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Abstract

Does the intrinsic curvature of complex net-
works hold the key to unveiling graph anoma-
lies that conventional approaches overlook?
Reconstruction-based graph anomaly detection
(GAD) methods overlook such geometric outliers,
focusing only on structural and attribute-level
anomalies. To this end, we propose CurvGAD
— a mixed-curvature graph autoencoder that in-
troduces the notion of curvature-based geomet-
ric anomalies. CurvGAD introduces two parallel
pipelines for enhanced anomaly interpretability:
(1) Curvature-equivariant geometry reconstruc-
tion, which focuses exclusively on reconstruct-
ing the edge curvatures using a mixed-curvature,
Riemannian encoder and Gaussian kernel-based
decoder; and (2) Curvature-invariant structure
and attribute reconstruction, which decouples
structural and attribute anomalies from geomet-
ric irregularities by regularizing graph curvature
under discrete Ollivier-Ricci flow, thereby isolat-
ing the non-geometric anomalies. By leveraging
curvature, CurvGAD refines the existing anomaly
classifications and identifies new curvature-driven
anomalies. Extensive experimentation over 10
real-world datasets (both homophilic and het-
erophilic) demonstrates an improvement of up to
6.5% over state-of-the-art GAD methods. The
code is available at: https://github.com/
karish-grover/curvgad.

1. Introduction
Detecting anomalies in graph-structured data is a pivotal
task across diverse fields, including social networks (Has-
sanzadeh et al., 2012), cybersecurity (Wang & Zhu, 2022),
transportation systems (Hu et al., 2020), and biological net-
works (Singh & Vig, 2017). Traditional methods primarily
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focus on identifying anomalies through structural irregular-
ities or attribute deviations (Ding et al., 2019; Fan et al.,
2020), such as abnormal connections or unusual feature val-
ues. However, these approaches often overlook the underly-
ing geometric properties of graphs, particularly the graph
curvature, which encapsulates essential information about
the global and local topology of the graph. Recent advances
in graph representation learning and Riemannian geometry
have delved deeply into constant curvature spaces (Bach-
mann et al., 2020) — namely hyperbolic, spherical, and
Euclidean geometries, characterized by negative, positive,
and zero curvature, respectively — to learn distortion-free
graph representations. Each of these spaces offers beneficial
inductive biases for specific structures. For instance, hyper-
bolic space is ideal for hierarchical, tree-like graphs (Chami
et al., 2019), whereas spherical geometry is optimal for rep-
resenting cyclic graphs (Gu et al., 2019). However, current
graph anomaly detection (GAD) methods fail to leverage
such insights, resulting in several limitations:

(L1) Inadequate Representation of Complex Topologies.
Existing methods assume that graphs can be effectively
represented in Euclidean space. However, real-world
graphs often exhibit complex topologies with intrinsic
curvature variations (Gu et al., 2019) that cannot be
captured by a single geometric space.

(L2) Neglect of Geometric Anomalies. Current ap-
proaches largely ignore geometric anomalies mani-
fested through task-specific irregularities in the cur-
vature of the graph, missing critical insights into the
inherent geometry of the graph (Chatterjee et al., 2021).

(L3) Homophily Trap. Several methods predominantly op-
erate under the homophily assumption (i.e., low-pass
filters) and fail in heterophilic graphs where connected
nodes tend to be dissimilar, missing out on anomalies
that arise in such settings (He et al., 2023).

Geometric anomalies, as we define them, are irregularities in
graph structure revealed through deviations in task-specific
curvature patterns. Depending on the application, different
curvature regimes — negative, positive, or zero curvature
— may indicate anomalies. These anomalies occur when
the curvature at certain nodes or edges significantly devi-
ates from expected patterns, signaling unusual structural
properties or interactions not detectable through traditional
methods. There are numerous real-world instances where
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Figure 1. Curvature matters. The effect of curvature information on node-level anomaly scores for CurvGAD across Weibo, Reddit,
Cornell and Chameleon datasets (Zhao et al., 2020). The plots show anomaly score distributions against curvature values, where the blue
region highlights potentially new anomalies due to curvature deviations, and the red region highlights the effect of curvature on existing
outliers. W/o Curv refers to anomaly scores calculated without curvature. Observe that interesting anomaly-curvature patterns arise – e.g.,
in (a), known anomalies exhibit predominantly positive curvature, whereas in (d), they are mostly negative. In (b), some non-anomalous
nodes exhibit irregular curvature deviations, forming an isolated cluster (i.e. potential curvature anomalies).

curvature can potentially serve as a critical heuristic for de-
tecting anomalies in graph-structured data, e.g. (a) Fake
News Propagation: Hierarchical cascade-like diffusion pat-
terns in social networks, often the result of fake news dis-
semination by malicious users (anomalies), exhibit high
negative curvature due to rapid branching and sparse con-
nections (Ducci et al., 2020; Xu et al., 2021). (b) Biological
Networks: Bottleneck proteins in protein-protein interaction
(PPI) networks, acting as critical hubs between functional
modules, signal disruptions that can affect biological pro-
cesses, and have positive curvature (Topping et al., 2021).

We propose CurvGAD, a novel framework for detecting
graph anomalies by integrating geometric insights through
a mixed-curvature lens. Intuitively, CurvGAD addresses
the limitations of current GAD methods in two key ways:
(1) It refines the classification of pre-existing anomalies
by incorporating curvature information, improving the de-
tection of structural or attribute-level anomalies by lever-
aging geometric insights; and (2) It uncovers previously
undetected anomalies driven by curvature irregularities —
anomalies that may not be labeled in the original dataset but
emerge through curvature deviations. The core idea behind
CurvGAD is the decomposition of graph anomalies into two
parallel pipelines described below.

(a) Curvature-equivariant Geometry Reconstruction.
Detects geometric anomalies by learning representations
in mixed-curvature spaces and reconstructing the graph’s
curvature matrix (addresses limitation L2). The encoder em-
ploys a mixed-curvature Chebyshev polynomials-based fil-
ter bank, which encodes graph signals into representations
that adapt to the curvature of the underlying graph topol-
ogy (addresses L1). This includes multiple low-pass and
high-pass filters operating in a product manifold, ensuring
that we capture signals from multiple bands in the eigen-

spectrum (addresses L3). Using the node embeddings, the
decoder applies a Gaussian kernel-based approximation to
reconstruct the edge curvatures. Geometric anomalies mani-
fest as irregular curvature values, typically associated with a
relatively larger reconstruction loss, providing insights into
anomalies such as bottlenecks and hubs within the graph.

(b) Curvature-invariant Structure and Attribute Recon-
struction. Reconstructs the adjacency and feature matrices,
ensuring that the process remains invariant to the curvature
of the graph. To achieve this, the input graph is first regular-
ized by deforming it under the discrete Ollivier-Ricci flow,
which standardizes the curvature of the graph, converging to
a uniform value. This allows the subsequent structure and
attribute reconstructions to focus solely on non-geometric
anomalies. The encoder operates on the regularized graph,
while the decoder reconstructs the adjacency and feature
matrices. Decoupling geometric irregularities from the non-
geometric ones, ensures a dedicated focus on the former
(addresses L2). This unified framework improves the ability
to detect a broader spectrum of graph anomalies. Our key
contributions can be summarized as follows.

(C1) Novelty: To the best of our knowledge, this is the first
work to study curvature-based anomalies and approach
GAD from a mixed-curvature perspective.

(C2) Interpretability: Offers interpretable detection by dis-
entangling curvature-induced anomalies from struc-
tural and attribute-level irregularities.

(C3) Universality: CurvGAD performs well in detecting
geometric, structural, and attribute-based anomalies
across heterophilic and homophilic networks.

(C4) Effectiveness: Experimentation with 10 real-world
datasets for node-level GAD shows that CurvGAD
achieves up to 6.5% gain over SOTA methods.
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2. Previous Works
Graph Anomaly Detection. GAD aims to identify ab-
normal patterns or instances in graph data. Traditional
node-level GAD methods focus primarily on detecting (a)
structural or (b) attribute-based anomalies within a graph.
Recent advances have introduced reconstruction-based ap-
proaches for GAD. These methods employ autoencoders to
reconstruct graph structures (adjacency matrices) and node
attributes, characterizing anomalies with a higher reconstruc-
tion error as anomalous nodes or substructures are relatively
difficult to reconstruct. For example, DOMINANT (Ding
et al., 2019) and AnomalyDAE (Fan et al., 2020) use a dual
discriminative mechanism to simultaneously detect struc-
tural and attribute anomalies by minimizing reconstruction
loss in the adjacency and feature matrices.

Riemannian Graph Neural Networks. Non-Euclidean
manifolds, particularly hyperbolic (Sala et al., 2018) and
spherical (Liu et al., 2017) geometries, have proven effective
for learning distortion-minimal graph representations. Two
main approaches dominate this domain: (a) Single Mani-
fold GNNs: Models like HGAT (Zhang et al., 2021) and
HGCN (Chami et al., 2019) achieve state-of-the-art perfor-
mance on hierarchical graphs by embedding them in hyper-
bolic spaces. (b) Mixed-Curvature GNNs: Recognizing that
single-geometry manifolds fall short in representing com-
plex, real-world topologies, mixed-curvature GNNs embed
graphs in product manifolds combining spherical, hyper-
bolic, and Euclidean components. Pioneered by (Gu et al.,
2019), this idea has been extended by models like κ-GCN
(Bachmann et al., 2020), which uses the κ-stereographic
model, and Q-GCN (Xiong et al., 2022), which operates on
pseudo-Riemannian manifolds. Despite these efforts, GAD
methods overlook geometric information (curvature), spec-
tral properties (e.g., heterophily), and fail to leverage Rie-
mannian embeddings, limiting their ability to detect more
nuanced anomalies that arise in complex graph structures.

3. Preliminaries
Riemannian Geometry. A smooth manifoldM general-
izes surfaces to higher dimensions. At each point x ∈ M,
the tangent space TxM is locally Euclidean. The Rie-
mannian metric gx(·, ·) : TxM × TxM → R equips
TxM with an inner product that enables the definition
of distances and angles, forming a Riemannian manifold
(Do Carmo & Flaherty Francis, 1992). The exponential map
expx(v) : TxM→M maps tangent vectors to the man-
ifold, while the logarithmic map logx(y) : M → TxM
maps points back to the tangent space. The curvature (κ) at
each point describes the geometry, with three common types:
positively curved spherical (S) (κ > 0), negatively curved
hyperbolic (H) (κ < 0), and flat Euclidean (E) (κ = 0).

Product Manifolds. A product manifold (Gu et al., 2019) P
is defined as the Cartesian product of P constant-curvature
manifolds, i.e. P = ×P

p=1M
κp,dp
p , whereMp ∈ {E,H,S}

represents a component manifold with curvature κp and
dimension dp. The total dimension of the product mani-
fold is the sum of the component dimensions. The above
decomposition of P is called its signature (Appendix B.1).

κ−Stereographic Model. In this work, we adopt the κ-
Stereographic Model (Bachmann et al., 2020) to define Rie-
mannian algebraic operations across both positively and
negatively curved spaces within a unified framework. This
model eliminates the need for separate mathematical formu-
lations for different geometries. In particular,Mκ,d is the
stereographic sphere model for spherical manifold (κ > 0),
while it is the Poincaré ball model (Ungar, 2001) for hyper-
bolic manifold (κ < 0) (See Appendix B.2).

Discrete Laplace-Beltrami (LB) Operator. The Laplace–
Beltrami operator (Urakawa, 1993) is a generalization of the
Laplace operator to functions defined on Riemannian mani-
folds. We define the discrete Laplace-Beltrami operator, LP,
for a graph discretized over the product manifold P, based
on the cotangent discretization scheme (Belkin et al., 2008;
Crane, 2019). For two connected vertices vi and vj , the off-
diagonal element of LP is: LP,ij = − (cot θij+cotϕij)

2Ai
where

θij and ϕij represent the angles opposite to the edge (i, j) in
the adjacent triangles, and Ai is the Voronoi area of vertex
vi (or Heron’s area in the case of obtuse triangles). The
diagonal element is computed as: LP,ii = −

∑
j ̸=i LP,ij

This operator highlights the geometric properties by incor-
porating the manifold curvature.

Ollivier-Ricci Curvature. In graphs, the lack of an in-
herent manifold structure necessitates the use of discrete
curvature analogs, such as Ollivier-Ricci curvature (ORC)
(Ollivier, 2007), which extends the concept of continous
manifold curvature (Tanno, 1988) to networks. ORC is
defined as a transportation-based curvature along an edge,
where the curvature between neighborhoods of two nodes is
measured via the Wasserstein-1 distance (Piccoli & Rossi,
2016). For an unweighted graph, each node x is assigned
a neighborhood measure mδ

x(z) :=
1−δ

|N (x)| for z ∈ N (x),
and mδ

x(x) = δ. ORC for an edge (x, y) is then calculated

as: κ̃xy := 1− W1(m
δ
x,m

δ
y)

dG(x,y) . We approximate ORC in linear
time using combinitorial bounds (Jost & Liu, 2014). See
Appendix B.3 for details on computational considerations.
We denote the continuous manifold curvature using κ and
the discrete Ollivier-Ricci curvature using κ̃.

Ollivier-Ricci Flow. The Ricci flow, introduced by Hamil-
ton (Chow et al., 2023), is a process that smooths the cur-
vature of a manifold by deforming its metric over time. In
the graph domain, this concept is adapted to the discrete
Ollivier-Ricci flow. In each iteration of this evolving process,
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Ricci flow generates a time-dependent family of weighted
graphs (V, E ,w(t)) such that the weight w(t)

xy on edge xy
changes proportionally to the ORC of the edge xy at time
t, κ̃(t)xy . Ollivier (Ollivier, 2009) defined the Ricci flow for
continuous time as d

dtw
(t)
xy = −κ̃(t)xy ·w(t)

xy . Then (Ni et al.,
2018) proposed Ricci flow for discrete time t (for step size
ϵ) as: w(t+1)

xy = (1− ϵκ̃(t)xy )w
(t)
xy . For an unweighted graph,

w
(0)
xy = 1, ∀x, y ∈ V . Typically, ORC for all edges con-

verges to zero curvature as t→∞.

Setup. We consider graphs G = (V, E ,A), where V is a
set of |V| = n vertices, E is a set of edges, and A ∈ Rn×n

is the adjacency matrix. The nodes are associated with
the node feature matrix X ∈ Rn×dX (dX is the feature
dimension). A graph signal x : V → R may be re-
garded as a vector x ∈ Rn where xi is the value of x
at the ith node. The Laplace-Beltrami operator LP (Sec-
tion 3) extends the notion of the traditional graph Lapla-
cian to mixed-curvature spaces by incorporating geometric
clues. As a real, symmetric, and positive semidefinite ma-
trix, LP admits a complete set of orthonormal eigenvectors
UP =

[
{ul}n−1

l=0

]
∈ Rn×n, and their associated ordered

real nonnegative eigenvalues
[
{λl}n−1

l=0

]
∈ Rn, identified

as the frequencies of the graph. Similar to the graph Lapla-
cian, the Laplace-Beltrami matrix can be diagonalized as
LP = UPΛPU

⊤
P where ΛP = diag(

[
{λl}n−1

l=0

]
) ∈ Rn×n.

4. Proposed Approach: CurvGAD
In this section, we provide an in-depth exploration
of the CurvGAD architecture. We first introduce the
curvature-equivariant pipeline (Section 4.1), which recon-
structs the curvature matrix to detect geometric anoma-
lies. This involves a mixed-curvature encoder (common
to both pipelines) equipped with spectral graph filters
(Section 4.1.1), followed by a Gaussian kernel-based de-
coder (Section 4.1.2) that predicts curvature values. Next,
we extend our framework to curvature-invariant anomaly de-
tection (Section 4.2) by deforming the graph under Ollivier-
Ricci flow (Section 4.2.1), thereby regularizing curvature
distortions. While the encoder remains identical, we replace
the product manifold with a Euclidean manifold to ensure
that structural and attribute anomalies are reconstructed in-
dependently of curvature.

4.1. Curvature-equivariant Reconstruction

Product manifold Construction. The product manifold P
can have multiple hyperbolic or spherical components with
distinct learnable curvatures. This allows us to accommo-
date a broader spectrum of curvatures. Consequently, the
product manifold can be succinctly described as PdP =

×P
p=1M

κp,dp
p = (×H

h=1H
κh,dh

h ) × (×S
s=1Sκs,ds

s ) × Ede ,
with a total dimension of dP =

∑H
h=1 dh+

∑S
s=1 ds+de =

Figure 2. Architecture of CurvGAD. The proposed model employs
two synergistic pipelines for anomaly detection: (1) Curvature-
Equivariant Reconstruction – embedding the input graph into a
mixed-curvature product manifold using a spectral Chebyshev filter
bank, with a Gaussian kernel-based decoder reconstructing the
curvature matrix to capture curvature irregularities; (2) Curvature-
Invariant Reconstruction – regularizing the graph under Ollivier-
Ricci flow to uniformize edge curvatures, followed by an Euclidean
manifold-based encoder to learn representations for the decoupled
reconstruction of adjacency and feature matrices.

∑P
p=1 dp. We determine the task-specific signature of PdP ,

by examining the distribution of the Ollivier-Ricci curva-
ture within the graph and identifying the most significant
curvature bands (see Appendix F). Next, we project the
original Euclidean input node features onto the mixed-
curvature manifold as X′ = ∥Pp=1exp

κp

0 (fθ(X)), where
fθ(.) : RdX → RdP represents a neural network with pa-
rameter set {θ} that generates the hidden state euclidean
features of dimension dP . Here, expκp

0 : RdP →Mκp,dp

is the exponential map (Section 3) to project the node fea-
tures X to the pth manifold. The projected node features are
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utilized in the encoder to learn node representations, which
are subsequently used to reconstruct the curvature.

4.1.1. MIXED-CURVATURE CHEBYSHEV ENCODER

Once the input features are projected into the product mani-
fold, we introduce a filterbank of Chebyshev approximation-
based spectral filters. Let ψ represent the graph filter op-
erator, the filtering operation for a signal x is defined as:

ψ(LP)x = ψ(UPΛPU
⊤
P )x = UPψ(ΛP)U

⊤
P x. (1)

■ Chebyshev Approximation. Direct eigen- decomposi-
tion of the Laplace-Beltrami operator LP is computationally
prohibitive, especially for large graphs. To address this
we employ a Chebyshev polynomial approximation of the
filters in the mixed-curvature space. Recall that the Cheby-
shev polynomial Z(f)(x) of order f may be computed by
the following stable recurrence relation:

Z(f)(x) = 2Z(f−1)(x)− Z(f−2)(x), (2)

with Z(0) = 1 and Z(1) = x. In our framework, we gener-
alize this recurrence to accommodate the geometry of the
mixed-curvature manifold by replacing the standard opera-
tions with their curvature-aware counterparts. The filtering
process on the pth manifold proceeds as follows:

Z
(0)

Mκp,dp
p

= exp
κp

0 (fθ(X)) (Feature mapping) (3)

Z
(1)

Mκp,dp
p

= L̃P ⊠κp
exp

κp

0 (fθ(X)) (4)

Z
(f)

Mκp,dp
p

=
(
2⊗κp

L̃P ⊠κp
Z

(f−1)

Mκp,dp
p

)
⊖κp

Z
(f−2)

Mκp,dp
p

(5)

N
(F)

Mκp,dp
p

=

κp⊕
f∈{0,F}

ϕf ⊗κp Z
(f)

Mκp,dp
p

(6)

Observe how Equations 3 to 5 generalise the Chebyshev
recurrence in Equation 2 to the mixed-curvature setting,
for the pth component manifold. Further, as detailed in
a previous section, the Equation 3 transforms the original
Euclidean node features X to the product manifold. Finally,
in Equation 6 the filtered signals from different Chebyshev
orders (till F) are aggregated to form the final node rep-
resentation on the manifold p. Here, ⊕κ, ⊖κ, ⊗κ and ⊠κ

denote mobius addition, mobius subtraction, κ-right-matrix-
multiplication and κ-left-matrix-multiplication respectively
(Appendix B.2). These operations generalize vector algebra
to κ- stereographic model. ϕl are the learnable weights.

■ Filter Bank. To effectively capture spectral informa-
tion across diverse graph frequencies, we adopt the above
construction to get a filter bank of multiple spectral filters:

ΩMκp,dp
p

=

[
NI

Mκp,dp
p

,N
(1)

Mκp,dp
p

, . . . ,N
(F)

Mκp,dp
p

]

Here, NI is the unfiltered case, where we pass the identity
matrix I instead of L̃P. This approach ensures that the filter
bank captures both high-frequency (heterophilic) and low-
frequency (homophilic) signals within the mixed-curvature
manifold, enabling CurvGAD to generalize effectively across
heterophilic and homophilic graphs.

■ Final Representations. Filtered node representations are
aggregated hierarchically to synthesize information across
both spectral filters and manifold components. Unlike naive
concatenation, this aggregation mechanism assigns learn-
able importance weights to both filters and manifolds:

nj =
∥∥∥M
m=0

βp ⊗κp

( F⊕
f=0

αf ⊗κp

(
N

(f)

Mκp,dp
p

))
j

Here
∥∥ is the concatenation operator and nj ∈ PdP is final

node representation for node j. βp and αf are learnable
weights which assert the relative importance of the pth com-
ponent manifold embedding and f th filter.

4.1.2. DECODER FOR CURVATURE RECONSTRUCTION

The decoder aims to reconstruct the Ollivier-Ricci curvature
Cxy for nodes x and y, by leveraging their latent embed-
dings nx,ny ∈ PdM , learned through the mixed-curvature
encoder. We propose using a Gaussian kernel defined on
the manifold distance between the node embeddings.

Definition 4.1 (Curvature Decoder). Let nx,ny ∈ PdM

be the latent embeddings of nodes x and y. The
predicted curvature C̃xy is defined as: C̃xy = 2 ·
sigmoid (1−K(nx,ny)) − 1, where K(nx,ny) is a

Gaussian kernel: K(nx,ny) = exp
(
−γDM(nx,ny)

2

τ2

)
,

and DM(nx,ny) =
√∑M

m=1DMp
(nx,ny)2 aggregates

geodesic distances DMp over manifold components. Here,
γ is a fixed kernel width and τ is a sensitivity parameter.

See Appendix D.1 for more intuition. The decoder mini-
mizes the loss of the Frobenius norm: LC = ∥C̃ −C∥2F ,
where C̃ and C denote the predicted and original curvature
matrices, respectively. This objective ensures accurate cur-
vature reconstruction while adapting to geodesic distances.

4.2. Curvature-invariant Reconstruction

This pipeline focuses on reconstructing the adjacency matrix
A and the feature matrix X independently of the graph’s
underlying geometry (curvature). To achieve this, the graph
is first deformed under the Ollivier-Ricci flow, followed by
curvature-invariant encoding and decoding.

4.2.1. RICCI FLOW AND CURVATURE REGULARIZATION

Ollivier-Ricci flow is applied to the original graph to regu-
larize edge curvatures by iteratively updating edge weights
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based on their curvature values. This process, outlined
in Algorithm 4.2.1, transforms the graph into a constant-
curvature space, thereby neutralizing curvature-induced dis-
tortions. Refer to Figure 3 for better intuition.
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Figure 3. Intuition on Ollivier-Ricci flow. Curvature regular-
ization of Karate Club graph (Rozemberczki et al., 2020) under
Ollivier-Ricci flow. Observe how the flow increases (decreases)
the weight of negatively (positively) curved edges. Red nodes indi-
cate curvature-based outliers near edges with extreme curvatures.

Algorithm 1 Discrete Ollivier-Ricci Flow
Require: An undirected graph G = (V, E), a small thresh-

old ∆ > 0, learning rate ϵ > 0
Ensure: Edge weights of G as Ricci flow metrics

1: Initialize edge weights w(0)
xy = 1 for all (x, y) ∈ E

2: repeat
3: Normalize edge weights: w(t)

xy ←
|E|·w(t)

xy∑
(x,y)∈E w

(t)
xy

4: Compute ORC: κ̃(t)xy = 1− W1(m
δ
x,m

δ
y)

D(t)
G (x,y)

5: Update edge weight under Ricci flow:

w(t+1)
xy ← w(t)

xy − ϵ · κ̃(t)xy ·w(t)
xy

6: Check convergence:
∣∣∣κ̃(t+1)

xy − κ̃(t)xy

∣∣∣ < ∆

7: until convergence condition is met for all edges

4.2.2. UNIFORM-CURVATURE RECONSTRUCTION

Under Ollivier-Ricci flow, the edge curvatures of the regu-
larized graph approach near zero, allowing reconstructions
to operate within a Euclidean manifold. We reuse the Cheby-
shev filterbank encoder (Section 4.1.1) to map the nodes
in the curvature-regularized graph (Section 4.2.1) to latent
Euclidean embeddings, ensuring curvature invariance in
the learned representations. Unlike the mixed-curvature en-
coder (Section 4.1), this encoder simplifies the geometric
complexity by restricting operations to a Euclidean space.

■ Decoders. We employ separate decoders for adjacency
and feature reconstruction tasks. These decoders ensure that
structural and attribute information is effectively recovered
without being influenced by curvature irregularities.

Definition 4.2 (Adjacency Decoder). The predicted adja-
cency value Ãxy for nodes x, y is modeled as the likelihood
of an edge existing between them: p(Axy = 1 | nx,ny) =
σ
(
n⊤
x ny

)
, where nx,ny ∈ Rd are Euclidean latent embed-

dings, and σ(·) is the sigmoid activation.
Definition 4.3 (Attribute Decoder). The reconstructed fea-
tures for a node x are given by: X̃x = fdec-X(nx), where
fdec-X is a multi-layer perceptron (MLP) mapping latent
embeddings nx ∈ Rd to feature space.

The decoders are trained using reconstruction losses: LA =
∥Ã−A∥2F for adjacency and LX = ∥X̃−X∥2F for features.

4.3. Objective Function

The objective function balances curvature reconstruction,
structural and attribute reconstruction, and a supervised clas-
sification loss to detect both geometric and non-geometric
anomalies. The total loss is:

Ltotal = λclsLcls + (1− λcls) · (λCLC + λALA + λXLX)

where LC,LA,LX denote reconstruction losses for the cur-
vature, adjacency, and feature matrices, whileLcls represents
the cross-entropy classification loss. The anomaly score for
each node is computed as a weighted sum of reconstruction
errors: Scorei = λC|c̃i−ci|22+λA|ãi−ai|22+λX|x̃i−xi|22,
where c̃i, ãi, x̃i are the reconstructed curvature, adjacency,
and feature values, respectively. Learnable tradeoff parame-
ters λX, λC, λA, λcls dynamically adjust loss contributions.
The final anomaly detection integrates this score with classi-
fication logits, ranking anomalies based on both geometric
and non-geometric deviations. An ablation study evaluating
the impact of Lcls and LC is presented in Section 5.5. In
the following section, we lay out the empirical results to
validate the efficacy of CurvGAD.

5. Experimentation
5.1. Datasets

We evaluate CurvGAD on 10 datasets, each containing or-
ganic node-level anomalies, to assess its effectiveness across
homophilic and heterophilic settings. These datasets span
multiple domains, including social media, e-commerce, and
financial networks. Specifically, (1) Weibo (Zhao et al.,
2020; Liu et al., 2022), (2) Reddit (Kumar et al., 2019;
Liu et al., 2022), (3) Questions (Platonov et al., 2023),
and (4) T-Social (Tang et al., 2022) focus on identifying
anomalous user behaviors on social media platforms. In the
context of crowdsourcing and e-commerce, (5) Tolokers
(Platonov et al., 2023), (6) Amazon (McAuley & Leskovec,
2013; Dou et al., 2020), and (7) YelpChi (Rayana & Akoglu,
2015; Dou et al., 2020) are used to detect fraudulent workers,
reviews, and reviewers. Meanwhile, (8) T-Finance (Tang
et al., 2022), (9) Elliptic (Weber et al., 2019), and (10)
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Model Reddit Weibo Amazon YelpChi T-Finance Elliptic Tolokers Questions DGraph T-Social Av. Gain

GCN 65.25±0.89 97.03±0.57 82.48±0.43 57.81±0.62 92.41±2.35 81.42±1.83 75.63±1.28 70.93±1.34 75.98±0.25 80.21±7.34 10.02
GAT 65.38±0.19 95.35±1.47 96.75±1.06 79.52±1.98 92.81±1.59 84.93±1.98 79.18±1.06 71.17±1.63 75.96±0.21 75.42±4.83 6.29
GraphSAGE 62.86±0.14 94.94±1.37 89.65±5.42 85.25±1.04 82.89±3.95 85.35±0.72 79.32±0.94 72.15±1.73 75.63±0.21 79.29±4.07 7.20
BernNet 65.82±1.75 94.96±1.56 96.21±1.43 83.07±0.61 92.81±1.78 83.18±1.49 76.95±0.65 68.82±2.98 73.25±0.17 66.85±5.84 7.74
ChebyNet 64.11±1.49 95.02±0.93 96.59±2.01 80.23±2.11 93.12±0.98 79.34±3.07 79.81±1.45 69.23±1.55 74.09±1.44 68.11±6.87 7.97

HGCN 64.13±0.98 94.23±1.86 79.94±0.93 76.46±0.62 92.32±4.18 78.66±2.22 75.78±1.01 67.16±1.74 71.27±0.25 79.43±4.22 10.00
HGAT 63.45±0.23 92.24±0.98 85.98±3.65 81.19±1.98 92.86±6.85 85.45±0.32 76.34±1.09 68.93±1.27 72.45±2.54 71.13±6.45 8.93
κGCN 61.77±1.54 97.87±1.24 97.34±1.19 83.76±1.04 92.54±4.34 76.13±2.13 79.64±0.07 73.15±3.84 78.02±0.14 85.65±3.11 5.35
QGCN 66.45±1.12 97.34±0.34 96.71±5.93 83.12±1.04 92.23±5.08 85.55±2.03 81.46±0.19 71.74±2.26 78.45±1.99 73.32±4.56 5.30

DCI 66.54±3.38 94.25±1.73 94.63±0.92 77.89±7.83 86.81±4.58 82.86±1.51 75.52±0.95 69.21±1.34 74.74±0.15 80.83±6.04 7.61
PCGNN 53.25±2.19 90.27±1.51 97.31±0.82 79.76±1.57 93.34±1.02 85.89±1.85 72.83±2.07 69.91±1.43 72.08±0.35 69.27±4.49 9.54
BWGNN 65.43±4.35 97.38±0.93 97.05±0.76 84.96±0.73 94.18±0.58 85.29±1.14 80.43±0.94 71.85±2.23 76.34±0.14 82.09±5.24 4.43
DOMINANT 62.32±2.65 87.43±2.01 76.23±5.99 65.03±4.66 89.43±1.21 79.34±0.94 76.43±0.93 64.92±1.74 70.76±0.86 76.09±3.22 13.14
AnomalyDAE 65.75±1.63 93.54±1.88 91.99±0.97 81.34±0.44 91.33±0.02 83.69±0.29 77.43±1.03 62.45±0.66 78.66±1.76 82.22±0.24 7.09
GADNR 67.01±1.02 96.92±0.43 93.46±2.03 79.24±2.64 95.99±1.53 82.57±0.84 76.43±1.65 70.11±0.06 75.03±0.97 85.64±0.44 5.69
ADAGAD 66.45±0.99 98.01±0.01 96.05±1.30 85.77±1.02 92.01±2.11 86.01±0.45 80.99±0.23 71.06±1.04 75.99±2.55 84.54±2.09 4.25

CurvGAD 70.42±1.03 99.04±0.34 99.62±0.17 89.33±1.44 98.13±1.34 90.13±0.99 85.22±0.11 74.45±0.04 83.77±2.44 89.23±3.89 –

∆ Imp. 5.09% 1.05% 2.34% 4.15% 2.23% 4.79% 4.61% 1.78% 6.50% 4.18% –

Table 1. CurvGAD wins. AUROC Score (Mean ± 95% Confidence Interval) for all baselines vs. CurvGAD. First , Second and Third
best performing models for each dataset have been highlighted. Av. Gain shows the average absolute improvement of CurvGAD over each
model across all datasets, and ∆ Imp. indicates the percentage gain of CurvGAD over the second-best for every dataset.

DGraph-Fin (Huang et al., 2022) are employed to identify
fraudulent users and illicit activities in financial networks.
Refer to Table 6 (Appendix E.1) for dataset statistics.

5.2. Baselines

For a fair comparison, we evaluate CurvGAD against four
types of baselines: (a) Conventional, including tradi-
tional models such as GCN (Kipf & Welling, 2017), GAT
(Veličković et al., 2017), and SAGE (Hamilton et al., 2017).
(b) Riemannian, comprising (i) Constant-curvature GNNs
like HGCN (Chami et al., 2019) and HGAT (Zhang et al.,
2021), and (ii) Mixed-curvature GNNs such as κGCN (Bach-
mann et al., 2020) and QGCN (Xiong et al., 2022). (c)
Spectral, including ChebyNet (Defferrard et al., 2016) and
BernNet (He et al., 2021). (d) Specialized GAD models,
including (i) Reconstruction-based approaches like DOM-
INANT (Ding et al., 2019) and AnomalyDAE (Fan et al.,
2020), and (ii) GNNs like DCI (Wang et al., 2021), PC-GNN
(Liu et al., 2021), BWGNN (Tang et al., 2022), GADNR
(Roy et al., 2024), and ADAGAD (He et al., 2024).

5.3. Experimental Results

We conduct experiments in a transductive, supervised setting
for node-level graph anomaly detection, following standard
data splits where available. If splits are not provided, we
adopt the strategy from (Tang et al., 2022), partitioning
nodes into 40%/20%/40% for training, validation, and test-
ing, as detailed in Table 6. To ensure robustness, we perform
ten random splits per dataset and report the average perfor-
mance. As per established anomaly detection benchmarks
(Han et al., 2022; Liu et al., 2022), we evaluate models using

the Area Under the Receiver Operating Characteristic Curve
(AUROC). ORC is computed with δ = 0.5, distributing
equal probability mass between a node and its neighbors.
Given the prohibitive cost of exact ORC computation on
large graphs, we employ a linear-time approximation via
combinatorial bounds (Appendix B.3). The manifold signa-
ture is decided heuristically using the ORC distribution of
the datasets (Algorithm 2, Appendix F). For optimization,
we leverage the κ-stereographic product manifold imple-
mentation from Geoopt1 and use Riemannian Adam for
gradient-based learning across product manifolds. All ex-
periments are conducted on A6000 GPUs (48GB), using
a total manifold dimension of dP = 48, a learning rate of
0.01, and a filterbank comprising F = 8 filters. Appendix
E.2 enlists the hyperparameter configurations tried and we
analyse the time complexity of CurvGAD in Appendix C.

5.4. Baseline Analysis

CurvGAD consistently outperforms all baselines across all
datasets, achieving the highest AUROC scores with an
improvement of upto 6.5% over the second-best model
(Table 1). Significant gains are observed on T-Social
(+4.18%), Elliptic (+4.79%) and Tolokers (+4.61%), all
heterophilic networks, highlighting CurvGAD’s ability to
detect complex anomalies beyond homophily-based as-
sumptions (addresses limitation L3). Among specialized
GAD models, ADAGAD and GADNR perform well on ho-
mophilic datasets like Reddit and Weibo, ranking as second
or third best in many cases. However, their performance
deteriorates on heterophilic datasets, where curvature-based

1https://github.com/geoopt/geoopt
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AUROC Reddit Weibo Amazon YelpChi T-Finance Elliptic Tolokers Questions DGraph T-Social

CurvGADeucl 63.34±3.01 97.55±0.34 94.65±0.44 84.34±3.22 96.43±1.84 86.97±0.33 79.45±0.99 72.45±0.35 79.94±2.08 83.54±3.45
CurvGADequi 68.75±4.03 98.75±0.57 98.34±0.67 85.94±1.45 97.87±1.23 87.48±0.66 80.54±1.01 71.32±0.56 81.37±2.56 83.56±2.88
CurvGADinvr 62.03±1.35 93.45±0.47 92.76±0.45 82.18±1.24 96.75±1.24 84.65±0.75 81.24±0.77 67.55±0.67 78.76±2.77 84.75±3.55
CurvGADflow 66.48±3.24 98.77±0.84 97.46±0.76 83.26±2.34 96.46±1.53 88.46±0.34 74.45±0.46 71.74±0.35 80.45±3.01 86.34±3.69
CurvGADunsp 68.34±0.99 98.63±0.76 98.01±0.55 87.87±2.34 97.22±0.86 88.32±0.09 84.01±0.58 73.05±0.99 81.05±2.01 88.88±1.57

CurvGAD 70.42±1.03 99.04±0.34 99.62±0.17 89.33±1.44 98.13±1.34 90.13±0.99 85.22±0.11 74.45±0.04 83.77±2.44 89.23±3.89

Table 2. Ablation Study on CurvGAD Variants – AUCROC Score (Mean ± 95% CI). Best performing scores per column are in Bold.
Cell shading reflects performance degradation relative to the best variant per dataset, with a darker Gray indicating higher degradation.

AUROC Reddit Weibo Amazon YelpChi T-Finance Elliptic Tolokers Questions DGraph T-Social

H24 × S24 70.42±1.03 99.04±0.24 96.62±0.15 87.56±1.66 96.44±1.45 85.45±0.95 83.22±0.17 67.56±0.45 75.34±2.43 88.45±3.05
(H8)2 × (S8)2 × E16 66.43±0.98 97.04±0.46 99.62±0.19 85.66±1.08 97.56±1.34 88.65±0.93 84.56±0.18 71.86±0.17 82.46±1.87 84.97±3.45
H8 × S8 × E32 68.35±1.08 97.01±0.12 95.55±0.18 89.33±1.44 96.65±1.37 87.36±0.45 82.76±0.18 70.56±0.07 80.35±2.99 87.56±3.35
H16 × (S16)2 70.22±1.13 96.11±0.65 97.39±0.19 87.66±1.54 97.76±1.34 86.75±0.66 76.65±0.19 72.76±0.19 81.76±2.01 89.23±3.89
(H16)2 × E16 69.11±0.89 97.43±0.33 96.01±0.18 87.35±1.43 98.13±1.34 87.65±0.35 78.67±0.24 73.65±0.65 83.77±2.44 85.76±4.34
H24 × E24 68.24±0.99 95.12±0.76 94.11±0.65 85.15±1.15 97.45±1.37 86.75±0.56 83.24±0.45 74.45±0.04 83.01±1.04 87.45±2.54
S24 × E24 68.29±1.06 96.99±0.65 97.62±0.18 84.35±1.06 96.16±2.38 87.56±0.66 85.22±0.11 71.43±0.08 75.23±2.23 86.56±2.66
H16 × S16 × E16 69.11±1.05 94.35±0.34 95.61±0.45 88.65±0.95 93.57±0.76 90.13±0.99 83.46±0.97 68.67±0.03 80.65±2.04 84.09±1.99

Table 3. Ablation Study on Product Manifold Signatures – AUCROC Score (Mean ± 95% CI). Best performing signatures are in Bold.
Cell shading reflects performance degradation relative to the best signature per dataset, with darker Gray indicating higher degradation.

models like κGCN and QGCN perform better, suggesting
that explicitly modeling curvature aids anomaly detection in
such settings. Reconstruction-based approaches like DOM-
INANT and AnomalyDAE perform worse than dedicated
GAD approaches, indicating that pure structure and attribute
reconstruction alone may be insufficient for anomaly detec-
tion. These models fail to capture deeper geometric irreg-
ularities, reinforcing the necessity of integrating curvature
information. HGCN and HGAT, despite leveraging hyper-
bolic geometry, underperform compared to CurvGAD, as
they operate on a constant curvature space, limiting their
adaptability to datasets with mixed geometric properties.

5.5. Ablation Study

To assess the contribution of individual components in
CurvGAD, we evaluate multiple ablations (Tables 2, 3).

(a) Euclidean-only variant (CurvGADeucl). This model
learns purely in Euclidean space, discarding mixed-
curvature embeddings. The performance drop (∼ 5%)
highlights the necessity of mixed-curvature modeling
(addresses L1). Notably, degradation is more pronounced
on curvature-sensitive datasets like Reddit (−7.08%) and
T-Social (−5.69%) but is minimal on T-Finance (−1.7%),
where Ollivier-Ricci curvatures are predominantly zero.

(b) Without Ricci Flow (CurvGADflow). Removing Ricci
flow prevents curvature-invariant reconstruction, degrading
performance on curvature-sensitive graphs (−10.77% on
Tolokers, −3.94% on Reddit). This confirms Ricci flow’s
role in stabilizing curvature variations and enhancing struc-
tural and attribute reconstruction. Observe that in Weibo, the

drop is minimal (−0.27%), which can be attributed to the
low curvature variance in the ORC distribution of Weibo.

(c) Manifold signature analysis. The optimal curvature
composition varies across datasets (Table 3). Reddit and
Questions favor hyperbolic embeddings, while Amazon and
YelpChi perform better with increased Euclidean capacity.
This validates the necessity of mixed-curvature manifolds
for adapting to diverse graph structures. To quantify the
contribution of individual geometry types, we further con-
duct ablations by removing each component in turn, e.g.
H24 × S24 (E removed) and S24 × E24 (H removed).

(d) Curvature-invariant pipeline only (CurvGADinvr).
This variant omits curvature reconstruction, relying solely
on structural and attribute reconstruction (removes LC).
While it still surpasses most baselines, performance declines
significantly (−8.39% on Reddit, −6.86% on Amazon),
confirming that structure and attributes alone are insufficient
for robust anomaly detection (addresses L2).

(e) Curvature-equivariant pipeline only (CurvGADequi).
This model detects only geometric anomalies, omitting
curvature-invariant reconstruction (removes LA,LX). It
outperforms CurvGADinvr (+6.72% on Reddit, +4.89%
on Amazon), highlighting how effective the curvature-
equivariant pipeline is in itself. Both pipelines compliment
each other, and achieve the best results together.

(f) Unsupervised variant (CurvGADunsp). Removing the
supervised classification loss Lcls results in a minor per-
formance drop ( 1.5% avg.), demonstrating that CurvGAD
remains effective even in an unsupervised setting, making it
adaptable to real-world scenarios with limited labels.
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These results validate the independent contributions of each
component, showing that curvature-awareness, curvature-
invariance, and Ricci flow collectively enhance anomaly
detection in both homophilic and heterophilic graphs.

6. Conclusion
In this paper, we propose CurvGAD, the first approach to in-
troduce the notion of curvature-based geometric anomalies
and to model them in graph anomaly detection through a
mixed-curvature perspective. Our dual-pipeline architecture
integrates curvature-equivariant and curvature-invariant re-
construction, capturing diverse anomalies across homophilic
and heterophilic networks. CurvGAD disentangles geomet-
ric, structural, and attribute-based anomalies, making it in-
terpretable. Extensive experiments across 10 benchmark-
ing datasets demonstrate the superiority of CurvGAD over
existing baselines. These results establish curvature as a
fundamental tool for GAD and pave the way for future
advancements in geometry-aware graph learning while of-
fering new avenues for exploring geometric anomalies in
topologically complex networks.

Impact Statement
The goal of this work is to offer a general-purpose anomaly
detection framework that has broad applicability and the-
oretical foundations. Although we do not anticipate any
immediate ethical issues specific to our study, careful imple-
mentation in practical contexts is required for security and
fairness in automated anomaly detection systems.

The potential uses of CurvGAD include fraud detection, cy-
bersecurity, financial risk analysis, and misinformation de-
tection, even though it was created as a foundational re-
search contribution to machine learning and graph represen-
tation learning. Due to the high stakes involved in decision-
making, these fields raise ethical questions about prejudice,
justice, and openness. Biases in input data may be exacer-
bated in anomaly identification results because our approach
depends on graph topology and node-level features. This
is especially true in financial or social network investiga-
tions where marginalized groups may be disproportionately
identified as outliers. Therefore, it is essential to make sure
that datasets are selected using preprocessing that considers
fairness and that model outputs are carefully assessed.

Additionally, CurvGAD makes GAD techniques more scal-
able, which could make them an effective tool for extensive
monitoring systems. Although advantageous for anti-fraud
and cybersecurity efforts, malicious actors might try to alter
graph architecture in order to avoid detection. Robustness
against adversarial perturbations in curvature-aware mod-
els should be investigated in future studies. Our method
improves interpretability by separating geometric and non-

geometric anomalies, which is important in high-stakes
applications where decision-making requires model expla-
nations. In scientific domains including network science,
biology, neurology, and transportation networks, where
curvature-driven representations may aid in identifying
anomalous patterns in actual systems, the knowledge gained
via CurvGAD might be advantageous.
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A. Appendix
A.1. Notation Table

Notation Reference

G = (V, E ,A) A graph G with set of edges E and vertices (nodes) V
M; Mp A smooth manifold; pth component manifold in the product manifold (Mp ∈ {E,H, S})
κp, dp Curvature and dimension of pth manifold component
expκ

0 : RdP → M Exponential map, to map from tangent plane (Euclidean) to the product manifold
logκ

0 : M → RdP Logarithmic map, to map from the manifold to the tangent plane
H; S; E Hyperbolic manifold; Spherical manifold; Euclidean manifold
PdP Product manifold of dimension dP
κ; κ̃ Continous manifold curvature; Discrete Ollivier-Ricci curvature (ORC)
κ̃xy; κ̃(t)

xy ORC of edge {x, y}, ORC of edge {x, y} at tth step of Ricci flow algorithm
mδ

x Probability mass assigned to node x for ORC computation
δ Probability of the mass retained v/s distributed among neighbour nodes for ORC Computation
N (x) Neighbourhood set of node x
x ∼ y This implies that x and y are adjacent nodes
W1(.) Wasserstein-1 (Earth mover’s) distance
dG(x, y) Shortest path (graph distance) between nodes x and y on graph G
Mκp,dp

p Constant-curvature manifold with dimension dp and curvature κp. Mp ∈ {H, S,E}
LP Discrete Laplace-Beltrami operator
UP =

[
{ul}n−1

l=0

]
Set of orthonormal eigenvectors of LP[

{λl}n−1
l=0

]
∈ Rn Ordered real nonnegative eigenvalues associated with UP

ϵ Ollivier-Ricci flow step size
w

(t)
xy Weight of the edge xy at the tth iteration in Ricci flow algorithm.

dX Input graph feature dimension
dP Total dimension of the product manifold
X ∈ Rn×dX Input feature matrix
⊕κ Mobius addition
⊗κ κ-right-matrix-multiplication
⊠κ κ-left-matrix-multiplication
nx Final (latent) node representation for node x after encoder
A; Ã Initial graph adjacency matrix, Reconstructed adjacency matrix
X; X̃ Initial graph feature matrix, Reconstructed feature matrix
C; C̃ Initial edge curvature matrix, Reconstructed curvature matrix
LC Curvature decoder reconstruction loss
LA Structure decoder reconstruction loss
LX Feature decoder reconstruction loss
Lcls Binary crossentropy supervised classification loss
λcls Weight of classification loss in total loss
DMp Geodesic distance over pth manifold component
DM(nx,ny) Aggregated distance on the product manifold (i.e. sum over all component manifolds)
K(nx,ny) Gaussian kernel used in curvature decoder over node embeddings nx,ny

βp Learnable attentation weight for pth component manifold
αf Learnable attentation weight for f th filter in the filterbank
F ; f Total number of filters in the filterbank; Used to denote the f th filter
P; p Total number of components in the product manifold; Used to denote the pth component
λX, λC, λA, λcls Learnable trade-off parameters for loss components
σ(.) Sigmoid activation function
∆ Stopping criterion threshold for Ollivier-Ricci flow
ψ Graph filter operator
fθ(.) Neural network (MLP) that generates hidden state Euclidean features of dimension dP
x A graph signal x : V → R
γ Kernel width hyperparameter for gaussian kernel (curvature decoder)
τ Sensitivity parameter (learnable) for gaussian kernel (curvature decoder)
Z

(f)

Mκp,dp
p

Intermediate node representation from f th filter

Tl(x) Chebyshev polynomial of order l
ΛP Diagonal matrix of eigenvalues
ϕf Learnable weights for filters, for the f th recursive level in Chebyshev encoder.
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B. More on Preliminaries
B.1. Product Manifolds

Consider a set of P smooth manifoldsM1,M2, . . . ,MP , each equipped with its own Riemannian structure. The product
manifold P is formed as their Cartesian product:

P =M1 ×M2 × · · · ×MP . (7)

This construction enables the representation of a point x ∈ P as a tuple:

x = (x1, x2, . . . , xP), (8)

where each xp corresponds to a coordinate in the individual component manifoldMp.

■ Tangent Space and Geodesic Movement. For any given x ∈ P, the associated tangent space is given by:

TxP = Tx1
M1 ×Tx2

M2 × · · · ×TxPMP . (9)

A tangent vector v ∈ TxP is similarly represented as:

v = (v1, v2, . . . , vP), (10)

where each vp ∈ Txp
Mp represents the directional component along the corresponding manifoldMp.

Since optimization over Riemannian manifolds requires movement along the manifold surface rather than within the tangent
space, we employ the exponential map, which maps a tangent vector v at x back onto the manifold:

expx : TxP→ P. (11)

For a product manifold, this mapping decomposes across individual components, leading to:

expx(v) = (expx1
(v1), expx2

(v2), . . . , expxP
(vP)). (12)

This property allows optimization steps to be performed independently along each manifold component, significantly
simplifying Riemannian optimization in mixed-curvature spaces. We use the Riemannian Adam optimizer from Geoopt
(https://github.com/geoopt/geoopt) Library for all our experimentation.

■ Curvature and Manifold Selection. The choice of component manifolds in P significantly influences model performance.
Hyperbolic spaces (H) are well-suited for hierarchical structures, spherical spaces (S) capture cyclical relations, while
Euclidean spaces (E) are ideal for line graphs (and provide a standard representation). The flexibility of mixed-curvature
embeddings allows for adaptive modeling across datasets with diverse underlying geometries.
Remark B.1. CurvGAD heuristically determines the optimal mixed-curvature manifold configuration (Algorithm 2, Appendix
F) for a given dataset, ensuring that embeddings conform to the dataset’s intrinsic geometric properties.
Remark B.2. The curvatures of the manifold components are dynamically learnt during the training process.

By leveraging a product of Riemannian manifolds, our approach effectively models complex graphs where curvature varies
locally, leading to superior anomaly detection across diverse graph topologies.

B.2. κ−Stereographic Model

To effectively model mixed-curvature embeddings, we adopt the κ-stereographic model (Bachmann et al., 2020) instead
of adopting separate formulations for hyperbolic and spherical spaces. This unified framework provides a consistent
mathematical formulation across varying curvature regimes, enabling smooth interpolation between hyperbolic (κ < 0),
spherical (κ > 0), and Euclidean (κ = 0) geometries. Efficient algebraic operations are essential for optimizing over
non-Euclidean spaces, and the κ-stereographic model offers closed-form expressions for key Riemannian operations.

■ Manifold Definition. The κ-stereographic manifold of curvature κ and dimension d is defined as:

Mκ,d =
{
z ∈ Rd | −κ∥z∥22 < 1

}
, (13)
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Operation Formalism in Ed Unified formalism in κ-stereographic model (Hd/ Sd)
Distance Metric dκM(x,y) = ∥x− y∥2 dκM(x,y) = 2√

|κ|
tan−1

κ

(√
|κ| ∥−x⊕κ y∥2

)
Exp. Map expκ

x(v) = x+ v expκ
x(v) = x⊕κ

(
tanκ

(√
|κ|λ

κ
x∥v∥2

2

)
v√

|κ|∥v∥2

)
Log. Map logκ

x(y) = x− y logκ
x(y) =

2√
|κ|λκ

x

tan−1
κ

(√
|κ| ∥−x⊕κ y∥2

)
−x⊕κy

∥−x⊕κy∥2

Addition x⊕κ y = x+ y x⊕κ y =
(1+2κxT y+K∥y∥2)x+(1−κ||x||2)y

1+2κxT y+κ2||x||2||v||2

Table 4. Operations in Hyperbolic Hd, Spherical Sd and Euclidean space Ed.

where z ∈ Rd represents a point in the stereographic space, and the curvature parameter κ governs the underlying geometry:
κ < 0 corresponds to hyperbolic manifold (Hd), κ > 0 corresponds to a spherical manifold (Sd) and κ = 0 reduces to
Euclidean space (Ed). The Riemannian metric tensor associated withMκ,d at a point z is:

gκz = (λκz)
2I, (14)

where the conformal factor λκz is defined as:

λκz = 2
(
1 + κ∥z∥22

)−1
. (15)

This ensures a smooth transition between different curvature settings.

■ Algebraic Operations. To perform optimization and inference on the manifold, we require efficient algebraic formulations
for fundamental operations such as vector addition, scalar multiplication, and distance computation. Table 4 summarizes the
key operations under the κ-stereographic model.

B.2.1. κ-RIGHT-MATRIX-MULTIPLICATION (BACHMANN ET AL., 2020)

For a matrix X ∈ Rn×d carrying κ-stereographic embeddings across its rows, and weights represented by W ∈ Rd×e, the
operation of Euclidean right multiplication can be decomposed into individual rows as (XW)i• = Xi•W. Consequently,
the κ-right-matrix-multiplication is defined in the same row-wise fashion as

(X⊗κ W)i• = expκ0 ((log
κ
0 (X)W)i•) (16)

= tanκ
(
αi tan

−1
κ (||X•i||)

) (XW)i•
||(XW)i•||

(17)

where αi =
||(XW)i•||

||Xi•|| and expκ0 and logκ0 denote the exponential and logarithmic map in the κ-stereographic model.

B.3. Ollivier-Ricci Curvature (ORC)

In an unweighted graph, the set of nodes adjacent to a given node x, denoted by N (x), is represented through a probability
distribution following a lazy random walk model (Lin et al., 2011). This distribution is defined by the equation:

mδ
z(x) =


δ, if z = x,
1−δ

|N (x)| , if z ∈ N (x),

0, otherwise.

(18)

The parameter δ determines the probability of staying at the current node, with the rest of the probability (1 − δ) being
evenly allocated among its neighbors. This approach links ORC with lazy random walks, affecting the interaction between
local exploration and node revisitation. In our study, we set δ = 0.5, resulting in an equal division of probability between
the node and its neighbors, creating a balance between breadth-first and depth-first search methodologies. The value of
δ is significant and varies based on the graph’s structure. A lower δ value promotes more exploration within the local
neighborhood, whereas a higher δ fosters node revisits, supporting the ”lazy” aspect of the walk. For the experiments,
δ = 0.5 was chosen to ensure an equal division of probability between the node and its adjacent nodes.
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C. Time Complexity Analysis
C.1. Preprocessing Complexity

C.1.1. COMPUTATIONAL CONSIDERATIONS FOR ORC

A crucial preprocessing step in CurvGAD is the computation of the Ollivier-Ricci Curvature (ORC) and subsequent Ricci
Flow regularization. These computations serve as the foundation for both the curvature-invariant and curvature-equivariant
pipelines, making their efficiency paramount to overall scalability. We precompute both these to save computation time as
they are used in both the CurvGAD pipelines.

Computing ORC involves determining (in this case, approximating) the Wasserstein-1 distance (W1) between the probability
distributions of neighboring nodes. In discrete settings, this requires solving an optimal transport problem. The standard
approach relies on the Hungarian algorithm (Kuhn, 1955), which operates inO(d3) time per node, making it computationally
prohibitive for large graphs.

To mitigate this cost, the Sinkhorn algorithm (Sinkhorn & Knopp, 1967) is often used as a relaxation, reducing complexity
to O(d2) per node. However, this still remains impractical for million-scale graphs. In this work, we adopt a linear-time
approximation for ORC, allowing CurvGAD to scale efficiently while retaining interpretability.

C.1.2. APPROXIMATING ORC IN LINEAR TIME

Instead of directly solving the optimal transport problem, we employ a combinatorial approximation for ORC, inspired by
Tian et al. (2023). This approach estimates Wasserstein distances using local structural properties, significantly reducing
computational overhead. The approximation is derived from the analytical curvature bounds proposed by Jost & Liu (2014),
which leverage local connectivity features such as node degrees and triangle counts. Let #(x, y) represent the number of
triangles involving the edge (x, y), and define a ∧ b = min(a, b), a ∨ b = max(a, b), where dx denotes the degree of
node x. The Ollivier-Ricci curvature for edge (x, y) is then bounded as follows:

Theorem C.1 (Jost & Liu (2014)). For an unweighted graph, the Ollivier-Ricci curvature of edge e = (x, y) satisfies:

1. Lower bound:

κ̃(x, y) ≥ −
(
1− 1

dx
− 1

dy
− #(x, y)

dx ∧ dy

)
+

(19)

−
(
1− 1

dx
− 1

dy
− #(x, y)

dx ∨ dy

)
+

+
#(x, y)

dx ∨ dy
.

2. Upper bound:

κ̃(x, y) ≤ #(x, y)

dx ∨ dy
. (20)

The curvature of an edge can then be efficiently approximated as:

κ̂(x, y) :=
1

2

(
κupper(x, y) + κlower(x, y)

)
. (21)

■ Computational Complexity. This approximation scheme runs in linear time O(|E|), where |E| is the number of edges.
Since each edge’s curvature is estimated using only local information (node degrees and triangles), the process is inherently
parallelizable across edges, making it well-suited for large-scale graphs.

C.1.3. RICCI FLOW COMPLEXITY

Ricci Flow is an iterative process where edge weights are adjusted according to the ORC values, smoothing the curvature
distribution over time. Each iteration requires one full computation of ORC, making the total complexity: O(I|E|), where I
is the number of iterations required for convergence. Empirically, across the datasets used in this study, Ricci Flow converges
in 12–13 iterations on average. Since I is much smaller than the total number of edges (I ≪ |E|), the process remains linear
in complexity:, i.e. O(I|E|) ≈ O(|E|) as I is fixed across datasets.
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C.1.4. SUMMARY OF PREPROCESSING COMPLEXITY

• Ollivier-Ricci Curvature (ORC): O(|E|) (linear time)

• Ricci Flow Regularization: O(|E|) (empirically bounded by a constant number of iterations)

• Total Preprocessing Complexity: O(|E|) (parallelizable and scalable)

C.2. Runtime Comparison

dat
Figure 4. Runtime comparision of CurvGAD. Average runtime per epoch (training + inference) in seconds (log scale) on Reddit (Liu et al.,
2022), Weibo (Zhao et al., 2020), Tolokers (Platonov et al., 2023), and Questions (Platonov et al., 2023) datasets, for select baselines.

Dataset GCN GraphSAGE GAT BernNet KGCN ChebNet BGNN BWGNN PCGNN DCI GHRN XGBOD CurvGAD

Reddit 34.37 10.19 17.55 11.27 158.45 9.52 507.41 10.52 12.50 150.61 11.70 3050.66 585.22
Weibo 6.95 8.58 10.63 7.65 99.34 5.13 1415.59 10.63 6.74 121.77 11.06 4889.16 276.70
Tolokers 10.12 9.02 12.17 10.80 105.23 9.16 295.89 11.94 10.37 149.58 14.08 1432.76 260.30
Questions 21.56 27.12 22.85 18.53 183.53 23.77 1972.41 25.41 21.44 408.37 26.55 188192.5 589.41

Table 5. Runtime Comparison (milliseconds) of CurvGAD and baseline models across multiple datasets. This table shows the exact
numbers used in Figure 4. The results are shown for CurvGAD model with F = 8 filters and product manifold (H8)2 × S16 × E16.

C.2.1. RUNTIME ANALYSIS

The runtime comparison in Table C.2 provides key insights into the computational efficiency of CurvGAD relative to baseline
methods. Our results report the execution time in milliseconds for CurvGAD configured with F = 8 spectral filters and
a mixed-curvature product manifold (H8)2 × S16 × E16. Despite leveraging multiple curvature spaces and graph filters
for representation learning, CurvGAD demonstrates reasonable computational efficiency. For reference, when analysing
Figure 4, GCN and BerNet can be thought of as using just one graph filter and KGCN can be considered as one manifold for
learning representations (when compared to CurvGAD with 8 filters and 4 manifolds).

• Scalability with mixed-curvature manifolds. Unlike KGCN, which operates on a single curvature space, CurvGAD
effectively integrates four manifold components. Nevertheless, its runtime remains within an acceptable range,
significantly outperforming KGCN across all datasets. For instance, on Reddit, KGCN requires 158.45ms, while
CurvGAD completes execution in 585.22ms, despite utilizing a far more expressive model.
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• Efficiency compared to BGNN and XGBOD. CurvGAD remains substantially faster than models like BGNN and
XGBOD. On the Weibo dataset, BGNN exhibits an extreme runtime of 1415.59ms, whereas CurvGAD operates at
only 276.70ms. Similarly, on Tolokers, BGNN requires 295.89ms, compared to 260.30ms for CurvGAD, making it
significantly more efficient despite handling curvature-sensitive graph learning.

• Reasonable overhead given model complexity. The additional computational cost incurred by CurvGAD is expected
due to its curvature-based learning framework, which integrates Ricci flow, manifold embeddings, and spectral filtering.
However, the runtime remains competitive, ensuring that the benefits of richer geometric representations do not come
at an impractical computational expense.

Overall, CurvGAD balances computational efficiency and model expressiveness, outperforming single-curvature models
while maintaining a significantly lower runtime than complex baselines like BGNN and XGBOD. Its efficiency relative
to KGCN and its comparable performance to DCI suggest that the inclusion of curvature-based representations does not
drastically hinder scalability, making it a viable choice for large-scale graph anomaly detection tasks.

D. Arcitectural Details
D.1. Definition 4.1: Intuition and Derivation

The curvature decoder in Section 4.1.2 reconstructs the Ollivier-Ricci curvature (ORC) Cxy between nodes x and y using
their latent embeddings nx,ny ∈ PdM . The key idea is to define a Gaussian kernel on the geodesic distance within the
product manifold to capture the intrinsic curvature information. In this section, we derive the decoder formulation and
provide mathematical intuition.

Motivation: Distance-based curvature estimation. Curvature measures the deviation of a space from being flat. The
Ollivier-Ricci curvature is based on the Wasserstein distance between local probability distributions around connected
nodes x and y. Intuitively, negatively curved spaces (e.g., hyperbolic manifolds) exhibit greater spread between transported
probability masses, whereas positively curved spaces (e.g., spherical manifolds) result in concentrated transport.

Given that ORC is inherently tied to how distances between points behave in different curvature regimes, it is natural
to model curvature reconstruction as a function of the geodesic distance DM(nx,ny). A widely adopted approach in
Riemannian learning is to employ a Gaussian kernel, which serves as a smooth and flexible mechanism to relate distances to
similarity metrics.

Geodesic Distance on the Product Manifold. For a product manifold P composed ofM individual manifold components,
the squared geodesic distance between node embeddings nx and ny is computed as:

DM(nx,ny)
2 =

M∑
p=1

DMp
(nx, ny)

2. (22)

This formulation ensures that distances are computed per manifold component and then aggregated across all curvature
spaces.

Gaussian Kernel Formulation. To reconstruct the curvature, we define a Gaussian kernel based on the computed geodesic
distance:

K(nx,ny) = exp

(
−γDM(nx,ny)

2

τ2

)
, (23)

where γ controls the width of the kernel and τ is a trainable sensitivity parameter that adapts to the curvature distribution.

Intuition. The kernel output is close to 1 for small distances (nodes close in latent space) and approaches 0 for large distances
(nodes far apart). This behavior aligns with the principle that lower curvature corresponds to more spread-out distances in
latent space.

Sigmoid transformation for curvature prediction. The predicted curvature C̃xy is derived from the kernel output via a
sigmoid transformation:

C̃xy = 2 · sigmoid (1−K(nx,ny))− 1. (24)
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Justification: The sigmoid function normalizes the kernel output to the [0, 1] range, and the affine transformation maps the
values into the [−1, 1] range, consistent with the properties of Ollivier-Ricci curvature.

Optimization via reconstruction loss. To ensure accurate curvature reconstruction, we optimize the decoder by minimizing
the Frobenius norm loss:

LC =
∥∥∥C̃−C

∥∥∥2
F
, (25)

where C̃ denotes the predicted curvature matrix and C is the true ORC matrix.

Summary: The decoder exploits the structure of the product manifold by computing geodesic distances, mapping them
through a Gaussian kernel, and applying a transformation to ensure proper curvature scaling. This approach provides an
effective means of capturing geometric distortions while maintaining computational efficiency.

E. Experimental Details
E.1. Dataset Statistics

#Nodes #Edges #Feat. Anomaly Train Relationship

Reddit (Kumar et al., 2019; Liu et al., 2022) 10,984 168,016 64 3.3% 40% Under Same Post
Weibo (Zhao et al., 2020; Liu et al., 2022) 8,405 407,963 400 10.3% 40% Under Same Hashtag
Amazon (McAuley & Leskovec, 2013; Dou et al., 2020) 11,944 4,398,392 25 9.5% 70% Review Correlation
YelpChi (Rayana & Akoglu, 2015; Dou et al., 2020) 45,954 3,846,979 32 14.5% 70% Reviewer Interaction
Tolokers (Platonov et al., 2023) 11,758 519,000 10 21.8% 40% Work Collaboration
Questions (Platonov et al., 2023) 48,921 153,540 301 3.0% 52% Question Answering
T-Finance (Tang et al., 2022) 39,357 21,222,543 10 4.6% 50% Transaction Record
Elliptic (Weber et al., 2019) 203,769 234,355 166 9.8% 50% Payment Flow
DGraph-Fin (Huang et al., 2022) 3,700,550 4,300,999 17 1.3% 70% Loan Guarantor
T-Social (Tang et al., 2022) 5,781,065 73,105,508 10 3.0% 40% Social Friendship

Table 6. Statistics of datasets used for evaluation. Percentage of anomalies and the respective train splits have been mentioned.

E.2. Hyperparameter Tuning

Hyperparameter Tuning Configurations Description

F {3, 5, 8, 10, 20, 25} Total number of graph filters.
δ {0.2, 0.5, 0.7} Neighbourhood weight distribution parameter for ORC
dP {32, 48, 64, 128, 256} Total dimension of the product manifold.
dropout {0.2, 0.3, 0.5} Dropout rate
epochs {100, 150, 1000} Number of training epochs
lr {1e− 4, 2e− 3, 0.001, 0.01} Learning rate
weight decay {0, 1e− 4, 5e− 4} Weight decay

Table 7. Hyperparameter configurations used in the experiments for CurvGADẆe highlight the final configuration of CurvGAD in Red.

F. Signature Estimation
The mixed-curvature product manifold PdP is fundamental in capturing the geometric characteristics of graph-structured data.
The optimal configuration of hyperbolic, spherical, and Euclidean components within this manifold is dataset-dependent,
influenced by the underlying curvature distribution of the graph. To generalize across datasets, we estimate an appropriate
manifold signature by leveraging Ollivier-Ricci Curvature (ORC) as a guiding metric.

Our heuristic-driven approach assigns a spherical component to datasets exhibiting a predominance of positively curved
edges, while a hyperbolic component is prioritized for datasets with a surplus of negatively curved edges. The stepwise
procedure for this signature selection is formalized in Algorithm 2 [citation-withheld]2. By systematically analyzing
the curvature distribution, our algorithm approximates a suitable manifold signature that aligns with the dataset’s intrinsic
geometric structure.

2[citation-withheld] is used to respect the double blind policy for one of our previous works, which is still under review at the
time of submission. Appropriate citation shall be inserted later. This algorithm has been adopted from our previous work.
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To ensure robustness, we cluster the ORC distribution, identifying curvature centroids while preserving their sequence and
frequency. This heuristic approach provides a structured methodology to inform curvature-aware representation learning.
However, due to the inherent variability in optimal dimension allocation, we treat the dimensions of component manifolds
as a tunable hyperparameter rather than an automatically inferred property. This strategy ensures fair and reproducible
comparisons across datasets, as the ideal manifold configuration varies per dataset. While we do not claim that this heuristic
yields the absolute optimal manifold decomposition, it serves as an effective approximation, aligning curvature-sensitive
embeddings with the dataset’s topological properties to enhance graph anomaly detection.

Algorithm 2 Product manifold signature estimation
Require: • Edge curvature histogram C = {(κi, fi)}Ni=1

• Threshold ϵ′ to distinguish between curved and flat regions
• Maximum number of Hyperbolic (Hmax) and Spherical (Smax) components.
• Total product manifold dimension dP
• (Optional) Preferred component manifold dimensions dpre

(h), d
pre
(s), d

pre
(e)

Ensure: Product manifold signature PdP = ×P
p=1M

κp,dp
q

1: Normalize frequencies: f ′
i =

fi∑N
j=1 fj

2: Construct weighted curvature set: C′ = {(κi, f
′
i)}Ni=1

3: Determine optimal number of clusters K using methods like the elbow method, constrained by K ≤ Hmax + Smax + 1 ▷ There can
be only 1 Euclidean component

4: Cluster C′ into K clusters using weighted clustering (e.g., weighted K-means)
5: Initialize empty lists H,S, E
6: for each cluster c in clusters do
7: Compute cluster centroid curvature κc =

∑
(κi,f

′
i
)∈c κi

|c|
8: Compute total frequency weight wc =

∑
(κi,f

′
i)∈c f

′
i

9: if κc < −ϵ′ and |H| ≤ Hmax then ▷ Negative curvature
10: Assign manifold component: Mp = Hκc ▷ Curvature initialization
11: Add (Mp, wc) to H
12: else if κc > ϵ′ and |S| ≤ Smax then ▷ Positive curvature
13: Assign manifold component: Mp = Sκc ▷ Curvature initialization
14: Add (Mp, wc) to S
15: else
16: Assign manifold component: Mp = E ▷ Approximate zero curvature, i.e. κc ∈ [−ϵ′, ϵ′]
17: Add (Mp, wc) to E
18: end if
19: end for
20: if Predefined dimensions dpre

(h), d
pre
(s), d

pre
(e) are provided then

21: Assign dimensions dp to each component p as per predefined values ▷ Dimension assignment
22: else
23: Set total number of components Q = |H|+ |S|+ |E| ▷ Dimension assignment

24: Allocate dimensions dp to each component p: dp =

⌊
dP × wp∑Q

p=1 wp

⌋
▷ Proportional to weights

25: Adjust dp to ensure
∑P

q=1 dp = dP
26: end if
27: Formulate manifold signature:

PdP =
(
×|H|

h=1H
κ(h),d(h)

h

)
×

(
×|S|

s=1S
κ(s),d(s)
s

)
× Ed(e)
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