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Abstract

Diffusion models can be used as learned priors for solving various inverse prob-
lems. However, most existing approaches are restricted to linear inverse problems,
limiting their applicability to more general cases. In this paper, we build upon De-
noising Diffusion Restoration Models (DDRM) and propose a method for solving
some non-linear inverse problems. We leverage the pseudo-inverse operator used
in DDRM and generalize this concept for other measurement operators, which
allows us to use pre-trained unconditional diffusion models for applications such
as JPEG artifact correction. We empirically demonstrate the effectiveness of our
approach across various quality factors, attaining performance levels that are on
par with state-of-the-art methods trained specifically for the JPEG restoration task.
Our code is available at https://github.com/bahjat-kawar/ddrm-jpeg.
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Figure 1: Pairs of JPEG images and restorations using our method. Best viewed zoomed in.

1 Introduction

Many image processing problems are instances of inverse problems [22, 20, 21]. In real-world
applications, one would often need to face multiple different degradation models [33, 14, 16], where
training problem-specific models on each case could be expensive [27]. Therefore, it is valuable to
develop methods that apply problem-agnostic models, which would adapt to different degradation
models at inference time without retraining. Existing approaches, while achieving decent performance
on a variety of tasks, are generally limited to linear inverse problems [5, 34, 18, 16], leaving out
certain important non-linear inverse problems such as JPEG artifact correction. Since JPEG is a lossy
image compression format [37], JPEG images exhibit loss of quality and undesired artifacts. Several
methods have been developed for addressing this problem [40, 4, 9, 23, 10, 15].
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Figure 2: Pairs of quantized (9 bits per color) and restored images
using our method. Best viewed zoomed in.
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Figure 3: Rate-distortion curves
for standard JPEG (blue) and our
method (green).

To address this issue, we introduce a method that performs JPEG artifact correction using Denoising
Diffusion Restoration Models (DDRM) [16]. Our core idea is to generalize the pseudo-inverse matrix
that exists in the DDRM update rule for the noiseless observation case. This generalized notion of a
“pseudo-inverse” includes JPEG as a special case, where the “pseudo-inverse” for JPEG encoding is
simply JPEG decoding. The resulting algorithm resembles the original update for DDRM, replacing
the linear operator and its pseudo-inverse with JPEG encoding and decoding, respectively.

We apply our algorithm for JPEG restoration with various quality factors (QF), where the quantization
matrices are embedded in the JPEG files and naturally known at inference time. In common image
quality metrics such as PSNR, SSIM [38], and LPIPS [41], our method compares favorably against a
recent state-of-the-art GAN-based baseline [10] trained specifically for JPEG restoration. Our method
achieves even more improvement on low QF that the baseline is not trained on, demonstrating the
generalization advantages of methods that leverage unconditional diffusion models.

2 Background

Diffusion Models. Diffusion models [31, 13] are generative models with a Markov chain structure
xT → xT−1 → . . . → x1 → x0, where ∀t : xt ∈ Rn, which defines the following joint distribution:

pθ(x0:T ) = p
(T )
θ (xT )

T−1∏
t=0

p
(t)
θ (xt|xt+1).

After xT , . . . ,x0 are drawn, only x0 is kept as the final output of the generative model. When training
a diffusion model, a fixed, factorized variational inference distribution is assumed:

q(x1:T |x0) = q(T )(xT |x0)

T−1∏
t=0

q(t)(xt|xt+1,x0),

which leads to an evidence lower bound (ELBO) on the maximum likelihood objective. One particular
parametrization [32] takes the following form:

q(xt|x0) = N (
√
αtx0, (1− αt)I), ∀t ∈ [1, T ] (1)

where p
(t)
θ can be trained via a denoising autoencoder [36] objective; in the ideal case, the de-

noiser, denoted as f (t)
θ (xt) should map to the MMSE (Minimum Mean Squared Error) estimator

Eq(x0|xt)[x0], and constitutes a prediction over the “clean” x0. Diffusion models have achieved
unprecedented success in image generation [32, 35, 8, 17], and they have also been deployed for a
variety of tasks [19, 6, 25, 3, 12, 1, 2, 29, 30].

Linear Inverse Problems. A general linear inverse problem is posed as
y = Hx+ z, (2)

where our aim is to recover the signal x ∈ Rn from measurements y ∈ Rm. H ∈ Rm×n is a known
degradation matrix, and z ∼ N (0, σ2

yI) is an additive white Gaussian noise with known variance.

Various works have applied diffusion models for inverse problem solving, mostly for the noiseless
case. While it is possible to train a conditional diffusion model based on pairs of x and y [27, 28, 39],
such models may not generalize to other inverse problems. Therefore, it is often desirable to formulate
inverse problem solvers from unconditional diffusion models [5, 34, 18, 16], where the knowledge
about the inverse problem does not need to be known during training; compared with problem-specific
conditional diffusion models, problem-agnostic techniques save significant computational resources.
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Table 1: JPEG artifact correction results on ImageNet-1K for varying quality factors (QF).

QF = 5 QF = 10 QF = 30

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
JPEG 23.46 0.62 0.48 26.12 0.73 0.35 29.53 0.84 0.19
QGAC [10] 23.85 0.64 0.43 28.01 0.80 0.26 31.28 0.89 0.15
Ours (S) 25.19 0.70 0.34 27.68 0.78 0.26 30.98 0.87 0.15
Ours (A) 25.90 0.72 0.34 28.37 0.80 0.25 31.58 0.88 0.15

Denoising Diffusion Restoration Models (DDRM). In particular, DDRM [16] is a general solver
for linear inverse problems in both noisy and noiseless cases. For any linear inverse problem, the
DDRM model is defined as

pθ(x0:T |y) = p
(T )
θ (xT |y)

T−1∏
t=0

p
(t)
θ (xt|xt+1,y),

where x0 is the final diffusion output. The high-level idea behind DDRM is to leverage the singular
value decomposition of H and transform both x and the possibly noisy y to a shared spectral space.
In this space, DDRM performs denoising on dimensions when information from y is available (i.e.,
when singular values are non-zero) and performs imputation on ones where such information is not
available (i.e., when singular values are zero), taking account of the measurement noise explicitly.

JPEG. JPEG [37] is a commonly used lossy compression method for images. At a high-level, JPEG
first transforms an uncompressed image from the RGB color space to the YCbCr space, optionally
applies chroma subsampling, splits the image into 8 × 8 pixel blocks, performs a discrete cosine
transform (DCT), and then performs quantization of the resulting values using a fixed quantization
matrix. These values can then be compressed in a lossless fashion via Huffman trees. The entire
process can be reverted to define the JPEG decoding method, with loss of information happening
in the chroma subsampling and the quantization steps. Since its introduction in 1991, JPEG has
become the most widely used image compression format in the world, with several billion JPEG
images produced every day; thus, restoring high-quality images from JPEG-compressed ones has
wide applications. Several previous methods were developed for this purpose [40, 4, 9, 23, 10, 15].

3 JPEG Artifact Correction with DDRM

For the case of no noise in the observation y, the general DDRM process to sample from
p
(t)
θ (xt|xt+1,y) for linear inverse problems simplifies to be

x′
t = f

(t+1)
θ (xt+1)−H†Hf

(t+1)
θ (xt+1) +H†y,

xt =
√
αt

(
ηbx

′
t + (1− ηb)f

(t+1)
θ (xt+1)

)
+

√
1− αt

(
ηϵt + (1− η)ϵ

(t+1)
θ (xt+1)

)
where H† is the Moore-Penrose pseudo-inverse of H , f (t+1)

θ (xt+1) is the denoising model output

at the previous step t+ 1, ϵ(t+1)
θ (xt+1) =

xt+1−
√
αt+1f

(t+1)
θ (xt+1)√

1−αt+1

is the predicted noise value, η and

ηb are user-defined hyperparameters, and ϵt ∼ N (0, I) is a standard Gaussian distributed vector. At
a high level, we inject information about y via x′

t where we replace the values in the spectral domain
with what we know from y. The sampling process then aggregates x′

t (corrected from y), xt+1 (the
current input), and f

(t+1)
θ (xt+1) (the denoiser output) to produce the value for the next iteration.

While it seems that the above approach only works for linear H , its insights can actually be used for
other non-linear inverse problems, such as JPEG artifact correction. We note that for a linear H , its
pseudo-inverse H† has two important properties:

1. HH†H = H , i.e., taking the pseudo-inverse does not change the measurement.
2. H†Hx is “close” to x, in the sense that H†Hx provides a least squares solution for the

problem minz ∥z− x∥22 for all x when observing only y = Hx (but not x).
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The above properties may exist for operators that are not linear. For example, if we treat H as the
JPEG encoding operator, then the JPEG decoding operator also satisfies these properties:

1. The JPEG encoding introduces loss of information during the quantization and chroma
subsampling stages. The remaining information is kept during JPEG decoding, and thus
encoding it again will lead to the same result.

2. The JPEG decoding method generally preserves visual similarity, so applying decoding after
encoding should generate an image that is “close” to the original one.

With this insight, we can simply perform JPEG restoration with DDRM with the update rule

x′
t = f

(t+1)
θ (xt+1)− Decode

(
Encode

(
f
(t+1)
θ (xt+1)

))
+ Decode (y) ,

xt =
√
αt

(
ηbx

′
t + (1− ηb)f

(t+1)
θ (xt+1)

)
+

√
1− αt

(
ηϵt + (1− η)ϵ

(t+1)
θ (xt+1)

)
,

which can be used in realistic settings as the quantization matrices are stored within the JPEG files.

4 Experimental Results

We evaluate our method on the ImageNet [7] dataset, as it is diverse and represents real-world
use cases. Specifically, we evaluate on a 1000 image subset of the ImageNet validation set named
ImageNet-1K [26]. We utilize the diffusion model from [8], trained on 256× 256-pixel ImageNet
training images, for a diffusion schedule of 1000 timesteps. In all of our experiments, we choose the
hyperparameters η = 1, ηb = 0.4, and 20 uniformly-spaced diffusion steps. Additionally, since JPEG
images generally preserve overall image contents, we find that we can perturb a JPEG-compressed
image with noise and use it as an initialization for our sampling process at an intermediate step
t = 300, similar to [24]. This allows the sampling to provide more faithful reconstructions, avoiding
the unnecessary randomness induced by starting at the initial timestep T = 1000. However, as we
use a probabilistic sampling scheme, randomness can still be expected in the results. In order to
stabilize performance, we draw 8 independent samples for each input and save the resulting average
image. We denote the first sample as “Ours (S)” and the averaged image as “Ours (A)”.

For our JPEG artifact correction experiments, we use the most common variant of JPEG [11], which
includes chroma subsampling and quantization matrices defined by a quality factor (QF) ranging
from 1 to 100, 1 being the most compressed, and 100 being the most faithful to the original image.
Our method produces high quality reconstructions (see Figures 1, 4). Moreover, when evaluated
numerically on common metrics such as PSNR, SSIM [38], and LPIPS [41], our method provides a
significant improvement over simple JPEG decoding, and its performance is favorable or comparable
to a recent state-of-the-art JPEG artifact correction named QGAC [10]. QGAC was specifically
trained for JPEG restoration with QF ∈ [10, 100], and as can be seen in Table 1, it generalizes poorly
for lower QF. In contrast, our method generalizes well for all QF without JPEG-specific training. We
demonstrate its success by showing its compression rate-distortion curve in Figure 3.

Furthermore, our method is not limited to JPEG artifact correction, but can also be applied to similar
non-linear inverse problems not covered by DDRM [16]. For instance, we consider the problem of
image dequantization, where we attempt to recover high-quality reconstructions from images that
were quantized below the standard 24 bits per color. As evident in Figure 2, our method generalizes
well for image dequantization, owing to its problem-agnostic nature.

5 Conclusion

We propose a novel method for correcting JPEG compression artifacts using diffusion models. Our
method extends DDRM [16] beyond the linear case by generalizing the pseudo-inverse concept. We
perform evaluations on ImageNet-1K [7, 26] where our method performs on par with a state-of-the-art
baseline in most cases, and exhibits generalization abilities for lower quality factors which specifically
trained baselines do not possess. Our method can further generalize beyond JPEG restoration, as
we successfully demonstrate on the image dequantization problem. It does so seamlessly, without
retraining, and without problem-specific hyperparameter tuning.
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A Additional Visual Results

QF = 30 

QF = 10 

QF = 5

Figure 4: Triplets of original (ground-truth), JPEG compressed, and restored images. Across different
quality factors (QF), our method successfully corrects artifacts of JPEG compression. Images are
accompanied by a zoomed-in area in the bottom right corner to highlight specific artifact removals.
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