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Abstract

There has been significant attention to the research on
dense video captioning, which aims to automatically local-
ize and caption all events within untrimmed video. Sev-
eral studies introduce methods by designing dense video
captioning as a multitasking problem of event localization
and event captioning to consider inter-task relations. How-
ever, addressing both tasks using only visual input is chal-
lenging due to the lack of semantic content. In this study,
we address this by proposing a novel framework inspired
by the cognitive information processing of humans. Our
model utilizes external memory to incorporate prior knowl-
edge. The memory retrieval method is proposed with cross-
modal video-to-text matching. To effectively incorporate
retrieved text features, the versatile encoder and the de-
coder with visual and textual cross-attention modules are
designed. Comparative experiments have been conducted
to show the effectiveness of the proposed method on Ac-
tivityNet Captions and YouCook2 datasets. Experimental
results show promising performance of our model with-
out extensive pretraining from a large video dataset. Our
code is available at https://github.com/ailab-
kyunghee/CM2_DVC.

1. Introduction

With the increasing demand for video understanding and
multimodal analysis, the field of video captioning is grow-
ing rapidly. The task of conventional video captioning in-
volves generating precise descriptions for trimmed video
segments and several studies show successful results [7, 12,
21,22,24,26,27,32, 36, 40-42]. However, it faces consid-
erable challenges when applied to dense video captioning.
Dense video captioning aims to localize important event
segments (i.e., to find event boundaries) from untrimmed
videos and describe the event segment (i.e., what happens
in the event) with natural language. For achieving high-
performance dense video captioning, it is important to prop-
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Figure 1. Conceptual figure of the proposed cross-modal memory-
based dense video captioning (CM?). Our method can search for
relevant clues from an external memory bank to provide precise
descriptions and localization for untrimmed video.

erly model inter-task interactions between event localiza-
tion and caption generation.

Recent studies in vision and language learning have
shown impressive results in cross-modal correlation tasks
[19, 28, 34]. However, connecting natural language and
video is still challenging due to the difficulties in model-
ing spatiotemporal information [13]. Video-and-language
learning requires complex model architectures, specialized
training protocols, and large computational costs [8]. Even
dense video captioning requires connecting untrimmed
videos and natural language to localize events and describe
them [17, 46, 48].

This study is motivated by the observation of how hu-
mans recognize and describe scenes. Humans are capable of
identifying important events and describing them by recall-
ing relevant memories based on cues they have observed. In
cognitive information processing, this processing is called
cued recall [, 33]. By recalling relevant memories, humans
can describe the scenes with human-understandable natural
language.
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To verify the feasibility of our idea, we have conducted a
preliminary experiment. To measure the usefulness of text
clues from external memory, we search the relevant infor-
mation by using the ground truth caption of the query video,
which is the ideal case where we can achieve in the external
memory. In the real-world condition, we could not use text
query and video features will be used as a query. As shown
in Table 1, the performance of the dense video captioning
could be significantly improved (CIDEr of 183.95 is achiev-
able with Oracle retrieval on the ground truth event segment
in YouCook?2 dataset [53]).

Following this insight, we devise a new dense video
captioning framework, named Cross-Modal Memory-based
dense video captioning (CM?). Our model can recall rele-
vant events from external memory to improve the genera-
tion quality of captions in dense video captioning as shown
in Figure 1. To mimic the human’s process, an external
memory is designed based on prior knowledge which is
extracted from training data. Then, the proposed model
extracts potential event candidates from given untrimmed
videos and retrieves relevant information from the external
memory to provide the model with diverse and semantic in-
formation. By incorporating the retrieved memory into vi-
sual features, our method further introduces a versatile en-
coder and decoder structure. The encoded features are ag-
gregated by using visual cross-attention and textual cross-
attention in a versatile transformer decoder, which helps
the model learn inter-task interactions from visual and text
clues. Our main contributions can be summarized as:
¢ Inspired by the human cognitive process, we introduce

a new dense video captioning method with cross-modal
retrieval from external memory. To the best of our knowl-
edge, this is the first study that uses cross-modal retrieval
from external memory for dense video captioning. By
retrieving relevant text clues from the memory, the pro-
posed model could elaborately localize and describe im-
portant events in a more fluent and natural way.

* To effectively leverage multi-modal features, we propose
a versatile encoder-decoder structure with a visual cross-
attention and a textual cross-attention. Our model could
effectively learn cross-modal correlation and model inter-
task interactions for improving dense video captioning.

* Comprehensive experiments have been conducted on Ac-
tivityNet Captions [17] and YouCook2 [53] datasets to
verify the effectiveness of memory retrieval in dense
video captioning. Our model also achieves comparable
performance without pretraining on large video datasets.

2. Related Work
2.1. Desne Video Captioning

Dense video captioning is a multi-task problem that com-
bines two sub-tasks: Event localization and event caption-
ing. Krishna er al. [17] introduced a dense video cap-
tioning model by first generating proposals and then using

an attention-based LSTM to generate captions, following
the “localize-then-describe” strategy. Subsequent studies
[14, 15, 43, 45, 49] aimed to produce more precise and in-
formative captions within this strategy. However, two-stage
approaches have major limitations, as they do not jointly
train event localization and event captioning, resulting in
less attention to inter-task interactions.

To address the aforementioned limitations, recent stud-
ies propose joint training of two sub-tasks [4, 6, 9, 20, 23,
29, 37, 38, 43, 46, 48, 54]. Deng et al. [9] initially gen-
erate a paragraph for a given video and then utilize it for
grounding. Wang et al. [46] define dense video captioning
as a parallel set prediction task and propose an end-to-end
method for event localization and event captioning, using
only visual input to solve the two sub-tasks. Yang et al.
[48] make use of transcribed speech for multi-modal in-
puts, predicting both time tokens and caption tokens as a
single sequence. For the pretraining of the model, an addi-
tional YT-Temporal-1B dataset which contains 18 million
narrated videos collected from YouTube is used.

However, training high-quality dense video captioning
models without pretraining from a large number of videos
still remains very challenging. Our study presents a novel
approach to exploit prior knowledge to enhance the quality
of dense video captioning.

2.2. Retrieval-Augmented Generation

The retrieval-augmented approach is often used in lan-
guage generation tasks. Lewis et al.[18] propose retrieval-
augmented generation, which combines pre-trained para-
metric and external non-parametric memory to effectively
leverage pre-trained model knowledge. Some works [30,
31, 35, 47, 52] in image captioning also employ this exter-
nal datastore approach. Similar to ours, Sarto et al.[35] and
Ramos et al.[30] propose an approach to train a retrieval-
augmented image captioning model by processing encoded
retrieved captions through cross-attention. Recent studies
also show retrieval augmented generation in the context of
video captioning [5, 16, 51]. They propose to improve video
captioning by incorporating external knowledge, such as
video-related training corpus [16] and memory-augmented
encoder-decoder structure [51]. They reference the re-
trieved text obtained from memory in the word prediction
distribution of the captioning decoder.

In this study, our model references retrieved information
throughout all layers of the decoder with cross-attention.
While they only concentrate on enhancing word prediction
for video captioning, our method adopts a structure that
utilizes the retrieved text as semantic information, bene-
fiting both event localization and event captioning. Note
that, retrieval-augmented generation has been largely un-
explored in dense video captioning. Previous studies that
use the retrieval-augmented generation approach in the im-
age and short video captioning only utilize retrieved textual
information for improving caption quality. In this study,
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we present a new structure to exploit the retrieval of text
clues for generating dense captions and localizing events
from untrimmed videos.

3. Method

Our goal is to improve event-level localization and event
captioning from untrimmed video by exploiting prior
knowledge. For this, we introduce a new framework (CM?)
which is designed with cross-modal memory retrieval. CM?
could search relevant information by segment-level video
features and retrieve text features from external memory in
a video-to-text cross-modal manner (Section 3.1). Further-
more, to ensure that the model efficiently leverages the re-
trieved semantic information for both localization and cap-
tioning tasks, we design a versatile encoder-decoder ar-
chitecture and a modal-level cross-attention method (Sec-
tion 3.2). As illustrated in Figure 2, our model takes input
video frames and extracts video frame features x = {x;}1_;
and retrieved text features y = {y; }}"., where F and W de-
note the number of frames in the given video and the num-
ber of retrieved text features, respectively. For the given
input video, the model generates segment and caption pairs
{(#5,t2,5,)})_, where N denotes the number of events
detected by our method and ¢ and t{, denote the start and
the end timestamp of n-th event. .S,, denotes the generated
captions for n-th event segment. Details of dense event pre-
diction will be introduced in Section 3.3.

3.1. Memory Retrieval

3.1.1 Memory Construction

To store high-quality semantic information as prior knowl-
edge in the memory, we first construct an explicit exter-
nal memory bank by encoding sentence-level features. The
sentences are collected from the training data of the in-
domain target dataset [17, 53] by taking into account the
semantic distributions appropriate to the query videos. For
example, the captions in AcitivityNet Caption training set
are used for constructing external memory in experiments
on AcitivityNet Captions in this study. For segment-level
video-to-text retrieval, we define a memory unit in a sen-
tence level that corresponds to the event clip instead of
whole paragraphs from an untrimmed video in the dataset.
For segment-level video-to-text embedding, we adopt pre-
trained CLIP Vit-L/14 [10, 28] which shows promising
alignment ability by mapping image and text to the shared
feature space. For storing semantic information of cap-
tions at a sentence level, we tokenize the captions of the
event segment using the CLIP tokenizer, ensuring padding
to match the maximum token number of ground truth cap-
tions. Subsequently, all tokenized caption sentences are en-
coded by a CLIP text encoder, and the resulting sentence-
level embeddings are stored in the external memory bank.

3.1.2 Segment-level Retrieval

Untrimmed videos could consist of multiple events, each
containing distinct semantic information. As both sub-tasks
of dense video captioning operate at the event level, it is cru-
cial to design an appropriate retrieval method that considers
segment-level semantic information. We propose a novel
cross-modal memory-based dense video captioning (CM?2),
designed to take into account the semantic information of
the segment that can potentially include events. By utiliz-
ing image-to-text retrieval strategies with CLIP [10, 28] and
temporal anchors, our method ensures the incorporation of
semantic details from dense events. The proposed approach
involves two key steps: segment-level retrieval and feature
aggregation as shown in Figure 2 (b).

In segment-level retrieval, to acquire semantic informa-
tion related to events within the input video, we divide the
input video into W temporal anchors. For frame-level vi-
sual feature extraction, we adopt CLIP ViT-L/14. To obtain
the representative information contained in each anchor, we
compress the temporal dimension at each anchor through
averaging, yielding segment-level visual features. Then, for
each anchor, the segment-level visual feature is used as a
query for retrieving relevant information from the external
memory. For finding relevant information, the similarity
between the segment-level visual feature and CLIP text fea-
tures in the memory is calculated (In this study, cosine sim-
ilarity between two feature vectors is used as a similarity
metric). Based on the similarity scores, K sentence features
are retrieved for each anchor, which results in a selected
memory feature set for j-th anchor as m? = {m7, ..., m’}.

Next, we perform feature aggregation to summarize use-
ful information from K retrieved sentence features m’ asso-
ciated with each anchor in the selected memory. The aver-
age pooling over the K sequences is conducted in each an-
chor. Finally, we obtain the retrieved text features {y;}}" ;.

3.2. Versatile Encoder-Decoder

In this section, we describe how we build a structure to
incorporate visual features and retrieved text features for
event localization and event captioning. We generate event
query features with well-incorporated temporal information
using an encoder-decoder structure based on the deformable
transformer [56], as in [46]. However, our approach differs
from [46] as our model incorporates not only visual features
but also retrieved text features for making positive effects in
both captioning and localization. To achieve this, we pro-
pose a versatile encoder-decoder structure that effectively
uses retrieved text features and visual features.

Feature Encoding. First, we sample the frame-level fea-
tures extracted by the pre-trained CLIP ViT-L/14 with 1 FPS
to a fixed frame number as x = {x;}_; for batch process-
ing. Then, we added L temporal convolutional layers for
the multi-scaling processing of video frame features. The
multi-scale convolutional layers output multi-scale visual

features as x = {7} ;.
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Figure 2. Overview of CM2. We approach the dense video captioning task in a memory-retrieval-augmented caption generation manner.
We show the overall architecture in (a). We conduct video-to-text cross-modal retrieval using input video features obtained through a
pre-trained encoder. As illustrated in (b), we generate segment-level W temporal anchors from the input video features. Then we measure
similarities between the anchors and the text features stored in a memory to obtain W retrieved features through aggregation. As illustrated
in (c), we encode the multi-scale video features X and retrieved features using a versatile transformer encoder. Each encoded feature vector
undergoes the corresponding cross-attention layers to obtain refined event queries. Finally, we obtain the set of start time, end time, and

caption by passing the event queries through a head.

Versatile encoder. CM? enhances the interplay between
visual and text modalities while preserving their original
information, achieved through the use of versatile weight-
shared encoders. These weight-shared encoders, illustrated
in Figure 2 (c), are employed to process each modality
feature. The versatile encoder is designed with M blocks
where each block consists of feedforward and self-attention
layers. By employing weight-shared encoders, the visual
and text modality features undergo training in a shared em-
bedding space, fostering potential cross-modality connec-
tions. Furthermore, since each modality process is pro-
cessed separately by the weight-shared encoder, it could
effectively retain distinctive modality-specific information.
The visual encoder takes a sequence of multi-scale frame

features X = {&; }1_ as input and generates encoded visual

features as output. Simultaneously, the same versatile en-
coder processes a set of retrieved text features y = {y; }jvil,
producing W encoded text features.

Versatile decoder. Through the versatile decoder, we de-
sign learnable embeddings, event queries q = {q}L,,
to include temporally and semantically rich information.
When video and text modalities are given, a single cross-
attention is insufficient to generate the necessary represen-
tations for the two sub-tasks. Therefore, CM?2 separates the
visual cross-attention layer from the textual cross-attention
layer, as described in Figure 2 (c). We aim for each modal-
ity to handle tasks related to temporal and semantic in-
formation processing separately. In visual cross-attention,
considering the cross-attention between encoded visual fea-
tures and event queries enhances the temporal information
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Table 1. Effect of memory retrieval in ActivityNet Captions and Youcook2. No retrieval refers to a case where the model is forwarded
without any retrieval. Oracle methods are implemented to measure the upper bound which could be achieved by the retrieval with an ideal
query to the memory bank. The captions retrieved from the memory by ground truth captions of query video are directly used as the output

of the model.

Retrieval Type ActivityNet YouCook2

CIDEr METEOR BLEU4 SODA_c | CIDEr METEOR BLEU4 SODA_c
No Retrieval 31.24 8.03 2.15 6.01 23.67 5.30 1.17 4.77
Proposed Retrieval (Ours) | 33.01 8.55 2.38 6.18 31.66 6.08 1.63 5.34
Oracle w/o GT proposal 40.24 9.43 2.88 6.96 53.55 9.18 3.49 6.81
Oracle w/ GT proposal 84.47 15.69 5.86 12.41 183.95 23.53 13.05 25.51

of event queries. In textual cross-attention, considering
the cross-attention between encoded text features and event
queries enriches the semantic information of event queries.
The output of the versatile decoder produces event queries
q = {q/} £, with both temporal and semantic information.

3.3. Dense Event Prediction

Parallel Heads. CM? employs a parallel decoding struc-
ture with sub-task heads for a given event query ¢;. Our
approach includes three parallel heads: a localization head,
a captioning head, and an event counter.

Localization Head. The localization head is implemented
by a multi-layer perceptron to predict the box prediction, in-
cluding the center and length of the ground-truth segment,
for a given event query. Additionally, it conducts binary
classification to predict the foreground confidence of each
event query. Finally, the localization head outputs a set of

tuples (¢7,t7, cl)lel, where each tuple represents the start
time ¢7, end time ¢}, and localization confidence ¢; of I-th
event segment, respectively.

Captioning Head. For the captioning head, we employ the
deformable soft attention LSTM which uses the soft atten-
tion around the reference points, enhancing word generation
performance. [46]. For the input of the captioning head, we
utilize attention feature q; s, event query ¢;, and the previous
word w; s—1 to predict the next word. As the sentence pro-
gresses, the captioning head generates the entire sentence
S; = w1, ..., w5, where S represents the length of the
sentence.

Event Counter. The event counter predicts the appropri-
ate number of events in the video. To achieve this, it
compresses essential information from the event query ¢
through a max-pooling layer and a fully-connected layer.
It predicts a vector 7., representing a specific number of
events. During inference, the predicted event count is se-
lected by N = argmax(rey ). Finally, the N predicted sets
{(t5,t5,S,)}2_, are determined by the Hungarian algo-
rithm [3], using a matching cost C' = L5 + alj,. with
generalized IOU loss and focal loss. The focal loss L;s is
computed between the predicted classification score and the
ground-truth label. The generalized IOU loss L;,. measures
the predicted segment against the ground-truth segment.
Training and Inference. During training, we train CM?

using four losses: Ljoc, Leiss Leount> and Legp. Leount T€P-
resents the cross-entropy between the predicted count num-
ber distribution and the ground truth. L., is the cross-
entropy between the predicted word probability and the
ground truth. The total loss is defined as follows:

LT = Lcls + /\locLloc + Acou’mﬁLcount + Acachap (1)

During inference, given visual input z and retrieved
text input y, our model predicts N sets of predictions
{(t3,t¢,S,)}2_, . For both training and inference, we con-

ducted retrieval using the same external memory bank.

4. Experiments

To verify the effectiveness of our method, comparative ex-
periments have been conducted. First, Section 4.1 intro-
duces the experimental setting used in this study. Sec-
tion 4.2 shows the effectiveness of memory retrieval in
dense video captioning. Section 4.3 shows the comparison
with state-of-the-art methods. Section 4.4 shows ablation
studies for our model to validate the effectiveness of each
component. Qualitative results of our method and discus-
sion are followed.

4.1. Experimental Settings

Dataset. We employed two dense video captioning bench-
mark datasets, namely ActivityNet Captions [17] and
YouCook2 [53], for training and evaluation. ActivityNet
Captions consists of 20k untrimmed videos of diverse hu-
man activities. On average, each video spans 120s and
is annotated with 3.7 temporally localized sentences. For
training, validation, and testing, we follow the standard
split of videos. YouCook2 consists of 2k untrimmed cook-
ing procedure videos, with an average duration of 320s per
video and 7.7 temporally localized sentences per annota-
tion. We followed the standard split for training, valida-
tion, and testing videos. Notably, we use approximately 7%
fewer videos than the original count, as we use those acces-
sible on YouTube.

Evaluation Metrics. We evaluated our method for two sub-
tasks in dense video captioning. By using ActivityNet Chal-
lenge official evaluation tool [44], we evaluated generated
captions using the metrics CIDEr [39], BLEU4 [25], and
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Table 2. Performance of Event Captioning in ActivityNet Cap-
tions. Bold means the highest score. Underline means 2nd score.
# PT denotes the number of videos used for pretraining. T denotes
results reproduced from official implementation in our environ-
ment.

Method | Backbone | #PT | CIDEr METEOR BLEU4 SODA ¢
Vid2Seq [48] | CLIP | 15M | 30.10 8.50 - 5.80
MT [54] TSN - 6.10 3.20 0.30 -
ECHR [45] | C3D - | 1470 7.20 1.82 3.20
UEDVC [50] | C3D - - - 55
PDVC! [46] | CLIP - | 2997 8.06 221 5.92
Ours CLIP - | 33.01 8.55 2.38 6.18

METEOR [2], which calculate matched pairs between gen-
erated captions and ground truth across IOU thresholds of
0.3, 0.5, 0.7, 0.9. Additionally, for measuring storytelling
ability, we employed SODA ¢ [11]. For event localiza-
tion, we measured average precision, average recall, and F1
score, which represents the harmonic mean of precision and
recall. These scores are averaged over IOU thresholds of
0.3,0.5,0.7,0.9.

Implementation Details. For both datasets, we extract
video frames at a rate of 1 frame per second and then sub-
sample or pad the sequence of frames to achieve a total of
F frames, where we set F' = 100 in ActivityNet Captions
and F' = 200 in YouCook2. We employ a two-layer de-
formable transformer with multiscale deformable attention
spanning four levels. The number of event queries is set to
10 for ActivityNet Captions and 100 for YouCook2, respec-
tively. In this study, the balancing hyperparameters of «,
Alocs Acount» and Aqqp are set to 2, 2, 1, and 1, respectively.
The number of anchors is empirically set to 10 for Activi-
tyNet Captions and 50 for YouCook2. In retrieval, We set
the anchor number of 50, with k set to 80 for each anchor.
Therefore, we utilize 4000 retrieved text features. During
training, the ground truth of the corresponding input video
was excluded from the memory bank.

4.2. Effect of Memory Retrieval

To assess the effectiveness of memory retrieval, compara-
tive experiments have been conducted. Four different mem-
ory retrieval approaches are implemented as shown in Ta-
ble 1. No retrieval refers to a method where the model is
forwarded without any retrieval. Oracle retrieval is imple-
mented to measure the upper bound of memory retrieval.
The captions are retrieved from the external memory based
on the similarity with ground truth captions of query video.
The retrieved captions are directly used as an output of the
model without model forwarding. For Oracle without GT
proposal, matched the retrieved text to the event segments
predicted by our model. For Oracle with GT proposal match
retrieved text to ground truth event segments for measuring
the performance.

As shown in the table, the proposed retrieval method
achieves higher scores compared with the model without

Table 3. Performance of Event Captioning in YouCook2. Bold
means the highest score. Underline means 2nd score. # PT de-
notes the number of videos used for pretraining. T denotes results
reproduced from official implementation in our environment.

Method | Backbone | #PT | CIDEr METEOR BLEU4 SODA_c
Vid2Seq [48] | CLIP | IM | 47.10 930 - 7.90
MT [54] TSN -] 930 5.00 115

ECHR [45] | C3D - - 3.82 -

E2ESG [55] | C3D - | 2500 350 - -
PDVC! [46] | CLIP - | 2060 556 140 492
Ours CLIP - | 3166 6.08 163 534

retrieval. This is mainly due to the reason that retrieved
text features could provide semantically useful features to
the model, which helps the model exploit visual and text
relations. When we evaluate the performance with Oracle,
even when we used the same event segments as our model,
by using the retrieved text without the model forward, we
observed a large enhancement in captioning performance.
Moreover, when we match retrieved text to ground truth
event segments, the performance is significantly improved.

These results show huge potential for retrieval-based
dense video captioning. In this study, we use clip visual
features from Vit-L/14 and average the features from each
anchor are aggregated by averaging them. In other words,
video-to-text matching is implemented by projecting video
features to image-to-text feature space. Some important
video features might be lost during this process. In the
future, according to the advances in video modeling and
video-to-text matching, our method which uses retrieval
from external memory for dense video captioning could be
further improved.

4.3. Comparison with State-of-the-art-Methods

In Table 2 and Table 3, we compare our method with
state-of-the-art dense video captioning approaches [45, 40,
48, 50, 54, 55] on both YouCook2 and ActivityNet Cap-
tions datasets. As shown in Table 2, our method achieves
the best scores over four metrics of CIDEr, METEOR,
BLEU4, and SODA_c. Even the method could achieve
higher scores compared with [48] which leverages an ad-
ditional 15 million videos for pretraining. In YouCook2
dataset, Vid2seq [48] which uses extra 1 million videos
for pretraining achieves the best performance. Our method
achieves comparable performance on YouCook2 without
using extra videos. By using prior knowledge from external
memory, our method could improve the quality of caption
generation.

We also compare the localization ability of our method.
Table 4 shows the comparison of our model with other mod-
els that use CLIP features as a visual feature in YouCook?2
and ActivityNet Captions datasets. As shown in the table,
our method achieves the best scores in ActivityNet Captions
in both precision and recall. Also, in YouCook?2 dataset, our
method achieves the best precision and second recall scores,
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Table 4. Performance of Event Localization in ActivityNet
Captions and YouCook2. Bold means the highest score. Under-
line means 2nd score. PT denotes pretraining from the additional
video datasets. T denotes results reproduced from official imple-
mentation in our environment. All methods used the CLIP as the
backbone.

YouCook2
F1 Recall Precision

ActivityNet Captions
Recall  Precision

52.70 53.90 ‘27.84 27.90 27.80

PDVCT [46] X | 54.78 53.27 56.38 26.81 22.89 32.37
Ours X | 5521 5371 56.81 28.43 24.76 33.38

Method ‘ PT ‘

Table 5. Ablation study to verify the effect of structure compo-
nent for incorporating retrieved features. WS denotes a weight
sharing for the versatile encoder. SE denotes the case where we en-
code textual and visual features, separately. Without SE is imple-
mented by concatenating textual and visual features and passing
through a single encoder. TCA denotes the use of textual cross-
attention where the model uses additional cross-attention for en-
coded text features. Without TCA is implemented by concatenat-
ing visual and text features and passing through a single cross-
attention. The performance is measured in YouCook?2.

WS SE TCA ‘ CIDEr METEOR BLEU4 SODA_c F1

X X X 29.49 5.65 1.34 5.26 27.66
X X v 28.40 5.56 1.37 4.74 25.14
X v X 30.86 5.61 1.40 5.14 27.06
X v v 30.94 5.71 1.65 5.07 27.11
v / v 31.66 6.08 1.63 5.34 28.43

which results in the best F1 score. Our memory retrieval ap-
proach not only improves caption generation but also helps
the model to localize event boundaries by providing seman-
tic cues that can be exploited during inter-task interactions.

4.4. Ablation Studies

Our method aims to leverage the retrieved segment-level
text features as semantic information for improving dense
video captioning. In this section, we present ablation stud-
ies for the component that is designed to incorporate re-
trieved features from the memory. We design a versatile
encoder structure where the encoder processes retrieved text
features and visual features. In other words, one encoder is
shared between two modalities, and the model is trained to
process both modalities. Table 5 shows the ablation study
results. It is observed that the use of a weight-shared ver-
satile encoder structure could improve the model perfor-
mance. The cases where cross-modal information (i.e., vi-
sual and textual features) is processed by the separate en-
coder (with SE) achieve higher performance compared with
the model without the separate encoder in which the two
features are concatenated before entering the transformer
encoder. Also, weight sharing for the encoder is better than
having two separate encoders for each modality. These re-
sults indicate that it is important to encode visual and textual
features separately by preserving own information. How-

Table 6. Effect of anchor number for retrieval in YouCook2. #
Anchor denotes the number of anchors. The performance is mea-
sured by changing the number of anchors.

# Anchor ‘ CIDEr METEOR BLEU4 SODA_c F1

1 27.97 5.54 1.39 514 28.10
10 31.36 575 1.63 517 2733
30 28.41 6.02 1.43 508 2687
50 31.66 6.08 1.63 534 2843
70 32.73 5.83 1.66 528  27.55
90 29.88 5.57 1.43 534 2763

ever, the model could learn the interconnection between tex-
tual and visual features by training the encoder in a versatile
manner.

Furthermore, we also compare the presence of textual
cross-attention. We compare cases where our model is de-
signed with separate textual and visual cross-attention with
the cases where the model is implemented by using com-
bined cross-attention where the textual and visual features
are concatenated before being put into the decoder. As
shown in Table 5, the performance is increased with sepa-
rate textual cross-attention. This is mainly due to the reason
that the decoder could incorporate visual and textual fea-
tures by specialized cross-attention explicitly.

4.5. Discussion
4.5.1 Qualitative Examples

Figure 3 shows predicted examples of our approach. It
can be observed that memory retrieval effectively refer-
ences meaningful and helpful sentences from memory, ob-
tained through segment-level video-text retrieval for the
given video. As a result, our method generates relatively
accurate event boundaries and captions. The semantic in-
formation obtained from memory through retrieval assists
in semantic predictions during caption generation. More
examples are provided in Supplementary Material.

4.5.2 Effect of Anchor Number for Retrieval

We explore the effect of the number of temporal anchors
generated during memory retrieval. The number of tempo-
ral anchors is related to the basic unit for giving a query to
the memory bank and it also attributes to the number of re-
trieved features. Table 6 shows the performance by chang-
ing the anchor number in YouCook?2 dataset. When the an-
chor number is set to 1, the untrimmed video information
is averaged to a single visual feature for querying to the
memory bank. This approach could not exploit fine-grained
details for retrieving the semantic text cues. As we increase
the number of anchors, the fine-grained details can be cap-
tured for querying to the memory bank, which improves the
performance of dense video captioning model. However,
when an excessive number of features are retrieved, noisy
features contribute to the degradation of performance. It is
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Input
Frames
. A male gymnast hops up onto The video ends as he performs Several other male
Retrieved . . .
Sentences bars and begins performing a final flip and hops off the gymnasts walk around
a gymnastics routine. beam. in the background.
i{e dismounts and lands on the majt.
Ours < > —
He does a gymnastics routine on the bars. He walks away and the crowd cheers.
He dismounts and lands on a mat.
GT S > —_—

He does a gymnastics routine on the balance beam.

The coach runs up to the athlete.

Figure 3. Example of dense video captioning predictions with ours on ActivityNet Captions Validation set. We show a comparison
with the ground truth. Retrieved sentences are example results from retrieval that have the highest semantic similarity to the corresponding
segments of input frames. Each retrieved sentence is utilized in our model’s predictions for the segments with the corresponding color.

Table 7. Effect of the number of selected features in YouCook2.
#SF denotes the number of retrieved features from the memory
bank. The performance is measured by changing the number of
retrieved text features per anchor.

#SF ‘ CIDEr METEOR BLEU4 SODA_c Fl1

1 ] 1976 4.36 0.65 479 2679
20 | 30.22 5.64 1.62 520 2733
40 | 31.25 5.73 1.79 529  28.10
60 | 31.24 5.77 1.63 526 2858
80 | 3166 6.08 1.63 534 2843
100 | 32.07 5.81 1.58 532 27.86

observed that the anchor number of 50 consistently yields
outstanding performance in both event localization and cap-
tion generation in YouCook?2 dataset.

4.5.3 Effect of Number of Retrieved Features for Each
Anchor

We also investigate the effect of the number of retrieved
features per anchor on the performance. When we set the
number of retrieved features per temporal anchor to 1, it
means we only consider the text from memory that has the
highest similarity to the visual feature of the temporal an-
chor. Table 7 shows the results according to the number of
retrieved features per anchor. As we increase the number of
retrieved features per anchor, the memory read could pro-
vide stable and robust semantic information to the model.
When the number of retrieved features per anchor is set to
80, our method consistently achieves good performance in
both sub-tasks in YouCook?2 dataset. However, with a too
large number, the noisy features could be retrieved because
we retrieved the features with the similarity in descending

order, which could degrade the performance.

5. Conclusion

In this study, we introduced a novel approach to dense
video captioning inspired by the human cognitive process
of scene understanding. Leveraging cross-modal retrieval
from external memory, CM? demonstrated a significant
improvement in both event localization and caption gen-
eration. Through comprehensive experiments on Activi-
tyNet Captions and YouCook2 datasets, we validated the
effectiveness of our memory retrieval approach. Notably,
CM? achieved competitive results without the need for pre-
training on a large number of video data, highlighting its ef-
ficiency. We believe that our work opens avenues for future
study in dense video captioning and encourages the explo-
ration of memory-augmented models for improving video
understanding and captioning.
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