(θ
t,x))

6: if t%Tr = 0 then
7: Sample a batch from each distribution: xi ∼ mix(pi) for i = 1 . . . N and y ∼ Dspe

8: Compute gradient alignements at
i ← ⟨∇ℓ(θt+1,xi),∇ℓ′(θt+1,y)⟩

9: Update distribution weights: αt+1
dist ←

α̂∑k
i=1 α̂i

with α̂ = αt
dist ⊙ exp(−ηat),

10: Updated domain weights: αt+1
domain = αt+1

dist ⊗Adist.
11: else
12: Do nothing: αt+1

dist ← αt
dist

13: end if
14: end for
15: Return Optimized parameters θ(T ) and weights trajectory αt, t = 0 . . . T
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E PROOF OF THEOREM 2

To ease notations, we define m(α) =
∑k

i=1 αiµi. Let αt be the current weight estimate of DGA
and θt be the estimate of the parameters. The generalist gradient is

∇θL(θ
t,αt) =

k∑
i=1

αi(θ
t − µi)

Hence, doing a gradient descent step on θt with step 1 yields

θt+1 = θt −∇θL(θ
t,αt) (9)

=

k∑
i=1

αiµi = m(α) (10)

Then, the gradient alignment is

ai = ⟨∇θLi(θ
t+1),∇θLspe(θ

t+1) (11)

= ⟨m(αt)− µi,m(α)−m(α̃)⟩] (12)

= ⟨m(αt),m(α)−m(α̃)⟩ − Σk
j=1⟨µi,µj⟩(αt − α̃) (13)

= ⟨m(αt),m(α)−m(α̃)⟩ −
[
MMT (αt − α̃)

]
(14)

The first part does not depend on i, so it will have no effect in the mirror descent step. Hence, the
mirror descent step is equivalent to a mirror descent step to minimize the function

f(α) =
1

2
∥M(α− α̃)∥2 .

The convergence theory of mirror descent yields the bound (Beck & Teboulle, 2003, Theorem 4.2)

min
t=1...T

f(αt) = O(
1√
T
)

which in turn, thanks to the strong-convexity of f , gives

min
t=1...T

∥αt − α̃∥2 ≤ 1

λmin(MMT )
min

t=1...T
f(αt) = O(

1√
T
)
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F COMPARISON BETWEEN DGA AND DOGE

We compare DGA with DoGE (Fan et al., 2024) in the context of task-adaptive training. Specifically,
we use the RedPajama-v2 dataset clustered into k=64 domains as the generic dataset, and Arxiv
from The Pile as the specialized domain.

Following the methodology outlined by Fan et al. (2024), we implement a two-stage pipeline for
domain-reweighted pretraining. First, we optimize the domain weights α on a proxy model. Next, we
compute the average domain weights over all time steps and use them as fixed sampling weights to
train the base model. For this setup, we train proxy models at two scales (31M and 125M parameters)
and a base model at 125M parameters. For DGA, we follow Algorithm 1 to train the 125M base
model. Unlike DoGE, DGA updates the domain weights dynamically in an online manner, eliminating
the need for a separate proxy model or precomputed fixed sampling weights.

We report both the specialized loss on Arxiv over time (measured in GPT hours) and the validation
loss on RedPajama-v2, which reflects the retention of general knowledge from the generic dataset.
To evaluate the performance of DoGE as both an online and offline domain reweighting method, we
present results from both the proxy model and the base model. All the models are trained with 1 ×
Nvidia A100 GPU.

According to Figure 15 (a), DGA greatly outperforms online DoGE (125M proxy model) and achieves
comparable specialized loss as the offline DoGE (125M model trained w. 31M/125M Doge weights).
However, as an online algorithm, DGA does not require any proxies, which significantly outperform
DoGE in terms of efficiency. In addition, as shown in Figure 15 (b), DGA reaches a lower loss
on RedPajama than both online and offline DoGE. It indicates that DoGE is more vulnerable from
catastrophic forgetting compared to DGA.
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(a) Specialized Loss on Arxiv
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Figure 15: Comparison between DGA and DoGE on Language Modeling
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G SUPPLEMENT RESULTS ON LANGUAGE MODELING

G.1 TASK-ADAPTIVE PRETRAINING WITH FINE-TUNING

We further assess the model’s performance after fine-tuning on a dataset drawn from the downstream
task. Specifically, we fine-tune 125M pretrained model checkpoints trained using uniform sampling
and DGA reweighting with k=64, on tokens from the Stackexchange subset of The Pile. We
chose different numbers of tokens available for fine-tuning. For each number of tokens, we train the
model on those tokens only using a small learning rate (10−5), and report the best validation loss
across the runs.

As shown in Figure 16, the model pretrained with DGA demonstrates superior performance on the
specialized domain (Stackexchange) after fine-tuning, consistently outperforming the uniform
sampling and importance sampling baselines across various scales of available fine-tuning tokens.
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Figure 16: Specialized Loss on Stackexchange after Task-specific Fine-tuning.
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G.2 SCALING PERFORMANCE OF DGA ACROSS VARIOUS MODEL SCALES

To examine the scaling performance of the DGA algorithm, we train three models of varying scales
(125M, 350M, and 750M) using both uniform sampling and DGA with k=64 clusters. As illustrated
in Figure 19 (a), DGA consistently outperforms uniform sampling by a significant margin across
all three model scales. However, as shown in Figure 19 (b), DGA exhibits some degradation in
general knowledge compared to uniform sampling, which presents the highest level of sample
diversity. Notably, this performance gap in general knowledge narrows on the largest model (750M),
highlighting the potential scalability benefits of DGA in larger model regimes.
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Figure 17: Language Modeling Performance across Model Scales
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G.3 ABLATION ON HYPER-PARAMETERS

Ablations on step size η and update frequency Tr. We conducted the ablation experiments on
both step size η and frequency Tr used for updating domain weights α, as described in Algorithm 1.
According to Figure 18, using a step size that is too small will result in slow updates to the domain
weights. On the other hand, applying a large step size (η) can accelerate the learning of domain
weights but may also lead to training instability due to overly up-weighted domains. Since EMA can
effectively stabilize learning, we recommend that practitioners choose η values between 0.1 and 0.5.

Regarding the reweight frequency, using a smaller Tr generally improves the final specialized loss but
increases computation costs. To balance cost and performance, we recommend setting Tr between
30 and 100. However, these values should be tailored to specific use cases and levels of domain
granularity.
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Figure 18: Grid search on step size η and update frequency Tr
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Ablations on EMA factor β. We perform an ablation on the hyper-parameter β applied in the
exponential moving average update in Algorithm 1. We choose two extreme values: (1) β=0.1, which
is close to 0 and (2) β=0.9, which is close to 1.0. We present the specialized loss on various target
domains over time with different values of β. With a strict token limit (30M per domain), both
β=0.1, 0.9 can effectively smooth the loss curve while efficiently acquiring specialized knowledge.
However, in the cases with 0.1B token per domain or unlimited resources, setting β=0.9 severely
slow down the learning of domain weights, which hurts training efficiency.
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Figure 19: Language Modeling Performance across Model Scales

H CATASTROPHIC FORGETTING ON GENERAL KNOWLEDGE

As a prevalent issue in task-adaptive training, catastrophic forgetting often arises when models lose
general knowledge while adapting to specialized tasks. Our experimental results demonstrate that
DGA can preserve more general knowledge during task-adaptive pretraining, while other baselines,
including importance sampling (Figure 2) and DoGE (Figure 15) are more vulnerable to catastrophic
forgetting.
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In addition, compared with direct domain reweighting, our proposed distribution reweighting algo-
rithm can retain the general domain knowledge better without sacrificing specialized loss (Figure 13).
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