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ABSTRACT

Convolutional Neural Networks (CNNs) and Transformers
have achieved promising results in fully supervised medical
image segmentation. However, acquiring high-quality anno-
tations for medical images is prohibitively expensive, making
semi-supervised learning a promising way to reduce the anno-
tation cost by leveraging both labeled and unlabeled images
for training. In this work, we propose a novel model named
Semi-ConTrans that unifies the advantages of CNNs and
Transformers through multi-scale feature fusion and cross
teaching for semi-supervised segmentation. Specifically, to
leverage localization capability from CNNs and global con-
text modeling of self-attention in Transformers in a unified
framework, we adaptively fuse them at multiple scales in the
encoder. Furthermore, we use a CNN decoder and a Trans-
former decoder with different decision boundaries for cross
teaching, obtaining more holistic pseudo labels for dealing
with unlabeled images. Experiments on the ACDC dataset
of cardiac images demonstrate that our approach greatly
improves the performance with only 10% or 20% labeled
images by exploiting unlabeled images, outperforming eight
state-of-the-art semi-supervised segmentation methods.

Index Terms— Semi-supervised learning, CNN, Trans-
former, Attention.

1. INTRODUCTION

Medical image segmentation plays an important role in quan-
titative measurement of lesions and organs for disease diag-
nosis and treatment planning. Under the main frameworks
of Convolutional Neural Networks (CNNs) [1] and Vision
Transformer (ViT) [2], deep learning methods in medical
image segmentation have achieved remarkable performance
when trained on large-scale pixel-level annotated datasets.
However, obtaining full annotation with pixel-level labels is
labor-intensive and extremely expensive. In order to reduce
annotation costs, Semi-Supervised Learning (SSL) meth-

*Corresponding author (guotai.wang@uestc.edu.cn)
Weiren Zhao and Lanfeng Zhong—Equal contribution

ods [3] that utilize a large amount of unlabeled images and
limited labeled images have become an attractive solution.

In semi-supervised medical image segmentation, a com-
mon method is pseudo-labeling, which generates pseudo
labels for unlabeled images to provide additional supervi-
sion [4]. Another popular technique is consistency regular-
ization, such as teacher-student consistency [5, 6] and Cross
Consistency Training (CCT) [7]. However, most existing
SSL frameworks rely only on CNNs that have limitations
in capturing long-range dependencies of dense prediction
tasks. In contrast, the Transformer architecture leverag-
ing self-attention shows superior performance in modeling
long-range dependencies. Therefore, effectively combining
Transformers and CNNs has become an emerging technol-
ogy in the field of computer vision. However, combining the
advantages of CNNs and Transformers have rarely been in-
vestigated for semi-supervised medical image segmentation.
Though Luo et al. [8] proposed cross supervision between
a CNN and a ViT, there is no any interaction between their
feature extraction stage, which leads to a limited ability to
combine local and long-range features.

In this work, we propose Semi-ConTrans, a network that
deeply integrates CNN and ViT encoders along with dual
CNN and ViT decoders for semi-supervised medical image
segmentation. The Semi-ConTrans encoder fuses CNN and
ViT features at multiple scales to obtain both local details
and global contexts. The fused representations are decoded
through separate CNN and ViT branches, which provide
complementary pseudo labels on unlabeled images for cross
teaching. This unified CNN-ViT architecture enables joint
multi-scale feature learning on labeled and unlabeled images
through the integrated encoder dual-decoder design. Our
main contributions can be summarized as follows:

• We propose an end-to-end SSL framework Semi-ConTrans
that uses a reciprocal fusion strategy to integrate the com-
plementary feature learning ability of CNNs and ViTs.

• An integrated encoder with dual decoders is proposed
for leveraging unlabeled images, where cross teaching
between CNN and ViT decoders is introduced.

• We demonstrate state-of-the-art semi-supervised segmen-
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Fig. 1: The overall architecture of our Semi-ConTrans for semi-supervised segmentation. We propose multi-scale feature
fusion between a CNN and a ViT in the encoder to enhance the feature representation ability, and introduce cross teaching
between CNN and ViT decoders to deal with unlabeled images.

tation performance through extensive experiments on a
public benchmark dataset for cardiac image segmentation.

2. METHOD

For semi-supervised learning, let Dl denote the set of labeled
images, and Du denote the set of unlabeled images, and the
entire training set is D = Dl ∪ Du. Our proposed Semi-
ConTrans framework is illustrated in Fig. 1, and it deeply inte-
grates a CNN and a ViT for semi-supervised segmentation. In
the encoder part, we fuse local features from a U-Net [9] and
long-range features from a Swin-UNet [10] at multiple scales.
At the same time, we propose cross teaching between Swin-
UNet and U-Net decoders by mutually generating pseudo la-
bels to leverage the unlabeled images.

2.1. Multi-scale fusion for CNN and ViT encoders

Aiming to simultaneously utilize the local feature represen-
tation of CNNs and the global modeling capability of Trans-
formers, we propose a novel fusion scheme to enhance the en-
coder’s understanding of the input image. As shown in Fig. 1,
both the CNN encoder and the ViT encoder extract features
at multiple scales or depths. To better leverage both local and
global features for the two types of networks, we introduce
multi-scale bidirectional feature fusion between the two en-
coders, and use a fusion module at each of the last S scales of
the encoders, i.e., S = 3 in this work.

Specifically, we use F s
a ∈ RCa×H×W and F s

b ∈ RN×Cb

to denote the feature map at the last s-th scale of the CNN
and ViT encoders, respectively, where Ca and Cb are channel
numbers. H and W represent the height and width of the
feature map, and N = HW is the number of tokens in the
ViT encoder at scale s.

As the ViT encoder’s feature F s
b has an in-design spatial

attention, we also apply a spatial attention to the CNN en-
coder’s feature F s

a to improve its spatial awareness. Inspired
by [11, 12], we use average pooling (PC

avg) and max pooling
(PC

max) across the channel dimension, and use a convolutional
layer followed by sigmoid activation σ to obtain the spatial at-
tention map for feature calibration:

F̃ s
a = F s

a · σ
(
Conv7×7

(
PC
avg(F

s
a )⊕ PC

max(F
s
a )
))

(1)

where ⊕ denotes concatenation of feature maps. F̃ s
a ∈

RCa×H×W is the output of spatial attention. Conv7×7 rep-
resents convolution with a kernel size of 7×7 and output
channel of 1. Then a reshape operation (Reshape u) is used
to reshape F̃ s

a from a 2D feature map (Ca × H × W ) to a
1D token (HW ×Ca) to match the spatial size of F s

b . As F̃ s
a

and F s
b may have different channel numbers, we also use a

point-wise convolutional layer (Conv1×1) to map the channel
number from Ca to Cb, and the output is denoted as:

Rs
a = Conv1×1

(
Reshape u(F̃ s

a )
)

(2)

Similarly, we use another reshape operation (Reshape v)
to reshape F s

b from a 1D token (HW × Cb) to a 2D feature
map (Cb×H ×W ), and use a point-wise convolutional layer
to map the channel number to Ca:

Rs
b = Conv1×1 (Reshape v(F s

b )) (3)

Finally, we integrate ViT feature to the CNN encoder by
adding Rs

b to F s
a , and integrate CNN feature to the ViT en-

coder by adding Rs
a to F s

b , the output features of the fusion
module for the CNN and ViT branches is denoted as F ′s

a and
F ′s

b , respectively:

F ′s
a = Rs

b + F s
a ; F ′s

b = Rs
a + F s

b (4)
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The fused features F ′s
a and F ′s

b are sent to the corresponding
decoders through skip connections. Except for the last scale,
they are also sent to the next stage of the two encoders, respec-
tively. Based on the fused features, the input of the decoders
has a better representation of local details and global contexts,
which helps to improve the segmentation performance.

2.2. Cross teaching between CNN and ViT decoders

To further utilize the fused feature information between CNN
and ViT, we propose a cross teaching approach between CNN
decoder and ViT decoder. By interpreting the fused feature
from two different perspectives with different decision bound-
aries, our method can avoid the bias of a single decoder and
alleviate over-fitting to potentially wrong pseudo labels.

The two decoders of our method are implemented with
that from U-Net [9] and Swin-UNet [2], respectively. For
an input image x, the probability prediction maps from the
CNN decoder and the ViT decoder are denoted as pc and pt,
respectively. We use argmax to convert them into one-hot
pseudo labels:

yc = argmax(pc); yt = argmax(pt) (5)

For an unlabeled image, each decoder is supervised by
pseudo labels from the other decoder, and the cross teaching
loss for the unlabeled data is defined as:

Lct =
1

|Du|
∑
x∈Du

(
Ldice(p

c, yt) + Ldice(p
t, yc)

)
(6)

where Ldice is the standard Dice loss function for segmenta-
tion. In addition, a supervision loss Lsup consisting of cross-
entropy loss Lce and Dice loss is used for the labeled images:

Lsup =
1

|Dl|
∑

(x,y)∈Dl

∑
p∈{pc,pt}

(
Lce(p, y) + Ldice(p, y)

)
(7)

where y represents the ground truth of image x. The overall
loss function for SSL is defined as:

L = Lsup + λLct (8)

where λ is a hyper-parameter to control the weight of Lct.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and evaluation metrics

We validated our proposed approach using the ACDC dataset
of cardiac cine-Magnetic Resonance Images (MRI) [17] for
segmentation of three cardiac substructures: Left Ventricle
(LV), Right Ventricle (RV), and Myocardium (MYO). It com-
prises 200 scans from 100 patients, and was randomly divided
at patient level into 70%, 10% and 20% for training, vali-
dation and testing, respectively. We used 14 and 28 labeled

scans (corresponding to annotation ratio of 10% and 20%) for
semi-supervised learning, respectively. Due to the large inter-
slice spacing (5-10 mm), 2D networks were used for slice-
by-slice segmentation. For preprocessing, all the slices were
resized to 256 × 256. During the inference phase, the slice-
level predictions were stacked into a 3D volume for quantita-
tive evaluation in terms of Dice Similarity Coefficient (DSC)
and 95% Hausdorff Distance (HD95).

3.2. Implementation details

The CNN structure and ViT structure in our Semi-ConTrans
were implemented with U-Net [9] and Swin-UNet [2], respec-
tively. In order to make the ViT have the same computational
efficiency as the CNN and to allow them to complement each
other, we made the following settings: Patch size: 224 × 224,
embedding dimension: 96, Number of heads in self-attention:
3, 3, 6, and 12, Window size: 7, and each resolution level of
encoder/decoder in Swin-UNet has two Swin-Transformer-
based blocks. All the methods were implemented using the
PyTorch framework and PyMIC [3] on a Ubuntu desktop with
a GTX2080TI GPU. We used Stochastic Gradient Descent
(SGD) for training with 1300 epochs, and the batch size was
24 where 12 images were labeled. We employed the poly
learning rate policy to adjust the learning rate that was ini-
tialized to 0.01. The weighting factor λ was defined by the
commonly used time-dependent Gaussian warm-up function:
λ(t) = 0.1 · e−5(1− t

ttotal
)2 , where t represents the current

training epoch and ttotal is the total number of epochs. After
training, we used the CNN decoder for inference, due to its
higher efficiency and accuracy than the ViT decoder.

3.3. Comparison with existing semi-supervised methods

To validate our proposed method, we conducted compara-
tive experiments under the same settings. First, we set the
baseline as training U-Net [9] or Swin-UNet [10] with fully
supervised learning from Dl. We then compared our method
with eight state-of-the-art SSL methods: 1) Mean Teacher
(MT) [5] that employs self-ensembling to provide pseudo
labels for supervision, 2) Uncertainty Aware Mean Teacher
(UAMT) [6] that incorporates uncertainty estimation into
the mean teacher framework to weight predictions, 3) In-
terpolation Consistency Training (ICT) [15] that promotes
consistency between predictions of interpolated images, 4)
Cross Pseudo Supervision (CPS) [4] that utilizes pseudo la-
bels from two independent networks for cross supervision,
5) Uncertainty Rectified Pyramid Consistency (URPC) [16]
that enforces multi-scale prediction consistency with uncer-
tainty rectification, 6) CCT [7] that encourages consistency
between a primary decoder and multiple auxiliary decoders,
7) Deep Co-Training (DCT) [13] that minimizes the expected
Jensen-Shannon divergence between two networks, and 8)
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Table 1: Quantitative comparison of different SSL methods with two different annotation ratios. * denotes significant improve-
ment (p-value < 0.05) from the best existing method using a paired Student’s t-test.

Method
Annotation ratio: 10% Annotation ratio: 20%

DSC (%) HD95 (mm) DSC (%) HD95 (mm)
RV Myo LV Mean Average RV Myo LV Mean Average

baseline (ViT) 67.57±18.72 68.41±13.41 77.24±16.85 71.08±16.32 10.41±13.61 75.92±17.27 76.16±9.31 82.57±15.36 78.22±13.98 8.26±11.80
baseline (CNN) 65.69±26.82 76.71±10.57 83.44±14.16 75.28±17.18 7.98±12.46 72.67±26.83 80.78±7.42 86.07±12.25 79.84±15.50 7.98±12.41

DCT [13] 74.21±22.05 76.31±11.97 83.01±16.93 77.84±16.98 7.64±10.32 73.21±26.67 81.23±8.01 87.52±10.49 80.66±15.06 7.64±9.75
CPS [4] 77.48±19.63 79.90±7.90 85.45±11.98 80.92±13.17 6.52±10.78 81.65±17.92 83.27±6.31 88.94±6.94 84.62±10.39 4.89±9.65

UAMT [6] 70.68±26.51 77.39±9.80 83.37±13.34 78.07±16.55 8.24±14.32 75.42±26.85 82.18±6.72 88.16±9.97 81.92±14.51 6.36±12.57
MT [5] 77.53±19.16 76.24±11.02 83.08±15.47 78.95±15.21 7.60±11.69 74.91±25.01 82.00±6.98 87.06±10.61 81.32±14.20 6.74±12.34

R-Drop [14] 72.95±23.04 78.68±9.68 85.01±12.66 78.88±15.12 6.82±13.50 77.72±23.33 82.88±6.15 89.10±8.87 83.23±12.78 6.31±11.73
CCT [7] 78.93±17.91 80.10±6.40 86.40±11.31 81.81±11.90 6.95±10.81 79.98±22.34 81.54±8.27 86.27±12.82 82.59±14.48 5.10±10.95
ICT [15] 77.63±19.40 79.77±9.17 86.54±10.65 81.12±13.07 9.62±10.58 77.21±22.48 82.88±6.01 88.75±8.70 82.95±12.40 9.62±11.29

URPC [16] 68.48±25.85 76.12±14.57 84.31±15.21 76.30±18.54 4.78±12.67 76.91±24.50 81.67±8.72 88.01±9.98 82.19±14.40 4.64±11.92
Ours 83.13±8.71* 82.65±6.96* 89.30±9.63* 85.02±8.43* 4.45±7.42* 87.22±8.45* 85.65±4.67* 91.65±7.41* 88.20±6.84* 2.54±3.81*

Table 2: DSC (%) of different variants of our method with
annotation ratio being 10%.

Method RV Myo LV Average
Two CNNs 77.48±19.63 79.90±7.90 85.45±11.98 80.92±13.17
Two ViTs 76.79±12.42 75.15±10.15 84.52±12.94 78.82±11.84

CNN&ViT 80.04±9.77 81.27±6.51 88.36±9.80 83.22±8.69
CNN&ViT (ViT output) 75.96±14.98 77.19±9.56 84.28±13.40 79.14±12.64

Ours (ViT output) 79.63±11.61 78.29±9.92 85.81±12.76 81.05±11.43
Ours (one fusion) 81.09±11.06 82.13±8.93 88.97±9.94 84.06±9.97

Ours 83.13±8.71 82.65±6.96 89.30±9.63 85.02±8.43

Regularized Dropout (R-Drop) [14] that generates predic-
tions via dropout at test time for consistency regularization.

As demonstrated in Table 1, when the annotation ratio was
10%, the baseline method using ViT and CNN obtained an av-
erage DSC of 71.08% and 75.28%, respectively. The best ex-
isting method was CCT [7] and it obtained an average DSC of
81.81%. In contrast, our method significantly outperformed
it by achieving an average DSC of 85.02%. When the anno-
tation ratio was 20%, CPS [4] achieved the best performance
among existing methods, and our method was also signifi-
cantly better than it in terms of DSC (88.20% vs 84.62%) and
HD95 (2.54 mm vs 4.89 mm). Fig. 2 shows a visual compar-
ison between our method and CPS and CCT that are top ex-
isting methods according to Table 1, and the annotation ratio
was 10%. It can be observed that our method exhibits better
segmentation performance than CPS [4] and CCT [7].

3.4. Ablation study in architectural design

To validate our network structure, we compared different vari-
ants of encoder and decoder design with an annotation ratio
of 10%. As shown in Table 2, Two CNNs, Two ViTs and
CNN&ViT mean cross teaching without inter-network feature
fusion between two CNNs, two ViTs and between a CNN and
a ViT, respectively. Their average DSC values were 80.92%,
78.82% and 83.22%, respectively, showing the effectiveness
of asymmetric networks for cross teaching. We then added a
feature fusion module at the bottleneck for CNN&ViT, which
is refereed to as ‘ours (one fusion)’, and it improves the av-
erage DSC to 84.06%. Furthermore, our method with multi-
scale feature fusion obtained the highest DSC of 85.02%. Ta-

Fig. 2: Visual comparison between different methods at an
annotation ratio of 10%.

ble 2 also shows that inference with the ViT decoder has a
lower performance than the using CNN decoder for inference,
which is mainly because that ViT has a lower ability to obtain
detailed segmentation results.

4. DISCUSSION AND CONCLUSION

In this work, we propose a semi-supervised segmentation
model that unifies CNN and ViT via multi-scale fusion
of their complementary features in the encoder and cross
teaching between CNN and ViT decoders. It can effectively
aggregate fine-grained features of CNN with contextual rep-
resentations of ViT to enhance the feature learning ability for
dealing with a partially labeled training set. The cross teach-
ing between the two types of decoders further leverages their
complementary information to avoid bias towards a single
model, reducing the effect of noisy pseudo labels. Extensive
experiments demonstrated that our method achieved state-of-
the-art segmentation performance under different annotation
ratios, and illustrated the benefits of aggregating comple-
mentary CNN and Transformer features and decoders for
semi-supervised medical image segmentation. In the future,
it is of interest to develop better strategies for dealing with
noisy pseudo labels in the cross teaching framework.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 30,2024 at 13:01:32 UTC from IEEE Xplore.  Restrictions apply. 



5. COMPLIANCE WITH ETHICAL STANDARDS

This research used the ACDC public dataset for experiments.
Ethical approval was obtained by the dataset creator from
their Institutional Review Board.

6. ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (62271115).

7. REFERENCES

[1] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang, “Unet++: Redesigning
skip connections to exploit multiscale features in image
segmentation,” IEEE TMI, vol. 39, no. 6, pp. 1856–
1867, 2020.

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in ICRL,
2021.

[3] Guotai Wang, Xiangde Luo, Ran Gu, Shuojue Yang,
Yijie Qu, Shuwei Zhai, Qianfei Zhao, Kang Li, and
Shaoting Zhang, “PyMIC: A deep learning toolkit
for annotation-efficient medical image segmentation,”
CMPB, vol. 231, pp. 107398, 2023.

[4] Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong
Wang, “Semi-supervised semantic segmentation with
cross pseudo supervision,” in CVPR, 2021, pp. 2613–
2622.

[5] Antti Tarvainen and Harri Valpola, “Mean teachers
are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results,”
NeurIPS, vol. 30, 2017.

[6] Lequan Yu, Shujun Wang, Xiaomeng Li, Chi-Wing
Fu, and Pheng-Ann Heng, “Uncertainty-aware self-
ensembling model for semi-supervised 3D left atrium
segmentation,” in MICCAI, 2019, pp. 605–613.

[7] Yassine Ouali, Celine Hudelot, and Myriam Tami,
“Semi-supervised semantic segmentation with cross-
consistency training,” in CVPR, 2020, pp. 12674–
12684.

[8] Xiangde Luo, Minhao Hu, Tao Song, Guotai Wang, and
Shaoting Zhang, “Semi-supervised medical image seg-
mentation via cross teaching between cnn and trans-
former,” in MIDL. PMLR, 2022, pp. 820–833.

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” in MICCAI, 2015, pp. 234–241.

[10] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xi-
aopeng Zhang, Qi Tian, and Manning Wang, “Swin-
unet: Unet-like pure transformer for medical image seg-
mentation,” in ECCV 2022 Workshops, 2023, pp. 205–
218.

[11] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao,
Zhiwei Fang, and Hanqing Lu, “Dual attention network
for scene segmentation,” in CVPR, 2018, pp. 3146–
3154.

[12] Lanfeng Zhong, Xin Liao, Shaoting Zhang, and Guotai
Wang, “Semi-supervised pathological image segmen-
tation via cross distillation of multiple attentions,” in
MICCAI, 2023, pp. 570–579.

[13] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille,
“Deep co-training for semi-supervised image recogni-
tion,” in ECCV, 2018, pp. 135–152.

[14] Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei
Chen, Min Zhang, Tie-Yan Liu, et al., “R-drop: Regu-
larized dropout for neural networks,” NeurIPS, vol. 34,
pp. 10890–10905, 2021.

[15] Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Ben-
gio, and David Lopez-Paz, “Interpolation consistency
training for semi-supervised learning,” in ICCV, 2019,
pp. 5358–5367.

[16] Xiangde Luo, Guotai Wang, Wenjun Liao, Jieneng
Chen, Tao Song, Yinan Chen, Dimitris N. Metaxas
Zhang, Shichuan, and Shaoting Zhang, “Semi-
supervised medical image segmentation via uncertainty
rectified pyramid consistency,” MedIA, vol. 80, pp.
102517, 2022.

[17] Olivier Bernard, Alain Lalande, Clement Zotti, Fred-
erick Cervenansky, Xin Yang, Pheng-Ann Heng, Irem
Cetin, Karim Lekadir, Oscar Camara, Miguel An-
gel Gonzalez Ballester, et al., “Deep learning techniques
for automatic mri cardiac multi-structures segmentation
and diagnosis: is the problem solved?,” IEEE TMI, vol.
37, no. 11, pp. 2514–2525, 2018.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 30,2024 at 13:01:32 UTC from IEEE Xplore.  Restrictions apply. 


