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Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) have demonstrated significant003
progress in various areas, such as text gener-004
ation and code synthesis. However, the relia-005
bility of performance evaluation has come un-006
der scrutiny due to data contamination—the007
unintended overlap between training and test008
datasets. This overlap has the potential to artifi-009
cially inflate model performance, as LLMs are010
typically trained on extensive datasets scraped011
from publicly available sources. These datasets012
often inadvertently overlap with the bench-013
marks used for evaluation, leading to an over-014
estimation of the models’ true generalization015
capabilities. In this paper, we first exam-016
ine the definition and impacts of data con-017
tamination. Secondly, we review methods018
for contamination-free evaluation, focusing on019
three strategies: data updating-based methods,020
data rewriting-based methods, and prevention-021
based methods. Specifically, we highlight dy-022
namic benchmarks and LLM-driven evaluation023
methods. Finally, we categorize contamination024
detecting methods based on model information025
dependency: white-Box, gray-Box, and black-026
Box detection approaches. Our survey high-027
lights the requirements for more rigorous eval-028
uation protocols and proposes future directions029
for addressing data contamination challenges.030

1 Introduction031

Recent breakthroughs in Large Language Models032

(LLMs) have demonstrated remarkable capabilities033

in text generation, code synthesis, and mathemat-034

ical reasoning (Zhao et al., 2023; OpenAI et al.,035

2024; DeepSeek-AI et al., 2025). However, the036

reliability of LLM evaluation is increasingly ques-037

tioned due to data contamination-the unintended038

overlap between training and test data sets (Bal-039

loccu et al., 2024; Chang et al., 2024). This is040

especially problematic as LLMs use large web-041

scraped datasets that are prone to overlap with042

testing benchmarks. LLMs are known to mem- 043

orize portions of their training data, and under 044

certain prompts, they can reproduce this data ver- 045

batim (Carlini et al., 2022). As highlighted by 046

(Sainz et al., 2023), a critical consequence of data 047

contamination is that scientific studies relying on 048

contaminated LLMs may produce erroneous con- 049

clusions, potentially invalidating valid hypotheses. 050

Furthermore, Ippolito et al. (2023) demonstrated 051

that contaminated models can inadvertently align 052

with copyright-protected content post hoc, posing 053

significant challenges for the responsible develop- 054

ment of LLMs. To underscore the importance of 055

addressing data contamination in both the develop- 056

ment and evaluation of LLMs, we present a com- 057

prehensive review of data contamination issues in 058

this paper. 059

In section 2, we define data contamination as the 060

inclusion of data from the testing set during the 061

pre-training phase, which artificially inflates model 062

performance. Recent studies extend this defini- 063

tion along two dimensions: phase-based contamina- 064

tion in LLMs’ lifecycle and benchmark-based con- 065

tamination in LLMs’ evaluation. For phase-based 066

analysis, contamination mechanisms include pre- 067

training phase leakage, fine-tuning biases, cross- 068

modal leakage (Yao et al., 2024), and indirect hu- 069

man interactions (Palavalli et al., 2024). Mean- 070

while, benchmark-based contamination operates 071

at two granularities: instance-level contamination, 072

and dataset-level contamination. Dataset-level con- 073

tamination is categorized by severity into simple 074

rewriting, label leakage, text leakage, and dual text- 075

label leakage. The impacts are discussed in the 076

following four areas: collecting evidence, factors 077

discussion, non-contamination scenarios, and quan- 078

tifying contamination. 079

In section 3, we discuss how to achieve 080

contamination-free evaluation. For static bench- 081

marks, current research focuses on three key 082

contamination-free strategies: automatically up- 083
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dating datasets using the most recent data, rewrit-084

ing existing data, and implementing proactive risk085

prevention mechanisms. Meanwhile, dynamic eval-086

uation frameworks(Zhu et al., 2024a; Lei et al.,087

2024; Zhang et al., 2024e; Ying et al., 2024) gener-088

ate test samples using techniques like combinato-089

rial optimization, graph-based reasoning, and con-090

trolled randomization, creating an evolving evalua-091

tion system. Additionally, the LLM-as-a-Evaluator092

paradigm(Bai et al., 2024) turns LLMs into meta-093

evaluators, enabling intelligent assessments inde-094

pendent of static benchmarks.095

In section 4, we explore methodologies for de-096

tecting data contamination in LLMs. We categorize097

data contamination detection approaches into three098

distinct paradigms: white-box detection, which re-099

lies on full access to model architectures or training100

data to achieve high precision, employing tech-101

niques such as N-gram overlap (Brown et al., 2020)102

or embedding similarity (Reimers, 2019); gray-box103

detection, which leverages partial model informa-104

tion, such as token probabilities, to identify contam-105

ination; and black-box detection, which operates106

without access to internal model details, relying107

instead on heuristic rules (the details are outlined108

in Appendix B). Together, these approaches illus-109

trate the evolving and multifaceted landscape of110

data contamination detection methods, each offer-111

ing unique advantages and challenges.112

The organization of this paper is as follows, as113

shown in figure 1. In Section 2, we discuss ex-114

isting work on the definition and impacts of data115

contamination. Section 3 summarizes current meth-116

ods for constructing contamination-free datasets117

and dynamic evaluation approaches. Section 4 dis-118

cusses how to detect data contamination. Finally,119

in Section 5, we present several significant future120

challenges in this area.121

2 What is Data Contamination122

2.1 Definition123

In recent years, a growing body of research has124

emerged to address the issue of data contamina-125

tion in LLMs. However, the field lacks a unified126

definition or standardized methodology to compre-127

hensively summarize data contamination. Brown128

et al. (2020) was among the first to highlight pre-129

training data contamination, employing an N-gram130

diagnostic method to demonstrate how contamina-131

tion artificially inflates model performance. Hart-132

mann et al. (2023) further explored the connec-133

tion between LLM memorization and data contam- 134

ination, noting that both phenomena involve the 135

regurgitation of pre-training data. Schwarzschild 136

et al. (2024) proposed that strings can be consid- 137

ered memorized if they can be reproduced using a 138

shorter prompt, while Karamolegkou et al. (2023) 139

investigated verbatim memorization, particularly 140

in the context of copyrighted materials. Building 141

on these foundational studies, our research extends 142

the framework into two significant directions: (1) 143

examining vulnerabilities across the entire lifecy- 144

cle of LLMs, including pre-training, fine-tuning, 145

and post-deployment contamination, and (2) ad- 146

dressing risks to benchmark integrity, such as data 147

manipulation and potential label leakage. 148

2.1.1 Phase-based Contamination 149

For phase-based contamination, recent research 150

has identified stage-specific contamination risks 151

throughout the lifecycle of LLMs: pre-training 152

(where test data may leak into training corpora), 153

fine-tuning (where models are unintentionally ex- 154

posed to evaluation data), and post-deployment 155

(where models absorb biases from real-world in- 156

teractions). Sainz et al. (2023) systematically 157

mapped contamination pathways across these criti- 158

cal phases, while Balloccu et al. (2024) introduced 159

the concept of indirect data contamination, high- 160

lighting how human interactions during LLM train- 161

ing can inadvertently introduce biases, even in the 162

absence of explicit test data inclusion. Furthermore, 163

multimodal large language models (MLLMs) face 164

heightened contamination challenges due to the 165

integration of diverse data modalities (Yin et al., 166

2023). Song et al. (2024) proposed a bimodal tax- 167

onomy, distinguishing between unimodal contami- 168

nation and cross-modal contamination, and devel- 169

oped traceability frameworks tailored specifically 170

for MLLMs. 171

2.1.2 Benchmark-based Contamination 172

For benchmark-based contamination, prior re- 173

search has generally approached the issue from 174

two primary perspectives. The first focuses on 175

whether labels are leaked or whether samples are 176

rewritten, while the second categorizes contami- 177

nation at either the instance level or the dataset 178

level. Yang et al. (2023) considered even sim- 179

ple rewording—such as synonym substitution or 180

translation—as a form of contamination. Yao et al. 181

(2024) further revealed cross-language contamina- 182

tion through the detection of option rewriting. In 183
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Data Contamination
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(Sec. 2)
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Types

Definition:
Hartmann et al., Schwarzschild et al., Karamolegkou et al.
Phase-based Contamination:
Brown et al.; Sainz et al.,Balloccu et al., Song et al.
Benchmark-based Contamination:
Yang et al. Palavalli et al.; Fu et al. Yao et al.Matton et al.

Impacts

Evidence Collection:
Singh et al. Li and Flanigan; Riddell et al.; Cao et al.
Liu et al. Jiang et al. Sainz et al.
Factors Discussion:
Magar and Schwartz Mehrbakhsh et al. Singh et al.
Non-Contamination Scenarios:
Dekoninck et al. Palavalli et al.
Quantifying Methods:
Brown et al.; Chowdhery et al.; Touvron et al.; Singh et al.
Riddell et al.; Maertens et al.

How to
avoid data
contamination
(Sec. 3)

Benchmark
Contamination-free

Data Updating-based Methods:
Li et al., White et al., Jain et al.,Li et al.
Yu et al., Zhang et al., Haimes et al., Fan et al.
Data Rewriting-based Methods:
Zhu et al., Zhao et al., Zhang et al., Li et al.,Ying et al.
Zhu et al.,Wang et al.
Prevention-based Methods:
Zhu et al., Li et al.

Dynamic Evaluation Zhu et al., Lei et al., Zhang et al.
Srivastava et al., Qian et al.

LLM-as-a-Evaluator Bai et al., Yu et al., Li et al.

How to
detect data
contamination
(Sec. 4)

White-Box
Detection

Elangovan et al., Brown et al., Touvron et al., Chowdhery et al.
Achiam et al., Reimers, Lee et al., Tu et al., Yang et al.

Gray-Box
Detection

Duan et al., Ye et al., Shi et al., Zhang et al.
Zhang et al., Li, Schwarzschild et al., Zhang et al.

Black-Box
Detection

Golchin and Surdeanu, Golchin and Surdeanu, Duarte et al.
Dong et al., Ranaldi et al., Chang et al., Deng et al.

Future Directions
(Sec. 5)

(1)LLM Unlearning Methods (2)Enhancing Black-Box Detection Methods
(3)Distinguishing Between Data Contamination and Generalization
(4)Community Effort for Data Contamination (5)Non-Benchmark Evaluation

Figure 1: Structure of this paper

code generation tasks, Palavalli et al. (2024) estab-184

lished a systematic taxonomy, categorizing contam-185

ination into dataset-level (e.g., test data leakage or186

mixing) and instance-level (e.g., output masking,187

input/output rewriting, or augmentation). Expand-188

ing on this, Matton et al. (2024) identified three189

distinct sources of contamination and proposed the190

LBPP benchmark as a countermeasure. Addition-191

ally, Fu et al. (2024) provided formal mathematical192

definitions for contamination at both the instance193

and dataset levels, defining instance-level contami-194

nation through membership inference attacks and195

dataset-level contamination as either full or partial196

contamination.197

2.2 Impacts 198

Data contamination critically undermines evalua- 199

tion reliability and research validity. As (Sainz 200

et al., 2023) demonstrated, benchmark overfit- 201

ting can artificially inflate model performance and 202

compromise scientific conclusions in NLP studies. 203

(Singh et al., 2024) identified two principal analy- 204

sis approaches: causal analysis through controlled 205

retraining experiments, and post-hoc contamina- 206

tion inference via performance pattern examination 207

without model retraining. 208

2.2.1 Evidence Collection 209

Initial contamination investigation focuses on tem- 210

poral data analysis and adversarial detection meth- 211

ods. Li and Flanigan (2024) proposed evaluating 212
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models on pre/post-training datasets with mem-213

bership inference attacks, revealing contamination214

effects on zero/few-shot performance. Riddell215

et al. (2024) demonstrated performance inflation on216

seen HumanEval/MBPP samples, while Cao et al.217

(2024) validated contamination mitigation strategy218

through using the most recent benchmarks. Jiang219

et al. (2024) differentiated between text contamina-220

tion (input samples) and true contamination (input-221

output pairs). Liu et al. (2024) exposed Chinese222

LLMs’ superficial knowledge despite broad train-223

ing exposure. Sainz et al. (2023) highlighted that224

current evidence on contamination remains frag-225

mented across publications and informal channels,226

suggesting that the prevalence of contamination227

may be significantly underestimated.228

2.2.2 Factors Discussion229

In this section, we discuss some factors influenc-230

ing contamination. Magar and Schwartz (2022)231

found that exploitation of contaminated data is in-232

fluenced by factors like model size, learning rate,233

and the position of contaminated data, suggesting234

that memorization does not always lead to exploita-235

tion. Mehrbakhsh et al. (2024) designed GPT-4-236

generated templates to investigate how the com-237

plexity of test instances influences the contamina-238

tion in Llama-2 7B, aiming to better understand239

how varying levels of difficulty and diversity in the240

templates can influence the model’s performance.241

Singh et al. (2024) proposed a new contamina-242

tion evaluation protocol, ConTAM, to explore how243

data contamination affects the evaluation results244

of LLMs, and provided a method to quantify the245

impact of contamination.246

2.2.3 Non-Contamination Scenarios247

In this section, we explore non-contamination sce-248

narios, where the overlap between training and test-249

ing data does not lead to performance improvement.250

Dekoninck et al. (2024) established a causal rela-251

tionship between model performance improvement252

and data contamination, explicitly defining cases253

where such overlap exists but does not enhance254

performance as non-contamination. Furthermore,255

Palavalli et al. (2024) clarified several phenomena256

that improve performance on downstream tasks257

without being influenced by contamination. These258

include language understanding, prior task under-259

standing, and transductive learning. These phenom-260

ena enhance empirical results while preserving the261

integrity of both the task and the model, distinguish-262

ing them from contamination-related performance 263

gains. 264

2.2.4 Quantifying contamination 265

Contamination scoring mechanisms classify evalu- 266

ation samples through threshold-based indices. We 267

have summarized some common contamination de- 268

tection methods in table 1. For instance, Brown 269

et al. (2020) used N-grams to evaluate contamina- 270

tion by checking whether each token in the tested 271

sample appears in an n-gram from the pre-training 272

corpus. Chowdhery et al. (2023) calculated the 273

contamination score based on the proportion of 274

contaminated n-grams. In contrast, Touvron et al. 275

(2023) introduced a method to align extensions be- 276

tween the testing samples and pre-training corpus, 277

allowing mismatches in certain token positions us- 278

ing a "skip_budget" hyperparameter. Singh et al. 279

(2024) further extended this method, focusing on 280

the longest contaminated token span rather than all 281

potential matches. Riddell et al. (2024) employed 282

the Dolos toolkit (Maertens et al., 2022) to mea- 283

sure semantic similarity by converting programs 284

into abstract syntax trees (ASTs) and performing 285

k-gram matching. 286

3 How to Avoid Data Contamination 287

This section discusses methods to avoid data con- 288

tamination in evaluation. First, to reduce risks, 289

benchmarks are often constructed following three 290

strategies: Data updating-based methods, Data 291

rewriting-based methods, and prevention-based 292

methods. Second, Dynamic evaluation generates 293

adaptive samples using techniques like algorith- 294

mic composition, graph structures, randomization, 295

and reasoning graphs, ensuring controlled com- 296

plexity and diversity. Finally, LLM-as-a-evaluator 297

eliminates contamination risks, making it a key for 298

contamination-free evaluation. 299

3.1 Benchmark Contamination-free Strategies 300

Contamination-free benchmarking strategies en- 301

sure datasets stay up-to-date, preventing models 302

from using outdated data. Rewriting construction 303

combines human efforts like manual labeling with 304

LLM-assisted techniques such as rephrasing to 305

avoid contamination. Preventive measures involve 306

technical defenses like encryption, access control, 307

and de-contamination during inference to guaran- 308

tee the reliability and fairness of LLM evaluation. 309
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3.1.1 Data Updating-based Methods310

Using the most recent data is intuitive for construct-311

ing contamination-free benchmarks, and some312

studies have proposed automatically collecting re-313

cent data to build questions. LatestEval proposed314

an automated pipeline to dynamically generate315

contamination-free test sets from recent materi-316

als (Li et al., 2024d). White et al. (2024) introduced317

LiveBench, a dynamically updated benchmark that318

integrates tasks across math, coding, and reasoning319

with automated scoring to mitigate data contami-320

nation and evaluation biases. Similarly, Jain et al.321

(2024) developed LiveCodeBench, a code-specific322

benchmark that expands beyond HumanEval (Chen323

et al., 2021) and MBPP (Austin et al., 2021) by as-324

sessing self-repair and prediction abilities while325

ensuring periodic updates. To evaluate LLMs’326

world knowledge, Yu et al. (2023) introduced the327

KoLA benchmark, which combines stable knowl-328

edge sources (e.g., Wikipedia) with recent data329

to balance evaluation fairness and contamination330

prevention. Zhang et al. (2024d) introduced Patent-331

MIA, crawling Chinese patent data from Google332

Patents. This dataset contains 5,000 patents with333

a publication date after March 1, 2024, and 5,000334

patents published before January 1, 2023. Haimes335

et al. (2024) proposed to use retro-holdout datasets336

to detect public benchmark influence on model337

training and measure discrepancies between bench-338

mark results and real-world performance. Fan et al.339

(2024) introduced NPHardEval4V-a dynamically340

updated benchmark to assess reasoning capabilities341

of MLLMs. In code evaluation, EvoCodeBench342

is proposed to dynamically align with real-world343

code repositories to guarantee fair evaluation.344

3.1.2 Data Rewriting-based Methods345

This type of methods use data augmentation to re-346

move contamination from benchmarks, with LLMs’347

superior rephrasing and verifying capabilities. Hu-348

man intervention is also integrated into the rewrit-349

ing process to create novel data with a distribution350

similar to the original data. Zhu et al. (2024d) pro-351

posed Clean-Eval to purify contaminated bench-352

marks by paraphrasing and back-translating data353

into semantically equivalent but lexically distinct354

forms. Zhao et al. (2024) proposed the MMLU-355

CF dataset, which is constructed by collecting di-356

verse questions, cleaning data, sampling difficulty357

reasonably, checking data integrity with LLMs,358

and applying rewriting methods such as rephras-359

ing questions and shuffling options to ensure the360

dataset remains contamination-free. Zhang et al. 361

(2024a) provided GSM1k, employing manual la- 362

beling, three-tier quality control, and leak preven- 363

tion design to avoid data contamination. Through 364

meticulous human construction, GSM1k achieves 365

high similarity to GSM8k(Cobbe et al., 2021) in 366

style, difficulty, and human solve rates, while main- 367

taining complete content independence. Mean- 368

while, LLMs can serve as assistants for rewriting 369

or generating questions. CLEVA is generated by 370

non-repetitive sampling for each evaluation round. 371

Each test sample is further enhanced with multiple 372

data rewriting strategies before being used to assess 373

LLMs, significantly mitigating the risk of data con- 374

tamination (Li et al., 2023). Ying et al. (2024) 375

updated benchmarks with two strategies: style- 376

preserving mimicry with LLMs and cognitive-level 377

expansion using Bloom’s taxonomy. Similarly, Zhu 378

et al. (2024b) proposed Multi-Principle Assessment 379

(MPA), which utilizes LLM-based agents to auto- 380

matically transform existing questions into new 381

ones. Wang et al. (2024) introduced a multi-agent 382

framework to implement self-evolving benchmarks, 383

which dynamically mutates question contexts and 384

structures to update benchmarks. 385

3.1.3 Prevention-based Methods 386

Preventive measures focus on safeguarding test 387

data integrity through technical and procedural con- 388

trols. Core strategies include encrypting public 389

test data with public-key cryptography, enforcing 390

strict access permissions, and prohibiting deriva- 391

tive data creation. Zhu et al. (2024c) introduced 392

Inference-Time Decontamination (ITD), a novel 393

technique that identifies and rewrites potentially 394

memorized responses during model inference. Li 395

et al. (2024c) introduced C2LEVA, a comprehen- 396

sive bilingual benchmark with systematic contami- 397

nation prevention mechanisms, which implements 398

proactive measures such as test data rotation and 399

enhanced encryption. 400

3.2 Dynamic Evaluation 401

Dynamic approaches address data contamination 402

by leveraging adaptive assessment frameworks. 403

Zhu et al. (2024a) introduced DYVAL, a graph- 404

based system that generates evaluation samples 405

through algorithmic composition, constraint appli- 406

cation, and functional descriptions. Its directed 407

acyclic graph (DAG) architecture facilitates multi- 408

step reasoning tasks with precisely controlled com- 409

plexity. Lei et al. (2024) developed S3EVAL, a 410
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framework for SQL evaluation that utilizes ran-411

domized table-query pairs. This synthetic approach412

allows for customizable task lengths and difficulty413

levels, while systematically assessing long-context414

reasoning capabilities. Zhang et al. (2024e) pro-415

posed the DARG method, which dynamically gen-416

erates evaluation samples with adjustable complex-417

ity and diversity using adaptive reasoning graphs.418

Srivastava et al. (2024) introduced functionaliza-419

tion, a technique that transforms static question-420

answer pairs into parameterized code, enabling421

the generation of infinite test variants. Qian et al.422

(2024) further extended dynamic evaluation by per-423

turbing key variables in questions, allowing for424

the dynamic generation of datasets with controlled425

variations.426

3.3 LLM-as-a-Evaluator427

Next-generation evaluation leverages LLMs them-428

selves as assessment tools. LLMs are no longer429

just "artisans" of content generation; they have430

become "judges" of content quality. They can431

serve the roles of scoring, ranking, and selection.432

Bai et al. (2024) presented the "LM-as-Examiner"433

framework, generating questions and evaluating re-434

sponses through reference-free analysis. Yu et al.435

(2024) deployed LLMs as "Interactors" in struc-436

tured multi-turn dialogues that probe model capa-437

bilities while minimizing contamination risks. Li438

et al. (2024b) proposed TreeEval-a benchmark-free439

system where LLMs generate hierarchical ques-440

tion trees. This adaptive approach adjusts difficulty441

based on model performance, creating unique as-442

sessment paths that prevent data contamination.443

4 How to Detect Data Contamination444

The definition of data contamination detection445

refers to the process of determining, through a spe-446

cific methodology, whether a given text or dataset447

has been included in the training corpus of a par-448

ticular model. As LLMs continue to advance, data449

contamination detection has emerged as a criti-450

cal challenge in model evaluation. Here, we cate-451

gorize detection approaches into three paradigms452

based on the level of access to model information:453

white-box, gray-box, and black-box methods. This454

taxonomy highlights an evolving detection land-455

scape. White-box methods, which leverage full456

access to model architectures or training data, offer457

high precision but are often limited in applicability.458

Gray-box approaches, which utilize partial model459

information, strike a balance between practicality 460

and effectiveness. Black-box technologies rely on 461

heuristic assumptions (detailed in Appendix B.2) 462

and operate without access to internal model de- 463

tails. As specialized detection methods continue 464

to emerge, the research community is increasingly 465

recognizing the importance of data contamination 466

to distort evaluation outcomes. To support this 467

growing awareness, we provide detailed descrip- 468

tions of several contamination detection tools in 469

Appendix C. 470

4.1 White-Box Detection 471

White-box methods directly utilize model internals 472

or training data to detect data contamination. When 473

pre-training corpora are accessible, content over- 474

lap with evaluation datasets can be explicitly mea- 475

sured (Elangovan et al., 2021). Prominent LLMs 476

including LLaMA2 (Touvron et al., 2023), PaLM 477

(Chowdhery et al., 2023), and GPT-4 (Achiam 478

et al., 2023) all emphasize the necessity of detect- 479

ing pre-training/evaluation overlaps. The n-gram 480

overlap method, prioritized for its computational ef- 481

ficiency and simplicity, has become a standard tool 482

for detecting contamination. Comparative imple- 483

mentations of these n-gram based overlap detection 484

strategies are systematically summarized in Table 485

1. 486

Embeddings similarity compares texts via cosine 487

similarity of their embeddings, capturing semantic 488

relationships beyond lexical variations (Reimers, 489

2019). Lee et al. (2023) used a similarity exclusion 490

method based on embeddings, reducing dataset re- 491

dundancy and filtering out duplicate data to ensure 492

clean training data. To address sophisticated con- 493

tamination forms, (Yang et al., 2023) introduced 494

a hybrid approach combining embedding similar- 495

ity search with GPT-4 powered semantic analysis. 496

This detects paraphrased samples, enabling proac- 497

tive benchmark decontamination. 498

For known model weights, Tu et al. (2024) pro- 499

posed DICE to identify in-distribution contamina- 500

tion during fine-tuning by analyzing layer-specific 501

activation patterns. This method trains contami- 502

nation classifiers on sensitive intermediate layers, 503

demonstrating a strong correlation between detec- 504

tion signals and performance inflation across multi- 505

ple LLMs. 506

4.2 Gray-Box Detection 507

Gray-box approaches in membership inference at- 508

tacks (MIAs) leverage partial model information 509
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Model Author Method Token-Level
GPT3 (Brown et al., 2020) n-gram (n=13) ×
Palm (Chowdhery et al., 2023) n-gram ✓

Llama2 (Touvron et al., 2023) extended n-gram ✓
GPT4 (OpenAI et al., 2024) n-gram (n=50) ×
Phi-4 (Abdin et al., 2024) hybrid n-gram ×

Table 1: N-gram method used for contamination detection, Token-level refers to the standard for measuring
contamination scores using tokens.

such as token probabilities to distinguish training510

data from non-members. Duan et al. (2024) sys-511

tematically investigated the underwhelming MIA512

performance on LLMs, identifying three primary513

contributing factors: the massive scale of training514

datasets that complicates memorization patterns,515

the limited number of training iterations that reduce516

model overfitting, and the inherently fuzzy deci-517

sion boundaries between member and non-member518

samples. To address these shortcomings, the MIN-519

K% method established token-based effective meth-520

ods using outlier token probabilities for pretrain-521

ing data detection (Shi et al., 2024). Zhang et al.522

(2024c) subsequently proposed Min-K%++, theo-523

retically grounding detection in local probability524

maxima identification. Zhang et al. (2024d) pro-525

posed DC-PDD to employ corpus frequency diver-526

gences to reduce false positives. Ye et al. (2024)527

introduced PAC, an MIA method that calculates528

polarization distances through input perturbations.529

Zhang et al. (2024b) developed PaCoST, which sta-530

tistically compares model confidence on original531

test items versus distributionally-similar counter-532

parts, to reveal widespread contamination across533

open-source models.534

Alternative gray-box strategies, including535

perplexity-based memorization detection (Li,536

2023a) and the adversarial compression ratio537

(ACR) metric (Schwarzschild et al., 2024), quan-538

tify memorization through input-output token effi-539

ciency.540

4.3 Black-Box Detection541

Black-box methods operate without access to542

model internals, training corpus, and are often543

accompanied by limitations in computational re-544

sources. Specifically, these methods heavily rely545

on certain assumptions shown in Appendix B.546

Golchin and Surdeanu (2023a) introduced a547

multiple-choice question framework in which each548

question presents an original instance alongside549

three perturbed versions (where words are replaced 550

with contextually relevant synonyms) and one in- 551

valid option. If the LLM consistently selects the 552

original instance, this behavior may indicate the 553

presence of data contamination. Building on this, 554

Golchin and Surdeanu (2023b) proposed a guided 555

instruction-based detection method, which effec- 556

tively identifies contamination in datasets through 557

instance completion and heuristic evaluation. 558

Duarte et al. (2024) developed DE-COP, a copy- 559

right detection framework that employs verbal ver- 560

sus paraphrased multiple-choice probing. Using 561

benchmarks such as BookTection and arXivTec- 562

tion, DE-COP reveals temporal patterns in the train- 563

ing data of commercial LLMs. Similarly, Deng 564

et al. (2023) proposed TS-Guessing, a protocol 565

designed to test a model’s ability to reconstruct 566

masked elements of test data. This approach un- 567

covers subtle contamination in major benchmarks. 568

Further advancing this line of research, Dong et al. 569

(2024) introduced CDD to identify contamination 570

by analyzing the peakedness of output distributions. 571

When paired with the TED mitigation technique, 572

the CDD approach effectively addresses both ex- 573

plicit and implicit forms of contamination while 574

preserving the validity of model evaluations. 575

As highlighted by (Ranaldi et al., 2024), the Text- 576

to-SQL task with GPT-3.5 involves data contamina- 577

tion, where the model is tasked with reconstructing 578

masked column names using the table name, the 579

remaining column names, and contextual informa- 580

tion. Similarly, Chang et al. (2023) introduced a 581

challenging cloze task and employed data archaeol- 582

ogy to examine the memorization of passages from 583

571 novels by using LLMs. 584

5 Future Directions 585

5.1 LLM Unlearning Methods 586

Unlearning techniques offer the potential to mit- 587

igate LLM privacy risks by erasing specific data 588

elements. Future research should explore integrat- 589
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Method Authors Assumption Certain Tasks
DCQ (Golchin and Surdeanu, 2023a) Verbatim-Memorization ×

Guided Instruction (Golchin and Surdeanu, 2023b) Verbatim-Memorization ×
DE-COP (Duarte et al., 2024) Verbatim-Memorization ×

CDD (Dong et al., 2024) Output Distribution ×
TS-Guessing (Deng et al., 2023) Verbatim-Memorization ×

ATD (Ranaldi et al., 2024) Verbatim-Memorization ✓
Data Archaeology (Chang et al., 2023) Verbatim-Memorization ✓

Table 2: Black-box contamination detection methods, details of the assumptions underlying these approaches can
be found in Appendix B.2.

ing contamination mitigation through targeted un-590

learning mechanisms that remove biases or leaked591

information from certain sources. This emerging592

field shows promise and fundamental challenges.593

For instance, Shumailov et al. (2024) claimed such594

data erasure may be fundamentally unachievable595

in current architecture.596

5.2 Enhancing Black-box Detection Methods597

Black-box detection methods require more atten-598

tion as most LLMs are black-box models. Some599

existing contamination detection methods heavily600

rely on heuristic rules. Fu et al. (2024) categorized601

the assumptions of multiple detection methods and602

their validation status, demonstrating that some as-603

sumptions may be invalidated in multiple scenarios.604

In other words, the stability of the assumptions605

underlying current data contamination detection606

approaches remains uncertain. Given that black-607

box methods may have broad applicability, more608

research into their reliability and effectiveness is609

essential.610

5.3 Distinguishing Between Data611

Contamination and Generalization612

The ambiguity between contamination and gener-613

alization remains unresolved. A core paradox lies614

in why in-distribution (ID) data contamination can615

not be interpreted as an alternative of LLMs’ gen-616

eralization capability, given the intrinsic overlap617

between memorization and generalization in LLMs618

(Zhang et al., 2021). Despite growing attention619

to state-of-the-art LLMs, the community lacks a620

standard definition for distinctions between con-621

tamination and generalization.622

5.4 Community Effort for Data623

Contamination624

Previously, the community has made some efforts625

to collect evidence of contamination, as shown in626

appendix A. Furthermore, the data contamination 627

prevention paradox manifests as an inverse relation- 628

ship between protective efficacy and benchmark 629

availability. While enhanced safeguards reduce 630

contamination risks, they simultaneously constrain 631

the usability of existing benchmarks through strin- 632

gent data isolation. As a result, dynamic evaluation 633

should become the mainstream approach, and such 634

strategies should be embraced as a community con- 635

sensus. 636

5.5 Non-Benchmark Evaluation 637

LLM-as-a-judge approaches (Section 3.3) confront 638

reliability challenges from persistent model biases. 639

Current implementations often yield assessment 640

inconsistencies that diverge from human judgment 641

standards. Future directions should prioritize de- 642

veloping adversarial testing frameworks and hybrid 643

evaluation frameworks to bridge the alignment gap 644

between automated scoring and human values. 645

6 Conclusion 646

Our paper examines three fundamental perspec- 647

tives in data contamination research: (1) defining 648

data contamination through the lenses of phases 649

and benchmarks; (2) exploring methodologies for 650

conducting contamination-free evaluations, with a 651

particular focus on dynamic evaluation and LLM- 652

based assessment techniques; and (3) investigating 653

methods for detecting data contamination, offering 654

a comprehensive analysis of existing techniques 655

and their limitations. This work serves as both an 656

introductory guide for researchers new to the field 657

and a roadmap that underscores data contamination 658

as a critical challenge in LLM evaluation. Fur- 659

thermore, we provide actionable recommendations 660

for enhancing contamination-aware evaluation sys- 661

tems, aiming to foster more robust and reliable 662

LLM development practices. 663
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7 Limitations664

While we extensively cover various forms of data665

contamination, it is possible that new contamina-666

tion mechanisms or models may not be fully cap-667

tured in our analysis. Additionally, our focus is668

primarily on data contamination within the context669

of LLMs, and we may not have fully incorporated670

previous research on data contamination in other671

areas of machine learning.672
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A Data Contamination Evidence1130

Collection Efforts1131

Several initiatives are currently collecting evidence1132

on data contamination. Below are key platforms1133

and resources involved in this effort:1134

• The Language Model Contamination In-1135

dex (LM Contamination Index): This is a1136

database used to track and record evidence1137

of language model contamination. For more1138

information, visit: https://hitz-zentroa.1139

github.io/lm-contamination/.1140

• CONDA-Workshop Data Contamination1141

Database: This is a community-driven1142

project focused on the centralized collection1143

of data contamination evidence. The goal is to1144

help the community understand the extent of1145

the problem and assist researchers in avoiding1146

previous mistakes. Detailed information can1147

be found at: https://huggingface.1148

co/spaces/CONDA-Workshop/1149

Data-Contamination-Database.1150

B Definition of Assumptions1151

B.1 Verbatim Memorization1152

In the context of LLMs, verbatim memoriza-1153

tion (Carlini et al., 2021, 2022) refers to the phe-1154

nomenon where a model recalls exact sequences of1155

text, often from the data it has been trained on. This1156

occurs when a model has seen a specific passage 1157

or piece of information during its training process 1158

and is able to reproduce it exactly when prompted. 1159

Verbatim memorization can lead to issues of data 1160

contamination, where the model unintentionally 1161

outputs copyrighted or sensitive material verba- 1162

tim, causing concerns regarding privacy, intellec- 1163

tual property, and validity in analytical tasks. 1164

B.2 Black-Box Method Assumption 1165

Golchin and Surdeanu (2023a) has assumed that 1166

when a model has memorized instances from the 1167

original dataset, it will prefer selecting options con- 1168

taining the original instance over semantically sim- 1169

ilar perturbations. Additionally, LLMs may ex- 1170

hibit positional biases, where certain positions in 1171

multiple-choice options are more likely to be cho- 1172

sen, leading to potential overestimation or underes- 1173

timation of contamination levels. 1174

Golchin and Surdeanu (2023b) gave the assump- 1175

tion that by providing a "guided instruction" with 1176

dataset name, partition information, and part of the 1177

reference instance, LLMs can generate the com- 1178

plete version of the data instance. This allows for 1179

calculating overlap between generated completions 1180

and reference instances, helping to infer whether 1181

the dataset partition is contaminated. 1182

Duarte et al. (2024) assumed that LLMs may 1183

memorize specific copyrighted content, such as 1184

books or academic papers, during training. When 1185

encountering similar content, they can distinguish 1186

whether they’ve seen it before. DE-COP exploits 1187

this by designing multiple-choice questions to test 1188

if the model can accurately identify original copy- 1189

righted content from paraphrased versions. Addi- 1190

tionally, model selection biases can affect copyright 1191

detection results, and DE-COP introduces a cali- 1192

bration method to minimize such biases. 1193

In (Dong et al., 2024), it is assumed that contam- 1194

inated training data significantly affects the output 1195

distribution of large language models. Specifically, 1196

when trained on contaminated data, the model’s 1197

output distribution becomes more peaked, causing 1198

it to produce more consistent outputs on contam- 1199

inated data, favoring outputs strongly correlated 1200

with the training data. 1201

Deng et al. (2023) assumed that if an LLM can 1202

accurately guess missing parts of a test set, such as 1203

keywords or answer options, without external assis- 1204

tance, it suggests that the model has encountered 1205

the corresponding benchmark data during training. 1206

This indicates memorization-based contamination. 1207
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The TS-Guessing protocol tests whether the model1208

has memorized benchmark data by having it guess1209

hidden information.1210

Ranaldi et al. (2024) assumed that data contami-1211

nation can be detected solely by analyzing the in-1212

puts and outputs of LLMs. For example, unusually1213

high accuracy on tasks from datasets like Spider1214

indicates that the model may have been exposed1215

to this dataset during training, leading to memo-1216

rization rather than genuine understanding. Addi-1217

tionally, data contamination may lead to inflated1218

performance on zero-shot tasks when the model1219

encounters potentially contaminated data during1220

training.1221

Chang et al. (2023) assumed that LLMs may1222

memorize portions of text from their training data,1223

especially when evaluation datasets contain known1224

texts. This memorization can lead to inflated per-1225

formance on tasks such as code generation. More-1226

over, data repetition on the web—through search1227

engines and open datasets—encourages memoriza-1228

tion, which improves accuracy on tasks involving1229

familiar content.1230

B.3 Memorization and Data Contamination1231

Instance-level contamination (Fu et al., 2024) does1232

not always lead to verbatim memorization. Uti-1233

lizing instance generation (Carlini et al., 2022;1234

Karamolegkou et al., 2023), demonstrates that ver-1235

batim memorization requires repeated exposures1236

to this instance x during training. Indeed, future1237

research on contamination should place more em-1238

phasis on LLMs’ memorization.1239

C Data Contamination Detector1240

Li (2023b) present Contamination Detector to1241

check whether test examples appear on the inter-1242

net via Bing search and Common Crawl index.1243

The tool is available at: https://github.com/1244

liyucheng09/Contamination_Detector.1245

Ravaut et al. (2024) presented an open-source1246

library for contamination detection in NLP datasets1247

and LLMs. The library combines multiple meth-1248

ods for contamination detection and is avail-1249

able at: https://github.com/liyucheng09/1250

Contamination_Detector.1251

Overlapy is a Python package developed to1252

evaluate textual overlap (N-Grams) between two1253

volumes of text. This tool can be accessed at:1254

https://github.com/nlx-group/overlapy.1255

Yao et al. (2024) introduced Deep Contam,1256

a method that detects cross-lingual contamina- 1257

tion, which inflates LLMs’ benchmark perfor- 1258

mance while evading existing detection methods. 1259

An effective detection method is provided in the 1260

repository, accessible at: https://github.com/ 1261

ShangDataLab/Deep-Contam. 1262

Tu et al. (2024) discussed the detection of in- 1263

distribution data contamination using LLM’s in- 1264

ternal state. The tool is available at: https: 1265

//github.com/THU-KEG/DICE. 1266

Bordt et al. (2023, 2024) presented Tabmem- 1267

check, an open-source Python library designed to 1268

test language models for memorization of tabu- 1269

lar datasets. The package includes four differ- 1270

ent tests for verbatim memorization of a tabu- 1271

lar dataset (header test, row completion test, fea- 1272

ture completion test, first token test). It also 1273

provides additional heuristics to test what an 1274

LLM knows about a tabular dataset, such as 1275

feature names test, feature values test, dataset 1276

name test, and sampling. The package can be 1277

found at: https://github.com/interpretml/ 1278

LLM-Tabular-Memorization-Checker. 1279

Yang et al. (2023) provided a package that in- 1280

cludes the LLM decontaminator, which quantifies 1281

a dataset’s rephrased samples relative to a bench- 1282

mark. Based on the detection results, the contam- 1283

ination of rephrased samples in the dataset can 1284

be estimated and removed from the training set. 1285

This tool is available at: https://github.com/ 1286

lm-sys/llm-decontaminator. 1287
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