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Abstract

Node classification is a fundamental task in graph
analysis, with broad applications across various
fields. Recent breakthroughs in Large Language
Models (LLMs) have enabled LLM-based ap-
proaches for this task. Although many stud-
ies demonstrate the impressive performance of
LLM-based methods, the lack of clear design
guidelines may hinder their practical application.
In this work, we aim to establish such guide-
lines through a fair and systematic comparison
of these algorithms. As a first step, we developed
LLMNodeBed, a comprehensive codebase and
testbed for node classification using LLMs. It
includes 10 homophilic datasets, 4 heterophilic
datasets, 8 LLM-based algorithms, 8 classic base-
lines, and 3 learning paradigms. Subsequently,
we conducted extensive experiments, training and
evaluating over 2,700 models, to determine the
key settings (e.g., learning paradigms and ho-
mophily) and components (e.g., model size and
prompt) that affect performance. Our findings
uncover 8 insights, e.g., (1) LLM-based methods
can significantly outperform traditional methods
in a semi-supervised setting, while the advantage
is marginal in a supervised setting; (2) Graph
Foundation Models can beat open-source LLMs
but still fall short of strong LLMs like GPT-4o in
a zero-shot setting. We hope that the release of
LLMNodeBed, along with our insights, will facil-
itate reproducible research and inspire future stud-
ies in this field. Codes and datasets are released
at https://llmnodebed.github.io/.
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1. Introduction
Node classification is a fundamental task in graph analysis,
with a wide range of applications such as item tagging (Mao
et al., 2020), user profiling (Yan et al., 2021), and financial
fraud detection (Zhang et al., 2022a). Developing effective
algorithms for node classification is crucial, as they can
significantly impact commercial success. For instance, US
banks lost 6 billion USD to fraudsters in 2016. Therefore,
even a marginal improvement in fraud detection accuracy
could result in substantial financial savings.

Given its practical importance, node classification has been a
long-standing research focus in both academia and industry.
The earliest attempts to address this task adopted techniques
such as Laplacian regularization (Belkin et al., 2006), graph
embeddings (Yang et al., 2016), and label propagation (Zhu
et al., 2003). Over the past decade, GNN-based methods
have been developed and have quickly become prominent
due to their superior performance, as demonstrated by works
such as Kipf & Welling (2017), Veličković et al. (2018), and
Hamilton et al. (2017). Additionally, the incorporation of
encoded textual information has been shown to further com-
plement GNNs’ node features, enhancing their effectiveness
(Jin et al., 2023b; Zhao et al., 2023a).

Inspired by the recent success of LLMs, there has been a
surge of interest in leveraging LLMs for node classifica-
tion (Li et al., 2023b). LLMs, pre-trained on extensive text
corpora, possess context-aware knowledge and superior se-
mantic comprehension, overcoming the limitations of the
non-contextualized shallow embeddings used by traditional
GNNs. Typically, supervised methods fall into three cate-
gories: Encoder, Explainer, and Predictor. In the Encoder
paradigm, LLMs employ their vast parameters to encode
nodes’ textual information, producing more expressive fea-
tures that surpass shallow embeddings (Zhu et al., 2024).
The Explainer approach utilizes LLMs’ generative capabil-
ity to enhance node attributes and the task descriptions with
a more detailed text (Chen et al., 2024b; He et al., 2024).
This generated text augments the nodes’ original informa-
tion, thereby enriching their attributes. Lastly, the Predictor
role involves LLMs integrating graph context through graph
encoders, enabling direct text-based predictions (Chen et al.,
2024a; Tang et al., 2023; Chai et al., 2023; Huang et al.,
2024). For zero-shot learning with LLMs, methods can
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be categorized into two types: Direct Inference and Graph
Foundation Models (GFMs). Direct Inference involves guid-
ing LLMs to directly perform classification tasks via crafted
prompts (Huang et al., 2023). In contrast, GFMs entail
pre-training on extensive graph corpora before applying
the model to target graphs, thereby equipping the model
with specialized graph intelligence (Li et al., 2024b). An
illustration of these methods is shown in Figure 2.

Despite tremendous efforts and promising results, the design
principles for LLM-based node classification algorithms
remain elusive. Given the significant training and infer-
ence costs associated with LLMs, practitioners may opt to
deploy these algorithms only when they provide substan-
tial performance enhancements compared to costs. This
study, therefore, seeks to identify (1) the most suitable
settings for each algorithm category, and (2) the sce-
narios where LLMs surpass traditional LMs such as
BERT. While recent work like GLBench (Li et al., 2024c)
has evaluated various methods using consistent data splits
in semi-supervised and zero-shot settings, differences in
backbone architectures and implementation codebases still
hinder fair comparisons and rigorous conclusions. To ad-
dress these limitations, we introduce a new benchmark that
further standardizes backbones and codebases. Addition-
ally, we extend GLBench by incorporating 3 E-Commerce
datasets and 4 heterophilic datasets, while also expanding
the evaluation settings. Specifically, we assess the impact
of supervision signals (e.g., supervised, semi-supervised),
different language model backbones (e.g., RoBERTa, Mis-
tral, LLaMA, Qwen, GPT-4o), and various prompt types
(e.g., CoT, ToT, ReAct). These enhancements enable a more
detailed and reliable analysis of LLM-based node classifica-
tion methods. In summary, our contributions to the field of
LLMs for graph analysis are as follows:

• A Testbed: We release LLMNodeBed, a PyG-based
testbed designed to facilitate reproducible and rigor-
ous research in LLM-based node classification algo-
rithms. The initial release includes 14 datasets, 8
LLM-based algorithms, and 3 learning configurations.
LLMNodeBed allows for easy addition of new algo-
rithms or datasets, and a single command to run all
experiments, and to automatically generate all tables
included in this work.

• Comprehensive Experiments: By training and evalu-
ating over 2,700 models, we analyzed how the learning
paradigm, homophily, language model type and size,
and prompt design impact the performance of each
algorithm category.

• Insights and Tips: Detailed experiments were con-
ducted to analyze each influencing factor. We identified
the settings where each algorithm category performs
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Figure 1: Overview of LLMNodeBed.

best and the key components for achieving this per-
formance. Our work provides intuitive explanations,
practical tips, and insights about the strengths and lim-
itations of each algorithm category.

2. Preliminaries on Node Classification
To leverage the language abilities of LLMs, we study the
node classification task within the context of text-attributed
graphs (TAGs) (Ma & Tang, 2021). TAGs are represented
as G = (V, E ,S), where V represents the set of nodes, E
the set of edges, and S the collection of textual descriptions
associated with each node v ∈ V . Some of the nodes are
associated with labels, represented as Vl ⊂ V . The remain-
ing nodes do not have labels, and are denoted as Vu. The
goal of node classification is to train a neural network based
on the graph G and the labels of Vl, which can predict the
labels of unlabeled nodes in Vu.

Traditionally, the textual attributes of nodes can be encoded
into shallow embeddings as X = [x1, . . . ,x|V|] ∈ R|V|×d

using naive methods like bag-of-words or TF-IDF (Salton
& Buckley, 1988), where d represents the dimensionality
of the embeddings. Such transformation is adopted in most
GNN papers. Instead, the input for LLM-based approaches
is the raw text and one may expect that the pre-trained
knowledge in LLMs can improve performance.

3. LLMNodeBed: A Testbed for LLM-based
Node Classification

In this section, we present the datasets, baselines, and learn-
ing paradigms within LLMNodeBed (Figure 1).

3.1. Datasets

To provide guidelines for applying algorithms across di-
verse real-world applications, the selection of datasets in
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Table 1: Statistics of supported datasets in LLMNodeBed.
Academic Web Link Social E-Commerce HeterophilicStatistics Cora Citeseer Pubmed arXiv WikiCS Instagram Reddit Books Photo Computer Cornell Texas Wisconsin Washington

# Classes 7 6 3 40 10 2 2 12 12 10 5 5 5 5
# Nodes 2,708 3,186 19,717 169,343 11,701 11,339 33,434 41,551 48,362 87,229 191 187 265 229
# Edges 5,429 4,277 44,338 1,166,243 215,863 144,010 198,448 358,574 500,928 721,081 292 310 510 394

Avg. # Token 183.4 210.0 446.5 239.8 629.9 56.2 197.3 337.0 201.5 123.1 594.6 453.2 639.1 469.0
Homophily (%) 82.52 72.93 79.24 63.53 68.67 63.35 55.52 78.05 78.50 85.28 11.55 6.69 16.27 17.07
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Figure 2: Illustrations of LLM-based node classification algorithms under supervised and zero-shot settings.

LLMNodeBed considers several key factors: (1) Multi-
domain Diversity to reflect different contexts, (2) Varying
Scales to examine algorithm scalability and the associated
costs of leveraging LLMs, and (3) Diverse Levels of Ho-
mophily to understand its impact on performance. There-
fore, LLMNodeBed comprises 14 datasets spanning various
domains. These datasets vary significantly in scale, ranging
from thousands of nodes to millions of edges, and exhibit
differing levels of homophily. Such diversity in domain,
scale, and homophily enables the assessment of algorithms
across a wide range of contexts.

For datasets where raw text has been preprocessed into vec-
tor embeddings using bag-of-words or TF-IDF techniques,
we utilize collected versions including Cora and Pubmed
(He et al., 2024), Citeseer (Chen et al., 2024b), and Wi-
kiCS (Liu et al., 2024). The remaining datasets already
include text attributes in their official releases, including
arXiv (Hu et al., 2020), Instagram and Reddit (Huang et al.,
2024), Books, Computer, and Photo (Yan et al., 2023), Cor-
nell, Texas, Wisconsin, and Washington (Wang et al., 2025).
Detailed statistics and information for these datasets are
provided in Table 1 and Table 10 in the Appendix.

3.2. Baselines

The initial release of LLMNodeBed includes eight LLM-
based baseline algorithms alongside classic methods. We
selected these LLM-based algorithms based on three key

criteria: (1) Diverse Roles of LLMs to thoroughly evaluate
their effectiveness, (2) Straightforward Design to facili-
tate clear comparisons by avoiding complex and intertwined
architectures, and (3) Representativeness to ensure bench-
mark relevance by including widely recognized methods.
Therefore, the LLM-based baselines include:

LLM-as-Encoder: We include ENGINE (Zhu et al., 2024)
and introduce GNNLLMEmb. ENGINE aggregates hidden
embeddings from each LLM layer to create comprehensive
node representations. In contrast, GNNLLMEmb initializes
node embeddings using the LLM’s last hidden layer before
feeding them into GNNs for classification.

LLM-as-Explainer: We select TAPE (He et al., 2024), a
representative LLM-as-Explainer method. TAPE prompts
the LLM to think over nodes by generating predictions
along with explanations, thereby enriching the node’s text
attributes and enhancing classification performance.

Both Encoder and Explainer methods require processing the
entire dataset, either by encoding each node’s text or gener-
ating explanations for nodes, which introduces additional
processing time before the actual model training begins.

LLM-as-Predictor: We select GraphGPT (Tang et al.,
2023), LLaGA (Chen et al., 2024a), and implement LLM
Instruction Tuning (LLMIT). GraphGPT employs a multi-
stage pre-training and instruction tuning process to clas-
sify nodes based on both text and graph context. LLaGA
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integrates tokenized task instructions and graph context
into LLMs to generate predictions. We implement LLMIT
to evaluate whether LLMs alone can function as effec-
tive predictors. This involves fine-tuning the LLM us-
ing task prompts and ground-truth labels formatted as
⟨Question,Answer⟩ pairs.

LLM Direct Inference: This category refers to LLMs
generating prediction labels directly from a node’s text with-
out additional training or labels. We employ two types of
prompt templates: (1) Advanced Prompts that improve
LLMs’ reasoning abilities such as Chain-of-Thought (CoT)
(Wei et al., 2022) and Tree-of-Thought (ToT) (Yao et al.,
2023a), and (2) Enriched Prompts that incorporate neigh-
boring node information to provide structural context.

GFMs: GFMs are foundation models trained on large-
scale source graph datasets to acquire general classification
knowledge, which can then be seamlessly applied to target
graphs. We include ZeroG (Li et al., 2024b) as a repre-
sentative GFM due to its superior performance in zero-shot
settings. Additionally, LLM-as-Predictor methods trained
with extensive graph corpora are also considered within this
category for zero-shot applications.

Besides LLM-based methods, LLMNodeBed also integrates
classic algorithms, including MLPs, GNNs, and LMs.
MLPs generate predicted label matrices from node em-
beddings, while GNNs combine shallow embeddings with
graph structures for label prediction. LMs process a node’s
text through hidden layers and use a classification head
to produce label distributions. Furthermore, we include
GLEM (Zhao et al., 2023a), a hybrid LM+GNN method
that combines graph and text modalities. Further discussions
of existing algorithms are provided in Appendix A.

Prompt templates for LLM-as-Predictor and Direct Infer-
ence are listed in Appendix B.1 and B.2, respectively. Ap-
pendix C.2 describes the implementation details, backbone
selections, and hyperparameter search spaces for all al-
gorithms. Additionally, we highlight the distinctions of
LLMNodeBed in Appendix C.3.

3.3. Learning Paradigms

We evaluate the baselines under three learning configura-
tions: Semi-supervised, Supervised, and Zero-shot. These
configurations are defined as follows:

• Semi-supervised Learning: A small subset of nodes
Vl ⊆ V with known labels Yl is provided. This setting
assesses the model’s ability to effectively utilize lim-
ited labeled data, reflecting real-world scenarios where
labeling is scarce. For experimental datasets, we adopt
the official splits designed for semi-supervised settings
to ensure standardized evaluation.

• Supervised Learning: A larger subset of nodes Vl

with known labels is provided, assessing the model’s
performance with abundant supervision. Specifically,
we use a 60% training, 20% validation, and 20% testing
split for most datasets. This consistent split facilitates
fair comparisons across baselines. Detailed data splits
are provided in Table 10 in the Appendix.

• Zero-shot Learning: No labeled data is provided for
training. The model predicts labels solely based on
node textual descriptions and the graph structure, as-
sessing its ability to generalize to new, unseen data.
For test samples, we follow existing literature (Zhu
et al., 2025) by selecting one smaller dataset from each
domain and using 20% of its nodes as test samples.

4. Comparisons among Algorithm Categories
In this section, we present empirical results among algo-
rithm categories, along with key insights derived from them.

4.1. Semi-supervised and Supervised Performance

Settings: To ensure a fair comparison of baseline algo-
rithms, all methods are implemented with consistent compo-
nents: GCN (Kipf & Welling, 2017) for GNNs, RoBERTa-
355M (Liu et al., 2019) for LMs, and Mistral-7B (Jiang
et al., 2023) for LLM components where applicable. This
uniformity guarantees that performance differences are at-
tributable to model designs rather than underlying architec-
tures. Each experiment was conducted over 4 runs. Based
on the results of Accuracy (Table 2) and Macro-F1 (Table
12 in Appendix), we summarize the following takeaways:

Takeaway 1: Appropriately incorporating LLMs con-
sistently improves the performance. According to the
table, the best performance is often achieved by LLM-based
methods compared to classic methods. It suggests that us-
ing LLM to exploit the textual information is useful. This
conclusion extends to large-scale graphs as well, e.g., ogbn-
product dataset with millions of nodes. Detailed results and
analysis for this dataset are provided in Appendix D.

Takeaway 2: LLM-based methods provide greater im-
provements in semi-supervised settings than in super-
vised settings. By comparing the tables, we observe that
performance gains are more significant in semi-supervised
scenarios. From an information-theoretic perspective, the
node classification task with cross-entropy loss aims to max-
imize the mutual information between the graph and the
provided labels, denoted as I(G;Yl). If we consider graph
G as a joint distribution of node attributes X and structure
E , we have:

I(G;Yl) = I(X, E ;Yl) = I(E ;Yl) + I(X;Yl|E). (1)

The first term represents the information encoded in the
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Table 2: Performance comparison under semi-supervised and supervised settings with Accuracy (%) reported.
The best and second-best results are highlighted. Results of Macro-F1 are shown in Table 12 in the Appendix. LLMIT on the arXiv
dataset requires 30+ hours per run, preventing multiple executions.

Semi-supervised Cora Citeseer Pubmed WikiCS Instagram Reddit Books Photo Computer Avg.

Classic

GCNShallowEmb 82.30±0.19 70.55±0.32 78.94±0.27 79.86±0.19 63.50±0.11 61.44±0.38 68.79±0.46 69.25±0.81 71.44±1.19 71.79
SAGEShallowEmb 82.27±0.37 69.56±0.43 77.88±0.44 79.67±0.25 63.57±0.10 56.65±0.33 72.01±0.33 78.50±0.15 81.43±0.27 73.50
GATShallowEmb 81.30±0.67 69.94±0.74 78.49±0.70 79.99±0.65 63.56±0.04 60.60±1.17 74.35±0.35 80.40±0.45 83.39±0.22 74.67

SenBERT-66M 66.66±1.42 60.52±1.62 36.04±2.92 77.77±0.75 59.00±1.17 56.05±0.41 83.68±0.19 73.89±0.31 70.76±0.15 64.93
RoBERTa-355M 72.24±1.14 66.68±2.03 42.32±1.56 76.81±1.04 63.52±0.44 59.27±0.34 84.62±0.16 74.79±1.13 72.31±0.37 68.06

GLEM 81.30±0.88 68.80±2.46 81.70±1.07 76.43±0.55 60.25±3.66 55.13±1.41 83.28±0.39 76.93±0.49 80.46±1.45 73.81

Encoder GCNLLMEmb 83.33±0.75 71.39±0.90 78.71±0.45 80.94±0.16 67.49±0.43 68.65±0.75 83.03±0.34 84.84±0.47 88.22±0.16 78.51
ENGINE 84.22±0.46 72.14±0.74 77.84±0.27 80.94±0.19 67.14±0.46 69.67±0.16 82.89±0.14 84.33±0.57 86.42±0.23 78.40

Explainer TAPE 84.04±0.24 71.87±0.35 78.61±1.23 81.94±0.16 66.07±0.10 62.43±0.47 84.92±0.26 86.46±0.12 89.52±0.04 78.43

Predictor
LLMIT 67.00±0.16 54.26±0.22 80.99±0.43 75.02±0.16 41.83±0.47 54.09±1.02 80.92±1.38 71.28±1.81 66.99±2.02 65.76

GraphGPT 64.72±1.50 64.58±1.55 70.34±2.27 70.71±0.37 62.88±2.14 58.25±0.37 81.13±1.52 77.48±0.78 80.10±0.76 70.02
LLaGA 78.94±1.14 62.61±3.63 65.91±2.09 76.47±2.20 65.84±0.72 70.10±0.38 83.47±0.45 84.44±0.90 87.82±0.53 75.07

Supervised Cora Citeseer Pubmed arXiv WikiCS Instagram Reddit Books Photo Computer Avg.

Classic

GCNShallowEmb 87.41±2.08 75.74±1.20 89.01±0.59 71.39±0.28 83.67±0.63 63.94±0.61 65.07±0.38 76.94±0.26 73.34±1.34 77.16±3.80 76.37
SAGEShallowEmb 87.44±1.74 74.96±1.20 90.47±0.25 71.21±0.18 84.86±0.91 64.14±0.47 61.52±0.60 79.40±0.45 84.59±0.32 87.77±0.34 78.64
GATShallowEmb 86.68±1.12 73.73±0.94 88.25±0.47 71.57±0.25 83.94±0.61 64.93±0.75 64.16±1.05 80.61±0.49 84.84±0.69 88.32±0.24 78.70

SenBERT-66M 79.61±1.40 74.06±1.26 94.47±0.33 72.66±0.24 86.51±0.86 60.11±0.93 58.70±0.54 85.99±0.58 77.72±0.35 74.22±0.21 76.40
RoBERTa-355M 83.17±0.84 75.90±1.69 94.84±0.06 74.12±0.12 87.47±0.83 63.75±1.13 60.61±0.24 86.65±0.38 79.45±0.37 75.76±0.30 78.17

GLEM 86.81±1.19 73.24±1.55 93.98±0.32 73.55±0.22 79.81±0.45 67.39±1.73 53.11±2.96 83.98±0.97 78.16±0.45 81.63±0.46 77.17

Encoder GCNLLMEmb 88.15±1.79 76.45±1.19 88.38±0.68 74.39±0.31 84.78±0.86 68.27±0.45 70.65±0.75 84.23±0.20 86.07±0.20 89.52±0.31 81.09
ENGINE 87.00±1.60 75.82±1.52 90.08±0.16 74.69±0.36 85.44±0.53 68.87±0.25 71.21±0.77 84.09±0.09 86.98±0.06 89.05±0.13 81.32

Explainer TAPE 88.05±1.76 76.45±1.60 93.00±0.13 74.96±0.14 87.11±0.66 68.11±0.54 66.22±0.83 85.95±0.59 87.72±0.28 90.46±0.18 81.80

Predictor
LLMIT 71.93±1.47 60.97±3.97 94.16±0.19 76.08 80.61±0.47 44.20±3.06 58.30±0.48 84.80±0.13 78.27±0.54 74.51±0.53 72.38

GraphGPT 82.29±0.26 74.67±1.15 93.54±0.22 75.15±0.14 82.54±0.23 67.00±1.22 60.72±1.47 85.38±0.72 84.46±0.36 86.78±1.14 79.25
LLaGA 87.55±1.15 76.73±1.70 90.28±0.91 74.49±0.23 84.03±1.10 69.16±0.72 71.06±0.38 85.56±0.30 87.62±0.30 90.41±0.12 81.69

graph structure, utilized by classic GNNs, while the second
term represents information from node features, leveraged
by LLMs. In semi-supervised settings, the mutual informa-
tion between structure and labels is relatively low, allowing
LLMs to contribute more significantly to performance.

Takeaway 3: LLM-as-Explainer methods are highly
effective when labels heavily depend on text. TAPE
achieves top or runner-up performance on academic and
web link datasets like Cora and WikiCS, where structural
information is less relevant to labels (Zhang et al., 2022b).
However, TAPE struggles with social networks that require
deeper structural understanding, such as predicting popular
users (high-degree nodes) on Reddit.

Takeaway 4: LLM-as-Encoder methods balance compu-
tational cost and accuracy effectively. LLM-as-Encoder
methods perform satisfactorily across all datasets. Further
experiments in Section 5.1 reveal that LLM-as-Encoder
methods are more effective than their LM counter-
parts when graphs are less informative. Regarding cost-
effectiveness, LLM-as-Explainer should generate long ex-
planatory text, which is far more time-consuming than en-
coding texts in LLM-as-Encoder (see Appendix G). There-
fore, LLM-as-Encoder methods strike a balance between
computational efficiency and accuracy.

Takeaway 5: LLM-as-Predictor methods are more effec-
tive when labeled data is abundant. In supervised scenar-

ios, LLM-as-Predictor methods enhance performance across
most datasets. Especially, the LLaGA method achieves su-
perior results among 5 of 10 datasets. Conversely, in semi-
supervised settings, LLM-as-Predictor methods exhibit un-
stable performance, evidenced by low Macro-F1 scores, and
imbalanced output distributions (detailed discussion in Ap-
pendix F.3). These findings indicate that LLM-as-Predictor
methods are most effective when ample supervision is avail-
able, with LLaGA being an especially strong choice. Fur-
thermore, within the predictor methods, LLM Instruction
Tuning typically falls behind the other two methods and in-
curs substantial time costs (Table 19 in the Appendix). This
shows that standalone LLMs are weak predictors and incor-
porating graph context is essential for achieving satisfactory
performance.

4.2. Zero-shot Performance

Settings: For LLM Direct Inference, we utilize both closed-
source and open-source LLMs, including GPT-4o (OpenAI,
2024), DeepSeek-V3 (DeepSeek-AI, 2024), LLaMA3.1-8B
(Dubey et al., 2024), and Mistral-7B. The prompt templates
include Direct, CoT, ToT, and ReAct (Yao et al., 2023b).
Additionally, we incorporate a node’s neighboring informa-
tion into extended prompts, referred to as “w. Neighbor”,
and have the LLMs first reason over neighbors to generate a
summary that facilitates the subsequent classification task,
referred to as “w. Summary”. Prompt templates are listed
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Table 3: Performance comparison under zero-shot setting with Accuracy (%) and Macro-F1 (%) reported.
Numbers in brackets represent the dataset’s homophily ratio (%). Results of other LLMs are shown in Table 13 in Appendix.

Cora (82.52) WikiCS (68.67) Instagram (63.35) Photo (78.50) Avg.Type & LLM Method Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

LLM
GPT-4o

Direct 68.08 69.25 68.59 63.21 44.53 42.77 63.99 61.09 61.30 59.08
CoT 68.89 69.86 70.75 66.23 47.87 47.57 61.61 60.62 62.28 61.07
ToT 68.29 69.13 70.78 65.69 44.16 42.68 60.84 59.16 61.02 59.16

ReAct 68.21 69.28 69.45 66.03 44.49 43.16 63.63 60.82 61.44 59.82
w. Neighbor 70.30 71.44 69.69 64.51 42.42 39.79 69.93 68.55 63.09 61.07
w. Summary 71.40 72.13 70.90 65.42 45.02 44.62 72.63 70.84 64.99 63.25

LLM
LLaMA-8B

Direct 62.64 63.02 56.77 53.04 37.58 29.70 41.23 44.26 49.56 47.50
CoT 62.04 62.61 58.88 56.00 42.00 39.06 44.22 47.13 51.78 51.20
ToT 34.06 33.30 40.35 41.15 45.33 45.27 31.31 34.00 37.76 38.43

ReAct 36.55 38.04 22.40 25.76 44.67 44.42 27.03 28.96 32.66 34.30
w. Neighbor 64.55 64.41 59.43 54.16 36.98 28.32 45.49 50.44 51.61 49.33
w. Summary 64.69 64.62 62.69 56.40 37.59 30.91 48.11 52.20 53.27 51.03

GFM
ZeroG 62.55 57.56 62.71 57.87 50.71 50.43 46.27 51.52 55.56 54.35
LLMIT 52.58 51.89 60.83 53.59 41.58 26.26 49.23 44.85 51.06 44.15
LLaGA 18.82 8.49 8.20 8.29 47.93 47.70 39.18 4.71 28.53 17.30

in Appendix B.2. Besides, we assess the transferability
of GFMs by evaluating ZeroG (Li et al., 2024b), LLM
Instruction Tuning, and LLaGA. GFMs are applied fol-
lowing the intra-domain manner: each model is pre-trained
on a larger dataset within the same domain (e.g., arXiv from
the academic domain) before being evaluated on the target
dataset. Results for Accuracy and Macro-F1 are shown in
Table 3 and Table 13 in the Appendix, where we have the
following takeaways:

Takeaway 6: GFMs can outperform open-source LLMs
but still fall short of strong LLMs like GPT-4o. ZeroG
outperforms LLaMA-8B in most cases, achieving up to a
6% average improvement in accuracy. However, it still falls
short of GPT-4o and DeepSeek-V3. Among GFMs, LLaGA
performs poorly because it uses a projector to align the
source graph’s tokens with LLM input tokens. This projec-
tor may be dataset-specific, leading to reduced performance
on different datasets, as also observed in Zhu et al. (2025).
These findings highlight the need for further research to im-
prove the generalization of GFMs to match the performance
of more powerful LLMs.

Takeaway 7: LLM direct inference can be improved
by appropriately incorporating structural information.
Our results reveal that advanced prompt templates such
as CoT, ToT, and ReAct, offer only minor performance
improvements. Specifically, models like LLaMA exhibit
limited instruction-following abilities, often producing unex-
pected and over-length outputs when encountering complex
prompts such as ReAct. This makes parsing classification
results challenging and leads to suboptimal performance.
The advanced prompts are generally designed for broad
reasoning tasks and lack graph- or classification-specific
knowledge, thereby limiting their benefits for the node clas-
sification task. In contrast, enriched prompts that incor-
porate structural information, i.e., “w. Neighbor” and “w.

Summary”, demonstrate performance enhancements across
LLMs. The performance gains are particularly evident on
homophilic datasets such as Cora and Photo (3%-10%),
where neighboring nodes are likely to share the same labels
as the central node. High homophily means that informa-
tion from neighboring nodes provides crucial clues about a
central node’s label, thereby improving classification perfor-
mance. Among these enriched prompts, “w. Summary” is
especially effective as it not only provides structural context
but also leverages the self-reflection abilities of LLMs to
further utilize structural information.

4.3. Computational Cost Analysis

Time Cost: We evaluate the training and inference times of
various methods in supervised settings. Detailed training
times are provided in Table 19 in the Appendix, while
inference times are presented in Table 20. All measure-
ments were conducted on a single NVIDIA H100-80G GPU
to ensure consistency.

Based on the results, we can conclude that classic methods
are highly efficient, with GNNs typically converging within
seconds (e.g., 5.2 seconds for GCNShallowEmb on Pubmed)
and LMs fine-tuning completed within minutes. In contrast,
LLM-as-Explainer approaches are the most time-consuming
(e.g., 5.9 hours for TAPE on Pubmed) because they re-
quire generating explanatory text for each node and sub-
sequently processing this augmented text through both an
LM and a GNN. This three-stage computational process
significantly extends the overall computation time. LLM-as-
Encoder methods are the most efficient among LLM-based
approaches (e.g., 13.4 minutes for GCNLLMEmb on Pubmed),
utilizing LLMs solely for feature encoding, which allows
GNN training to remain efficient and complete within min-
utes. Although LLM-as-Predictor methods are more effi-
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Table 4: Comparison of LLM- and LM-as-Encoder with Accuracy (%) reported under semi-supervised setting.
The best encoder within each method on a dataset is highlighted. Results in supervised settings are shown in Table 14 in Appendix.

Method Encoder Computer Cora Pubmed Photo Books Citeseer WikiCS Instagram Reddit

Homophily Ratio (%) 85.28 82.52 79.24 78.50 78.05 72.93 68.67 63.35 55.52

MLP

SenBERT 69.57±0.18 64.61±1.34 74.67±0.63 72.28±0.36 81.93±0.08 66.83±0.58 71.48±0.33 64.98±0.38 57.23±0.51
RoBERTa 69.42±0.10 73.84±0.55 73.21±0.78 72.95±0.34 81.71±0.14 70.59±0.31 75.82±0.13 66.39±0.24 59.66±0.53
Qwen-3B 67.54±0.29 74.03±0.57 75.30±0.72 72.72±0.23 81.60±0.53 68.26±0.79 78.64±0.37 66.53±0.37 60.49±0.17

Mistral-7B 69.37±0.28 73.90±0.59 75.70±1.00 74.16±0.24 81.91±0.25 69.66±0.38 79.56±0.41 66.68±0.24 61.91±0.21

GCN

SenBERT 88.92±0.19 81.76±0.75 78.24±0.66 85.18±0.16 83.47±0.20 70.97±0.81 80.41±0.18 65.78±0.14 64.97±0.82
RoBERTa 88.90±0.14 84.56±0.41 78.08±0.52 85.19±0.17 83.22±0.29 73.52±0.58 80.97±0.22 66.64±0.21 65.69±1.01
Qwen-3B 87.55±0.14 83.62±0.41 78.50±0.80 84.26±0.33 82.83±0.24 71.50±0.92 81.02±0.33 66.69±0.59 69.40±0.56

Mistral-7B 88.22±0.16 83.33±0.75 78.71±0.45 84.84±0.47 83.03±0.34 71.39±0.90 80.94±0.16 67.49±0.43 68.65±0.75

SAGE

SenBERT 89.08±0.06 80.45±0.79 77.29±0.45 85.54±0.16 83.93±0.17 69.42±1.42 80.02±0.24 65.34±0.44 61.65±0.17
RoBERTa 88.97±0.09 84.06±0.52 75.82±0.59 85.57±0.17 83.74±0.22 72.58±0.45 80.77±0.29 66.53±0.50 63.65±0.32
Qwen-3B 86.24±0.32 83.31±0.63 76.76±0.35 84.28±0.42 82.84±0.31 71.11±0.98 80.85±0.22 66.73±0.37 63.82±0.38

Mistral-7B 88.48±0.20 82.73±0.99 77.64±1.73 85.50±0.20 83.32±0.16 71.42±0.47 81.47±0.32 67.44±0.06 65.02±0.13

cient than Explainer approaches, they still require hours for
effective model training. Among predictor methods, LLaGA
is the most efficient (e.g., 25.6 minutes on Pubmed) as it
encodes both the node’s textual and structural information
into embeddings instead of processing raw text.

During inference, a significant efficiency gap remains be-
tween LLM-based and classic methods. Classic methods
can complete the entire inference process for thousands
of cases within milliseconds, making them suitable for in-
dustrial deployments that demand real-time responses. In
contrast, LLM-based methods are limited to processing one
case within the same timeframe, highlighting the urgent
need to improve their efficiency.

Memory Cost: We also analyze the memory costs of differ-
ent methods during both the training and inference stages
to assess their resource usage. We select three datasets,
Cora, WikiCS, and arXiv, spanning a range from 2,708 to
169,343 nodes. The results, presented in Table 21 in the
Appendix, were measured using a single H100-80GB GPU
to ensure consistency and comparability. The results show
that LLM-as-Encoder methods demonstrate memory costs
comparable to traditional GNNs, making them practical
choices for deployment. In contrast, methods involving
fine-tuning an LM or LLM-as-Predictor methods are sig-
nificantly more memory-intensive, largely due to the high
parameterization of language models. These findings under-
score the importance of addressing efficiency challenges to
enable the practical deployment of LLM-based methods.

5. Fine-grained Analysis Within Each
Category

In this section, we present empirical results within each
category. For LLM-as-Encoder, we explore the conditions
under which LLMs outperform traditional LMs. Addition-
ally, we examine how key components (e.g., model type and

size) influence the effectiveness of LLM-as-Explainer and
LLM-as-Predictor.

5.1. LLM-as-Encoder: Compared with LMs

Motivation and Settings: Both LLMs and small-scale LMs
can encode nodes’ associated texts. This raises the question:
When do LLMs surpass LMs as encoders? To address this,
we evaluate various methods using node features derived
from LLMs and LMs, observing the resulting performance
differences. For LMs, we select SenBERT-66M (Reimers
& Gurevych, 2019) and RoBERTa-355M (Liu et al., 2019).
For LLMs, we choose Qwen2.5-3B (Qwen et al., 2025)
and Mistral-7B (Jiang et al., 2023). The evaluated datasets
include both homophilic and heterophilic graphs to ensure
generality. For heterophilic graphs, we use the released
datasets collected by Wang et al. (2025)1 with processing
details explained in Appendix C.1. The considered meth-
ods include: (1) MLP, which solely utilizes node features
as input to predict labels without incorporating any graph
information, (2) GCN, (3) GraphSAGE, and (4) H2GCN
(Zhu et al., 2020), a representative GNN explicitly designed
for heterophilic settings, included specifically to accom-
modate heterophilic graphs. For each method, we initialize
node features using embeddings derived from various LM or
LLM backbones, ensuring that all other components remain
consistent across evaluations.

From the results shown in Table 4 (homophilic graphs) and
Table 5 (heterophilic graphs), we can observe that:

Takeaway 8: LLM-as-Encoder significantly outperforms
LMs when graph structure is less informative about the
labels, e.g., heterophilic ones.

For homophilic graphs, the performance gap between LLMs

1https://huggingface.co/datasets/Graph-COM/Text-
Attributed-Graphs
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Table 5: Comparison of LLM- and LM-as-Encoder with Accuracy (%) reported on heterophilic graphs. The
best encoder within each method on a dataset is highlighted.

Semi-supervised SupervisedMethod Encoder Cornell Texas Wisconsin Washington Cornell Texas Wisconsin Washington

Homophily Ratio (%) 11.55 6.69 16.27 17.07 11.55 6.69 16.27 17.07

MLP

SenBERT 50.59±3.14 56.67±2.15 71.98±1.59 63.26±2.89 66.15±1.92 76.32±3.72 81.51±7.00 70.44±8.65
RoBERTa 59.08±2.57 67.47±1.29 73.87±1.62 65.43±3.44 66.67±8.88 74.21±6.09 80.00±9.88 76.96±7.48
Qwen-3B 57.78±3.24 76.27±1.61 82.36±1.62 75.11±1.92 77.95±4.76 88.95±3.07 88.68±6.64 83.48±1.74

Mistral-7B 59.87±6.72 76.27±1.08 83.30±1.42 74.24±0.88 78.46±4.17 90.53±3.16 89.43±5.15 83.91±5.60

GCN

SenBERT 46.80±2.13 54.93±0.68 58.30±2.56 52.61±1.35 50.77±10.18 59.47±5.16 61.13±8.65 61.30±1.62
RoBERTa 47.06±2.19 55.20±2.78 54.91±3.40 54.89±1.50 51.79±7.68 58.42±7.33 59.24±8.82 61.31±5.39
Qwen-3B 53.59±2.07 56.80±4.29 63.02±2.16 64.56±4.06 58.46±10.56 64.74±7.37 65.28±6.82 67.83±3.74

Mistral-7B 54.64±1.52 58.67±3.60 62.08±2.61 61.52±3.61 59.49±6.96 65.79±6.66 64.90±5.67 66.96±4.84

SAGE

SenBERT 52.55±1.58 61.73±1.37 70.47±1.75 65.54±2.44 68.72±4.97 80.00±5.91 83.02±6.31 76.96±4.88
RoBERTa 55.55±3.44 64.26±6.26 73.59±2.72 66.08±1.60 70.26±8.37 80.53±2.68 81.89±7.42 74.35±7.95
Qwen-3B 57.13±2.29 78.53±1.76 83.21±1.39 72.18±3.66 74.87±2.99 89.47±1.67 91.32±2.82 83.48±3.25

Mistral-7B 56.86±1.37 76.53±2.40 83.96±1.55 73.91±0.97 77.44±2.99 91.05±2.69 89.44±4.24 81.74±4.48

H2GCN

SenBERT 56.34±1.67 66.67±2.95 73.40±1.68 70.55±4.95 73.85±7.14 84.21±4.40 86.42±6.01 77.83±7.20
RoBERTa 60.00±3.54 68.13±2.93 75.66±2.12 71.52±1.22 74.87±7.68 83.16±6.14 84.53±9.04 79.13±5.43
Qwen-3B 61.57±3.89 80.13±6.45 84.53±0.70 74.67±1.77 76.41±2.99 92.11±2.88 89.81±3.29 85.22±3.99

Mistral-7B 59.22±4.54 72.93±8.21 81.89±1.51 68.59±4.46 75.89±3.84 89.47±3.72 89.43±5.42 86.09±3.25

Table 6: Performance (%) of TAPE with different LLM backbones under semi-supervised setting.

Metrics LLM Cora Citeseer Pubmed WikiCS Instagram Reddit Books Photo Computer Avg.

Acc Mistral 84.04±0.24 71.87±0.35 78.61 ±1.23 81.94±0.16 66.07±0.10 62.43±0.47 84.92±0.26 86.46±0.12 89.52±0.04 78.43
GPT-4o 84.30±0.36 73.75±0.67 82.70±1.78 81.93±0.33 66.25±0.38 62.22±1.24 85.08±0.17 86.65±0.17 89.62±0.13 79.17

F1 Mistral 81.89±0.31 66.80±0.33 78.46±1.13 80.03±0.23 50.01±1.60 61.23±0.69 47.12±3.26 82.31±0.19 84.90±1.14 70.31
GPT-4o 82.62±0.60 67.41±0.82 82.45±1.65 80.27±0.34 51.16±3.54 61.11±1.52 47.51±2.92 82.54±0.18 84.28±2.98 71.04

Table 7: Performance (%) of TAPE with different LLM backbones under supervised setting.
Metrics LLM Cora Citeseer Pubmed arXiv WikiCS Instagram Reddit Books Photo Computer Avg.

Acc Mistral 88.05±1.76 76.45±1.60 93.00±0.13 74.96±0.14 87.11±0.66 68.11±0.54 66.22±0.83 85.95±0.59 87.72±0.28 90.46±0.18 81.80
GPT-4o 88.24±1.23 76.41±1.38 94.12±0.03 75.08±0.08 87.10±0.62 67.99±0.51 66.33±0.89 86.19±0.60 87.65±0.47 90.56±0.21 81.97

F1 Mistral 87.21±1.60 73.33±1.57 92.39±0.02 57.79±0.45 86.03±1.14 58.31±1.15 65.91±0.71 54.07±2.01 83.41±0.42 86.78±0.53 74.52
GPT-4o 87.34±1.06 73.17±2.00 93.58±0.09 57.69±0.23 85.93±1.05 57.49±1.93 66.09±0.80 54.32±3.30 83.40±0.41 86.91±0.55 74.59

and LMs is relatively small and becomes noticeable only in
graphs with lower homophily, such as WikiCS and Reddit.
For instance, on Reddit, LLM-based encoders achieve 4%
higher accuracy than their LM counterparts. The perfor-
mance gap is substantially larger for heterophilic graphs,
with differences reaching up to 10% across methods in both
semi-supervised and supervised settings. For example, on
the Texas dataset, LLM-based encoders achieve a 12% im-
provement over their LM counterparts for the GCN, SAGE,
and H2GCN methods in the semi-supervised setting. We
can also explain these results using mutual information in
Equation (1). In homophilic graphs, edges often connect
nodes with the same labels. Consequently, the first term in
(1) dominates, leaving limited room for improved encoders
like LLMs to enhance performance. In contrast, this prop-
erty does not hold for less-informative heterophilic graphs,
where neighboring nodes are less likely to share the same
labels, making the choice of encoder significantly more

impactful.

5.2. LLM-as-Explainer: Impact of LLM Capabilities

Motivation and Settings: In the LLM-as-Explainer
paradigm, as the language model should generate explana-
tory texts, the adopted language models should be auto-
regressive and the model size should be large. To investigate
how the advanced reasoning capabilities of LLMs influ-
ence overall performance, we replace the default Mistral-7B
model in the TAPE method with the more powerful GPT-4o
model, keeping all other components unchanged.

Results and Analysis: As presented in Table 6 (semi-
supervised settings) and Table 7 (supervised settings), the
effectiveness of LLM-as-Explainer methods positively cor-
relates with the strength of the underlying LLMs. In semi-
supervised settings, TAPE utilizing GPT-4o consistently
outperforms its Mistral-7B counterpart, achieving perfor-
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Table 8: Accuracy (%) of LLaGA to different LLM backbones under supervised settings.
The best LLM backbone within each series and at similar scales is highlighted. Semi-supervised performance is shown in Table 15.

LLM Cora Citeseer Pubmed arXiv WikiCS Instagram Reddit Books Photo Computer Avg.

Sa
m

e
se

ri
es

Qwen-3B 84.91±2.19 74.83±2.46 88.61±1.24 71.82±1.37 82.23±3.14 62.49±0.98 67.96±0.90 83.56±1.86 85.20±1.63 89.37±0.29 79.10
Qwen-7B 85.33±1.50 70.75±5.18 90.53±0.49 71.60±1.59 82.57±1.67 63.86±2.76 68.62±0.53 84.23±0.51 83.55±1.35 87.21±1.88 78.82
Qwen-14B 87.25±1.63 75.49±2.03 89.93±0.27 73.15±0.74 82.26±1.51 63.88±2.49 67.60±1.77 83.94±0.41 84.83±0.77 87.06±0.80 79.54
Qwen-32B 85.93±0.99 75.39±1.90 89.97±0.26 72.84±0.67 83.49±0.91 64.33±1.69 68.47±0.09 84.18±0.29 84.77±0.23 88.49±0.49 79.79

Si
m

ila
r

sc
al

es

Mistral-7B 87.55±1.15 76.73±1.70 90.28±0.91 74.49±0.23 84.03±1.10 69.16±0.72 71.06±0.38 85.56±0.30 87.62±0.30 90.41±0.12 81.69
Qwen-7B 85.33±1.50 70.75±5.18 90.53±0.49 70.47±1.12 82.57±1.67 63.86±2.76 68.62±0.53 84.23±0.51 83.55±1.35 87.21±1.88 78.71

LLaMA-8B 85.77±1.34 74.84±1.09 89.57±0.24 72.72±0.26 82.25±1.65 61.12±0.45 67.70±0.44 84.05±0.26 85.57±0.41 89.42±0.12 79.30

Table 9: Macro-F1(%) of LLaGA to different LLM backbones under supervised settings.
LLM Cora Citeseer Pubmed arXiv WikiCS Instagram Reddit Books Photo Computer Avg.

Sa
m

e-
se

ri
es

Qwen-3B 77.92±6.14 66.52±5.69 78.88±10.43 51.30±0.83 78.81±7.68 50.93±7.72 65.77±1.38 49.87±1.52 77.51±3.24 80.77±3.27 67.83
Qwen-7B 82.50±4.12 64.03±4.86 90.29±0.52 51.97±0.83 77.35±4.26 56.50±1.15 68.55±0.60 46.21±1.78 75.76±5.34 78.86±5.90 69.20
Qwen-14B 85.64±1.89 69.92±3.95 89.69±0.39 53.32±0.38 79.13±1.78 57.58±0.83 67.10±2.18 44.26±2.27 76.09±2.71 80.17±4.74 70.29
Qwen-32B 82.85±4.10 68.11±3.69 89.57±0.37 52.52±0.65 77.31±3.89 57.28±2.21 68.22±0.02 48.25±1.29 79.51±0.87 77.15±7.53 70.08

Si
m

ila
r

sc
al

es

Mistral-7B 84.97±3.97 72.59±1.70 90.00±0.80 58.08±0.29 82.37±1.73 57.96±2.40 62.14±15.59 54.89±2.29 83.56±0.40 86.97±0.34 73.35
Qwen-7B 82.50±4.12 64.03±4.86 90.29±0.52 45.74±9.78 77.35±4.26 56.50±1.15 68.55±0.60 46.21±1.78 75.76±5.34 78.86±5.90 69.09

LLaMA-8B 81.40±5.46 69.87±3.68 89.30±0.23 55.23±0.59 80.14±2.09 54.58±1.24 67.40±0.61 51.65±0.17 78.87±2.38 85.54±0.59 71.40

mance gains of up to 4% on the Pubmed dataset. However,
in supervised scenarios, the performance gap between GPT-
4o and Mistral-7B narrows. This reduction is attributed to
the abundance of labeled data, which increases the mutual
information I(E ;Yl) in (1). Consequently, the dependency
on node attributes decreases, thereby diminishing the rela-
tive advantages of more powerful LLMs.

Based on these findings, we recommend that when abundant
supervision is available, practitioners may opt for open-
source LLMs instead of more powerful and costlier models
for the LLM-as-Explainer method. This practice can achieve
comparable performance without incurring additional costs.

5.3. LLM-as-Predictor: Sensitivity to LLM Backbones

Motivation and Settings: For most LLM-as-Predictor
methods, only open-source LLMs are compatible. Given
the diverse choices and varying scales of these models, we
aim to investigate the sensitivity of performance to differ-
ent LLM backbones. This examination seeks to identify
potential scaling laws and determine which LLMs excel at
the node classification task. Therefore, we choose the best
predictor method LLaGA as the baseline, include models of
different sizes within the same series, i.e., Qwen2.5-series
(Qwen et al., 2025). Additionally, we consider similar-
scaled models to identify the most suitable for this task,
including Qwen2.5-7B, Mistral-7B, and LLaMA3.1-8B. All
experiments maintain consistency by only varying the back-
bone LLMs while keeping other components, training con-
figurations, and hyperparameters unchanged.

Results and Analysis: (1) Scaling within the same series:
Comparing Qwen-3B to Qwen-32B (performance shown
in Tables 8 and 9, efficiency in Table 16, and performance
trends in Figures 3 and 4 in the Appendix), we observe that

performance generally improves with larger model sizes.
However, beyond Qwen-7B and Qwen-14B, the perfor-
mance gains become marginal while training and inference
times increase significantly. For instance, Qwen-32B takes
over 200 milliseconds per sample for inference, which is
five times longer than Qwen-7B. Therefore, Qwen-7B or
Qwen-14B are recommended as practical choices balanc-
ing performance and efficiency. (2) Model selection at
similar scales: When comparing models of similar sizes
(Tables 8 and 9, and Table 15 in the Appendix), Mistral-7B
outperforms other LLMs of comparable scale. Its superior
performance makes Mistral-7B the recommended backbone
LLM for node classification tasks.

6. Conclusion
This paper provides guidelines for leveraging LLMs to en-
hance node classification tasks across diverse real-world
applications. We introduce LLMNodeBed, a codebase and
testbed for systematic comparisons, featuring 14 datasets, 8
LLM-based algorithms, 8 classic algorithms, and 3 learning
paradigms. Through extensive experiments involving 2,700
models, we uncover key insights: In supervised settings,
each category offers unique advantages, but LLM-based ap-
proaches deliver marginal improvements over classic meth-
ods when ample supervision is available. In zero-shot sce-
narios, directing powerful LLMs to perform inference with
integrated structural context yields the best performance.

Our findings offer practical guidance for practitioners ap-
plying LLMs to node classification tasks and highlight re-
search gaps, e.g., the limited exploration of LLMs on het-
erophilic graphs and the scarcity of such text-rich datasets.
We hope that LLMNodeBed will inspire and serve as a
valuable toolkit for further research.
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A. Related Works and Discussion
In this section, we present a comprehensive taxonomy of node classification methods, ranging from classic approaches to
those leveraging LLMs.

A.1. Classic Methods

Early approaches for node classification tasks relied on structural techniques such as Laplacian regularization (Belkin et al.,
2006), graph embeddings (Yang et al., 2016), and label propagation (Zhu et al., 2003). These methods infer node labels by
leveraging the connectivity and similarity among nodes within the graph.

Over the past decade, GNNs have emerged as the dominant paradigm for node classification, demonstrating superior
performance across various benchmarks (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017; Xu
et al., 2019). GNNs enhance node representations by aggregating and transforming feature information from their local
neighborhoods. Formally, given a graph’s feature matrix X and structure E , a GNN produces the predicted label matrix as
Y = GNNΘ(X, E) ∈ R|V|×C , where C is the number of classes, and Θ represents the learned parameters.

Beyond structural methods, node classification can also be approached using LMs by treating each node as a text entity.
Fine-tuning LMs (Liu et al., 2019; Reimers & Gurevych, 2019; Wang et al., 2022) allows these models to map textual
information directly to node labels, leveraging their strong language understanding capabilities to predict labels. To harness
the complementary strengths of GNNs and LMs, i.e., structural and textual information, hybrid LM+GNN architectures
have been developed (Jin et al., 2023b; Zhao et al., 2023a; Wen & Fang, 2023; Li et al., 2023a). These models integrate LM-
encoded textual features with GNN-processed structural features, enhancing node classification performance by combining
both modalities.

A.2. LLM-based Methods

LLM as Encoder: LLMs possess an extensive number of parameters, enabling them to generate highly expressive
representations. These representations can replace shallow node embeddings, promising to enhance expressiveness and
improve the performance of downstream task. A notable approach is ENGINE (Zhu et al., 2024), which utilizes hidden
embeddings from LLMs to construct node embeddings. ENGINE integrates these embeddings with GNNs to propagate and
update representations. Specifically, it aggregates hidden embeddings from each LLM layer that processes a node’s text and
incorporates them into a cascaded GNN structure.

LLM as Explainer: A notable advantage of LLMs lies in their generative capabilities, enabling them to intelligently
perform a wide range of downstream tasks, from creative generation to reasoning and planning (Luo et al., 2024a; Wu et al.,
2024). Motivated by this strength, He et al. (2024) introduced TAPE, a method that leverages LLM as Explainer for node
classification. Specifically, TAPE prompts the LLM to generate predictions along with a chain-of-thought reasoning process
that includes explanations, denoted as sexp

v = LLM(sorig
v , p), where p denotes the textual prompt, and sorig

v and sexp
v represent

the original and generated texts for node v, respectively. Both the original and generated texts are processed by an LM
to produce embeddings as xorig

v = LM(sorig
v ) and xexp

v = LM(sexp
v ), which are subsequently processed by GNNs for the

classification task as:

Y = Ensemble(GNNΘ1
(Xorig, E),GNNΘ2

(Xexp, E)).

Subsequent works have enhanced the reliability of LLM-generated explanations (Fang et al., 2024). For example, KEA
(Chen et al., 2024b) prompts LLMs to extract and explain specific technical terms from a node’s original text instead of
making direct predictions, thereby mitigating potential misguidance. Overall, the LLM-as-Explainer paradigm harnesses the
reasoning and generative capabilities of LLMs to produce reliable explanations, thereby enriching the original graph data
and enhancing downstream tasks.

LLM as Predictor: LLMs’ strong reasoning abilities make them effective for direct downstream classification tasks. In the
LLM-as-Predictor paradigm, a node’s textual and structural information, along with task-specific instructions, are tokenized
and input into an LLM for prediction. A notable method in this category is LLaGA (Chen et al., 2024a). Firstly, the original
text sv of node v is encoded via LM as xLM

v = LM(sv). Then, a parameter-free GNN, i.e., SGC (Wu et al., 2019), updates
the node embeddings based on the graph structure, initializing with h

(0)
v = xLM

v . The embeddings from each SGC layer
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are concatenated into Hv = [h
(0)
v , . . . ,h

(L)
v ] and further projected into the LLM’s dimensionality using a projection layer

ϕθ. These projected embeddings are then combined with tokenized instructions T and input into the LLM to generate the
predicted label as:

ℓv = LLM([ϕθ(Hv) ∥ T ]).

In the LLaGA framework, only the parameters of the projection layer are tuned, utilizing the next-token-prediction loss
based on ground-truth labels and generated outputs. GraphGPT employs a more complex framework with three distinct
pre-training and instruction tuning stages. Other LLM-as-Predictor methods (Chai et al., 2023; Perozzi et al., 2024; Kong
et al., 2025; Huang et al., 2024; Zhao et al., 2023b; Ji et al., 2024) share similar frameworks with LLaGA but vary in
integration approaches, training objectives, and tackled tasks.

A.3. Zero-shot Learning with LLMs

Supervised learning approaches, which rely on labeled data, often struggle to keep pace with the rapid evolution of real-world
graph data. Zero-shot learning methods address this limitation by enabling models to generalize to unseen data without
requiring explicit labels. These methods can be broadly categorized into two approaches: LLM Direct Inference and GFMs.

LLM Direct Inference involves using LLMs to make predictions directly on the node’s information through various prompt
engineering techniques. Advanced prompt templates for reasoning tasks include Chain-of-Thought (Wei et al., 2022), ReAct
(Yao et al., 2023b), and Tree-of-Thought (Yao et al., 2023a). Besides, structural information can also be integrated into
extended prompts (Tang et al., 2023; Wang et al., 2023; Huang et al., 2023), enriching the input provided to LLMs and
facilitating more accurate predictions.

On the other hand, GFMs are foundation models pre-trained on extensive graph corpora to achieve general graph intelligence.
Approaches such as ZeroG (Li et al., 2024b) and OFA (Liu et al., 2024) fine-tune LMs or GNNs on multiple graphs, enabling
these models to generalize to unseen graph datasets without extensive retraining. There also exist other zero-shot learning
methods utilizing LLMs. For example, Chen et al. (2024c) leverage LLMs as annotators to generate pseudo-labels for GNN
training, enabling classification tasks. These approaches are not considered in this work, as our focus is primarily on LLMs
directly solving node classification tasks in zero-shot scenarios.

A.4. Benchmarks of LLMs for Graphs

In addition to developments in node classification algorithms, we discuss existing benchmarks that leverage LLMs for
graph-related tasks. These benchmarks can be categorized based on the type of tasks they address.

The first category primarily utilizes LLMs for basic graph reasoning tasks, e.g., shortest path and connectivity. For instance,
NLGraph (Wang et al., 2023) is a pioneering benchmark that encompasses eight different graph reasoning tasks presented
in natural language. LLM4DyG (Zhang et al., 2024) further extends these reasoning tasks to dynamic graph settings.
GraphArena (Tang et al., 2025) deals with more complex graph computational problems, with the complexity of tasks
ranging from polynomial to NP-Complete like the Traveling Salesman Problem. ProGraph (Li et al., 2024a) evaluates the
scalability of LLMs by handling large graphs with up to 106 nodes, necessitating the use of Python APIs for graph analysis
rather than relying solely on direct reasoning of LLMs. Additionally, Dai et al. (2025) investigates whether LLMs can
recognize graph patterns, e.g., triangles or squares, based on terminological or topological descriptions.

The second category focuses on the potential of LLMs for node classification tasks. While numerous surveys discuss
the progress in this area (Li et al., 2023b; Jin et al., 2023a), benchmarks that systematically evaluate LLM-based node
classification methods remain limited. In the preliminary work by Chen et al. (2024b), the exploration is confined to a
narrow range of LLM-as-Encoder and LLM-as-Explainer approaches, primarily focusing on a limited set of language
models. GLBench (Li et al., 2024c) emerges as the first comprehensive benchmark for LLM-based node classification,
offering consistent data splits to evaluate representative methods in both semi-supervised and zero-shot settings. However,
variations in backbone models and implemented codebases impede fair and rigorous comparisons.

Our benchmark, LLMNodeBed, distinguishes itself from existing benchmarks like GLBench by standardizing implementa-
tions of baselines, extending learning paradigms and datasets to encompass more real-world contexts, and incorporating
influential factors like model type and size, homophily, and prompt design. This comprehensive approach provides more
practical guidelines for effectively leveraging LLMs to enhance node classification tasks.
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B. Prompts
B.1. Prompt in LLM-as-Predictor Methods

For GraphGPT (Tang et al., 2023) and LLaGA (Chen et al., 2024a), we utilize the prompt templates provided in their
original papers for several datasets, including Cora and arXiv. For datasets not originally addressed, such as Photo, we
adapt their prompt designs to create similarly formatted prompts. For LLM Instruction Tuning, we carefully craft prompt
templates tailored to each dataset to directly guide the LLMs in performing classification tasks. Below is a summary of
these prompt templates using Cora as an example: ⟨labels⟩ denotes the dataset-specific label space (Table 10), ⟨graph⟩
represents the tokenized graph context, and ⟨raw text⟩ refers to the node’s original raw text.

Illustration of Prompts Utilized by LLM-as-Predictor Methods on the Cora Dataset
LLM Instruction Tuning: Given a node-centered graph with centric node description: ⟨raw text⟩, each node represents a paper,
we need to classify the center node into 7 classes: ⟨labels⟩, please tell me which class the center node belongs to?
GraphGPT: Given a citation graph: ⟨graph⟩, where the 0-th node is the target paper, with the following information: ⟨raw text⟩.
Question: Which of the following specific research does this paper belong to: ⟨labels⟩. Directly give the full name of the most likely
category of this paper.
LLaGA: Given a node-centered graph: ⟨graph⟩, each node represents a paper, we need to classify the center node into 7 classes:
⟨labels⟩, please tell me which class the center node belongs to?

B.2. Prompt in Zero-shot Scenarios

For LLM Direct Inference, we consider prompt templates including Direct, Chain-of-Thought (Wei et al., 2022), Tree-of-
Thought (Yao et al., 2023a), and ReACT (Yao et al., 2023b). The latter three methods are effective in enhancing LLM
reasoning abilities across different tasks. Therefore, we adopt these advanced prompts for node classification to assess their
continued effectiveness. Illustrations of these prompts on the Cora dataset are shown below:

Illustration of Advanced Prompts Utilized by LLM Inference on the Cora Dataset
Direct: Given the information of the node: ⟨raw text⟩. Question: Which of the following categories does this paper belong to? Here
are the categories: ⟨labels⟩. Reply only with one category that you think this paper might belong to. Only reply with the category
name without any other words.
Chain-of-Thought: Given the information of the node: ⟨raw text⟩. Question: Which of the following types does this paper
belong to? Here are the 7 categories: ⟨labels⟩. Let’s think about it step by step. Analyze the content of the node and choose one
appropriate category. Output format: ⟨reason: ⟩, ⟨classification: ⟩
Tree-of-Thought: Given the information of the node: ⟨raw text⟩. Imagine three different experts answering this question. All
experts will write down 1 step of their thinking, and then share it with the group. Then all experts will go on to the next step, etc. If
any expert realizes they’re wrong at any point then they leave. Question: Based on this information, which of the following categories
does this paper belong to? Here are 7 categories: ⟨labels⟩. Let’s think through this using a tree of thought approach. Output
format: ⟨discussion: ⟩, ⟨classification: ⟩. The classification should only consist of one of the category names listed.
ReACT: Given the information of the node: ⟨raw text⟩. Your task is to determine which of the following categories this paper
belongs to. Here are the 7 categories: ⟨labels⟩. Solve this question by interleaving the Thought, Action, and Observation
steps. Thought can reason about the current situation, and Action can be one of the following: (1) Search[entity], which searches
the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar entities to search. (2)
Lookup[keyword], which returns the next sentence containing the keyword in the current passage. (3) Finish[answer], which returns
the answer and finishes the task. The output format must be ⟨process: ⟩, ⟨classification: ⟩. The classification should only consist of
one of the category names listed.

Additionally, we incorporate the central node’s structural information into extended prompts to evaluate performance.
We propose two variants for integrating neighbor information: (1) “w. Neighbor”: we concatenate the texts of all 1-hop
neighbors of the central node as enriched context, and (2) “w. Summary”: we first provide all neighbors’ information to
LLMs to generate a summary that highlights the common points among the neighbors. Then, we feed both the generated
summary and the node’s text to LLMs to facilitate prediction. The prompt templates for these methods on the Cora dataset
are illustrated below:
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Illustration of Structure-enriched Prompts Utilized by LLM Inference on the Cora Dataset
w. Neighbor: Given the information of the node: ⟨raw text⟩. Given the information of its neighbors ⟨raw text⟩. Here I give
you the content of the node itself and the information of its 1-hop neighbors. The relation between the node and its neighbors is
‘citation’. Question: Based on this information, which of the following sub-categories of AI does this paper belong to? Here are the 7
categories: ⟨labels⟩. Reply only one category that you think this paper might belong to. Only reply with the category name without
any other words.

w. Summary (Step 1): The following list records papers related to the current one, with the relationship being ‘citation’: ⟨raw text⟩.
Please summarize the information above with a short paragraph, and find some common points that can reflect the category of the
paper.
w. Summary (Step 2): Given the information of the node: ⟨raw text⟩, ⟨summary⟩. Here I give you the content of the node itself
and the summary information of its 1-hop neighbors. The relation between the node and its neighbors is ‘citation’. Question: Based
on this information, which of the following sub-categories of AI does this paper belong to? Here are the 7 categories: ⟨labels⟩. Reply
only one category that you think this paper might belong to. Only reply with the category name without any other words.
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Table 10: Details of datasets: label space and training data percentages with supervision.

Domain Dataset Label Space

Academic

Cora
Rule Learning, Neural Networks, Case Based, Genetic Algorithms,

Theory, Reinforcement Learning, Probabilistic Methods

Citeseer
Agents, ML (Machine Learning), IR (Information Retrieval), DB (Databases),

HCI (Human-Computer Interaction), AI (Artificial Intelligence)
Pubmed Experimentally induced diabetes, Type 1 diabetes, Type 2 diabetes

arXiv

cs.NA, cs.MM, cs.LO, cs.CY, cs.CR, cs.DC, cs.HC, cs.CE, cs.NI, cs.CC,
cs.AI, cs.MA, cs.GL, cs.NE, cs.SC, cs.AR, cs.CV, cs.GR, cs.ET, cs.SY,
cs.CG, cs.OH, cs.PL, cs.SE, cs.LG, cs.SD, cs.SI, cs.RO, cs.IT, cs.PF,

cs.CL, cs.IR, cs.MS, cs.FL, cs.DS, cs.OS, cs.GT, cs.DB, cs.DL, cs.DM

Web Link WikiCS
Computational Linguistics, Databases, Operating Systems, Computer Architecture,

Computer Security, Internet Protocols, Computer File Systems,
Distributed Computing Architecture, Web Technology, Programming Language Topics

Social Instagram Normal User, Commercial User
Reddit Normal User, Popular User

E-Commerce

Books
World, Americas, Asia, Military, Europe, Russia, Africa,

Ancient Civilizations, Middle East, Historical Study & Educational Resources,
Australia & Oceania, Arctic & Antarctica

Photo
Video Surveillance, Accessories, Binoculars & Scopes, Video,

Lighting & Studio, Bags & Cases, Tripods & Monopods, Flashes,
Digital Cameras, Film Photography, Lenses, Underwater Photography

Computer
Computer Accessories & Peripherals, Tablet Accessories, Laptop Accessories,

Computers & Tablets, Computer Components, Data Storage, Networking Products,
Monitors, Servers, Tablet Replacement Parts

Heterophilic Student, Faculty, Staff, Course, Project

Setting Cora Citeseer Pubmed arXiv WikiCS Instagram Reddit Books Photo Computer Heterophilic

Semi-supervised 5.17% 3.77% 0.30% - 4.96% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%
Supervised 60.0% 60.0% 60.0% 53.7% 60.0% 60.0% 60.0% 60.0% 60.0% 60.0% 60.0%

C. Supplementary Materials for LLMNodeBed
C.1. Datasets

We selected 14 datasets from academic, web link, social, and e-commerce domains to create a diverse graph database.
Within LLMNodeBed, each dataset is stored in .pt format using PyTorch, which includes shallow embeddings, raw
text of nodes, edge indices, labels, and data splits for convenient loading. The processed data is publicly available at
https://huggingface.co/datasets/xxwu/LLMNodeBed. A description of the datasets is provided below,
with their statistics and additional details summarized in Table 1 and Table 10, respectively.

• Academic Networks: The Cora (Sen et al., 2008), Citeseer (Giles et al., 1998), Pubmed (Yang et al., 2016), and
ogbn-arXiv (abbreviated as “arXiv”) (Hu et al., 2020) datasets consist of nodes representing papers, with edges
indicating citation relationships. The associated text attributes include each paper’s title and abstract, which we use the
collected version as follows: Cora and Pubmed from He et al. (2024), Citeseer from Chen et al. (2024b). Within the
dataset, each node is labeled according to its category. For example, the arXiv dataset includes 40 CS sub-categories
such as cs.AI (Artificial Intelligence) and cs.DB (Databases).

• Web Link Network: In the WikiCS dataset (Mernyei & Cangea, 2020), each node represents a Wikipedia page,
and edges indicate reference links between pages. The raw text for each node includes the page name and content,
which was collected by Liu et al. (2024). The classification goal is to categorize each entity into different Wikipedia
categories.

• Social Networks: The Reddit and Instagram datasets, originally released in Huang et al. (2024), feature nodes
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representing users, with edges denoting social connections like following relationships. For Reddit, each user’s
associated text consists of their historically published sub-reddits, while for Instagram, it includes the user’s profile
page introduction. In Reddit, nodes are labeled to indicate whether the user is popular or normal, while in Instagram,
labels specify whether a user is commercial or normal.

• E-Commerce Networks: The Ele-Photo (abbreviated as “Photo”) and Ele-Computer (abbreviated as “Computer”)
datasets are derived from the Amazon Electronics dataset (Ni et al., 2019), where each node represents an item in the
Photo or Computer category. The Books-History (abbreviated as “Books”) dataset comes from the Amazon Books
dataset, where each node corresponds to a book in the history category. We utilize the processed datasets released in
Yan et al. (2023). In these e-commerce networks, edges indicate co-purchase or co-view relationships. The associated
text for each item includes descriptions, e.g., book titles and summaries, or user reviews. The classification task
involves categorizing these products into fine-grained sub-categories.

• Heterophilic Datasets: The Cornell, Texas, Wisconsin, and Washington datasets are collected from Wang et al.
(2025), which are the only available heterophilic datasets that have text attributes. Since the original release does not
provide shallow embeddings, we generate fixed 300-dimensional embeddings for each node using Node2Vec (Grover
& Leskovec, 2016). For dataset splits, we assign semi-supervised and supervised settings with 1:1:8 and 6:2:2 splits
for training, validation, and test sets, respectively.

C.2. Implementation Details and Hyperparameters Setting

• For GNNs with arbitrary input embeddings, either from shallow embeddings or those generated by LMs or LLMs, we
perform a grid-search on the hyperparameters as follows:

num layers in [2, 3, 4], hidden dimension in [32, 64, 128, 256], and dropout in [0.3, 0.5, 0.7].

Additionally, we explore the design space by considering the inclusion or exclusion of batch normalization and
residual connection.

For shallow embeddings, the Cora, Citeseer, Pubmed, WikiCS, and arXiv datasets provide initialized embeddings
in their released versions (Hu et al., 2020; Sen et al., 2008). For remaining datasets lacking shallow embeddings,
we construct these embeddings using Node2Vec (Grover & Leskovec, 2016) techniques, generating a fixed 300-
dimensional embedding for each node based on a walk length of 30 and a total of 10 walks.

For the heterophilic GNN, H2GCN (Zhu et al., 2020), which we employed on heterophilic graphs in the fine-grained
analysis of LLM-as-Encoder, we perform a grid-search over the following hyperparameters:

num layers in [1, 2, 3], hidden dimension in [32, 64, 128, 256], and learning rate in [0.001, 0.005, 0.01].

• For MLPs with arbitrary input embeddings, we perform a grid-search on the hyperparameters as follows:

num layers in [2, 3, 4], hidden dimension in [128, 256, 512], and dropout in [0.5, 0.6, 0.7].

For both GNNs and MLPs across experimental datasets, the learning rate is consistently set to 1e− 2, following
previous studies (He et al., 2024; Li et al., 2024c). The total number of epochs is set to 500 with a patience of 100.

• For SenBERT-66M and RoBERTa-355M, we set the training epochs to 10 for semi-supervised settings and 4 for
supervised settings. The batch size is set to 32, and the learning rate is set to 2e− 5.

• For GLEM (Zhao et al., 2023a), we uniformly set the number of EM iterations to 1 and the pseudo-labeling ratio to
0.5. For the GNN module within GLEM, we set the hidden dim to 256 and num layers to 3. For the LM module,
we use LoRA for optimization with a batch size of 32. Except for the Pubmed, arXiv, and Computer datasets,
where the LM is trained first during the EM iteration, all remaining datasets train the GNN first. This choice is based
on empirical findings that suggest better performance.

• For ENGINE (Zhu et al., 2024), we refer to the hyperparameter settings outlined in the original paper to determine the
hyperparameter search space as follows:

num layers in [1, 2, 3], hidden dimension in [64, 128], and learning rate in [5e− 4, 1e− 3].

The neighborhood sampler is set to “Random Walk” for Cora while “k-Hop” with k = 2 for the remaining datasets.
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• For TAPE (He et al., 2024), we utilize the provided prompt templates to guide Mistral-7B and GPT-4o in conducting
reasoning. The LM, RoBERTa-355M, is fine-tuned based on its default parameter settings, while the GNN hyper-
parameters are explored with num layers in [2, 3, 4], hidden dimension in [128, 256], and with or without
batch normalization.

• For LLM Instruction Tuning, we use the LoRA (Hu et al., 2022) techniques to fine-tune LLMs. The lora r
parameter (dimension for LoRA update matrices) is set to 8 and the lora alpha (scaling factor) to 16. The
dropout ratio is set to 0.1, the batch size to 16, and the learning rate to 1e− 5. For each dataset, the input
consists of the node’s original text along with a carefully crafted task prompt designed to guide the LLMs in performing
the classification task. The expected output is the corresponding label. For small-scale datasets such as Cora, Citeseer,
and Instagram, the number of training epochs is 10 in semi-supervised settings and 4 in supervised settings. For the
remaining datasets, the training epochs are 2 and 1 for semi-supervised and supervised settings, respectively. The
maximum input and output lengths are determined based on the average token lengths of each dataset.

• For LLaGA (Chen et al., 2024a), we empirically find that the HO templates consistently outperform the ND templates.
Therefore, we set the HO templates as the default configuration, with num hop set to 4. We use the text encoder
as RoBERTa-355M. The linear projection layer ϕθ(·) consists of a 2−layer MLP with a hidden dimension of
2048. The batch size is set to 64 and learning rate to 1e− 4. The number of training epochs is set to 10 for
semi-supervised settings and 4 for supervised settings. For Qwen2.5-series, we encounter over-fitting issues in the
Photo, Computer, and Books datasets, leading us to adjust the learning rate to 5e− 5 and reduce the number of epochs
to 2 under supervised settings.

• For GraphGPT (Tang et al., 2023), it includes three distinct stages: (1) text-graph grounding, (2) self-supervised
instruction tuning, and (3) task-specific instruction tuning. Our empirical findings indicate that the inclusion of stage
(1) does not consistently lead to performance improvements, thereby rendering this stage optional. For stage (2), we
construct self-supervised training data for each dataset to perform dataset-specific graph matching tasks, adhering to
the provided data format2. In stage (3), we utilize the training data to create ⟨instruction, ground-truth label⟩ pairs
following the original prompt design. The training parameters for stage (2) include 2 epochs with a learning rate
of 1e− 4 and a batch size of 16. For stage (3), we train for 10 epochs in semi-supervised settings and 6 epochs in
supervised settings, with a batch size of 32. Additionally, we adjust the maximum input and output lengths for
each stage based on the dataset’s text statistics.

• For LLM Direct Inference, we adopt two distinct categories of prompt templates: (1) advanced prompts that enhance
the reasoning capabilities of LLMs, and (2) prompts enriched with structural information. These templates are
illustrated in Appendix B.2 and strictly adhere to the zero-shot setting.

• For ZeroG, we adhere to its original parameter configurations by setting k = 2, the number of SGC iterations to 10,
and the learning rate to 1e − 4. In experiments involving GFMs, the intra-domain training mode utilizes the
following source-target pairs: arXiv → Cora, arXiv → WikiCS, Reddit → Instagram, and Computer → Photo.

C.3. Distinct Features

A fair comparison necessitates a benchmark that evaluates all methods using consistent dataloaders, learning paradigms,
backbone architectures, and implementation codebases. Our LLMNodeBed carefully follows these guidelines to support
systematic and comprehensive evaluation of LLM-based node classification algorithms. Unlike existing benchmarks (Li
et al., 2024c), which primarily rely on each algorithm’s official implementation, LLMNodeBed distinguishes itself in the
following ways:

• Systematical Implementation: We consolidate common components (e.g., DataLoader, Evaluation, Backbones)
across algorithms to avoid code redundancy and enable fair comparisons and streamlined deployment. For example,
several official implementations involve extensive code snippets, and we have produced cleaner, more streamlined
versions that enhance both readability and usability. This systematic approach makes LLMNodeBed easily extendable
to new datasets or algorithms.

2https://huggingface.co/datasets/Jiabin99/graph-matching
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• Flexible Selection of Backbones: LLMNodeBed incorporates a diverse selection of GNNs, LMs, and LLMs, which
can be seamlessly integrated as components in baseline methods.

– GNNs: Our framework supports a wide range of variants, including GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019), Graph Transformers (Shi et al., 2021)
and H2GCN (Zhu et al., 2020). These GNNs can be customized with various layers and embedding dimensions.

– LMs and LLMs: Open-source models can be easily loaded via the Transformers library3. In our experiments, we
primarily utilize SenBERT-66M (Reimers & Gurevych, 2019), RoBERTa-355M (Liu et al., 2019), Qwen2.5-Series
(Qwen et al., 2025), Mistral-7B (Jiang et al., 2023), and LLaMA3.1-8B (Dubey et al., 2024). For close-source
LLMs, we have formatted the invocation functions of DeepSeek-V3 (DeepSeek-AI, 2024) and GPT-4o (OpenAI,
2024). Additionally, LLMNodeBed allows users to specify and invoke any LM or LLM of their choice, providing
flexibility for diverse research needs.

• Robust Evaluation Protocols: LLMNodeBed incorporates comprehensive hyperparameter tuning and design space
exploration to fully leverage the potential of the algorithms. For instance, recent research (Luo et al., 2024b) highlights
that classic GNNs remain strong baselines for node classification tasks, especially when the design space is expanded
through techniques like residual connections, jumping knowledge, and selectable batch normalization. LLMNodeBed
supports these enhancements, enabling the full utilization of GNNs. Furthermore, we conduct multiple experimental
runs to enhance reliability and account for variability, which was often overlooked in previous studies.

3https://huggingface.co/docs/transformers
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D. Supplementary Experiments on Large-scale Dataset

Table 11: Performance comparison (in %) on large-scale dataset ogbn-products (Hu et al., 2020).

Classic Encoder PredictorMetric GCNShallowEmb SAGEShallowEmb GATShallowEmb SenBERT RoBERTa GCNLLMEmb SAGELLMEmb GATLLMEmb LLaGA

Accuracy 75.16 77.33 74.83 69.06 75.12 81.09 83.34 82.20 79.07
Macro-F1 36.16 35.63 34.32 24.89 30.29 39.96 41.14 40.49 36.36

We extend our evaluation to the large-scale graph, ogbn-products (Hu et al., 2020), which comprises 2,449,029 nodes and
123,718,152 edges. In this graph, each node represents a unique product sold on Amazon, and edges denote co-purchase
relationships. The classification task involves predicting the category of a product across 47 classes. This dataset is
significantly larger than any other in LLMNodeBed, posing unique challenges for evaluating LLM-based node classification
algorithms.

Experimental Setups: To evaluate LLM-based methods under constrained GPU resources (e.g., a single H100-80GB GPU),
we use the official data splits, which include 196,165 nodes (8.03%) for training, 39,323 nodes (1.61%) for validation,
and a reduced test set of 221,309 nodes (9.04%), yielding a semi-supervised setting. The original dataset provides
100-dimensional node embeddings, which we directly adopt as shallow embeddings for classic GNNs.

Compared Methods: Given resource constraints, we compare classic methods (GNNs and LMs), LLM-as-Encoder
methods (using embeddings derived from Qwen2.5-3B), and the LLM-as-Predictor method, LLaGA. Some other methods,
such as TAPE, are excluded due to the prohibitive cost of generating explanatory texts for the entire dataset via APIs, e.g.,
approximately 500 USD for invoking GPT-4o.

Results: The results for both Accuracy and Macro-F1 (in %) are summarized in Table 11. From the table, we observe
that LLM-based methods outperform the best classic methods by substantial margins, e.g., 6% on Accuracy and 5% on
Macro-F1. These results underscore the advantages of LLM-based methods on large-scale graphs.
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E. Supplementary Materials for Comparisons among Algorithm Categories

Table 12: Performance comparison under semi-supervised and supervised settings with Macro-F1 (%) reported.
The best and second-best results are highlighted. LLMIT on the arXiv dataset requires extensive training time, preventing repeated
experiments.

Semi-supervised Cora Citeseer Pubmed WikiCS Instagram Reddit Books Photo Computer Avg.

Classic

GCNShallowEmb 80.76±0.30 66.00±0.17 79.00±0.30 77.87±0.18 52.44±1.02 61.15±0.56 22.18±1.12 62.65±1.46 61.33±2.55 62.60
SAGEShallowEmb 80.88±0.47 65.06±0.32 77.88±0.41 77.02±0.59 50.74±0.26 56.39±0.44 24.37±0.72 74.17±0.32 71.67±0.61 64.24
GATShallowEmb 79.65±1.03 64.82±1.20 78.43±0.73 77.57±1.01 40.19±1.56 60.37±1.22 28.93±3.65 75.89±0.60 77.06±2.98 64.77

SenBERT-66M 64.54±1.18 56.65±1.40 32.08±3.35 74.97±0.96 55.47±0.76 55.75±0.58 43.15±1.53 66.08±0.76 59.79±1.30 56.50
RoBERTa-355M 70.41±0.83 63.36±1.75 40.82±2.05 73.98±1.72 57.43±0.42 59.23±0.36 51.34±0.95 67.92±0.49 63.38±2.17 60.87

GLEM 79.82±0.95 64.66±2.39 81.92±0.97 73.88±0.25 52.09±5.81 49.30±4.48 43.33±3.57 67.53±1.18 66.01±1.33 64.28

Encoder GCNLLMEmb 81.19±0.59 67.17±0.73 78.39±0.36 78.58±0.51 58.97±0.85 68.46±0.91 39.64±0.85 79.87±0.57 77.36±0.70 69.95
ENGINE 82.52±0.45 67.15±0.15 77.53±0.34 78.89±0.38 57.25±2.50 69.56±0.21 34.04±1.10 78.55±1.12 75.86±0.60 69.04

Explainer TAPE 81.89±0.31 66.80±0.33 78.46±1.13 80.03±0.23 50.01±1.60 61.23±0.69 47.12±3.26 82.31±0.19 84.90±1.14 70.31

Predictor
LLMIT 56.35±0.22 47.34±0.68 62.81±0.21 65.75±0.17 38.30±0.94 44.41±8.86 39.44±0.44 60.71±0.09 57.38±0.65 52.50

GraphGPT 58.33±0.81 54.21±1.11 56.09±0.88 62.04±0.62 38.78±0.60 38.88±0.28 42.85±0.94 65.77±1.34 66.69±1.49 53.74
LLaGA 71.14±4.47 52.53±3.59 45.12±7.63 70.48±2.94 50.12±10.45 54.67±11.24 39.70±2.44 79.32±2.42 78.01±1.36 60.12

Supervised Cora Citeseer Pubmed arXiv WikiCS Instagram Reddit Books Photo Computer Avg.

Classic

GCNShallowEmb 86.54±1.44 71.52±1.71 88.54±0.60 50.28±0.84 82.11±0.61 54.91±0.48 65.00±0.42 34.39±1.26 66.04±2.85 64.60±4.99 66.39
SAGEShallowEmb 86.37±1.26 71.87±1.34 90.16±0.27 49.73±0.49 82.78±1.53 51.37±1.67 61.39±0.54 38.29±2.54 80.37±0.34 82.93±0.49 69.53
GATShallowEmb 85.64±0.87 69.27±2.15 87.70±0.48 49.71±0.23 82.14±1.04 50.26±3.16 64.11±1.06 42.85±1.62 80.82±0.89 84.74±0.79 69.72

SenBERT-66M 77.13±2.19 71.25±1.03 93.95±0.39 52.48±0.12 84.43±1.58 56.12±0.66 58.31±0.76 52.96±1.78 70.39±0.54 65.08±0.37 68.21
RoBERTa-355M 81.38±1.17 72.31±1.45 94.33±0.14 57.25±0.53 86.10±1.11 59.10±1.38 60.16±0.94 57.24±1.27 72.89±0.50 70.64±0.58 71.14

GLEM 85.89±0.72 70.06±2.02 93.43±0.35 57.99±1.29 77.60±0.86 58.87±2.79 45.05±7.72 46.96±3.55 69.60±1.77 68.62±1.14 67.41

Encoder GCNLLMEmb 87.23±1.34 72.71±0.86 87.76±0.76 55.22±0.46 82.78±1.68 60.38±0.53 70.64±0.75 48.18±2.29 80.51±0.65 85.10±1.00 73.05
ENGINE 85.72±1.58 71.22±2.17 89.63±0.14 56.32±0.60 83.80±1.06 60.02±1.26 71.17±0.75 48.24±2.64 82.77±0.28 84.15±0.84 73.30

Explainer TAPE 87.21±1.60 73.33±1.57 92.39±0.02 57.79±0.49 86.03±1.14 58.31±1.15 65.91±0.71 54.07±2.01 83.41±0.42 86.78±0.53 74.52

Predictor
LLMIT 66.93±4.54 52.22±2.71 93.45±0.25 57.48 78.39±1.20 42.15±4.54 56.65±0.85 49.86±0.71 68.74±2.54 62.78±2.83 62.86

GraphGPT 74.08±4.36 61.04±1.24 80.98±11.22 56.80±0.08 73.92±0.61 40.07±2.10 39.97±1.77 47.97±1.94 74.22±0.43 74.19±1.75 62.32
LLaGA 84.97±3.97 72.59±1.70 90.00±0.80 58.08±0.29 82.37±1.73 57.96±2.40 62.14±15.59 54.89±2.29 83.56±0.40 86.97±0.34 73.35

Table 13: Performance comparison under zero-shot setting with both Accuracy (%) and Macro-F1 (%) reported.

Cora (82.52) WikiCS (68.67) Instagram (63.35) Photo (78.50) Avg.Type & LLM Method Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

LLM
DeepSeek-V3

Direct 68.06 60.07 71.41 65.21 42.42 39.42 65.25 56.92 61.78 55.40
CoT 68.08 60.32 71.83 60.73 43.47 28.22 63.97 57.61 61.84 51.72
ToT 66.61 59.10 57.35 54.68 36.95 23.94 59.25 54.39 55.04 48.03

ReAct 65.68 58.68 71.24 60.97 43.30 28.42 63.66 56.23 60.97 51.08
w. Neighbor 68.63 69.21 70.26 64.26 43.34 41.57 61.57 54.84 60.95 57.47
w. Summary 73.62 64.80 72.53 67.28 41.18 37.56 72.73 70.58 65.02 60.05

LLM
Mistral-7B

Direct 59.65 58.34 70.13 67.80 44.29 42.16 57.54 55.50 57.90 55.95
CoT 58.02 57.13 69.00 66.17 45.48 44.56 49.56 51.42 55.52 54.82
ToT 58.78 57.20 67.56 64.52 45.39 44.73 44.25 46.87 54.00 53.33

ReAct 60.32 60.89 71.02 67.31 46.26 46.09 52.47 50.92 57.52 56.30
w. Neighbor 67.69 66.62 68.32 65.58 37.05 28.23 53.39 56.06 56.61 54.12
w. Summary 68.12 67.45 70.52 67.87 41.94 38.93 56.01 56.22 59.15 57.62
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F. Supplementary Materials for Fine-grained Analysis
F.1. LLM-as-Encoder: Compared with LMs

Table 14: Comparison of LLM- and LM-as-Encoder with Accuracy (%) reported under supervised setting. The
best encoder within each method on a dataset is highlighted.

Method Encoder Computer Cora Pubmed Photo Books Citeseer WikiCS arXiv Instagram Reddit

Homophily Ratio (%) 85.28 82.52 79.24 78.50 78.05 72.93 68.67 63.53 63.35 55.22

MLP

SenBERT 71.75±0.20 75.72±2.19 90.26±0.37 74.59±0.19 83.61±0.43 69.84±2.21 81.13±1.01 68.60±0.16 67.12±1.01 58.40±0.56
RoBERTa 72.36±0.09 80.92±2.65 90.54±0.37 75.50±0.25 84.06±0.37 74.11±1.33 83.18±0.96 73.65±0.11 68.57±0.84 61.06±0.31
Qwen-3B 69.25±0.34 81.29±1.05 92.02±0.38 74.35±0.47 83.43±0.56 72.88±1.66 85.46±0.84 74.62±0.19 68.62±0.54 61.39±0.36

Mistral-7B 71.38±0.17 81.62±0.63 92.73±0.24 75.83±0.25 83.96±0.46 73.85±1.75 86.92±0.90 75.29±0.16 69.03±0.35 62.49±0.20

GCN

SenBERT 90.53±0.18 88.33±0.90 89.26±0.24 86.79±0.18 84.60±0.38 75.31±0.55 84.28±0.26 73.29±0.22 68.13±0.18 69.04±0.46
RoBERTa 90.16±0.13 87.96±1.98 89.00±0.21 86.79±0.48 84.42±0.38 76.57±0.99 84.64±0.27 74.13±0.19 68.43±0.51 69.28±0.50
Qwen-3B 88.06±0.35 88.24±1.79 88.42±0.51 85.20±0.38 84.34±0.61 76.37±0.97 84.05±0.55 73.62±0.33 68.32±0.73 71.04±0.42

Mistral-7B 89.52±0.31 88.15±1.79 88.38±0.68 86.07±0.63 84.23±0.20 76.45±1.19 84.78±0.86 74.39±0.31 68.27±0.45 70.65±0.75

SAGE

SenBERT 90.86±0.18 87.36±1.79 90.93±0.13 87.41±0.33 85.13±0.27 74.73±0.67 85.94±0.52 73.43±0.23 67.72±0.43 64.13±0.41
RoBERTa 90.70±0.25 87.36±1.69 90.38±0.09 87.42±0.51 85.13±0.41 75.90±0.41 86.31±0.68 75.28±0.31 68.84±0.54 64.85±0.31
Qwen-3B 87.44±0.66 87.36±1.10 89.98±0.38 85.17±0.44 84.69±0.31 75.63±0.94 85.58±0.58 75.20±0.49 68.43±0.57 63.98±0.69

Mistral-7B 90.16±0.26 87.22±1.24 90.54±0.50 87.34±0.43 85.01±0.49 75.20±1.34 87.87±0.35 76.18±0.34 69.39±0.52 64.34±0.23

We supplement the comparison between LLM-as-Encoder and LM-as-Encoder under supervised settings in Table 14. The
key takeaway that LLMs outperform LMs as Encoders when graph structure is less informative about the labels, e.g.,
heterophilic graphs remains valid. This conclusion is particularly evident on the arXiv dataset, where the performance gap
between LM- and LLM-generated embeddings reaches up to 7% on MLP and 3% on GraphSAGE. Additionally, we observe
that in supervised settings, the performance gap between LM- and LLM-as-Encoders becomes less pronounced compared to
semi-supervised settings. We still consider the theoretical insights in Equation (1) for explanation: Increased supervision
enhances the mutual information between labels and graph structure, i.e., I(E ,Yl), thereby rendering the second term less
significant and diminishing the advantages provided by more powerful encoders like LLMs.

F.2. LLM-as-Predictor: Sensitivity to LLM Backbones

Table 15: Sensitivity of LLaGA to different LLM backbones under semi-supervised Settings.
The best LLM backbone within each series and at similar scales is highlighted.

LLM Cora Citeseer Pubmed WikiCS Instagram Reddit Books Photo Computer

A
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(%

)
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e
se

ri
es

Qwen-3B 74.15±2.41 62.74±10.42 54.97±10.71 71.64±1.34 61.35±2.35 65.11±1.59 82.26±0.43 83.85±0.77 85.84±1.12
Qwen-7B 74.23±1.58 64.79±1.77 62.58±1.36 71.40±2.28 59.09±3.32 66.07±0.32 81.38±1.58 80.75±1.60 84.47±1.73

Qwen-14B 76.63±1.79 66.06±1.86 62.17±6.86 73.76±0.42 61.14±3.84 66.59±1.23 81.40±0.20 82.47±0.80 85.08±0.36
Qwen-32B 77.01±3.62 64.01±2.59 58.60±7.93 71.31±3.05 60.24±4.03 66.19±2.11 82.34±0.44 82.85±1.52 85.74±1.65

Si
m

ila
r

sc
al

es

Mistral-7B 78.94±1.14 62.61±3.63 65.91±2.09 76.47±2.20 65.84±0.72 70.10±0.38 83.47±0.45 84.44±0.90 87.82±0.53
Qwen-7B 74.23±1.58 64.79±1.77 62.58±1.36 71.40±2.28 59.09±3.32 66.07±0.32 81.38±1.58 80.75±1.60 84.47±1.73

LLaMA-8B 75.34±1.09 61.33±2.11 61.84±3.62 72.15±3.32 55.77±3.07 65.09±1.39 81.30±0.07 82.26±1.67 86.43±0.25

M
ac

ro
-F

1
(%

)
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m

e
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ri
es

Qwen-3B 64.48±4.32 53.25±2.21 44.35±3.64 59.09±3.00 51.92±8.02 42.42±0.50 37.56±2.56 70.94±0.97 70.65±3.31
Qwen-7B 67.30±5.70 53.43±1.63 47.55±1.16 58.97±3.67 49.78±8.13 51.32±10.10 34.33±4.37 66.94±4.64 69.23±3.26

Qwen-14B 67.85±4.53 55.39±3.99 45.90±7.69 64.10±0.24 55.40±1.26 44.35±0.86 37.50±0.35 70.33±1.12 69.19±5.16
Qwen-32B 68.27±6.24 53.11±2.59 46.52±7.54 60.50±3.40 39.50±8.07 43.96±1.45 35.30±1.80 70.08±2.39 67.26±3.89

Si
m

ila
r

sc
al

es

Mistral-7B 71.14±4.47 52.53±3.59 45.12±7.63 70.48±2.94 50.12±10.45 54.67±11.24 39.70±2.44 79.32±2.42 78.01±1.36
Qwen-7B 67.30±5.70 53.43±1.63 47.55±1.16 58.97±3.67 49.78±8.13 51.32±10.10 34.33±4.37 66.94±4.64 69.23±3.26

LLaMA-8B 67.50±4.73 51.22±1.27 47.80±2.78 64.17±6.00 48.56±6.92 43.31±0.94 34.49±1.48 72.45±0.35 71.43±4.43

We evaluate LLaGA with different LLM backbones in semi-supervised settings, as detailed in Table 15. We examine two
primary trends: (1) Scaling within the same series: Assessing whether scaling laws apply to node classification tasks by
using LLMs from the same series, and (2) Model selection at similar scales: Identifying the most suitable LLM for node
classification tasks by comparing models of similar scales.

Scaling within the same series: We plot performance trends across several datasets under both semi-supervised and
supervised settings to clearly illustrate these dynamics. From Figure 3 and Figure 4, we conclude that scaling laws generally
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Figure 3: Performance trends within Qwen-series in different scales using LLaGA framework in semi-supervised
settings.
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Figure 4: Performance trends within Qwen-series in different scales using LLaGA framework in supervised settings.

Table 16: Training and inference times of Qwen-series models ranging from 3B to 32B parameters.

Semi-supervised Training Times Supervised Training Times Avg. Inference Times Per CaseGPU Device LLM Cora WikiCS Instagram Cora WikiCS Instagram Cora WikiCS Instagram

Qwen-3B 2.2min 7.1min 5.8min 8.6min 33.5min 20.2min 32.3ms 37.3ms 26.9ms1 NVIDIA A6000-48G Qwen-7B 4.7min 15.3min 8.2min 13.3min 59.4min 43.2min 50.9ms 55.9ms 43.4ms
Qwen-14B 8.9min 25.5min 15.7min 30.8min 2.3h 1.5h 97.6ms 103.0ms 83.2ms2 NVIDIA A6000-48G Qwen-32B 18.9min 43.6min 30.7min 52.2min 3.3h 2.0h 254.7ms 262.6ms 232.4ms

hold: as the Qwen model size increases from 3B to 32B parameters, performance improves, indicating that larger model
sizes enhance task performance. However, the 7B and 14B models are sufficiently large, typically representing the point
beyond which further increases in model size yield only marginal improvements but introducing huge computational costs
(Table 16). Unexpectedly, in the Instagram dataset under semi-supervised settings, the Qwen-32B model experiences a
performance drop. This may be because 32B models require extensive data to train effectively, making them less robust and
stable compared to smaller models. Based on these findings, we recommend the 7B or 14B models as they offer an optimal
balance between performance and computational costs.

Model selection at similar scales: By comparing the performance of Mistral-7B, Qwen-7B, and LLaMA-8B in Table 15,
we conclude that Mistral-7B outperforms the other two similarly scaled LLMs in most cases. This makes Mistral-7B the
optimal choice as a backbone LLM for node classification tasks.
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Figure 5: Biased predictions by LLM-as-Predictor methods on the Instagram dataset: Comparison of ground-truth
label distributions with predictor-generated label distributions.
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Figure 6: Biased predictions by LLM-as-Predictor methods on the Pubmed dataset.

F.3. LLM-as-Predictor: Biased and Hallucinated Predictions

During our experiments, we found that LLM-as-Predictor methods are vulnerable to limited supervision. In addition to
standard metrics such as Accuracy (Table 2) and Macro-F1 scores (Table 12), their predictions also exhibit significant biases
and hallucinations.

Biased Predictions: For datasets with fewer labels, LLM-as-Predictor methods tend to disproportionately predict certain
labels while under-predicting others. To illustrate this phenomenon, we compare the ground-truth label distributions with
the predicted label distributions. Specifically, we present different LLM-as-Predictor methods, LLMIT, GraphGPT, and
LLaGA, in Figure 5a, and the LLaGA method with various LLM backbones in Figure 5b, using the Instagram dataset in
semi-supervised settings, which has two labels.

From Figure 5a, we can directly observe that LLaGA and GraphGPT predominantly bias towards the first class, while
LLMIT tends to predict the second class more frequently. The predicted label distributions of LLMs are more polarized
compared to the ground-truth distributions, where the two labels are roughly in a 6 : 4 proportion. In contrast, LLMs
tend to predict in ratios such as 8 : 2 or 1 : 9. This observation also holds across different LLMs, as shown in Figure 5b,
where both Qwen-7B and LLaMA-8B tend to bias towards the first label. A similar example on the Pubmed dataset, which
contains three classes in a semi-supervised setting, is shown in Figure 6. Here, the predictor methods tend to bias towards
the third class, while LLaGA with Qwen-7B tends to predict the second class. Additionally, in the semi-supervised setting
for Pubmed, the training data consists of only 60 samples, which is insufficient to train a robust predictor model, leading to
high levels of hallucinations across all methods.

Hallucinations: In addition to biased predictions, we observed that a certain portion of the LLMs’ outputs fall outside
the valid label space or contain unexpected content that cannot be parsed. In semi-supervised settings, the limited
training data restricts these predictor methods from developing effective models, resulting in failures to follow instructions
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Table 17: Average hallucination ratios (%) of LLM-as-Predictor methods. The hallucination rate is calculated as the
proportion of outputs containing invalid labels or unexpected content across all test cases, where higher values indicate
poorer classification ability. Hallucinations > 1% are highlighted.

Setting Method Cora Citeseer Pubmed WikiCS Instagram Reddit Books Photo Computer

Semi-supervised

# Train Samples 140 120 60 580 1,160 3,344 4,155 4,836 8,722
LLMIT 0.43 13.08 9.24 0.06 0.00 0.00 0.01 0.02 0.02

GraphGPT 7.56 2.51 15.97 7.76 0.28 1.78 0.51 0.72 0.27
LLaGA 0.35 0.20 0.29 0.00 0.01 0.02 0.00 0.00 0.00

Supervised

# Train Samples 1,624 1,911 11,830 7,020 6,803 20,060 24,930 29,017 52,337
LLMIT 0.06 13.61 0.00 0.00 0.00 0.00 0.00 0.01 0.02

GraphGPT 1.29 0.63 0.08 1.64 0.13 0.50 0.11 0.11 0.10
LLaGA 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Table 18: Examples of hallucinations in GraphGPT’s outputs on the Citeseer and Pubmed datasets.
Citeseer PubmedError Type Prediction Ground-truth Prediction Ground-truth

Misspelling AGents Agents Type II diabetes Type 2 diabetes

Non-existent
Types

Logic and Mathematics ML (Machine Learning) Type 3 diabetes of the young (MODY) Type 2 diabetes
Information Extraction IR (Information Retrieval) Genetic Studies of Wolfram Syndrome Type 2 diabetes

Pattern Recognition ML (Machine Learning) Experimentally induced insulin resistance Type 2 diabetes
Multiagent Systems Agents Experimentally induced oxidative stress Experimentally induced diabetes

Unexpected
Contents

H.4.1 Office Automation: Workflow Management membrane is not altered by diabetes.
The citation graph is given by the following: ... What is the sensitivity and specificity of the IgA-EMA test ...

and understand dataset-specific classification requirements. To illustrate that, we provide both quantitative and qualitative
analyses as follows:

• Quantitative Analysis: Table 17 presents the hallucination rates of each LLM-as-Predictor method across various
experimental datasets in both semi-supervised and supervised settings. The hallucination rate is calculated as the
proportion of outputs containing invalid labels or unexpected content among all test cases, where higher values
indicate poorer classification performance. Hallucinations are most severe on the Pubmed and Citeseer datasets within
semi-supervised settings, where the number of training samples does not exceed hundreds, making effective model
training challenging. This demonstrates that the number of training samples significantly impacts the mitigation
of hallucinations: even in semi-supervised settings, larger datasets like Books and Photo provide thousands of training
samples, resulting in hallucination ratios consistently below 1%. Therefore, this further verifies that LLM-as-Predictor
methods require extensive labeled data for effective model training.

• Qualitative Analysis: We provide several examples to facilitate the comprehension of hallucinated predictions,
which we categorize into three types: (1) misspellings of existing labels, (2) generation of non-existent types, and
(3) unexpected content that cannot be parsed. Illustrative examples of these types from GraphGPT’s outputs on the
Citeseer and Pubmed datasets are presented in Table 18.
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G. Supplementary Materials for Computational Cost Analysis

Table 19: Total training times of different methods in supervised settings. All recorded experiment times are based on a
single NVIDIA H100-80G GPU.

Type Method Cora Citeseer Pubmed WikiCS arXiv Instagram Reddit Books Photo Computer

# Training Samples 1,624 1,911 11,830 7,020 90,941 6,803 20,060 24,930 29,017 52,337

Classic

GCNShallowEmb 1.8s 1.7s 5.2s 5.1s 51.2s 19.5s 8.5s 14.9s 19.7s 25.8s
GATShallowEmb 2.1s 1.9s 7.9s 5.7s 1.5m 2.7s 6.9s 16.6s 28.0s 44.6s

SAGEShallowEmb 1.7s 3.0s 7.6s 4.0s 1.3m 2.0s 7.2s 19.6s 20.1s 43.2s
SenBERT-66M 35s 41s 2.6m 2.5m 7.4m 1.2m 4.4m 1.8m 2.2m 4.1m

RoBERTa-355M 1.3m 1.6m 9.2m 5.5m 40.8m 5.3m 15.9m 9.7m 11.9m 22.4m

Encoder GCNLLMEmb 1.2m 1.4m 13.4m 7.5m 1.4h 4.5m 16.1m 23.6m 26.8m 44.8m
ENGINE 2.2m 2.4m 16.1m 19.4m 2.6h 8.9m 24.2m 35.2m 44.2m 1.2h

Explainer TAPE 27.4m 30.3m 5.9h 2.8h 37.4h 2.1h 8.3h 10.0h 12.0h 15.0h

Predictor
LLMIT 1.0h 1.3h 9.9h 4.2h 36.3h 2.7h 3.4h 5.7h 7.4h 12.4h

GraphGPT 26.4m 29.5m 2.7h 1.7h 7.8h 49.1m 3.4h 3.8h 3.6h 7.8h
LLaGA 5.6m 7.7m 25.6m 18.8m 7.7h 10.6m 32.2m 1.0h 1.4h 2.5h

Table 20: Inference times of different methods. Values in brackets denote the average inference time per case in
milliseconds (ms). All recorded experiment times are based on a single NVIDIA H100-80G GPU.

Method Cora arXiv Instagram Photo WikiCS

# Test Samples 542 48,603 5,847 2,268 9,673

Classic GCN 0.9ms 21.8ms 2.0ms 7.5ms 4.4ms

Encoder GCNLLMEmb 14.0s (26ms) 23.8m (29ms) 53.6s (24ms) 5.3m (33ms) 3.7m (38ms)

Explainer TAPE 5.0m (551ms) 10.4h (767ms) 23.7m (627ms) 2.3h (863ms) 1.3h (813ms)

Predictor
LLMIT 1.2m (129ms) 3.3h (243ms) 2.7m (71ms) 24.1m (149ms) 5.8m (60ms)

GraphGPT 1m (104ms) 1.2h (87ms) 2.0m (52ms) 10.4m (64ms) 11.0m (112ms)
LLaGA 11.2s (21ms) 57.1m (70ms) 1.3m (35ms) 4.4m (27ms) 2.4m (25ms)

Table 21: Memory costs (in GB) of different methods during training and inference stages.

Training InferenceType Method Cora WikiCS arXiv Cora WikiCS arXiv

Classic
GCNShallowEmb 0.76 1.43 4.79 0.37 0.84 3.32
SenBERT-66M 9.70 9.70 9.98 3.25 3.26 3.38

RoBERTa-355M 46.00 46.00 46.10 7.44 7.44 7.55

Encoder GCNLLMEmb 0.85 1.62 7.36 0.40 1.02 5.79
ENGINE 1.10 4.52 7.08 1.29 1.81 2.12

Explainer TAPE 46.00 46.00 46.10 7.44 7.44 8.88

Predictor
LLMIT 72.12 67.74 69.13 32.08 31.53 33.12

GraphGPT 41.42 53.10 60.41 36.02 36.07 36.97
LLaGA 34.60 35.54 41.94 20.45 20.94 29.00
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