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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have demonstrated significant
progress in various areas, such as text gener-
ation and code synthesis. However, the relia-
bility of performance evaluation has come un-
der scrutiny due to data contamination—the
unintended overlap between training and test
datasets. This overlap has the potential to artifi-
cially inflate model performance, as LLMs are
typically trained on extensive datasets scraped
from publicly available sources. These datasets
often inadvertently overlap with the bench-
marks used for evaluation, leading to an over-
estimation of the models’ true generalization
capabilities. In this paper, we first exam-
ine the definition and impacts of data con-
tamination. Secondly, we review methods
for contamination-free evaluation, focusing on
three strategies: data updating-based methods,
data rewriting-based methods, and prevention-
based methods. Specifically, we highlight dy-
namic benchmarks and LLM-driven evaluation
methods. Finally, we categorize contamination
detecting methods based on model information
dependency: white-Box, gray-Box, and black-
Box detection approaches. Our survey high-
lights the requirements for more rigorous eval-
uation protocols and proposes future directions
for addressing data contamination challenges.

1 Introduction

Recent breakthroughs in Large Language Models
(LLMs) have demonstrated remarkable capabilities
in text generation, code synthesis, and mathemat-
ical reasoning (Zhao et al., 2023; OpenAl et al.,
2024; DeepSeek-Al et al., 2025). However, the
reliability of LLM evaluation is increasingly ques-
tioned due to data contamination-the unintended
overlap between training and test data sets (Bal-
loccu et al., 2024; Chang et al., 2024). This is
especially problematic as LLMs use large web-
scraped datasets that are prone to overlap with

testing benchmarks. LLMs are known to mem-
orize portions of their training data, and under
certain prompts, they can reproduce this data ver-
batim (Carlini et al., 2022). As highlighted by
(Sainz et al., 2023), a critical consequence of data
contamination is that scientific studies relying on
contaminated LLMs may produce erroneous con-
clusions, potentially invalidating valid hypotheses.
Furthermore, Ippolito et al. (2023) demonstrated
that contaminated models can inadvertently align
with copyright-protected content post hoc, posing
significant challenges for the responsible develop-
ment of LLMs. To underscore the importance of
addressing data contamination in both the develop-
ment and evaluation of LLMs, we present a com-
prehensive review of data contamination issues in
this paper.

In section 2, we define data contamination as the
inclusion of data from the testing set during the
pre-training phase, which artificially inflates model
performance. Recent studies extend this defini-
tion along two dimensions: phase-based contamina-
tion in LLMs’ lifecycle and benchmark-based con-
tamination in LLMs’ evaluation. For phase-based
analysis, contamination mechanisms include pre-
training phase leakage, fine-tuning biases, cross-
modal leakage (Yao et al., 2024), and indirect hu-
man interactions (Palavalli et al., 2024). Mean-
while, benchmark-based contamination operates
at two granularities: instance-level contamination,
and dataset-level contamination. Dataset-level con-
tamination is categorized by severity into simple
rewriting, label leakage, text leakage, and dual text-
label leakage. The impacts are discussed in the
following four areas: collecting evidence, factors
discussion, non-contamination scenarios, and quan-
tifying contamination.

In section 3, we discuss how to achieve
contamination-free evaluation. For static bench-
marks, current research focuses on three key
contamination-free strategies: automatically up-



dating datasets using the most recent data, rewrit-
ing existing data, and implementing proactive risk
prevention mechanisms. Meanwhile, dynamic eval-
uation frameworks(Zhu et al., 2024a; Lei et al.,
2024; Zhang et al., 2024e; Ying et al., 2024) gener-
ate test samples using techniques like combinato-
rial optimization, graph-based reasoning, and con-
trolled randomization, creating an evolving evalua-
tion system. Additionally, the LLM-as-a-Evaluator
paradigm(Bai et al., 2024) turns LLMs into meta-
evaluators, enabling intelligent assessments inde-
pendent of static benchmarks.

In section 4, we explore methodologies for de-
tecting data contamination in LLMs. We categorize
data contamination detection approaches into three
distinct paradigms: white-box detection, which re-
lies on full access to model architectures or training
data to achieve high precision, employing tech-
niques such as N-gram overlap (Brown et al., 2020)
or embedding similarity (Reimers, 2019); gray-box
detection, which leverages partial model informa-
tion, such as token probabilities, to identify contam-
ination; and black-box detection, which operates
without access to internal model details, relying
instead on heuristic rules (the details are outlined
in Appendix B). Together, these approaches illus-
trate the evolving and multifaceted landscape of
data contamination detection methods, each offer-
ing unique advantages and challenges.

The organization of this paper is as follows, as
shown in figure 1. In Section 2, we discuss ex-
isting work on the definition and impacts of data
contamination. Section 3 summarizes current meth-
ods for constructing contamination-free datasets
and dynamic evaluation approaches. Section 4 dis-
cusses how to detect data contamination. Finally,
in Section 5, we present several significant future
challenges in this area.

2 What is Data Contamination

2.1 Definition

In recent years, a growing body of research has
emerged to address the issue of data contamina-
tion in LLLMs. However, the field lacks a unified
definition or standardized methodology to compre-
hensively summarize data contamination. Brown
et al. (2020) was among the first to highlight pre-
training data contamination, employing an N-gram
diagnostic method to demonstrate how contamina-
tion artificially inflates model performance. Hart-
mann et al. (2023) further explored the connec-

tion between LLM memorization and data contam-
ination, noting that both phenomena involve the
regurgitation of pre-training data. Schwarzschild
et al. (2024) proposed that strings can be consid-
ered memorized if they can be reproduced using a
shorter prompt, while Karamolegkou et al. (2023)
investigated verbatim memorization, particularly
in the context of copyrighted materials. Building
on these foundational studies, our research extends
the framework into two significant directions: (1)
examining vulnerabilities across the entire lifecy-
cle of LLMs, including pre-training, fine-tuning,
and post-deployment contamination, and (2) ad-
dressing risks to benchmark integrity, such as data
manipulation and potential label leakage.

2.1.1 Phase-based Contamination

For phase-based contamination, recent research
has identified stage-specific contamination risks
throughout the lifecycle of LLMs: pre-training
(where test data may leak into training corpora),
fine-tuning (where models are unintentionally ex-
posed to evaluation data), and post-deployment
(where models absorb biases from real-world in-
teractions). Sainz et al. (2023) systematically
mapped contamination pathways across these criti-
cal phases, while Balloccu et al. (2024) introduced
the concept of indirect data contamination, high-
lighting how human interactions during LLM train-
ing can inadvertently introduce biases, even in the
absence of explicit test data inclusion. Furthermore,
multimodal large language models (MLLMs) face
heightened contamination challenges due to the
integration of diverse data modalities (Yin et al.,
2023). Song et al. (2024) proposed a bimodal tax-
onomy, distinguishing between unimodal contami-
nation and cross-modal contamination, and devel-
oped traceability frameworks tailored specifically
for MLLMs.

2.1.2 Benchmark-based Contamination

For benchmark-based contamination, prior re-
search has generally approached the issue from
two primary perspectives. The first focuses on
whether labels are leaked or whether samples are
rewritten, while the second categorizes contami-
nation at either the instance level or the dataset
level. Yang et al. (2023) considered even sim-
ple rewording—such as synonym substitution or
translation—as a form of contamination. Yao et al.
(2024) further revealed cross-language contamina-
tion through the detection of option rewriting. In



What is data
contamination
(Sec. 2)

Contamination
Types

Definition:

Hartmann et al., Schwarzschild et al., Karamolegkou et al.
Phase-based Contamination:

Brown et al.; Sainz et al.,Balloccu et al., Song et al.
Benchmark-based Contamination:

Yang et al. Palavalli et al.; Fu et al. Yao et al.Matton et al.

(‘Evidence Collection: h
Singh et al. Li and Flanigan; Riddell et al.; Cao et al.
Liu et al. Jiang et al. Sainz et al.
Factors Discussion:
Magar and Schwartz Mehrbakhsh et al. Singh et al.
Non-Contamination Scenarios:
Dekoninck et al. Palavalli et al.
Quantifying Methods:
Brown et al.; Chowdhery et al.; Touvron et al.; Singh et al.
kRiddell et al.; Maertens et al.

J

(Data Updating-based Methods:
Li et al., White et al., Jain et al.,Li et al.
Yu et al., Zhang et al., Haimes et al., Fan et al.

Benchmark

Contamination-free

Data Rewriting-based Methods:
Zhu et al., Zhao et al., Zhang et al., Li et al.,Ying et al

How to
avoid data
contamination

[Data Contamination

Zhu et al.,Wang et al.
Prevention-based Methods:
\Zhu etal., Li et al.

(Sec. 3)

Srivastava et al., Qian et al.

Dyjonie Evaluationj Zhu et al., Lei et al., Zhang et al}

LLM-as-a-EvaluatorHBai etal., Yuetal., Liet al.]

White-Box Elangovan et al., Brown et al., Touvron et al., Chowdhery et al.
Detection

Achiam et al., Reimers, Lee et al., Tu et al., Yang et al.

)

How to

detect data
contamination

Detection

Gray-Box Duan et al., Ye et al., Shi et al., Zhang et al. }

Zhang et al., Li, Schwarzschild et al., Zhang et al.

(Sec. 4)

Detection

Black-Box Golchin and Surdeanu, Golchin and Surdeanu, Duarte et al.}

Dong et al., Ranaldi et al., Chang et al., Deng et al.

Future Directions
(Sec. 5)

(1)LLM Unlearning Methods (2)Enhancing Black-Box Detection Methods
(3)Distinguishing Between Data Contamination and Generalization
(4)Community Effort for Data Contamination (5)Non-Benchmark Evaluation

Figure 1: Structure of this paper

code generation tasks, Palavalli et al. (2024) estab-
lished a systematic taxonomy, categorizing contam-
ination into dataset-level (e.g., test data leakage or
mixing) and instance-level (e.g., output masking,
input/output rewriting, or augmentation). Expand-
ing on this, Matton et al. (2024) identified three
distinct sources of contamination and proposed the
LBPP benchmark as a countermeasure. Addition-
ally, Fu et al. (2024) provided formal mathematical
definitions for contamination at both the instance
and dataset levels, defining instance-level contami-
nation through membership inference attacks and
dataset-level contamination as either full or partial
contamination.

2.2 Impacts

Data contamination critically undermines evalua-
tion reliability and research validity. As (Sainz
et al., 2023) demonstrated, benchmark overfit-
ting can artificially inflate model performance and
compromise scientific conclusions in NLP studies.
(Singh et al., 2024) identified two principal analy-
sis approaches: causal analysis through controlled
retraining experiments, and post-hoc contamina-
tion inference via performance pattern examination
without model retraining.

2.2.1 Evidence Collection

Initial contamination investigation focuses on tem-
poral data analysis and adversarial detection meth-
ods. Li and Flanigan (2024) proposed evaluating




models on pre/post-training datasets with mem-
bership inference attacks, revealing contamination
effects on zero/few-shot performance. Riddell
et al. (2024) demonstrated performance inflation on
seen HumanEval/MBPP samples, while Cao et al.
(2024) validated contamination mitigation strategy
through using the most recent benchmarks. Jiang
et al. (2024) differentiated between text contamina-
tion (input samples) and true contamination (input-
output pairs). Liu et al. (2024) exposed Chinese
LLMs’ superficial knowledge despite broad train-
ing exposure. Sainz et al. (2023) highlighted that
current evidence on contamination remains frag-
mented across publications and informal channels,
suggesting that the prevalence of contamination
may be significantly underestimated.

2.2.2 Factors Discussion

In this section, we discuss some factors influenc-
ing contamination. Magar and Schwartz (2022)
found that exploitation of contaminated data is in-
fluenced by factors like model size, learning rate,
and the position of contaminated data, suggesting
that memorization does not always lead to exploita-
tion. Mehrbakhsh et al. (2024) designed GPT-4-
generated templates to investigate how the com-
plexity of test instances influences the contamina-
tion in Llama-2 7B, aiming to better understand
how varying levels of difficulty and diversity in the
templates can influence the model’s performance.
Singh et al. (2024) proposed a new contamina-
tion evaluation protocol, ConTAM, to explore how
data contamination affects the evaluation results
of LLMs, and provided a method to quantify the
impact of contamination.

2.2.3 Non-Contamination Scenarios

In this section, we explore non-contamination sce-
narios, where the overlap between training and test-
ing data does not lead to performance improvement.
Dekoninck et al. (2024) established a causal rela-
tionship between model performance improvement
and data contamination, explicitly defining cases
where such overlap exists but does not enhance
performance as non-contamination. Furthermore,
Palavalli et al. (2024) clarified several phenomena
that improve performance on downstream tasks
without being influenced by contamination. These
include language understanding, prior task under-
standing, and transductive learning. These phenom-
ena enhance empirical results while preserving the
integrity of both the task and the model, distinguish-

ing them from contamination-related performance
gains.

2.2.4 Quantifying contamination

Contamination scoring mechanisms classify evalu-
ation samples through threshold-based indices. We
have summarized some common contamination de-
tection methods in table 1. For instance, Brown
et al. (2020) used N-grams to evaluate contamina-
tion by checking whether each token in the tested
sample appears in an n-gram from the pre-training
corpus. Chowdhery et al. (2023) calculated the
contamination score based on the proportion of
contaminated n-grams. In contrast, Touvron et al.
(2023) introduced a method to align extensions be-
tween the testing samples and pre-training corpus,
allowing mismatches in certain token positions us-
ing a "skip_budget" hyperparameter. Singh et al.
(2024) further extended this method, focusing on
the longest contaminated token span rather than all
potential matches. Riddell et al. (2024) employed
the Dolos toolkit (Maertens et al., 2022) to mea-
sure semantic similarity by converting programs
into abstract syntax trees (ASTs) and performing
k-gram matching.

3 How to Avoid Data Contamination

This section discusses methods to avoid data con-
tamination in evaluation. First, to reduce risks,
benchmarks are often constructed following three
strategies: Data updating-based methods, Data
rewriting-based methods, and prevention-based
methods. Second, Dynamic evaluation generates
adaptive samples using techniques like algorith-
mic composition, graph structures, randomization,
and reasoning graphs, ensuring controlled com-
plexity and diversity. Finally, LLM-as-a-evaluator
eliminates contamination risks, making it a key for
contamination-free evaluation.

3.1 Benchmark Contamination-free Strategies

Contamination-free benchmarking strategies en-
sure datasets stay up-to-date, preventing models
from using outdated data. Rewriting construction
combines human efforts like manual labeling with
LLM-assisted techniques such as rephrasing to
avoid contamination. Preventive measures involve
technical defenses like encryption, access control,
and de-contamination during inference to guaran-
tee the reliability and fairness of LLM evaluation.



3.1.1 Data Updating-based Methods

Using the most recent data is intuitive for construct-
ing contamination-free benchmarks, and some
studies have proposed automatically collecting re-
cent data to build questions. LatestEval proposed
an automated pipeline to dynamically generate
contamination-free test sets from recent materi-
als (Liet al., 2024d). White et al. (2024) introduced
LiveBench, a dynamically updated benchmark that
integrates tasks across math, coding, and reasoning
with automated scoring to mitigate data contami-
nation and evaluation biases. Similarly, Jain et al.
(2024) developed LiveCodeBench, a code-specific
benchmark that expands beyond HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) by as-
sessing self-repair and prediction abilities while
ensuring periodic updates. To evaluate LLMs’
world knowledge, Yu et al. (2023) introduced the
KoL A benchmark, which combines stable knowl-
edge sources (e.g., Wikipedia) with recent data
to balance evaluation fairness and contamination
prevention. Zhang et al. (2024d) introduced Patent-
MIA, crawling Chinese patent data from Google
Patents. This dataset contains 5,000 patents with
a publication date after March 1, 2024, and 5,000
patents published before January 1, 2023. Haimes
et al. (2024) proposed to use retro-holdout datasets
to detect public benchmark influence on model
training and measure discrepancies between bench-
mark results and real-world performance. Fan et al.
(2024) introduced NPHardEval4V-a dynamically
updated benchmark to assess reasoning capabilities
of MLLMs. In code evaluation, EvoCodeBench
is proposed to dynamically align with real-world
code repositories to guarantee fair evaluation.

3.1.2 Data Rewriting-based Methods

This type of methods use data augmentation to re-
move contamination from benchmarks, with LLMs’
superior rephrasing and verifying capabilities. Hu-
man intervention is also integrated into the rewrit-
ing process to create novel data with a distribution
similar to the original data. Zhu et al. (2024d) pro-
posed Clean-Eval to purify contaminated bench-
marks by paraphrasing and back-translating data
into semantically equivalent but lexically distinct
forms. Zhao et al. (2024) proposed the MMLU-
CF dataset, which is constructed by collecting di-
verse questions, cleaning data, sampling difficulty
reasonably, checking data integrity with LLMs,
and applying rewriting methods such as rephras-
ing questions and shuffling options to ensure the

dataset remains contamination-free. Zhang et al.
(2024a) provided GSM 1k, employing manual la-
beling, three-tier quality control, and leak preven-
tion design to avoid data contamination. Through
meticulous human construction, GSM 1k achieves
high similarity to GSM8k(Cobbe et al., 2021) in
style, difficulty, and human solve rates, while main-
taining complete content independence. Mean-
while, LLMs can serve as assistants for rewriting
or generating questions. CLEVA is generated by
non-repetitive sampling for each evaluation round.
Each test sample is further enhanced with multiple
data rewriting strategies before being used to assess
LLMs, significantly mitigating the risk of data con-
tamination (Li et al., 2023). Ying et al. (2024)
updated benchmarks with two strategies: style-
preserving mimicry with LLMs and cognitive-level
expansion using Bloom’s taxonomy. Similarly, Zhu
et al. (2024b) proposed Multi-Principle Assessment
(MPA), which utilizes LLM-based agents to auto-
matically transform existing questions into new
ones. Wang et al. (2024) introduced a multi-agent
framework to implement self-evolving benchmarks,
which dynamically mutates question contexts and
structures to update benchmarks.

3.1.3 Prevention-based Methods

Preventive measures focus on safeguarding test
data integrity through technical and procedural con-
trols. Core strategies include encrypting public
test data with public-key cryptography, enforcing
strict access permissions, and prohibiting deriva-
tive data creation. Zhu et al. (2024c) introduced
Inference-Time Decontamination (ITD), a novel
technique that identifies and rewrites potentially
memorized responses during model inference. Li
et al. (2024c) introduced C2LEVA, a comprehen-
sive bilingual benchmark with systematic contami-
nation prevention mechanisms, which implements
proactive measures such as test data rotation and
enhanced encryption.

3.2 Dynamic Evaluation

Dynamic approaches address data contamination
by leveraging adaptive assessment frameworks.
Zhu et al. (2024a) introduced DY VAL, a graph-
based system that generates evaluation samples
through algorithmic composition, constraint appli-
cation, and functional descriptions. Its directed
acyclic graph (DAG) architecture facilitates multi-
step reasoning tasks with precisely controlled com-
plexity. Lei et al. (2024) developed S3EVAL, a



framework for SQL evaluation that utilizes ran-
domized table-query pairs. This synthetic approach
allows for customizable task lengths and difficulty
levels, while systematically assessing long-context
reasoning capabilities. Zhang et al. (2024e) pro-
posed the DARG method, which dynamically gen-
erates evaluation samples with adjustable complex-
ity and diversity using adaptive reasoning graphs.
Srivastava et al. (2024) introduced functionaliza-
tion, a technique that transforms static question-
answer pairs into parameterized code, enabling
the generation of infinite test variants. Qian et al.
(2024) further extended dynamic evaluation by per-
turbing key variables in questions, allowing for
the dynamic generation of datasets with controlled
variations.

3.3 LLM-as-a-Evaluator

Next-generation evaluation leverages LLMs them-
selves as assessment tools. LLMs are no longer
just "artisans" of content generation; they have
become "judges" of content quality. They can
serve the roles of scoring, ranking, and selection.
Bai et al. (2024) presented the "LM-as-Examiner"
framework, generating questions and evaluating re-
sponses through reference-free analysis. Yu et al.
(2024) deployed LLMs as "Interactors" in struc-
tured multi-turn dialogues that probe model capa-
bilities while minimizing contamination risks. Li
et al. (2024b) proposed TreeEval-a benchmark-free
system where LLMs generate hierarchical ques-
tion trees. This adaptive approach adjusts difficulty
based on model performance, creating unique as-
sessment paths that prevent data contamination.

4 How to Detect Data Contamination

The definition of data contamination detection
refers to the process of determining, through a spe-
cific methodology, whether a given text or dataset
has been included in the training corpus of a par-
ticular model. As LLMs continue to advance, data
contamination detection has emerged as a criti-
cal challenge in model evaluation. Here, we cate-
gorize detection approaches into three paradigms
based on the level of access to model information:
white-box, gray-box, and black-box methods. This
taxonomy highlights an evolving detection land-
scape. White-box methods, which leverage full
access to model architectures or training data, offer
high precision but are often limited in applicability.
Gray-box approaches, which utilize partial model

information, strike a balance between practicality
and effectiveness. Black-box technologies rely on
heuristic assumptions (detailed in Appendix B.2)
and operate without access to internal model de-
tails. As specialized detection methods continue
to emerge, the research community is increasingly
recognizing the importance of data contamination
to distort evaluation outcomes. To support this
growing awareness, we provide detailed descrip-
tions of several contamination detection tools in
Appendix C.

4.1 White-Box Detection

White-box methods directly utilize model internals
or training data to detect data contamination. When
pre-training corpora are accessible, content over-
lap with evaluation datasets can be explicitly mea-
sured (Elangovan et al., 2021). Prominent LLMs
including LLaMAZ2 (Touvron et al., 2023), PaLM
(Chowdhery et al., 2023), and GPT-4 (Achiam
et al., 2023) all emphasize the necessity of detect-
ing pre-training/evaluation overlaps. The n-gram
overlap method, prioritized for its computational ef-
ficiency and simplicity, has become a standard tool
for detecting contamination. Comparative imple-
mentations of these n-gram based overlap detection
strategies are systematically summarized in Table
1.

Embeddings similarity compares texts via cosine
similarity of their embeddings, capturing semantic
relationships beyond lexical variations (Reimers,
2019). Lee et al. (2023) used a similarity exclusion
method based on embeddings, reducing dataset re-
dundancy and filtering out duplicate data to ensure
clean training data. To address sophisticated con-
tamination forms, (Yang et al., 2023) introduced
a hybrid approach combining embedding similar-
ity search with GPT-4 powered semantic analysis.
This detects paraphrased samples, enabling proac-
tive benchmark decontamination.

For known model weights, Tu et al. (2024) pro-
posed DICE to identify in-distribution contamina-
tion during fine-tuning by analyzing layer-specific
activation patterns. This method trains contami-
nation classifiers on sensitive intermediate layers,
demonstrating a strong correlation between detec-
tion signals and performance inflation across multi-
ple LLMs.

4.2 Gray-Box Detection

Gray-box approaches in membership inference at-
tacks (MIAs) leverage partial model information



Model Author Method Token-Level
GPT3 (Brown et al., 2020) n-gram (n=13) X
Palm (Chowdhery et al., 2023) n-gram v

Llama2 (Touvron et al., 2023) extended n-gram v
GPT4 (OpenAl et al., 2024) n-gram (n=50) X
Phi-4 (Abdin et al., 2024) hybrid n-gram X

Table 1: N-gram method used for contamination detection, Token-level refers to the standard for measuring

contamination scores using tokens.

such as token probabilities to distinguish training
data from non-members. Duan et al. (2024) sys-
tematically investigated the underwhelming MIA
performance on LLMs, identifying three primary
contributing factors: the massive scale of training
datasets that complicates memorization patterns,
the limited number of training iterations that reduce
model overfitting, and the inherently fuzzy deci-
sion boundaries between member and non-member
samples. To address these shortcomings, the MIN-
K% method established token-based effective meth-
ods using outlier token probabilities for pretrain-
ing data detection (Shi et al., 2024). Zhang et al.
(2024c) subsequently proposed Min-K%-++, theo-
retically grounding detection in local probability
maxima identification. Zhang et al. (2024d) pro-
posed DC-PDD to employ corpus frequency diver-
gences to reduce false positives. Ye et al. (2024)
introduced PAC, an MIA method that calculates
polarization distances through input perturbations.
Zhang et al. (2024b) developed PaCoST, which sta-
tistically compares model confidence on original
test items versus distributionally-similar counter-
parts, to reveal widespread contamination across
open-source models.

Alternative gray-box strategies, including
perplexity-based memorization detection (Li,
2023a) and the adversarial compression ratio
(ACR) metric (Schwarzschild et al., 2024), quan-
tify memorization through input-output token effi-
ciency.

4.3 Black-Box Detection

Black-box methods operate without access to
model internals, training corpus, and are often
accompanied by limitations in computational re-
sources. Specifically, these methods heavily rely
on certain assumptions shown in Appendix B.
Golchin and Surdeanu (2023a) introduced a
multiple-choice question framework in which each
question presents an original instance alongside

three perturbed versions (where words are replaced
with contextually relevant synonyms) and one in-
valid option. If the LLM consistently selects the
original instance, this behavior may indicate the
presence of data contamination. Building on this,
Golchin and Surdeanu (2023b) proposed a guided
instruction-based detection method, which effec-
tively identifies contamination in datasets through
instance completion and heuristic evaluation.

Duarte et al. (2024) developed DE-COP, a copy-
right detection framework that employs verbal ver-
sus paraphrased multiple-choice probing. Using
benchmarks such as BookTection and arXivTec-
tion, DE-COP reveals temporal patterns in the train-
ing data of commercial LLMs. Similarly, Deng
et al. (2023) proposed TS-Guessing, a protocol
designed to test a model’s ability to reconstruct
masked elements of test data. This approach un-
covers subtle contamination in major benchmarks.
Further advancing this line of research, Dong et al.
(2024) introduced CDD to identify contamination
by analyzing the peakedness of output distributions.
When paired with the TED mitigation technique,
the CDD approach effectively addresses both ex-
plicit and implicit forms of contamination while
preserving the validity of model evaluations.

As highlighted by (Ranaldi et al., 2024), the Text-
to-SQL task with GPT-3.5 involves data contamina-
tion, where the model is tasked with reconstructing
masked column names using the table name, the
remaining column names, and contextual informa-
tion. Similarly, Chang et al. (2023) introduced a
challenging cloze task and employed data archaeol-
ogy to examine the memorization of passages from
571 novels by using LLMs.

5 Future Directions

5.1 LLM Unlearning Methods

Unlearning techniques offer the potential to mit-
igate LLM privacy risks by erasing specific data
elements. Future research should explore integrat-



Method Authors Assumption Certain Tasks
DCQ (Golchin and Surdeanu, 2023a) | Verbatim-Memorization X
Guided Instruction | (Golchin and Surdeanu, 2023b) | Verbatim-Memorization X
DE-COP (Duarte et al., 2024) Verbatim-Memorization X
CDD (Dong et al., 2024) Output Distribution X
TS-Guessing (Deng et al., 2023) Verbatim-Memorization X
ATD (Ranaldi et al., 2024) Verbatim-Memorization v
Data Archaeology (Chang et al., 2023) Verbatim-Memorization v

Table 2: Black-box contamination detection methods, details of the assumptions underlying these approaches can

be found in Appendix B.2.

ing contamination mitigation through targeted un-
learning mechanisms that remove biases or leaked
information from certain sources. This emerging
field shows promise and fundamental challenges.
For instance, Shumailov et al. (2024) claimed such
data erasure may be fundamentally unachievable
in current architecture.

5.2 Enhancing Black-box Detection Methods

Black-box detection methods require more atten-
tion as most LLMs are black-box models. Some
existing contamination detection methods heavily
rely on heuristic rules. Fu et al. (2024) categorized
the assumptions of multiple detection methods and
their validation status, demonstrating that some as-
sumptions may be invalidated in multiple scenarios.
In other words, the stability of the assumptions
underlying current data contamination detection
approaches remains uncertain. Given that black-
box methods may have broad applicability, more
research into their reliability and effectiveness is
essential.

5.3 Distinguishing Between Data
Contamination and Generalization

The ambiguity between contamination and gener-
alization remains unresolved. A core paradox lies
in why in-distribution (ID) data contamination can
not be interpreted as an alternative of LLMs’ gen-
eralization capability, given the intrinsic overlap
between memorization and generalization in LLMs
(Zhang et al., 2021). Despite growing attention
to state-of-the-art LLLMs, the community lacks a
standard definition for distinctions between con-
tamination and generalization.

5.4 Community Effort for Data
Contamination

Previously, the community has made some efforts
to collect evidence of contamination, as shown in

appendix A. Furthermore, the data contamination
prevention paradox manifests as an inverse relation-
ship between protective efficacy and benchmark
availability. While enhanced safeguards reduce
contamination risks, they simultaneously constrain
the usability of existing benchmarks through strin-
gent data isolation. As a result, dynamic evaluation
should become the mainstream approach, and such
strategies should be embraced as a community con-
sensus.

5.5 Non-Benchmark Evaluation

LLM-as-a-judge approaches (Section 3.3) confront
reliability challenges from persistent model biases.
Current implementations often yield assessment
inconsistencies that diverge from human judgment
standards. Future directions should prioritize de-
veloping adversarial testing frameworks and hybrid
evaluation frameworks to bridge the alignment gap
between automated scoring and human values.

6 Conclusion

Our paper examines three fundamental perspec-
tives in data contamination research: (1) defining
data contamination through the lenses of phases
and benchmarks; (2) exploring methodologies for
conducting contamination-free evaluations, with a
particular focus on dynamic evaluation and LLM-
based assessment techniques; and (3) investigating
methods for detecting data contamination, offering
a comprehensive analysis of existing techniques
and their limitations. This work serves as both an
introductory guide for researchers new to the field
and a roadmap that underscores data contamination
as a critical challenge in LLM evaluation. Fur-
thermore, we provide actionable recommendations
for enhancing contamination-aware evaluation sys-
tems, aiming to foster more robust and reliable
LLM development practices.



7 Limitations

While we extensively cover various forms of data
contamination, it is possible that new contamina-
tion mechanisms or models may not be fully cap-
tured in our analysis. Additionally, our focus is
primarily on data contamination within the context
of LLMs, and we may not have fully incorporated
previous research on data contamination in other
areas of machine learning.
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and resources involved in this effort:

* The Language Model Contamination In-
dex (LM Contamination Index): This is a
database used to track and record evidence
of language model contamination. For more
information, visit: https://hitz-zentroa.
github.io/lm-contamination/.

CONDA-Workshop Data Contamination
Database: This is a community-driven
project focused on the centralized collection
of data contamination evidence. The goal is to
help the community understand the extent of
the problem and assist researchers in avoiding
previous mistakes. Detailed information can
be found at: https://huggingface.
co/spaces/CONDA-Workshop/
Data-Contamination-Database.

B Definition of Assumptions

B.1 Verbatim Memorization

In the context of LLMs, verbatim memoriza-
tion (Carlini et al., 2021, 2022) refers to the phe-
nomenon where a model recalls exact sequences of
text, often from the data it has been trained on. This

13

occurs when a model has seen a specific passage
or piece of information during its training process
and is able to reproduce it exactly when prompted.
Verbatim memorization can lead to issues of data
contamination, where the model unintentionally
outputs copyrighted or sensitive material verba-
tim, causing concerns regarding privacy, intellec-
tual property, and validity in analytical tasks.

B.2 Black-Box Method Assumption

Golchin and Surdeanu (2023a) has assumed that
when a model has memorized instances from the
original dataset, it will prefer selecting options con-
taining the original instance over semantically sim-
ilar perturbations. Additionally, LLMs may ex-
hibit positional biases, where certain positions in
multiple-choice options are more likely to be cho-
sen, leading to potential overestimation or underes-
timation of contamination levels.

Golchin and Surdeanu (2023b) gave the assump-
tion that by providing a "guided instruction" with
dataset name, partition information, and part of the
reference instance, LLMs can generate the com-
plete version of the data instance. This allows for
calculating overlap between generated completions
and reference instances, helping to infer whether
the dataset partition is contaminated.

Duarte et al. (2024) assumed that LLMs may
memorize specific copyrighted content, such as
books or academic papers, during training. When
encountering similar content, they can distinguish
whether they’ve seen it before. DE-COP exploits
this by designing multiple-choice questions to test
if the model can accurately identify original copy-
righted content from paraphrased versions. Addi-
tionally, model selection biases can affect copyright
detection results, and DE-COP introduces a cali-
bration method to minimize such biases.

In (Dong et al., 2024), it is assumed that contam-
inated training data significantly affects the output
distribution of large language models. Specifically,
when trained on contaminated data, the model’s
output distribution becomes more peaked, causing
it to produce more consistent outputs on contam-
inated data, favoring outputs strongly correlated
with the training data.

Deng et al. (2023) assumed that if an LLM can
accurately guess missing parts of a test set, such as
keywords or answer options, without external assis-
tance, it suggests that the model has encountered
the corresponding benchmark data during training.
This indicates memorization-based contamination.
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The TS-Guessing protocol tests whether the model
has memorized benchmark data by having it guess
hidden information.

Ranaldi et al. (2024) assumed that data contami-
nation can be detected solely by analyzing the in-
puts and outputs of LLMs. For example, unusually
high accuracy on tasks from datasets like Spider
indicates that the model may have been exposed
to this dataset during training, leading to memo-
rization rather than genuine understanding. Addi-
tionally, data contamination may lead to inflated
performance on zero-shot tasks when the model
encounters potentially contaminated data during
training.

Chang et al. (2023) assumed that LLMs may
memorize portions of text from their training data,
especially when evaluation datasets contain known
texts. This memorization can lead to inflated per-
formance on tasks such as code generation. More-
over, data repetition on the web—through search
engines and open datasets—encourages memoriza-
tion, which improves accuracy on tasks involving
familiar content.

B.3 Memorization and Data Contamination

Instance-level contamination (Fu et al., 2024) does
not always lead to verbatim memorization. Uti-
lizing instance generation (Carlini et al., 2022;
Karamolegkou et al., 2023), demonstrates that ver-
batim memorization requires repeated exposures
to this instance x during training. Indeed, future
research on contamination should place more em-
phasis on LLMs’ memorization.

C Data Contamination Detector

Li (2023b) present Contamination Detector to
check whether test examples appear on the inter-
net via Bing search and Common Crawl index.
The tool is available at: https://github.com/
liyucheng@9/Contamination_Detector.

Ravaut et al. (2024) presented an open-source
library for contamination detection in NLP datasets
and LLMs. The library combines multiple meth-
ods for contamination detection and is avail-
able at: https://github.com/liyucheng@9/
Contamination_Detector.

Overlapy is a Python package developed to
evaluate textual overlap (N-Grams) between two
volumes of text. This tool can be accessed at:
https://github.com/nlx-group/overlapy.

Yao et al. (2024) introduced Deep Contam,
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a method that detects cross-lingual contamina-
tion, which inflates LLMs’ benchmark perfor-
mance while evading existing detection methods.
An effective detection method is provided in the
repository, accessible at: https://github.com/
ShangDatalLab/Deep-Contam.

Tu et al. (2024) discussed the detection of in-
distribution data contamination using LLM’s in-
ternal state. The tool is available at: https:
//github.com/THU-KEG/DICE.

Bordt et al. (2023, 2024) presented Tabmem-
check, an open-source Python library designed to
test language models for memorization of tabu-
lar datasets. The package includes four differ-
ent tests for verbatim memorization of a tabu-
lar dataset (header test, row completion test, fea-
ture completion test, first token test). It also
provides additional heuristics to test what an
LLM knows about a tabular dataset, such as
feature names test, feature values test, dataset
name test, and sampling. The package can be
found at: https://github.com/interpretml/
LLM-Tabular-Memorization-Checker.

Yang et al. (2023) provided a package that in-
cludes the LLM decontaminator, which quantifies
a dataset’s rephrased samples relative to a bench-
mark. Based on the detection results, the contam-
ination of rephrased samples in the dataset can
be estimated and removed from the training set.
This tool is available at: https://github.com/
Im-sys/11lm-decontaminator.
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