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ABSTRACT

Deep neural networks have shown unparalleled success in mapping genomic DNA
sequences to associated readouts such as protein–DNA binding. Beyond prediction,
the goal of these networks is to then learn the underlying motifs (and their syntax)
which drive genome regulation. Traditionally, this has been done by applying
fragile and computationally expensive post-hoc analysis pipelines to trained models.
Instead, we propose an entirely alternative method for learning motif biology from
neural networks. We designed a mechanistically interpretable neural-network
architecture for regulatory genomics, where motifs and their syntax are directly
encoded and readable from the learned weights and activations, thus eliminating
the need for post-hoc pipelines. Our model is also more robust to variable sequence
contexts and against adversarial attacks, while attaining predictive performance
comparable to its traditional counterparts.

1 INTRODUCTION

Transcription factors (TFs) are proteins that regulate gene activity by recognizing and binding to
specific short DNA sequence patterns—or “motifs”—in regulatory elements of the genome (Lambert
et al., 2018; Siggers & Gordân, 2014). High-throughput experiments profile genome-wide regulatory
activity in diverse cell types, measuring protein–DNA binding (and associated events) across the
genome (Consortium, 2012). In general, the regulatory function of a DNA sequence is defined by the
combination of motifs in that sequence. These motif configurations have a soft syntax (i.e. density,
spacing, orientation, and co-binders), which induces a particular function such as TF binding.

As such, accurately predicting genome regulation from DNA sequence requires expressive models to
capture the complexities of the motifs and their syntax. In recent years, deep neural networks (DNNs)
have achieved state-of-the-art performance in mapping DNA sequence to TF binding and associated
readouts (Alipanahi et al., 2015; Zhou & Troyanskaya, 2015; Kelley et al., 2016; Žiga Avsec et al.,
2021). These models accept DNA sequences as an input, and predict labels measured by a regulatory
profiling experiment (e.g. a binary label denoting whether or not a TF bound to that sequence). The
common goal of these genomic DNNs is to ultimately identify the fundamental code (i.e. motifs and
their syntax) underpinning genomic regulation (Novakovsky et al., 2022).

This goal has inspired several methods which perform post-hoc interpretation and analysis of genomic
DNNs. Through extensive computational pipelines, these tools attempt to extract the learned motifs
and their syntax from trained DNNs. Although these pipelines have an impressive ability to recover
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genome biology, they are also composed of many computationally expensive steps which tend to be
unstable and require constant human intervention (Novakovsky et al., 2022; Shrikumar et al., 2018).

In this work, we propose an entirely different method of recovering genome biology from a DNN,
based on the relatively new concept of mechanistic interpretability. Our method, Analysis of Regula-
tory Genomics via Mechanistically Interpretable Neural Networks (ARGMINN), enables motifs and
their syntax to be directly readable from the network architecture, without any post-hoc pipelines. Our
novel architectural contributions include: 1) a novel regularizer to ensure that the first layer’s weights
directly encode a non-redundant set of relevant motifs; and 2) a modified attention mechanism which
reveals motif instances and their syntax in any sequence with a single forward pass.

2 RELATED WORK

Nearly all DNNs for genome regulation have convolutional filters as the first layer (Alipanahi et al.,
2015; Zhou & Troyanskaya, 2015; Kelley et al., 2016; Žiga Avsec et al., 2021). To recover motifs,
most works have visualized the filter weights or identified subsequences which maximally activate
each filter (Alipanahi et al., 2015; Kelley et al., 2016). Although this has shown some limited success,
these methods assume that each filter learns one motif, and each motif is learned by one filter. As
we will show, this is generally not true because—without special constraints—motifs are typically
learned in a distributed fashion, where each motif is learned across many filters and layers.

As a result, more sophisticated post-hoc pipelines were developed to extract motifs from trained
DNNs. These pipelines first integrate over the entire DNN to compute importances across the dataset
(e.g. via integrated gradients or DeepLIFT), resulting in an importance score at each position for
each sequence (Sundararajan et al., 2017; Shrikumar et al., 2017). These importances are then
segmented into high-importance regions as putative motif instances. Owing to the extreme noisiness
of importance scores, however, these putative instances must be clustered into clean motifs by
specific tools, such as MoDISco (Shrikumar et al., 2018). Next, to discover motif syntax, motifs
must be scanned across the dataset to call individual motif instances. Each step of this pipeline is
computationally expensive, and for most datasets, the time taken to recover motifs and syntax is
over an order of magnitude more than the time taken to train the model. Furthermore, in order to
discover motifs and their syntax, these pipelines heavily rely on importance scores from a black-box
model, which can be extremely fragile, as importance scores frequently fail to reveal a model’s true
decision-making process (Ghorbani et al., 2017; Tseng et al., 2020; Alvarez-Melis & Jaakkola, 2018).

Within the field of explainable AI, much effort has focused on post-hoc explainability, where feature-
importance scores or decision rules are extracted from a pre-trained black-box model. More recently,
however, there has been some burgeoning work beginning to explore the realm of mechanistic
interpretability, where the patterns and rules learned by a DNN are retrievable directly from the
weights and operations that the model learns (Ghorbani et al., 2019; Conmy et al., 2023; Cammarata
et al., 2020; Liu et al., 2023; Barbiero et al., 2023).

Our work is also related to concept bottleneck models (CBMs) (Koh et al., 2020; Ghorbani et al.,
2019; Kim et al., 2017). CBMs provide meaningful concept-based explanations, but are very limited
by the requirement for pre-defined concepts and concept-labeled inputs (which are labor-intensive to
obtain). In our work, ARGMINN can be viewed as a type of CBM, but the concepts are motifs, and
the concepts are learned entirely from the data, thus alleviating the typical limitations of CBMs.

3 A MECHANISTICALLY INTERPRETABLE NEURAL NETWORK FOR GENOMICS

We propose a mechanistically interpretable DNN architecture which is designed to 1) accurately
predict regulatory function (e.g. protein binding) from DNA sequence; 2) reveal crucial motifs
responsible for function across the dataset; and 3) reveal motif instances and their syntax in any given
query sequence. Importantly, in a mechanistically interpretable architecture, 2) and 3) are directly
encoded in the model weights or activations.

Our architecture consists of two modules (Figure 1a). Firstly, the motif scanner module consists of a
single convolutional layer which identifies motifs from the input sequence. We developed a unique
regularizer for the filters such that the filter weights directly encode non-redundant motifs, thereby
accomplishing goal 2) above. The convolutional activations are passed to the second module—the
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Figure 1: Schematic of the ARGMINN architecture. a) The motif-scanner module produces a set of activations
denoting which positions match which motifs (the activation magnitude reflects match strength). The activations
are passed to the syntax builder, which combines motif instances into a final prediction. b) The motif-scanner
module is a single convolutional layer. Regularization ensures that each filter learns one motif, and vice versa. c)
The syntax builder is a series of modified attention layers. Each layer derives a single query from the memory
stream, and key/value vectors from the original activations, which are used to update the memory stream.

syntax builder—consisting of several layers of modified attention that assemble the syntax and logic
between motifs to produce a final prediction. The syntax builder is designed such that the activations
and attention scores immediately reveal motif instances and their syntax, thus achieving goal 3).

3.1 MODULE 1: MOTIF SCANNERS

The “motif scanners” are a set of nf convolutional filters of width w, which are scanned across the
input sequence to produce a set of activations (Figure 1b). The network is trained such that the
multiplicative weights of each filter directly encode a motif. Thus, a filter’s activation is maximized
when it scans over a one-hot-encoded sequence that exactly matches the encoded motif. These
activations are then thresholded by a ReLU (the additive bias parameter of the filters and the ReLU
allow the network to selectively cut off weak matches, thereby producing more sparse activations).
For a 1-hot encoded DNA sequence S ∈ {0, 1}l×4, convolutional weights W ∈ Rnf×w×4 (and bias
b ∈ Rnf ) yield activations A ∈ R(l−w+1)×nf :

A = ReLU(Conv(S,W, b)). (1)

Importantly, the filters are regularized so that each filter learns one distinct motif (and each motif is
learned by one filter). This allows motifs to be directly read from the filter weights after training. We
propose a novel secondary objective which penalizes different filters from activating on overlapping
sequences. This is combined with a simple L1-penalty on the filter weights to induce sparse filters
that directly reveal distinct, non-redundant motifs.

At each position i in a sequence S, each filter aggregates values S[i, i+ w]. Let a = argmax{Ai} ∈
{0, ..., nf − 1} be the index of the maximally activated filter at i. For all other filters Wb (b ̸= a),
if Wa and Wb both achieve non-zero activation in the same neighborhood of S, then they should
not both have non-zero weights in the overlapping region (i.e. they should not be attending to the
same part of the sequence). In other words, every position of S is “protected”: at most one filter can
activate while attending to any position. If another filter is activated nearby, then its weights should
not be attending to the protected part of the sequence. Our filter-overlap regularization then can be
defined as the following loss function:

Lo(A,W ) =

l−w∑
i=0

∑
b̸=argmax{Ai}

i+(w−1)∑
j=i−(w−1)

[
Aj,b

∥Wargmax{Ai}[max{0, j − i}, w − 1−max{0, i− j}]∥1

∥Wb[max{0, i− j}, w − 1−max{0, j − i}]∥1
]
. (2)
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At each position i, we compare the filter weights of the maximally activated filter Wa with the weights
of all other filters (Wb), at every possible overlapping window j. We penalize the L1 norm of the
overlapping weights, multiplied by the activation of filter b (i.e. if Wb is not activated, there is no
penalty). Importantly, this is a soft regularization which the model can choose to ignore if needed for
performance. This regularization helps prevent: 1) two filters learning the same motif (or the same
part of the same motif); and 2) two filters learning a motif in an interleaved fashion. However, our
regularization still allows for a long motif to be learned by two filters, split somewhere down the
middle (or similarly, two half-sites directly next to each other, each learned by one filter).

In practice, this loss is computed efficiently by caching all possible windows of weight sums (for
each value of j) once, and at each i scaling the window products with the activation of Wb.

3.2 MODULE 2: SYNTAX BUILDER

After the motif-scanner module, positional encodings P are concatenated with the activations A.
The second stage of the architecture is the syntax builder, which consists of nL layers of a modified
attention mechanism (Figure 1c). As opposed to a typical attention layer, our modified attention
layer has an explicit “memory stream” ml which is updated after each layer. Each layer derives a
single query from ml, resulting in a linear vector of attention scores rather than a quadratic matrix.
Additionally, each layer always derives key and value vectors directly from the original “tokens” (i.e.
A∥P ). Each attention layer can be described as follows:

ql := Wq,lml−1,Kl := WK,l[A∥P ], Vl := WV,l[A∥P ]

al :=
Klql√
dql

,ml := ml−1 + MLP(alVl),
(3)

where m0 is a vector of all 1s, and dql is the dimension of the query vector. We also include nh

attention heads, but do not show the reshaping operations above for clarity.

Note that each layer derives a query from the memory stream, and derives key and value vectors from
the original activations. Thus, by tracing through the attention scores for any input sequence, we can
easily identify which filters/motifs (with their positions) are responsible for a prediction. Each layer
is capable of attending to multiple motifs (due to the multiple attention heads), and successive layers
allow the model to capture interactions between motifs (e.g. with two layers, the model can reason
about pairs of motifs, etc.). All together, our final loss function becomes:

L(S,A,W ) = Lpred(f(S), y) + λoLo(A,W ) + λl∥W∥1, (4)

4 ARGMINN DIRECTLY ENCODES MOTIFS IN ITS WEIGHTS

The first main advantage of ARGMINN is that—due to the filter-overlap regularization—motifs are
directly encoded as filter weights. Over several simulated and real-world experimental datasets, we
trained ARGMINN and a standard CNN architecture. We examined the first-layer convolutional
filter weights, and systematically matched each filter to the closest known motif (Figure 2a). For
simulated datasets, we matched each filter to the closest motif in the simulation; for experimental
datasets, we matched each filter to the closest known human motif. In general, ARGMINN was able
to encode known, relevant motifs directly in the filter weights. Particularly with the experimental
datasets, the singular most similar motif (an extremely strict requirement) to an ARGMINN filter
is—impressively—typically a known relevant motif. For example, ARGMINN trained on FOXA2
in HepG2 (a pioneer factor) revealed several FOX-family factors, the HNF4 family, and the CEBP
family: all have been known to co-localize or co-bind with FOXA (Seachrist et al., 2021; Geusz et al.,
2021; Liu et al., 2020). In contrast, traditional DNNs often distribute motifs across filters or layers,
so methods that try to discover motifs from these architectures by directly analyzing filters can be
foiled by the fact that the filters typically do not encode distinct motifs. Furthermore, even when
the traditional CNN also encoded motifs in its filters, ARGMINN’s filters had significantly higher
similarity to the true motifs (Figure 2b).
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Figure 2: Learned motifs. a) We show the first-layer filter weights learned by each architecture. For each filter,
we labeled the closest match to a real motif. Filters which never achieve non-zero activations are excluded. b)
For each relevant motif in each dataset, we show the maximal similarity to any discovered motif by each method.
A similarity of 0 means that the motif was not found by that method.

We then compared ARGMINN’s motifs to those discovered by an extensive post-hoc pipeline.
We computed importance scores from the traditional CNN and used MoDISco Shrikumar et al.
(2018) to segment and cluster them into motifs. Whereas ARGMINN clearly revealed motifs as
weights, importance scores are generally very noisy and inconsistent approximations of a model’s
decision making Ghorbani et al. (2017); Hajiramezanali et al. (2023) and they showed only noisy
and fragile motif instances (Supplementary Figure S1). As such, MoDISco-identified motifs were
almost universally not as close to relevant motifs as those discovered by ARGMINN (Figure 2b).
Importantly, they also included many redundancies and extraneous motifs (Supplementary Figure S2).

Finally, to further show the benefit of our filter regularizer, we applied our regularization to a
traditional CNN. As a result, the CNN’s filters also encoded relevant and non-redundant motifs
(Supplementary Figure S3). Importantly, however, without the other architectural novelties of
ARGMINN, such a CNN would still not reap benefits such as motif-instance and syntax identification.

5 ARGMINN REVEALS MOTIF INSTANCES/SYNTAX IN ONE FORWARD PASS

ARGMINN reveals motif instances and syntax for any sequence in one forward pass. With previous
DNN-based methods, identifying syntax required first learning motifs and then scanning sequences to
“call” motif instances. Not only is this computationally expensive, but instance calling by sequence
scanning tends to be highly inaccurate (e.g. due to partial hits or missing context which the DNN
would have considered).

Instead, ARGMINN reveals motif instances by tracing through the attention scores from a forward
pass on any sequence. Because each attention layer derives keys/values directly from the motif-
scanner activations, high attention scores directly point to the precise motif instances which the
network deems important for its prediction. For example, on our REST dataset, we directly recovered
the binding syntax—including spacing preferences—of the two halves of the REST motif (Figure 3a).

We then evaluated the motif instances identified by ARGMINN versus a traditional pipeline. We
used FIMO (Bailey et al., 2015) to call instances of the MoDISco-discovered motifs in a set of
test sequences. In each case, we ranked the instances by confidence and computed the number
of hits in the top k which overlapped the ground-truth instance; for our experimental datasets, we
used independently derived binding footprints as ground truth (Vierstra et al., 2020). In general,
ARGMINN’s motif instances were far more accurate than those found by the baseline (Figure 3b).
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Figure 3: Motif instances and syntax. a) On our REST dataset, we recovered the binding pattern of the two
halves of REST (both halves bind together, either adjacently or around 4–9 bp apart). We show the histogram
of spacings between motif halves (spacings are in context of the 10 bp filters). b) We show the number of
top k motif instances which were found to overlap the ground-truth motif or known DNA-binding footprints,
comparing ARGMINN versus MoDISco followed by FIMO.

6 ROBUSTNESS OF ARGMINN

Because ARGMINN makes decisions based on biologically meaningful units (i.e. motifs), it is more
robust to background variations. On our REST dataset, we trained ARGMINN and a traditional CNN
on sequences with a 50% GC background, and then computed prediction accuracy on test sequences
with GC content from 0% to 100%. ARGMINN’s performance suffered less on different backgrounds
(Supplementary Figure S4)

Furthermore, because traditional CNNs learn filters which do not accurately represent motifs, they
are prone to adversarial attacks. On our SPI1 dataset, we trained a CNN to achieve 88% accuracy.
We then easily constructed many sequences which contain short substrings which highly activate its
filters, but without any instances of the SPI1 motif. On this set of sequences, the traditional CNN’s
accuracy dropped to 55%. Reflexively, we also were able to easily design sequences which have
the SPI1 motif, but we inserted substrings into the background which strongly deactivate the filters,
leading the CNN’s accuracy to drop to 48%. In contrast, because ARGMINN encodes meaningful
biological motifs in each filter, it remains robust against such an attack (i.e. one cannot easily identify
highly-activating or anti-activating sequences which trick the model into giving the wrong prediction).

7 DISCUSSION

We illustrated ARGMINN’s unique ability to reveal motifs and their syntax directly from its weights
and activations—an advantage which is entirely absent from traditional (non-mechanistically in-
terpretable) DNNs. We then compared the predictive performance of ARGMINN to a traditional
CNN (Supplementary Table S1). It is generally well known that more interpretable models may
suffer slightly in predictive performance. This is expected, as these models tend to base decisions on
human-interpretable concepts (e.g. crucial motifs), instead of spurious signals which can be informa-
tive, but are not useful for understanding regulatory genomics (e.g. GC content, exceptionally rare
motifs, etc.). In our experiments, however, we found that ARGMINN achieved better or comparable
performance to its corresponding, non-interpretable baseline. This demonstrates a further benefit of
mechanistic interpretability, in that it may help a model achieve even better predictive performance
by focusing on the most biologically meaningful signals (e.g. motifs).

Mechanistic interpretability is still a nascent field, and our research pioneers an architecture that en-
ables direct interpretation with minimal post-hoc analysis. We showed that ARGMINN is expressive
enough to accurately predict genome regulation, yet is uniquely constrained so that the weights and
activations directly encode the model’s decision process in a human-interpretable way. Further work
in this area can yield major benefits for scientific AI and explainable AI.
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A SUPPLEMENTARY ALGORITHMS, FIGURES, AND TABLES

Figure S1: Examples of importance scores for SPI1. On our standard CNN trained on the simulated SPI1
dataset, we extracted importance scores from input sequences using two different methods: DeepLIFTShap and
integrated gradients. We show the importance scores computed by each method for 5 randomly selected motif-
containing sequences. Note that the importance scores are highly noisy, and regardless of the method, it remains
difficult to even identify where the motif is from these score tracks, let alone what the motif is. Additionally,
note the high degree of disagreement between the two methods, with each method often disagreeing on the sign
of the importance for an important subsequence.
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Figure S2: Motifs discovered with the MoDISco pipeline. For our simulated SPI1 and TAL/GATA datasets,
and our experimental CTCF dataset, we computed importance scores and ran the MoDISco clustering algorithm
to discover motifs. We show the discovered motifs which pass the internal MoDISco filters, ranked by number
of supporting seqlets (i.e. the prevalence of the motif according to the MoDISco algorithm) in columns from
left to right. Each motif is labeled with the closest matching possible motif in the dataset using TOMTOM. For
simulated datasets, we matched each motif to the closest motif in the simulation; for the experimental dataset,
we matched each motif to the closest known human motif. Note that MoDISco combines the forward and
reverse-complement orientations of motifs. Unlabeled motifs are those where TOMTOM failed to find a match.
Even after clustering, there is a large amount of redundancy between motifs (i.e. many motifs are learning
the same patterns redundantly). Furthermore, there are many motifs discovered which are extraneous (i.e. not
relevant or correct). These motifs tend to be very short and have low information content, and they also often
have a higher prevalence than the relevant true motifs.
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Figure S3: Learned filters from traditional CNN with filter regularization. We applied our filter regularizer
(Equation 2) to the traditional CNN architecture, and show the resulting learned filter weights. With the filter
regularization the traditional CNN now also is able to show clean, non-redundant, relevant motifs in its filters.
Thus, our filter regularizer is able to turn even traditional networks into more mechanistically interpretable
architectures. Importantly, although a traditional CNN with our filter regularizer can now reveal discovered
motifs, without our unique attention mechanism (Equation 3), it still is unable to easily reveal motif instances
and syntax. As such, these partially interpretable architectures would still need to rely on traditional motif-
instance-scanning algorithms.

Figure S4: Example of robustness to sequence context. On our simulated REST dataset, we tested the ability of
ARGMINN or a traditional CNN to predict accurately on sequences with GC content different from what they
were trained with. We tested background sequences with GC content ranging from 10% to 90% (in intervals of
10%). The traditional CNN, in addition to achieving lower performance in general, shows a much larger range
of performance.
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Table S1: Test-set accuracy
SPI1 TAL/GATA E2F6 REST CTCF (HepG2) FOXA2 (HepG2)

ARGMINN 89.8% 88.4% 90.8% 88.3% 76.9% 72.8%
Traditional CNN 88.7% 83.8% 89.5% 77.1% 77.5% 73.4%
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B SUPPLEMENTARY METHODS

We trained all of our models and performed all analyses on a single Nvidia Quadro P6000.

B.1 TRAINING DATA

For our simulated datasets, we downloaded motif PFMs (position frequency matrices) from JASPAR
Fornes et al. (2020), and trimmed off low-information-content flanks. When training and testing,
we randomly generated 500 bp sequences on the fly. Motif instances were sampled from the PFMs,
and inserted into a randomly sampled background (from a uniform distribution of A, C, G, and T).
Motifs (or combinations of them) were randomly inserted in the central 100 bp of the background.
Our simulations contained motif configurations as follows:

• SPI1: all positive sequences have a single instance of the SPI1 motif

• TAL/GATA: 37.5% of positive sequences have a single instance of TAL1, 37.5% have a
single instance of GATA1, and 25% of sequences have both (either 7, 8, or 9 bp apart)

• E2F6: 10% of positive sequences have a single instance of E2F6, and 90% have both E2F6
and MAX, between 30 and 60 bp apart; 50% of negative sequences have only the MAX
motif, and the other 50% are random background

• REST: all positive sequences have both the left- and right-half motifs, with a spacing of 2, 6,
7, 8, 9, 10, or 11 bp apart; 25% of negative sequences have only the left-half motif, 25%
have only the right-half motif, and 50% are random background

When generating simulated sequences, we scan the random backgrounds for spurious matches and
filter out such instances. Note that this is a crucial step for simulated datasets, as for short motifs
such as GATA (6 bp), we would expect over 12% of random backgrounds to contain a perfect match
by chance. This is an issue which is much rarer in real datasets, but for our simulations, we scan the
PFMs (and their reverse complements) across our generated backgrounds (for positive and negative
sequences), and ensure that no PFM attains a match score of over 0.9.

For our experimental datasets, we downloaded the IDR peaks from ENCODE Consortium (2012)
for experiments ENCSR607XFI (CTCF in HepG2) and ENCSR865RXA (FOXA1 in HepG2). Our
positive dataset consisted of random 500 bp sequences drawn from the genome, where at least half of
the 500 bp overlaps a peak (if the peak is less than 500 bp), or at least half of the peak overlaps the
500 bp (if the peak is over 500 bp). Our negative dataset consisted of randomly sampled intervals
from the genome.

Note that when training, we automatically use reverse-complement augmentation so that every batch
is doubled in size with its reverse complement.

B.2 MODEL ARCHITECTURES

Our ARGMINN architecture consists of two modules: motif scanners and a syntax builder. The motif
scanner consists of a single convolutional layer of 8 filters, each of 10 bp in width, which scan across
a one-hot-encoded DNA sequence. The result is passed to a ReLU, which constitutes the “motif
activations”.

The motif activations are concatenated with a positional encoding of dimension d = 16. Our
positional encoding is defined as follows:

Pi,2j = sin(
i

10000
2i
d

), Pi,2j+1 = cos(
i

10000
2i
d

)

where i is the position along the sequence, and j ∈ {0, ..., d
2 − 1}.

Let A∥P be the motif activations and positional encodings concatenated together. This is passed to
two consecutive memory-stream-based attention layers. The lth attention layer starts with a memory
stream ml−1 of dimension 128 (m0 is a vector of all 1s), and A∥P . In each layer, ml−1 is passed
through a linear layer to obtain a single query ql of dimension equal to the dimension of each input
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token in A∥P . Two separate linear layers also convert each token in A∥P into a set of key vectors and
value vectors (of the same dimension as the input token). The query, keys, and values are reshaped
to obtain 4 attention heads. We then compute the attention scores by multiplying the query against
all keys, and normalizing by

√
dql , where dql is the dimension of the query/key/value vectors. We

then perform dropout on the attention scores with dropout rate 0.1, and softmax the scores for each
attention head. These attention scores are used to weight the value vectors in a weighted sum, which
is then reshaped to reincorporate the heads. This is passed through another linear layer which retains
the same dimension, followed by dropout and layer normalization. This is then fed to a 2-layer MLP
with ReLU and dropout in between the two linear layers, mapping the result to the same dimension
as ml−1. After a final dropout and layer norm, this is added to ml−1 to obtain ml.

After all attention layers, the final ml is passed to a single linear layer which maps it to a scalar
prediction which is passed to a sigmoid activation function (for binary prediction).

Our standard CNN follows an architecture which is common in the literature for single-task predic-
tions. We apply 3 successive convolutional layers to the input sequence, each with 8 filters and of
filter width 10, 5, and 5. After each layer we pass through a ReLU and apply batch normalization.
We then perform max pooling with a filter size of 40 and a stride of 40. This is passed to two linear
layers of 10 and 5 hidden dimensions each. After each linear layer, we pass through a ReLU and
apply batch normalization. Finally, a final linear layer maps the result to an sigmoid-activated output.

B.3 TRAINING SCHEDULES

When training, we used a batch size of 128 with an equal number of positives and negatives
(this includes the reverse-complement augmentation). For our simulated datasets, each training
epoch consisted of 100 batches, and each validation and test epoch consisted of 10 batches. For
our experimental datasets, we reserved chr8 and chr10 for validation, and chr1 for test (all other
chromosomes were used for training).

We trained all of our models for 40 epochs (regardless of architecture), and noted that the loss had
converged in all cases. We used a learning rate of 0.001, and early stopping (requiring an improvement
of at least 0.001 in the loss at least once over the past 3 epochs).

For ARGMINN, we weighted the secondary losses as follows:

• λo: 0 for the first 10 epochs, increasing from 100.5 to 104 evenly in logarithmic space over
the next 20 epochs, and stable at 104 for the last 10 epochs

• λl: 0 for the first 10 epochs, increasing from 10−4 to 10−3 evenly in logarithmic space over
the next 20 epochs, and stable at 10−3 for the last 10 epochs

For all of our models, we train 3 random initializations and select the one with the best test accuracy
for downstream analyses.

B.4 ANALYSES

Extracting motifs from convolutional filters

To extract motifs from convolutional filters, we simply visualized the multiplicative weights of each
filter as a sequence logo. We also applied mean centering at each position independently.

For motifs deriving from convolutional filters, we convert them to PFMs by computing the average of
sequences (assuming a uniformly random background) which activate that filter to at least 50% of its
maximum possible activation. This is computed empirically over 1 million sequences. For motifs
from MoDISco, we simply took the PFM output and cut off low-information-content flanks until it
was the same size as the filters.

To compute matches to known motifs, we used TOMTOM (Bailey et al., 2015) to compute the
q-value similarity between a PFM to known motifs (across all possible alignments). We report the
− log10(q) value as similarity. For simulated datasets, we reported the closest match (i.e. highest
similarity) to any motif in the dataset. For experimental datasets, we reported the closest match to
any relevant motif in the JASPAR human-motif database Fornes et al. (2020). The set of relevant
motifs for experimental datasets was decided by first running TOMTOM against all known human
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motifs and pooling together the top matches (by motif family) over all methods and architectures (e.g.
ARGMINN, MoDISco, etc.). Relevant families were identified as those with support from existing
literature.

Tracing back motif instances and syntax

To trace back motif instances for a particular input sequence in ARGMINN, we performed a forward
pass and retained the motif activations and attention scores. Over all layers and all attention heads,
we examined the positions in the sequence which had an attention score of at least 0.9. We then
called a motif hit if the activation for a filter at that position was at least the average activation over
the entire batch (over all positions in the sequences).

To identify syntax, we separated the input sequences by which motif instances were called, and
computed the distribution of the spacings between the motif instances.

In order to rank motif instances from ARGMINN, we ranked by maxmimum attention score over all
heads/layers at that position. To break any ties, we used the highest motif-filter activation score at
that position.

Computing importance scores

We computed importance scores using PyTorch Captum, with DeepLIFTShap or with integrated
gradients Shrikumar et al. (2017); Sundararajan et al. (2017). For DeepLIFTShap, we used a reference
of 10 baselines consisting of dinucleotide-shuffled sequences, as recommended in Shrikumar et al.
(2017), recovering the hypothetical importance scores at each position. For integrated gradients, we
used a baseline of all 0s.

Discovering motifs with MoDISco

We computed importance scores over 1280 positive input sequences using the DeepLIFTShap
algorithm as described above. We then ran MoDISco-lite v2.2.0 Shrikumar et al. (2018) using a
maximum of 10000 seqlets and default parameters.

Scanning for motif instances with FIMO

To scan for motif instances using FIMO, we started with PFMs and ran FIMO v5.0.5 Bailey et al.
(2015) on a batch of 128 positive sequences and their reverse complements. We used the default
FIMO parameters.

To rank FIMO hits, we used the q-value from FIMO. We also collapsed overlapping FIMO hits before
analyzing.

Experimental ground-truth motif instances

For our experimental datasets, we obtained “ground-truth” motif instances from Vierstra et al. (2020),
an independently collected set of DNA-binding footprints in various cell types. For each cell type of
interest (e.g. HepG2), we simply pooled together the footprints of all experiments from that cell type
and used those as a set of ground-truth motif instances.

Generating adversarial examples

We generated adversarial examples in a traditional CNN in two ways.

First, we generated sequences which had no motifs present, but were still predicted to have a positive
label by the DNN. To do this, we built up random sequences by taking highly-activating sequences
from random filters and adding them to the sequence. We took the most highly-activating sequence
for each filter and randomly strung together a random ordering of such sequences to obtain a 500 bp
example. We verified that no part of these sequences matched any motif (or reverse complement) in
the dataset.

Next, we generated sequences which had motifs, but were still predicted to be negative by the
DNN. To do this, we first sampled a motif configuration from the normal simulation. Under normal
circumstances, such a configuration would endow a positive label in the dataset. We then surrounded
either side of this configuration with sequences that are least activating for a random ordering of filters.
We randomly strung together a random ordering of such sequences to pad out a 500 bp example.
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