
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBUST OPTIMIZATION FOR MITIGATING REWARD
HACKING WITH CORRELATED PROXIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing robust reinforcement learning (RL) agents in the presence of imper-
fect reward signals remains a core challenge. In practice, agents are often trained
with proxy rewards that only approximate the true objective, leaving them vul-
nerable to reward hacking, where high proxy returns arise from unintended or
exploitative behaviors. Recent work formalizes this issue using r-correlation be-
tween proxy and true rewards, but existing methods like occupancy-regularized
policy optimization (ORPO) optimize against a fixed proxy and do not provide
strong guarantees against broader classes of correlated proxies. In this work, we
formulate reward hacking as a robust policy optimization problem over the space
of all r-correlated proxy rewards. We derive a tractable max-min formulation,
where the agent maximizes performance under the worst-case proxy consistent
with the correlation constraint. We further show that when the reward is a linear
function of known features, our approach can be adapted to incorporate this prior
knowledge, yielding both improved policies and interpretable worst-case rewards.
Experiments across several environments show that our algorithms consistently
outperform ORPO in worst-case returns, and offer improved robustness and sta-
bility across different levels of proxy-true reward correlation. These results show
that our approach provides both robustness and transparency in settings where
reward design is inherently uncertain.

1 INTRODUCTION

Real-world reinforcement learning (RL) systems often struggle with reward specification: it is no-
toriously difficult to craft a reward function that perfectly captures the intended goals in all sce-
narios (Amodei et al., 2016; Ibarz et al., 2018; Stray et al., 2024). In practice, designers rely on
proxy rewards that approximate the true objective (Tien et al., 2023). However, agents optimizing
these imperfect proxies can lead to unintended exploitative behaviors, achieving high proxy returns
while yielding poor true outcomes, a phenomenon known as reward hacking (Leike et al., 2017;
Everitt et al., 2017; 2021; Koch et al., 2021). Such reward hacking behaviors are not merely hy-
pothetical; they have led to undesirable or even catastrophic consequences in safety-critical settings
(e.g., autonomous driving) (Krakovna et al., 2018; Knox et al., 2023) and are alarmingly common in
real-world deployments (Kleinberg et al., 2024; Franchi et al., 2023; Milli et al., 2021; Obermeyer
et al., 2019). Beyond reward hacking, interpretability and transparency of RL policies are increas-
ingly recognized as critical requirements for real-world acceptance (Vouros, 2022; Puiutta & Veith,
2020; Iyer et al., 2018). Policymakers and practitioners in safety-critical domains require systems
not only to be robust but also interpretable; they must understand which specific decision-making
criteria lead to undesirable outcomes to effectively mitigate risks and ensure compliance with safety
regulations (Rudin, 2019; Druce et al., 2021; Doshi-Velez & Kim, 2017). These challenges high-
light the need for RL algorithms to address two fundamental challenges: robustness to uncertain
or poorly-specified rewards, and interpretability to facilitate oversight and compliance by human
stakeholders, especially in high-stakes, real-world environments like traffic control (Vinitsky et al.,
2018), healthcare decision-making (Fox et al., 2020; Holzinger et al., 2017), and pandemic response
strategies (Kompella et al., 2020).

Recent work has begun to formalize reward hacking and develop principled mitigations. (Laidlaw
et al., 2025) define a proxy reward to be r-correlated with the true reward if it maintains a correla-
tion coefficient r > 0 on state-action pairs encountered by a certain reference policy. Notably, their

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

definition permits the proxy and true reward to diverge arbitrarily in parts of the state-action space
not visited by the reference policy, precisely the regions an RL agent might exploit under intensive
optimization. Using this framework, reward hacking is formalized as the situation in which optimiz-
ing an r-correlated proxy yields a policy with lower true reward than that of the reference policy.
Building on this definition, they propose Occupancy-Regularized Policy Optimization (ORPO) as a
mitigation strategy. ORPO augments the standard RL objective with a regularization term that pe-
nalizes deviations between the learned policy’s occupancy measure and that of the reference policy.

Despite significant progress, existing solutions to reward hacking show several limitations. First,
their effectiveness relies heavily on the choice of the specific proxy reward. However, designing
perfect proxies is challenging, and in real-world scenarios, reward proxies are often derived heuris-
tically or empirically from noisy or limited data (Jeon et al., 2020; Sadigh et al., 2017), leading to
uncertainty or variability in the exact correlation with true rewards. Therefore, robustness to varia-
tions in proxy rewards is crucial for dependable deployment. While the regularization method used
by ORPO provides a lower bound on improvement in true reward, its guarantee on the worst-case
performance against an adversarially chosen proxy is weak. Second, current methods like ORPO
typically treat a reward function as a black box and learn a complex policy with no easily inter-
pretable structure, making it hard to understand why the resulting policy avoids reward hacking
or to trust its behavior in novel situations. Further, they cannot be easily adapted to incorporate
prior knowledge of the true reward. These shortcomings underscore the need for a more robust and
transparent approach to reward hacking in RL.

In this work, we formalize reward hacking as a robust RL problem under proxy reward uncertainty
and develop new algorithms to address the above gaps. The key idea is to optimize against an
adversarial proxy reward rather than trusting a single proxy. We assume the true reward could be any
function that remains r-correlated with the proxy, and we train the agent to perform well against the
worst-case such proxy. This approach explicitly accounts for uncertainty in proxy design and guards
against unintended exploitative behaviors. Concretely, we propose a max-min formulation in which
the policy chooses its strategy to maximize its guaranteed true return while an adversary minimizes
the true return by selecting a reward function from the set of all r-correlated proxies. By solving
this problem, the agent learns a policy that is robust to all plausible deviations of the proxy reward
within the correlation bound. We derive a closed-form solution for the adversary’s worst-case reward
assignment given any candidate policy, which allows efficient evaluation of the inner minimization
and provides insight into how proxy reward flaws are most damaging. Building on this result, we
introduce a practical algorithm for Max-Min Policy Optimization that iteratively updates the policy
against this worst-case reward signal. Moreover, to improve the tractability and transparency of
the inner optimization, we introduce a Linear Max-Min variant of our method. In this variant, we
assume the true reward lies in a class of linear functions over known features, an assumption that has
been extensively studied in prior work on successor representations and successor features (Dayan,
1993; Barreto et al., 2017; 2018), and which allows us to characterize the worst-case proxy reward
as a sparse linear combination of those features. While the policy itself remains parameterized by
general neural networks, the learned worst-case reward function becomes interpretable in terms of
its feature weights. This provides insight into which aspects of the proxy reward space the policy is
robust to or vulnerable against, making it valuable for applications where understanding the failure
modes of the reward design is important.

Finally, we empirically evaluate the proposed approaches on several challenging environments.
Across all domains, our Max-Min and Linear Max-Min policies outperform ORPO in terms of
worst-case reward, indicating substantially improved robustness. Moreover, under a large range
of proxy-true correlation scenarios, our methods exhibit higher average reward and lower variance
compared to ORPO, meaning the performance of our policies remains more consistent and reliable.
These findings demonstrate the practical significance of our robust formulation, paving the way for
safer and more trustworthy RL deployment in real-world applications.

Our main contributions can be summarized as follows: 1) We propose a novel robust RL formulation
that explicitly models reward hacking as a max-min optimization problem over proxy rewards con-
strained by correlation with the true rewards. 2) We develop a practical algorithm for the max-min
problem, which is further extended to linear rewards with improved robustness and interpretabil-
ity. 3) We provide a theoretical convergence guarantee for the max-min objective with a sample-
complexity bound for the occupancy estimation. We also show that accurate occupancy estimation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

is pivotal for robustness. 4) Experiment results demonstrate improved robustness and worst-case
rewards across five real-world inspired reward hacking environments.

2 PRELIMINARIES

Reinforcement Learning. A reinforcement learning (RL) problem can be formulated as an infinite-
horizon Markov Decision Process (MDP) defined by the tuple (S,A, p, µ0, R, γ), where S and
A denote the state and action spaces, p(s′ | s, a) is the transition probability from state s to s′

given action a, µ0 is the initial state distribution and γ ∈ [0, 1) is the discounted factor. The agent
interacts with the environment over discrete time steps t = 0, 1, 2, At each time step, it selects
an action at ∈ A based on the current state st ∈ S according to a policy π(a | s), which defines a
distribution over actions conditioned on the state. Upon taking action at, the agent receives a reward
R(st, at) ∈ R and transitions to the next state st+1 according to p(st+1 | st, at). The goal of the
agent is to maximize the expected cumulative discounted return:

J(π,R) = (1− γ)Eπ

[∞∑
t=0

γtR(st, at)

]
, (1)

where γ ∈ [0, 1) is the discount factor, and the expectation is taken over trajectories generated by
following policy π. We define the state-action occupancy measure µπ of a policy π as: µπ(s, a) =
(1 − γ)Eπ [

∑∞
t=0 γ

tI{st = s, at = a}], which represents the discounted visitation frequency of
each state-action pair under policy π. Using the occupancy measure, the return can be equivalently
expressed as: J(π,R) = E(s,a)∼µπ [R(s, a)].

Correlated Proxies and Reward Hacking. Below we give an overview of the recently proposed
r-correlated proxy framework proposed in (Laidlaw et al., 2025) for detecting and mitigating reward
hacking, which our work is built upon. A detailed discussion of related work on reward hacking and
robust RL is given in Appendix D. In particular, they consider a setting where the agent is given a
reference policy πref and a proxy reward Rproxy, while the true reward is hidden. They further assume
that the proxy reward is r-correlated with the true reward under the reference policy, that is:

Eµπref

[(
Rproxy − J(πref, Rproxy)

σRproxy

)(
Rtrue − J(πref, Rtrue)

σRtrue

)]
= r, (2)

where σ2
Rproxy

= Eµπref

[
(Rproxy − J(πref, Rproxy))

2
]

and σ2
Rtrue

= Eµπref

[
(Rtrue − J(πref, Rtrue))

2
]

are the variances of the proxy and true rewards, respectively, under the reference policy. Reward
hacking is said to occur when a policy π optimized for an r-correlated proxy reward achieves lower
true reward than the reference policy: J(π,Rtrue) < J(πref, Rtrue). To mitigate reward hacking,
they propose Occupancy-Regularized Policy Optimization (ORPO) to optimize a regularized policy
objective given below, which is shown to provide a lower bound on improvement in true reward:

max
π

J(π,Rproxy)− λ
√
χ2(µπ ∥µπref), (3)

where χ2(µπ ∥µπref) denotes the χ2-squared divergence between the occupancy measures of π and
πref, and the regularization strength λ = σRproxy

√
1− r2. This encourages the learned policy to stay

close to the reference distribution when the proxy reward is weakly correlated with the true reward.

3 METHOD

In this section, we discuss our robust policy optimization approach for mitigating reward hacking.
In contrast to regularization-based methods such as ORPO, we consider a max-min formulation
that identifies a robust policy with respect to the worst-case reward across all reward functions that
are r-correlated with the proxy reward. We further extend our framework to settings where the
reward function is a linear combination of known features with unknown weights. Our approach
effectively leverages this structural information, when known a priori, to improve both robustness
and interpretability, a task that is particularly challenging for regularization-based techniques.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 MAX-MIN POLICY OPTIMIZATION

Similar to ORPO, we assume that the agent is given a proxy reward Rproxy and a reference policy
πref, while the true reward is hidden. Rather than regularizing the policy under a fixed proxy reward,
we consider the entire space of rewards Rcorr that satisfy the correlation constraint with respect to a
known proxy reward, as defined in Equation 4:

Rcorr =

{
R : (s, a) → R

∣∣∣∣Eµπref

[
R−M

V
·Rproxy

]
= r, J(πref, R) = M, σ2

R = V 2

}
. (4)

M and V denote the fixed mean and standard deviation of the reward function R under the refer-
ence policy πref. For simplicity, we define Rproxy to be the normalized proxy reward Rproxy(s, a) :=
R̃proxy(s,a)−J(πref,R̃proxy)

σR̃proxy
, where R̃proxy is the original (unnormalized) proxy reward. After normaliza-

tion, we have J(πref, Rproxy) = 0 and Varµπref
(Rproxy) = 1, which simplifies the correlation con-

straint in Equation 4. The hyperparameter r controls the degree of alignment between the proxy and
true reward. It allows us to interpolate between strong robustness (small r) and high proxy fidelity
(large r), enabling a principled robustness-accuracy trade-off. We remark that it is without loss of
generality to consider fixed M and V , which we will further elaborate on later.

We propose a worst-case optimization framework where the policy is trained to maximize expected
performance under the least favorable reward within Rcorr. Assuming that the true reward lies some-
where within this set, this approach improves robustness by ensuring that the policy does not overfit
to any single optimistic interpretation of the proxy reward. Formally, the objective becomes:

max
π

min
R∈Rcorr

J(π,R) = max
π

min
R∈Rcorr

E(s,a)∼µπ [R(s, a)]. (5)

However, a challenge arises: the objective Eµπ [R(s, a)] depends on the state-action occupancy
µπ , whereas the constraints defining Rcorr are expressed in terms of µπref . This mismatch com-
plicates direct optimization. To resolve this, we apply a change-of-measure technique (Hu & Hong,
2013; Lam, 2016) to rewrite the expectation under µπref . Specifically, let L(s, a) denote the Radon-
Nikodym derivative: L(s, a) = µπ(s,a)

µπref (s,a)
. By definition, L(s, a) ≥ 0 and Eµπref

[L(s, a)] =

1. Applying the change-of-measure formula, we can express the return as: Eµπ [R(s, a)] =∫
S×A µπ(s, a)R(s, a) d(s, a) =

∫
S×A µπref(s, a)

µπ(s,a)
µπref (s,a)

R(s, a) d(s, a) = Eµπref
[L(s, a)R(s, a)].

Thus, both the objective and the constraints can be rewritten as expectations with respect to µπref .

For notational simplicity, we will suppress variables (s, a) and write for example, L as L(s, a).
Under this reparameterization, the inner minimization in Equation 5 can be reformulated as:

min
R∈Rcorr

Eµπref
[L ·R]. (6)

Although the feasible set in Problem 6 is not convex due to the equality constraint on the variance, we
still derive an optimal solution using a Lagrangian formulation. Our approach leverages tools from
duality theory, commonly used in robust optimization (Delage & Ye, 2010; Goh & Sim, 2010). We
further justify the validity of our solution in Appendix E.2. Specifically, the Lagrangian functional
associated with this problem is defined as: l0(λ1, λ2, λ3, R) = Eµπref

[L·R−λ1
R−M
V ·Rproxy−λ2R−

λ3R
2]+λ1r+λ2M+λ3(M

2+V 2), where λ1, λ2, λ3 are the Lagrange multipliers corresponding to
the correlation constraint, mean constraint, and variance constraint, respectively. Then the original
problem in Equation 6 is equivalent to the following problem:

max
λ1,λ2,λ3

min
R∈Rcorr

l0(λ1, λ2, λ3, R). (7)

We now solve the inner minimization problem in Equation 7 by finding the optimal R for fixed dual
variables (λ1, λ2, λ3). Taking the functional derivative of the Lagrangian l0 with respect to R(s, a)

gives: ∂l0
∂R = µπref(s, a)[(L − λ1

Rproxy

V − λ2) − 2λ3R]. When µπref(s, a) > 0, setting the derivative
of the Lagrangian to zero yields the optimal adversarial reward function:

R∗(s, a) =
L(s, a)− λ1

Rproxy

V − λ2

2λ3
. (8)

However, for state-action pairs where µπref(s, a) = 0, i.e., those not visited under the reference
policy, the correlation and moment constraints become vacuous. In these regions, the adversarial

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

reward R∗(s, a) can be driven arbitrarily poor, reflecting that no constraint prevents the adversary
from assigning highly penalizing values to rarely visited or unobserved state-action pairs. Neverthe-
less, consider the case where µπref(s, a) > 0, we can substitute the optimal R∗ from Equation 8 into
the Lagrangian l0 and get the dual objective. After some process detailed in Appendix E.1, we get
the optimal solution to problem (6), so the original max-min problem (5) reduces to:

max
π

r · V · Eµπ [Rproxy]− V ·
√
1− r2

√
χ2(µπ ∥µπref)− E2

µπ [Rproxy] +M. (9)

Thus, the final policy optimization objective becomes maximizing the proxy reward, regularized
by a penalty that depends on the distributional shift between µπ and µπref and the expectation of
the current policy under proxy reward Eµπ [Rproxy], and the correlation strength r. We observe
that the constants M and V do not affect the optimal policy: while they influence the absolute
value of the worst-case reward for a given policy π, they only apply a linear transformation (scal-
ing by V and shifting by M) and do not change the relative ordering of policies. Therefore, for
simplicity, we set V = 1 and M = 0 in our implementation. This also provides a fair way to
compare the worst-case rewards of different policies. Notice that the optimization objective in
Equation 9 closely resembles the ORPO objective proposed in Equation 3. However, there are
two key differences: (1) our regularization strength is

√
1−r2
r instead of σRproxy

√
1− r2, and (2)

our penalty term is χ2(µπ ∥µπref) − E2
µπ [Rproxy] rather than simply χ2(µπ ∥µπref). The proof that

χ2(µπ ∥µπref) − E2
µπ [Rproxy] ≥ 0 holds can be found in Appendix E.3. A detailed comparison

between our policy gradient and that of ORPO is provided in Appendix E.8.

To further illustrate how our framework in Equation 9 helps prevent reward hacking, i.e., how op-
timizing a proxy reward can translate into an improvement in the true reward over the reference
policy, as discussed in Section 2, we formalize the following theorem:
Theorem 1. Suppose that the true reward function Rtrue lies in the correlation-constrained uncer-
tainty set Rcorr. Then, for any policy π such that µπ ≪ µπref (i.e., µπref(s, a) = 0 ⇒ µπ(s, a) = 0),
we have

J(π,Rtrue)− J(πref, Rtrue) ≥ r · Eµπ [Rproxy]−
√
1− r2

√
χ2
(
µπ ∥µπref

)
− E2

µπ [Rproxy].

Proof can be found in Appendix E.9. From Theorem 1, we see that our objective optimizes a pes-
simistic lower bound on the true improvement over the reference policy. By Definition 4.2 in (Laid-
law et al., 2025), reward hacking occurs when J(π,Rtrue) < J(πref, Rtrue). Although this is precisely
the quantity we would like to maximize, we cannot do so directly because the true reward is unob-
served, and therefore we must instead optimize the max–min objective in Equation 9. Theorem 1
shows that our objective is always lower than (but anchored to) the true improvement, which ex-
plains why our framework can promote robustness against potential reward hacking: improving our
surrogate objective necessarily improves a conservative bound on J(π,Rtrue)− J(πref, Rtrue).

Remark: Our optimization problem in Equation 5 is standard in distributionally robust optimization
(DRO). However, it remains underexplored in the context of RL, with only one relevant work that
considers uncertainty sets based on the first and second moments of the reward distribution (Nguyen
et al., 2022). While their formulation appears similar, their results are not directly applicable to our
max-min framework, and we still need to explicitly solve our formulation. We also note that under
certain assumptions, the ORPO objective (Equation 3) can be reinterpreted as a special case of the
max-min formulation in (Nguyen et al., 2022) (Theorem 1), providing a complementary view of the
connection between these approaches. Nevertheless, our optimization objective remains structurally
different. Moreover, in the pessimism offline RL setting, where distribution shift is the central
challenge, the χ2 regularization together with maxmin formulation has also been explored (Zhan
et al., 2022; Huang et al., 2024) from a perspective different from ours. However, frameworks such
as χPO (Huang et al., 2024) are not applicable in our setting because they require the regularizer to
be f -divergence. The square-root term in Equation 9 does not satisfy this requirement.

3.2 STRUCTURED REWARD SPACES VIA FEATURE LINEARIZATION

A natural concern with worst-case optimization is over-conservatism: if the reward uncertainty
set Rcorr is too broad, the resulting policy may become overly cautious or deviate from realis-
tic task objectives. Additionally, the learned worst-case rewards may themselves be implausible

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

or uninterpretable. To address these issues, we introduce structure into the reward space by as-
suming that all rewards are linear combinations of known features, an assumption that has been
widely adopted in prior work (Dayan, 1993; Barreto et al., 2017; 2018). Specifically, we assume:
R(s, a) = θ⊤ϕ(s, a), where ϕ(s, a) = [ϕ1(s, a), ϕ2(s, a), . . . , ϕM (s, a)]⊤ ∈ RM denotes a vec-
tor of M known or engineered feature functions, and θ = [θ1, θ2, . . . , θM]⊤ ∈ RM represents
the uncertain feature weights. The linearization yields two key benefits: 1) Realism and Inter-
pretability: In many real-world tasks, reward functions are naturally approximated as linear com-
binations over interpretable features. For example, in a traffic control environment, features might
include total commute time, vehicle speed, acceleration, and inter-vehicle headway distances. 2)
Better-Constrained Robustness: By restricting uncertainty to structured, feature-based rewards,
the worst-case optimization problem becomes more grounded and avoids pathological, unrealistic
reward functions.

In this section, we assume that the agent is aware of the set of features but not their true weights. We
show that our robust optimization framework can be naturally extended to incorporate the structure
in rewards to improve robustness. In our experiments, we further demonstrate that linear rewards
help interpret a policy’s performance even when it is trained without such prior knowledge. Under
our assumption, the uncertainty set reduces to the set of feature weights θ ∈ RM satisfying:

Rlin
corr =

{
θ ∈ RM

∣∣∣Eµπref
[θ⊤ϕ ·Rproxy] = r, Eµπref

[θ⊤ϕ] = 0, Eµπref
[(θ⊤ϕ)2] = 1

}
. (10)

To simplify the analysis, we assume without loss of generality that the worst-case reward R(s, a) =
θ⊤ϕ(s, a) is normalized to have zero mean and unit variance under the reference policy πref. This
corresponds to setting M = 0 and V = 1, which, as shown in our earlier derivation, does not
affect the resulting optimal policy. As before, Rproxy denotes the normalized proxy reward under
πref, satisfying Eµπref

[Rproxy] = 0 and Varµπref
[Rproxy] = 1.

We now derive the corresponding max-min optimization under the structured reward assumption:

max
π

min
θ∈Rlin

corr, θ≥0
E(s,a)∼µπ

[
θ⊤ϕ(s, a)

]
. (11)

Similar to previous steps, we introduce the Radon-Nikodym derivative L(s, a) = µπ(s,a)
µπref (s,a)

, use a
change-of-measure, and define the Lagrangian functional for the inner minimization in Equation 11
as: l1(λ1, λ2, λ3,θ) = θ⊤

(∑
(s,a) uλ1,λ2(s, a)ϕ(s, a)

)
− λ3θ

⊤Qθ + λ1r + λ3, where uλ1,λ2 =

µπ − λ1µπrefRproxy − λ2µπref , Q =
∑

(s,a) µπref(s, a)ϕ(s, a)ϕ(s, a)
⊤. A detailed derivation can be

found in Appendix E.4. Then solving the inner minimization over θ in Equation 11 is equivalent to:

max
λ1,λ2,λ3

min
θ≥0

l1(λ1, λ2, λ3,θ) = θ⊤
(∑

uλ1,λ2ϕ
)
− λ3θ

⊤Qθ + λ1r + λ3. (12)

Notice that l1(λ1, λ2, λ3,θ) is a convex quadratic function of θ (assuming λ3 ≤ 0) subject to
linear inequality constraints θ ≥ 0. Thus, it is a standard convex quadratic program (QP) with
non-negativity constraints (Boyd & Vandenberghe, 2004). However, it is not possible to derive a
universal closed-form solution for the optimal θ∗ under arbitrary Q. To further simplify the problem
and obtain a closed-form solution, we transform the feature vector ϕ into a whitened version ϕ̃
such that the matrix Q becomes the identity matrix I and we formally show this in Appendix E.5.
Specifically, we perform a whitening transformation using the Cholesky decomposition (Boyd &
Vandenberghe, 2004). Let W = Q− 1

2 , ϕ̃(s, a) = Wϕ(s, a), where Q− 1
2 denotes a matrix square

root of Q−1 (which exists since Q is positive semi-definite and non-singular, which is detailed in
Appendix E.5). Then the original problem in Equation 12 can be further simplified into:

max
λ1,λ2,λ3

min
θ̃≥0

l1(λ1, λ2, λ3, θ̃) = θ̃⊤

∑
(s,a)

uλ1,λ2(s, a)ϕ̃(s, a)

− λ3θ̃
⊤θ̃ + λ1r + λ3. (13)

where we now optimize over the parameter θ̃ using the transformed features ϕ̃. For notational sim-
plicity, we will drop the tilde and henceforth use ϕ to represent the whitened feature ϕ̃, and θ to
represent θ̃. Then we can get a closed-form solution (we detail the steps in Appendix E.6) for opti-
mal θ∗ as: θ∗ = max

(
0, −

∑
(s,a) uλ1,λ2 (s,a)ϕ(s,a)

2λ3

)
, where the max(·, 0) is applied elementwise.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Details for solving the outer maximization in Equation 13 can be found in Appendix E.7. After
obtaining the optimal dual variables (λ∗

1, λ
∗
2, λ

∗
3), we can substitute them back into the optimal θ∗ to

construct the worst-case reward, which is the optimal solution of the inner problem of Equation 11
given π. Then we can solve the outer maximization over the policy π using standard RL algorithms.

ORPO with Linear Rewards. While ORPO provides a general guarantee based on occupancy
measure regularization, it does not exploit any structural assumptions about the reward function.
In particular, even when the true reward is linear in a set of features, ORPO does not explicitly
incorporate this structure into its policy optimization or theoretical analysis. While the lower bound
(Theorem 5.1 in (Laidlaw et al., 2025)) continues to hold, it is unclear how to leverage this structure
to obtain a tighter lower bound or to guide policy updates more effectively. This suggests a missed
opportunity: by explicitly modeling the reward as a linear function, it becomes possible to derive
stronger guarantees, interpret worst-case reward directions, and efficiently optimize against them.
Our Linear Maxmin method fills this gap by parameterizing reward uncertainty directly in the space
of reward weights, enabling both robustness and greater transparency.

3.3 OCCUPANCY ESTIMATION AND CONVERGENCE

A core step in both our algorithms and ORPO is to estimate the Radon-Nikodym derivative L(s, a).
To this end, following prior works (Laidlaw et al., 2025; Kang et al., 2018; Ho & Ermon, 2016), we
fit a discriminator network dϕ(s, a) with Lϕ(s, a) = exp dϕ(s, a). We learn ϕ by minimizing:

ϕ = argmin
ϕ

Eµπref
[log(1 + edϕ(s,a))] + Eµπ [log(1 + e−dϕ(s,a))]. (14)

It is known that the optimal discriminator satisfies d∗(s, a) = log µπ(s,a)
µπref (s,a)

and we estimate Lϕ(s, a)

as L̃ϕ(s, a) = exp d̃ϕ(s, a) with d̃ϕ(s, a) ≈ d∗(s, a). As discussed in Section 3.1, if the policy π
visits state-action pairs that the reference policy πref rarely or never visits, the adversarial reward can
be arbitrarily poor. In theory, the estimated L̃(s, a) is expected to grow arbitrarily large in this case,
which should discourage the learned policy from exploiting such regions. However, we observe
empirically (Section 4.2) that the ORPO policy still visits some of these low-coverage regions under
πref. This is because in the original ORPO implementation, the discriminator is not fully optimized
during policy learning. Specifically, the discriminator receives only a small number of gradient
updates per RL iteration, resulting in underfitting and inaccurate estimates of the Radon-Nikodym
derivative L̃(s, a). To address this, we substantially increase the number of gradient updates per
iteration and carefully tune the learning rate. Our goal is to strike a practical balance between
training time and discriminator quality, which we discuss in Appendix F.1. We further show that the
following theorem, which establishes that the discriminator estimation achieves a sample complexity
of O

(
n−1/4

)
, where n denotes the sample size.

Theorem 2 (Occupancy ratio Lϕ error bound). Under assumptions, let L̃ := ed̃ be the empirical
estimation and L⋆ = ed

⋆

be the true ratio. Then, with probability at least 1− δ,

Eµπref
[
|L̃− L⋆|

]
≤ C

(
γ′ +

(log(M/δ)

n

)1/2)1/2

.

where C, γ′ and M are some constants.

The full argument is presented in Appendix G.1, where we adopt the optimistic cover notion (Def-
inition 3) from (Huang et al., 2023) as a technical tool and establish the new concentration analysis
as well as the resulting complexity bounds specific for estimating the loss in Equation 14.

To compute the final objective for our Max-Min policy in Equation 9, we estimate the χ2 divergence,
the normalized proxy reward Rproxy, and the first and second moments Eµπ [Rproxy] and E2

µπ [Rproxy].
These components together define the robust optimization objective used to update the policy. A
simplified Max-Min policy optimization procedure is outlined in Algorithm 1. We provide detailed
descriptions of each estimation step, as well as the complete algorithmic implementation for both
Max-Min and Linear Max-Min in Appendices F.2 and F.3. We further obtain a convergence bound
of O

(
1/T + 1/N + n−1/4

)
for our Max-Min algorithm, by viewing (9) as maximizing a general

utility considered in (Zhang et al., 2022; Barakat et al., 2024). Here T is the number of iterations
and N is the batch size for policy update. Detailed proofs and the convergence analysis for Linear
Max-Min are in Appendix G.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 Max-Min Policy Optimization (Simplified)

1: Initialize policy parameters θ
2: Initialize reference policy πref and collect trajectories
3: Estimate mean and variance of the proxy reward under πref
4: for each iteration do
5: Collect trajectories from current policy πθ
6: Normalize the proxy rewards for state-action pairs in the collected trajectories
7: Estimate the expected proxy reward and its second moment under the current policy
8: Estimate the discriminator using Equation 14 and χ2 divergence between µπ and µπref

9: Update the policy using PPO to maximize the Max-Min objective in Equation 9
10: end for

4 EXPERIMENT

4.1 EXPERIMENT SETUP

We evaluate our method across five realistic benchmark environments: Traffic, Pandemic, Glucose
Monitoring, Tomato Watering GridWorld and RLHF. These environments were originally proposed
in (Pan et al., 2022; Leike et al., 2017) and represent diverse forms of proxy reward hacking, includ-
ing misweighting, ontological mismatch, and scope misalignment (Pan et al., 2022). A detailed de-
scription of the environments and their respective reward structures is provided in Appendix F.4. In
each of the five environments, we train policies using both our Max-Min and Linear Max-Min
algorithms for 5 random seeds. For baselines, we compare against the ORPO policy. To isolate the
impact of discriminator training, we also include an ablation: ORPO*, where we train the ORPO
policy using the same full discriminator training schedule as in our algorithms. This variant shares
the same architecture and optimization settings as the original ORPO, differing only in the extent of
discriminator training. Including this baseline allows us to evaluate the specific contribution of dis-
criminator optimization to policy robustness. For the RLHF environment, we additionally include
the Ensemble baseline (Eisenstein et al., 2023), a reward-centric approach designed to mitigate
reward hacking in RLHF. We include more detailed experimental settings in Appendix F.5 and a
discussion of training time and complexity of all algorithms in Appendix F.6.

Since the correlation r may only be approximately estimated and there is currently no principled
method for selecting its optimal value. We adopted a similar approach used by ORPO (Laidlaw
et al., 2025). For each environment, we first performed a grid search over several different values
of r, and for each fixed r, we trained the policy using our algorithm. We then selected the r value
that leads to the policy with the best expected worst-case return (detailed in Appendix H.2), which
is 0.3 for Traffic, 0.7 for Pandemic, 0.9 for Glucose, 0.4 for Tomato, and 0.4 for RLHF. Results on
all searched r can be found in Appendix H.5. Notice that ORPO selects the optimal r that yields the
best expected return under the true reward, which is infeasible in practice when the true reward is
unknown during training. On the other hand, when the exact correlation r is unknown, our approach
also raises a concern about how to interpret which worst-case reward is actually meaningful. We
include a detailed discussion about how to choose r in practice in Appendix I.

As for evaluation metrics, we report both the expected proxy and true rewards, along with the ex-
pected worst-case reward as described in Section 3.1. Note that some policies may visit state-action
pairs that are not covered by the reference policy πref. In such cases, we exclude those trajectories
and report the occupancy measure of the unseen state-action pairs. Additionally, we evaluate each
policy using two variants of the expected linear worst-case reward introduced in Section 3.2. The
first uses only the features present in the proxy reward, while the second variant, denoted Linear
Worst*, leverages features from the true reward, some of which remain unseen during training. This
setup mimics a more realistic real-world scenario in which the true reward function may depend on
features not explicitly modeled at training time. Comparing performance under this setting allows
us to assess the robustness of each policy to unseen or misaligned reward structures. All rewards
are normalized with respect to the reference policy πref to ensure a consistent scale across metrics,
enabling fair and meaningful comparisons. Note that all worst-case rewards are reported using the
fixed correlation level r specified during training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results on Traffic, Pandemic, Glucose, and RLHF environments. All policies are trained
using only the proxy reward. In Traffic, the proxy reward is based on vel, accel, headway (1, 1, 0.1), while the
true reward uses commute, accel, headway (1, 1, 0.1). In Pandemic, the proxy reward includes infection, lower
stage, smooth changes (10, 0.1, 0.01), while the true reward additionally includes political with weight 10 after
infection. In Glucose, the proxy uses expected patient cost, and the true reward uses magni bg. In RLHF, the
proxy uses a 70M LLM, and the true reward uses a 8B LLM. We report θ in the same order as feature weights.
Occ denotes total occupancy over state-action pairs unseen by πref, where discriminator outputs infinity.

Env Traffic
Method True Proxy Worst Linear Worst (θ) Linear Worst* (θ) Occ ↓
ORPO 16.91±0.12 3.41±0.13 -1.96e+04±0.02e+04 -0.69±0.01 (0.71, 0.21, 0.69) -0.83±0.02 (0.63, 0.12, 0.97) 3.82e-04 ±0.13e-04
ORPO* 10.26±0.09 1.35±0.09 -1.35e+04±0.02e+04 -0.44±0.02 (0.46, 0.18, 0.86) -0.45±0.01 (0.58, 0.06, 0.81) 1.84e-04±0.07e-04
Max-Min 12.70±0.06 3.63±0.09 -268.31±4.14 -0.06±0.01 (0.01, 0.02, 0.96) -0.06±0.01 (0.001, 0.02, 0.99) 0.00±0.00

Linear Max-Min 16.46±0.10 2.40±0.11 -1.19e+04±0.01e+04 0.20±0.01 (0.64, 0.07, 0.76) -0.12±0.01 (0.91, 0.01, 0.67) 0.00±0.00
Env Pandemic

Method True Proxy Worst Linear Worst (θ) Linear Worst* (θ)
ORPO -1.04±0.21 1.75±0.19 -5.31e+06±0.01e+06 -2.41±0.02 (0.23, 0.95, 0.17) -2.65±0.02 (0.02, 0.95, 0.92, 0.08)
ORPO* 1.18±0.19 1.18±0.19 -4.46e+06±0.03e+06 -1.36±0.01 (0.25, 0.97, 0.13) -1.36±0.01 (0.25, 0, 0.97, 0.13)
Max-Min 1.25±0.18 1.25±0.18 -63.29±3.35 -1.11±0.01 (0.14, 0.99, 0.01) -1.11±0.01 (0.14, 0, 0.99, 0.01)

Linear Max-Min 3.65±0.11 7.60±0.13 -6.82e+05±0.01e+05 0.65±0.01 (0.001, 0.23, 0.02) -0.17±0.02 (0.01, 0.97, 0.22, 0.09)
Env Glucose RLHF

Method True(×103) Proxy Worst True Proxy Worst
ORPO 6.0±0.1 100.48±0.54 -27.54±0.32 8.30±1.07 0.63±0.21 -1.84±0.03
ORPO* 6.3±0.2 116.36±0.56 -8.79±0.27 N/A N/A N/A
Max-Min 6.3±0.1 102.66±0.58 -1.71±0.25 5.38±0.92 0.84±0.11 -0.10±0.01
Ensemble N/A N/A N/A 2.31±1.23 1.26±0.11 -1.70±0.04

Figure 1: Mean reward and standard deviation under sampled θ and true reward features at different proxy–true
reward correlation levels r for the Traffic and Pandemic environments. Our methods (Max-Min and Linear
Max-Min) yield more stable and higher average performance across all choices of r.

4.2 RESULTS

Worst-Case Performance. Table 1 presents the evaluation results on the Traffic, Pandemic, Glu-
cose, and RLHF environments. Additional results for Tomato are provided in Appendix H. Note
that we omit the Linear Max-Min policy from the Glucose and RLHF environments for the fol-
lowing reasons. In the Glucose and RLHF environment, both the proxy and true rewards used in
prior work (Laidlaw et al., 2025; Baker et al., 2025) are based on a single feature, making the lin-
ear reward formulation trivial. Although the original Glucose simulator provides multiple candidate
features related to patient health, selecting an appropriate feature combination without prior knowl-
edge of clinical intent is nontrivial. Therefore, in both settings, we report only the results for the
Max-Min policy alongside the baselines.

Our Max-Min and Linear Max-Min policies achieve better expected worst-case performance
under both general and linear adversarial rewards, while remaining competitive with baselines in
terms of expected true and proxy rewards. Notably, the Max-Min policy attains the highest expected
worst-case return, followed by Linear Max-Min. Conversely, Linear Max-Min yields the
highest expected linear worst-case reward, followed by Max-Min, demonstrating the robustness
of both approaches under worst-case scenarios. For the Linear Worst* evaluation, which uses re-
ward features unseen during training, we observe minimal degradation in Max-Min policy’s perfor-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

mance, indicating its strong robustness to feature variation. In contrast, the performance of Linear
Max-Min declines in this case, suggesting its advantage diminishes when prior assumptions about
feature structure are inaccurate. We also find that ORPO* exhibits better worst-case performance
than the original ORPO. In particular, training the discriminator more thoroughly significantly re-
duces the occupancy of state-action pairs that are not visited by the reference policy, indicating that
more accurate estimation of the Radon-Nikodym derivative leads to improved policy robustness.
Notably, in the Pandemic and Glucose environment, we observe no such unvisited state-action pairs,
and the discriminator outputs remain small across all policies. This could be due to either the dis-
criminator network not being fully optimized or its inability to capture rare events that fall outside
the support of πref. Developing more reliable techniques for handling such rare or unseen state-
action pairs remains an open direction for future work. We also report the adversarial weight vectors
θ for each policy. These weights reveal which features are most vulnerable to proxy exploitation
under the learned policy and can be used to diagnose and revise the proxy reward function, thereby
improving robustness. This highlights the interpretability benefits of our framework. Moreover,
several patterns emerge from the results, which is detailed in Appendix H.2. We also notice that the
Ensemble baseline in the RLHF setting achieves only limited improvement in expected true return
over the reference policy and attains a lower expected worst-case return than our method. These
results indicate that using reward ensembles alone is insufficient to effectively mitigate reward hack-
ing compared to our approach. However, such reward-centric methods, including InfoRM (Miao
et al., 2024) and RRM (Liu et al., 2024), can be easily integrated into our framework. In particular,
these approaches can be used to construct a stronger proxy reward, which can then be plugged into
our method to further improve performance.

Robustness Across Correlation Levels. To further assess the robustness of each policy across
a broader range of proxy–true correlation scenarios, we also compute the Linear Worst* for each
policy under varying r values. Specifically, for each r, we sample 1000 vectors θ such that θ ∈ Rlin

corr,
and report the average return and variance achieved by each policy over these sampled rewards.
Importantly, the variation in r is applied only during evaluation; all policies are fixed and trained
using the specific r values reported in Appendix F.5. Unlike evaluations that only consider several
reward functions, this approach evaluates policy performance across the entire reward set Rlin

corr,
providing a more comprehensive measure of robustness and better reflecting real-world scenarios
where the true reward and correlation r are unknown.

Figure 1 shows the average reward and variance achieved by each method under different levels of
proxy–true reward correlation r. As expected, the reference policy πref (blue) performs the worst
across all correlation levels in both environments. In Traffic, its variance is relatively small, sug-
gesting consistently poor but stable behavior. In contrast, variance is highest in the Pandemic envi-
ronment, indicating increased policy fragility. Notably, ORPO* (purple) consistently achieves lower
variance than ORPO (red) across both environments and outperforms it in terms of average reward at
r ≈ 0.9 and r ≈ 0.7 in Traffic, and across nearly all r values in Pandemic. This underscores the im-
portance of accurate discriminator training for improving both stability and robustness. Max-Min
(green) demonstrates the highest average reward and lowest variance across a wide range of r val-
ues in both environments, showing strong resilience to reward misspecification. While Linear
Max-Min (orange) achieves the best performance at specific correlation levels, particularly r ≈ 0.3
in Traffic and r ≈ 0.7-0.9 in Pandemic. As r decreases and the proxy becomes less informative, dif-
ferences in average reward among methods shrink, while variance increases. These results highlight
the significance of variance control in low-correlation regimes and demonstrate that Max-Min and
Linear Max-Min offer robust and stable performance under high uncertainty.

5 CONCLUSION

In this work, we formalize reward hacking as a robust optimization problem and introduce both
a Max-Min formulation with a closed-form adversarial reward and a Linear Max-Min variant that
further improves interpretability and tractability. We develop efficient algorithms and empirically
validate that both Max-Min and Linear Max-Min policies achieve stronger worst-case performance
and improved stability compared to prior baselines such as ORPO across diverse environments. We
further discuss limitations and broader impacts of our method in Appendices B and C.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine learning (ICML), 2004.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

J Andrew Bagnell, Andrew Y Ng, and Jeff G Schneider. Solving uncertain markov decision pro-
cesses. 2001.

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and
the risks of promoting obfuscation. arXiv preprint arXiv:2503.11926, 2025.

Anas Barakat, Souradip Chakraborty, Peihong Yu, Pratap Tokekar, and Amrit Singh Bedi. Towards
scalable general utility reinforcement learning: Occupancy approximation, sample complexity
and global optimality. arXiv preprint arXiv:2410.04108, 2024.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement. In International Conference on Machine
Learning, pp. 501–510. PMLR, 2018.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.
The perils of trial-and-error reward design: misdesign through overfitting and invalid task spec-
ifications. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
5920–5929, 2023.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Ronen Brafman, Giuseppe De Giacomo, and Fabio Patrizi. Ltlf/ldlf non-markovian rewards. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila McIlraith. Non-markovian rewards ex-
pressed in ltl: guiding search via reward shaping. In Proceedings of the International Symposium
on Combinatorial Search, volume 8, pp. 159–160, 2017.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. In NeurIPS 2023 Workshop on Instruction Tuning and Instruction
Following.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty with
application to data-driven problems. Operations research, 58(3):595–612, 2010.

Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized mdps and the equivalence
between robustness and regularization. Advances in Neural Information Processing Systems, 34:
22274–22287, 2021.

Dotan Di Castro, Aviv Tamar, and Shie Mannor. Policy gradients with variance related risk criteria.
In International Conference on Machine learning (ICML), 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
stat, 1050:2, 2017.

Jeff Druce, Michael Harradon, and James Tittle. Explainable artificial intelligence (xai) for in-
creasing user trust in deep reinforcement learning driven autonomous systems. arXiv preprint
arXiv:2106.03775, 2021.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36:30039–30069, 2023.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement
learning with a corrupted reward channel. In International Joint Conference on Artificial Intelli-
gence (IJCAI), 2017.

Tom Everitt, Marcus Hutter, Ramana Kumar, and Victoria Krakovna. Reward tampering problems
and solutions in reinforcement learning: A causal influence diagram perspective. Synthese, 198
(Suppl 27):6435–6467, 2021.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. In International Conference on Learning Representations.

Alan Fern, Sriraam Natarajan, Kshitij Judah, and Prasad Tadepalli. A decision-theoretic model of
assistance. Journal of Artificial Intelligence Research, 50:71–104, 2014.

Ian Fox, Joyce Lee, Rodica Pop-Busui, and Jenna Wiens. Deep reinforcement learning for closed-
loop blood glucose control. In Machine Learning for Healthcare Conference, pp. 508–536.
PMLR, 2020.

Matt Franchi, JD Zamfirescu-Pereira, Wendy Ju, and Emma Pierson. Detecting disparities in police
deployments using dashcam data. In Proceedings of the 2023 ACM Conference on Fairness,
Accountability, and Transparency, pp. 534–544, 2023.

Clement A Gehring. Approximate linear successor representation. Reinforcement Learning Decision
Making, 2015.

Joel Goh and Melvyn Sim. Distributionally robust optimization and its tractable approximations.
Operations research, 58(4-part-1):902–917, 2010.

Charles AE Goodhart and CAE Goodhart. Problems of monetary management: the UK experience.
Springer, 1984.

Vineet Goyal and Julien Grand-Clement. Robust markov decision process: Beyond rectangularity.
arXiv preprint arXiv:1811.00215, 2018.

Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12086–12094, 2021.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. In Advances in Neural Information Processing Systems, 2017.

Yuval Noah Harari. Nexus: A brief history of information networks from the stone age to AI. Signal,
2024.

Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung, Aman Tiwari, Jonathan Tow, Stella Bider-
man, Quentin Anthony, and Louis Castricato. trlx: A framework for large scale reinforcement
learning from human feedback. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 8578–8595, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, 2016.

Andreas Holzinger, Chris Biemann, Constantinos S Pattichis, and Douglas B Kell. What do we need
to build explainable ai systems for the medical domain? arXiv preprint arXiv:1712.09923, 2017.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust opti-
mization. Available at Optimization Online, 1(2):9, 2013.

Audrey Huang, Jinglin Chen, and Nan Jiang. Reinforcement learning in low-rank mdps with density
features. In International Conference on Machine Learning, pp. 13710–13752. PMLR, 2023.

Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D Lee, Wen Sun, Akshay Krishnamurthy, and
Dylan J Foster. Correcting the mythos of kl-regularization: Direct alignment without overopti-
mization via chi-squared preference optimization. arXiv preprint arXiv:2407.13399, 2024.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. In Advances in Neural Information
Processing Systems, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73:173–208, 2022.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
Noah A Smith, Yejin Choi, and Hanna Hajishirzi. Unpacking dpo and ppo: Disentangling best
practices for learning from preference feedback. Advances in neural information processing sys-
tems, 37:36602–36633, 2024.

Garud Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):257–
280, 2005.

Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia Sycara. Transparency
and explanation in deep reinforcement learning neural networks. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, pp. 144–150, 2018.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying
formalism for reward learning. In Advances in Neural Information Processing Systems, 2020.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In International conference on machine learning, pp. 4880–4889. PMLR,
2020.

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In International
Conference on Machine Learning (ICML), 2018.

David L Kaufman and Andrew J Schaefer. Robust modified policy iteration. INFORMS Journal on
Computing, 25(3):396–410, 2013.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. The challenge of understanding what
users want: Inconsistent preferences and engagement optimization. Management Science, 70(9):
6336–6355, 2024.

W Bradley Knox and James MacGlashan. How to specify reinforcement learning objectives. In
Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks, 2024.

W Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(mis) design for autonomous driving. Artificial Intelligence, 316:103829, 2023.

Jack Koch, Lauro Langosco, Jacob Pfau, James Le, and Lee Sharkey. Objective robustness in deep
reinforcement learning. arXiv preprint arXiv:2105.14111, 2, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

V Kompella, R Capobianco, S Jong, J Browne, S Fox, L Meyers, P Wurman, P Stone, et al. Re-
inforcement learning for optimization of covid-19 mitigation policies. In CEUR WORKSHOP
PROCEEDINGS, volume 2884. CEUR-WS, 2020.

Victoria Krakovna. Specification gaming examples in ai, April
2018. URL https://vkrakovna.wordpress.com/2018/04/02/
specification-gaming-examples-in-ai/. Blog post.

Victoria Krakovna. Classifying specification problems as variants of goodhart’s law,
August 2019. URL https://vkrakovna.wordpress.com/2019/08/19/
classifying-specification-problems-as-variants-of-goodharts-law/.
Blog post.

Victoria Krakovna, Laurent Orseau, Ramana Kumar, Miljan Martic, and Shane Legg. Penalizing
side effects using stepwise relative reachability. arXiv preprint arXiv:1806.01186, 2018.

Cassidy Laidlaw, Eli Bronstein, Timothy Guo, Dylan Feng, Lukas Berglund, Justin Svegliato, Stuart
Russell, and Anca Dragan. Scalably solving assistance games. In ICLR 2025 Workshop on
Bidirectional Human-AI Alignment, 2024.

Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. Correlated proxies: A new definition and im-
proved mitigation for reward hacking. In International Conference on Learning Representations,
2025.

Henry Lam. Robust sensitivity analysis for stochastic systems. Mathematics of Operations Re-
search, 41(4):1248–1275, 2016.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro Ortega, Tom Everitt, Ryan Lefrancq, Laurent
Orseau, and Shane Legg. AI safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E
Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

Fei Liu et al. Learning to summarize from human feedback. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 583–592, 2020.

Tianqi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru Wu, Rishabh Joshi, Yang Gao, Jiaming Shen,
Zhen Qin, Tianhe Yu, et al. Rrm: Robust reward model training mitigates reward hacking. arXiv
preprint arXiv:2409.13156, 2024.

Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton, Boris Kovatchev, and Claudio
Cobelli. The uva/padova type 1 diabetes simulator: new features. Journal of diabetes science and
technology, 8(1):26–34, 2014.

Jeremy Mcmahan, Giovanni Artiglio, and Qiaomin Xie. Roping in uncertainty: Robustness and
regularization in markov games. In International Conference on Machine Learning, pp. 35267–
35295. PMLR, 2024.

Yuchun Miao, Sen Zhang, Liang Ding, Rong Bao, Lefei Zhang, and Dacheng Tao. Inform: Mit-
igating reward hacking in rlhf via information-theoretic reward modeling. Advances in Neural
Information Processing Systems, 37:134387–134429, 2024.

Smitha Milli, Luca Belli, and Moritz Hardt. From optimizing engagement to measuring value. In
ACM Conference on Fairness, Accountability, and Transparency (FAccT), pp. 714–722, 2021.

Nathan Monette, Alistair Letcher, Michael Beukman, Matthew T Jackson, Alexander Rutherford,
Alexander D Goldie, and Jakob N Foerster. An optimisation framework for unsupervised envi-
ronment design. arXiv preprint arXiv:2505.20659, 2025.

Jorge J. Moré. The levenberg-marquardt algorithm: Implementation and theory. Technical Report
ANL-80-20, Argonne National Laboratory, Argonne, IL, 1978. Lecture Notes in Mathematics,
vol. 630.

14

https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
https://vkrakovna.wordpress.com/2019/08/19/classifying-specification-problems-as-variants-of-goodharts-law/
https://vkrakovna.wordpress.com/2019/08/19/classifying-specification-problems-as-variants-of-goodharts-law/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tong Mu, Alec Helyar, Johannes Heidecke, Joshua Achiam, Andrea Vallone, Ian Kivlichan, Molly
Lin, Alex Beutel, John Schulman, and Lilian Weng. Rule based rewards for language model
safety. Advances in Neural Information Processing Systems, 37:108877–108901, 2024.

Calarina Muslimani, Kerrick Johnstonbaugh, Suyog Chandramouli, Serena Booth, W Bradley Knox,
and Matthew E Taylor. Towards improving reward design in rl: A reward alignment metric for rl
practitioners. arXiv preprint arXiv:2503.05996, 2025.

Hoang Nam Nguyen, Abdel Lisser, and Vikas Vikram Singh. Distributionally robust chance-
constrained markov decision processes. arXiv preprint arXiv:2212.08126, 2022.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias
in an algorithm used to manage the health of populations. Science, 366(6464):447–453, 2019.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. In International Conference on Learning Representations,
2022.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Erika Puiutta and Eric MSP Veith. Explainable reinforcement learning: A survey. In International
cross-domain conference for machine learning and knowledge extraction, pp. 77–95. Springer,
2020.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. arXiv
preprint arXiv:2401.12187, 2024.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

Karim Abdel Sadek, Matthew Farrugia-Roberts, Usman Anwar, Hannah Erlebach, Chris-
tian Schroeder de Witt, David Krueger, and Michael Dennis. Mitigating goal misgeneralization
via minimax regret. arXiv preprint arXiv:2507.03068, 2025.

Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active preference-based learning of
reward functions. In Robotics: Science and Systems, 2017.

Andreas Schlaginhaufen and Maryam Kamgarpour. Identifiability and generalizability in con-
strained inverse reinforcement learning. In International Conference on Machine Learning
(ICML), 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In arXiv preprint arXiv:1707.06347, 2017.

Rohin Shah, Pedro Freire, Neel Alex, Rachel Freedman, Dmitrii Krasheninnikov, Lawrence Chan,
Michael D Dennis, Pieter Abbeel, Anca Dragan, and Stuart Russell. Benefits of assistance over
reward learning. 2020.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Garry M Steil. Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-
derivative control. Journal of diabetes science and technology, 7(6):1621–1631, 2013.

Jonathan Stray, Alon Halevy, Parisa Assar, Dylan Hadfield-Menell, Craig Boutilier, Amar Ashar,
Chloe Bakalar, Lex Beattie, Michael Ekstrand, Claire Leibowicz, et al. Building human values
into recommender systems: An interdisciplinary synthesis. ACM Transactions on Recommender
Systems, 2(3):1–57, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown. Causal
confusion and reward misidentification in preference-based reward learning. In International
Conference on Learning Representations, 2023.

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical observa-
tions and microscopic simulations. Physical Review E, 62(2):1805, 2000.

Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal, Kathy Jang, Cathy Wu,
Fangyu Wu, Richard Liaw, Eric Liang, and Alexandre M Bayen. Benchmarks for reinforcement
learning in mixed-autonomy traffic. In Conference on Robot Learning, pp. 399–409. PMLR,
2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in
python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

George A Vouros. Explainable deep reinforcement learning: state of the art and challenges. ACM
Computing Surveys, 55(5):1–39, 2022.

Cathy Wu, Abdul Rahman Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M Bayen.
Flow: A modular learning framework for mixed autonomy traffic. IEEE Transactions on Robotics,
38(2):1270–1286, 2021.

Tengyang Xie, Bo Liu, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming Lyu, and
Daesub Yoon. A block coordinate ascent algorithm for mean-variance optimization. In Advances
in Neural Information Processing Systems, 2018.

Rui Yu, Shenghua Wan, Yucen Wang, Chen-Xiao Gao, Le Gan, Zongzhang Zhang, and De-
Chuan Zhan. Reward models in deep reinforcement learning: A survey. arXiv preprint
arXiv:2506.15421, 2025.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement
learning with realizability and single-policy concentrability. In Conference on Learning Theory,
pp. 2730–2775. PMLR, 2022.

Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, and Alec Koppel. Multi-agent reinforcement learn-
ing with general utilities via decentralized shadow reward actor-critic. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 9031–9039, 2022.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

A LLM Usage 19

B Limitations and Future Work 19

C Broader Impacts 20

D Related Work 20

D.1 Reward Hacking . 20

D.2 Reward Modeling in Reinforcement Learning . 21

D.3 Robust Reinforcement Learning . 21

D.4 Successor Representations in Reinforcement Learning 22

E Proofs and Additional Theoretical Results 22

E.1 Solve the Max-Min Objective . 22

E.2 Proof of Optimality . 26

E.3 Proof that χ2(µπ ∥µπref) ≥ E2
µπ [Rproxy] . 28

E.4 Derive Lagrangian Functional for Linear Max-Min Objective 29

E.5 Proof for Whitening Transformation . 30

E.6 Derive Optimal Primal Variable for Linear Max-Min Objective 31

E.7 Solve the Dual Objective for Linear Max-Min Objective 32

E.8 Policy Gradient Derivation . 33

E.9 Proof of Theorem 1 . 35

F Additional Implementation Details 35

F.1 Training Discriminator Network . 35

F.2 Derivation of Max-Min Policy Optimization . 37

F.3 Derivation of Linear Max-Min Policy Optimization 38

F.4 Environment Description and Reward Hacking Types 40

F.5 Additional Experiment Setup . 42

F.6 Training Time and Complexity . 44

G Convergence Analysis 45

G.1 Sample Complexity of Occupancy Measure Estimation 45

G.2 Guarantees for Max-Min with Occupancy Measure Approximation 51

G.3 Convergences for Linear Max-Min algorithm . 52

H Additional Experiment Results 53

H.1 Feature Weights in Linear Max-Min Optimization during Training 53

H.2 Additional Worst-Case Performance Results . 54

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

H.3 Additional Results for Robustness Across Correlation Levels 56

H.4 Additonal Unnormalized Results . 57

H.5 Results for all r . 57

I How to choose r in practice? 58

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A LLM USAGE

In this work, we used ChatGPT to improve grammar, wording, and paragraph flow throughout the
paper after completing an initial draft. We also used ChatGPT’s research capabilities to help sur-
face potentially relevant prior work for the related work and introduction sections. All references
were independently verified by the authors. No algorithms, proofs, or experimental results were
generated by ChatGPT, and no proprietary or sensitive data were shared with the tool. All technical
contributions and analyses are solely the authors’ work.

B LIMITATIONS AND FUTURE WORK

Despite the effectiveness of our framework, several limitations remain. First, although our Max-Min
formulation can be extended naturally beyond linear reward structures, incorporating more expres-
sive representations such as neural networks makes the inner optimization problem significantly
harder. In such cases, the inner minimization may no longer admit a closed-form solution, necessi-
tating iterative training between the policy and adversary. This increases computational complexity
and undermines the efficiency advantages of our current formulation. Developing scalable solutions
for general reward representations remains an open direction.

Second, in our Linear Max-Min algorithm, computing Q results in O(d2) space and O(d3) time
complexity. While low-rank approximations could potentially reduce computational cost, such
methods often discard small eigenvalues. However, in our setting, these small eigenvalues be-
come critical due to the inversion in the whitening step, and removing them may severely distort
the worst-case reward direction. Therefore, naive low-rank approximations may not be applicable
in our setting, and we emphasize the need for principled, scalable extensions when applying our
method to settings with very high-dimensional feature spaces.

Third, for complex environments, constructing effective features for the reward function is often
challenging without prior domain knowledge. For example, in the Glucose environment, a large
number of health-related indices are provided. However, without medical expertise or knowledge of
glucose monitoring, it is difficult to determine which combination of indices best captures patient
health or blood glucose trends. Using arbitrarily selected features in such cases can lead to proxy
rewards that exhibit little or no correlation with the true reward. While our max-min formulation
can still offer robustness under such misspecification, the resulting policy is nevertheless expected to
perform poorly due to the fundamental misalignment between the proxy and true objectives. There-
fore, designing meaningful reward features remains a fundamental and unresolved challenge, and
we will include this as a limitation of our method in the main text. Moreover, in some environ-
ments, such as Tomato, the reward function is not explicitly feature-based. Although our general
max-min algorithm still applies in this setting, incorporating non feature-based reward structure into
the uncertainty set remains an open problem.

Fourth, like ORPO, our framework assumes access to a fixed proxy reward, a reference policy,
and a pre-specified correlation parameter r, all provided offline. This setup limits the ability of
the algorithm to adapt or refine its reward model based on new information. However, we observe
that the adversarial rewards generated by our method, particularly the structured linear ones, can
serve as diagnostic tools to identify vulnerable reward features. These insights could be leveraged to
guide human-in-the-loop refinement or adaptive querying of stronger feedback models (e.g., large
language models). Extending our framework to close the loop between diagnostic robustness and
reward learning is an exciting direction for future work.

Fifth, while our experimental results demonstrate that the proposed method improves robustness
across a range of proxy-true reward correlation levels, an alternative and perhaps more direct strategy
would be to train the policy against multiple proxy rewards sampled at varying levels of correlation
r. In principle, optimizing the average performance across a diverse set of proxies could yield a
policy that is robust to a wider distribution of potential reward misspecifications. However, this
approach presents several practical challenges. First, there is a trade-off between computational cost
and coverage: sampling too few proxies may fail to represent the full space of plausible reward
deviations, while sampling many proxies significantly increases training time. Second, efficiently
generating reward functions that satisfy a fixed correlation constraint with the proxy reward becomes
non-trivial in high-dimensional or continuous state-action spaces. Designing scalable and effective

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

reward sampling mechanisms (such as leveraging diffusion models) under correlation constraints
remains an open problem and a promising direction for future research.

C BROADER IMPACTS

Designing reward functions that faithfully reflect designer intent remains a fundamental challenge
in deploying reinforcement learning (RL) systems in the real world. When reward misspecification
occurs, agents can behave in undesirable or even dangerous ways. Our work addresses this issue
by proposing a robust policy optimization framework that explicitly accounts for uncertainty in the
reward function, improving worst-case performance across a range of plausible reward proxies. This
approach has the potential to increase the safety and reliability of RL systems in safety-critical ap-
plications such as healthcare, autonomous driving, and digital infrastructure, where poorly specified
incentives can lead to unintended consequences. In addition to robustness, our linear variant con-
tributes to policy interpretability by yielding explicit weightings over features that can be inspected
and audited. This can help practitioners identify vulnerable components in their reward specification
and make better-informed decisions when refining proxies. However, while our method is primarily
intended to prevent reward exploitation, one could conceivably use adversarial reward modeling to
stress-test or attack policies. We believe the benefits of improved safety and robustness outweigh
this risk, especially when combined with interpretability. Overall, this work contributes to the safe
and trustworthy deployment of RL by equipping practitioners with more robust and explainable
optimization tools.

D RELATED WORK

D.1 REWARD HACKING

Early work in AI safety underscored the pitfalls of optimizing an imperfect proxy reward. Amodei
et al. (Amodei et al., 2016) famously illustrate how an agent can “game” its reward function: for
example, a cleaning robot rewarded for not seeing any messes might simply close its cameras or
create messes to clean up, maximizing the proxy reward while betraying the designer’s intent. Other
examples of such reward hacking include an agent in a racing game that spins in circles to collect
points instead of completing the race (Skalse et al., 2022), social media recommendation systems
that promote emotionally extreme content to increase engagement (Harari, 2024), and Large Lan-
guage Models (LLMs) that generate trivial or hard-coded solutions to pass unit tests rather than
producing general, correct code (Baker et al., 2025). Krakovna et al. (Krakovna, 2018) have cata-
logued many such failure cases across diverse domains. Several studies have analyzed the causes of
reward hacking (Amodei et al., 2016; Krakovna, 2019; Skalse et al., 2022), often interpreting it as
a manifestation of Goodhart’s Law (Goodhart & Goodhart, 1984): when a proxy metric becomes a
target for optimization, it ceases to be a good measure. In reinforcement learning, this risk is partic-
ularly acute because agents can exploit even small imperfections in the reward specification. Pan et
al. (Pan et al., 2022) further propose a taxonomy of proxy reward misspecification into three types:
misweighting, ontological, and scope errors.

To mitigate such risks, several reward-centric methods have been proposed (Hadfield-Menell et al.,
2017; Ramé et al., 2024). Inverse Reward Design (Hadfield-Menell et al., 2017) aims to infer the in-
tended true objective from a given proxy and its training context, helping agents generalize without
exploiting flawed signals. Recent work by Rame et al. (Ramé et al., 2024) averages the parameters
of multiple reward models to smooth out idiosyncratic errors, reduce the impact of individual proxy
biases, and demonstrate reduced reward hacking on held-out tests. Another line of defense focuses
on regularizing policy behavior to reduce sensitivity to reward flaws. Common approaches include
penalizing divergence from a reference policy using KL-regularization (Liu et al., 2020). Recent
research by Laidlaw et al. (Laidlaw et al., 2025) proposes Occupancy-Regularized Policy Optimiza-
tion (ORPO), which applies a χ2 penalty on the state-action distribution to constrain deviation from
a baseline policy and reduce exploitative behaviors. Another complementary paradigm is assistance
games (Fern et al., 2014; Shah et al., 2020), in which human users remain actively involved and
the agent’s actions complement the user’s to achieve optimal joint performance. Assistance games
can mitigate reward hacking by removing incentives for deception since the agent’s performance

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

depends on the human’s latent (true) reward. Recent work has developed scalable assistance-game
approaches in practice (Laidlaw et al., 2024).

Overall, existing approaches either attempt to correct the reward specification, regularize against a
fixed proxy, or explicitly involve human interaction. In contrast, our method trains policies against an
entire set of plausible proxy rewards, those that remain sufficiently correlated with the true reward,
offering robustness to a broader range of misspecifications. Moreover, we show that this robust
training objective can be reformulated as an equivalent regularized optimization problem, providing
both theoretical and practical benefits.

D.2 REWARD MODELING IN REINFORCEMENT LEARNING

In standard RL benchmarks, the reward is usually assumed to be given, but real-world applications
rarely offer a well-defined reward signal upfront. Therefore, designing an effective reward function,
often referred to as reward modeling, is a critical yet challenging aspect of RL (Skalse et al., 2022;
Booth et al., 2023; Knox & MacGlashan, 2024). Moreover, evaluating whether a designed reward
truly captures the designer’s intent is non-trivial. Recent work (Muslimani et al., 2025) has proposed
to measure reward alignment via a “trajectory alignment coefficient,” which quantifies how closely
the rankings of trajectories induced by a given reward match a human stakeholder’s preferences.
Such efforts underscore the importance of conceptual frameworks that go beyond treating the reward
as a black box, instead focusing on principled reward design and evaluation.

To incorporate domain knowledge and improve interpretability, researchers have explored structured
or rule-based reward modeling frameworks (Icarte et al., 2022; Brafman et al., 2018; Camacho et al.,
2017). One prominent example is the use of reward machines (Icarte et al., 2022) that explicitly rep-
resent the reward function’s logic. A reward machine exposes the internal structure of the reward
(e.g. different sub-goal phases or conditions) to the agent, enabling techniques like automated re-
ward shaping and task decomposition for more sample-efficient learning. Even before the advent
of reward machines, prior works had leveraged logical task specifications to design rewards. For
instance, translating Linear Temporal Logic(LTL) formulas into automata and rewarding the agent
upon reaching designated accepting states (Camacho et al., 2017; Brafman et al., 2018). By defin-
ing rewards through such rules or logical templates, the intended behavior is encoded transparently,
making the reward function more interpretable. Along similar lines, many approaches assume a
structured parametric form for the reward function itself to aid transparency (Yu et al., 2025; Mu
et al., 2024). In particular, it is common to model the reward as a linear combination of feature
functions, a simplification used in inverse RL and preference-based reward learning to make reward
inference tractable and explainable (Yu et al., 2025). Recent work in RL from human feedback also
implements rule-based reward signals as linear models over interpretable features (Mu et al., 2024).
Our approach follows this tradition: by assuming the reward is linear in a set of human-interpretable
features, we improve the interpretability of the learned policies and reveal which feature components
are robust or vulnerable.

D.3 ROBUST REINFORCEMENT LEARNING

Our work is also related to robust reinforcement learning, where the agent assumes the reward
function (and/or transition dynamics) lies within a given uncertainty set, and it seeks to maximize
performance against the worst-case realization from that set. This can be formulated as a zero-sum
dynamic game between the agent and an adversary who selects the most adverse reward or dynamics;
solving the robust MDP thus involves a challenging max-min optimization (Iyengar, 2005; Nilim
& El Ghaoui, 2005). To alleviate the computational complexity, early works in this vein rely on
a rectangularity assumption that is crucial for traceability. Thus, classical robust RL formulation
typically considers rectangular uncertainty sets on rewards or transition probabilities, which lead to
conservative solutions but permit efficient algorithms such as robust value iteration (Bagnell et al.,
2001; Grand-Clément & Kroer, 2021) or modified policy iteration (MPI) (Kaufman & Schaefer,
2013).

Recent theoretical work has revealed an intimate connection between adversarial robustness and pol-
icy regularization in the context of rectangular uncertainty sets. Several researchers have shown that
solving a robust MDP is equivalent to solving a certain regularized RL problem (Derman et al., 2021;
Eysenbach & Levine; Mcmahan et al., 2024). In particular, the worst-case effect of the adversary

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

can often be captured via an additional penalty term in the agent’s objective. Derman et al. (Der-
man et al., 2021) prove that any entropy- or L2-regularized MDP can be interpreted as a robust
MDP with uncertain rewards – in fact, a regularized MDP is a special case of a reward-robust MDP.
Their analysis establishes a duality between a max-min reward-robust objective and a single-agent
maximization of expected reward plus a regularization term. Eysenbach and Levine (Eysenbach &
Levine) show that the optimal policy from a maximum entropy RL formulation is provably robust
to some adversarial reward perturbations. More recently, these insights have been extended and for-
malized for general MDPs and even multi-agent settings. McMahan et al. (Mcmahan et al., 2024)
study robust Markov games with (s, a)-rectangular uncertainty, and they prove that computing a
robust equilibrium is polynomial-time equivalent to computing an equilibrium in a corresponding
regularized game. In their framework, the added regularization term is exactly the support func-
tion of the uncertainty set, effectively the dual representation of the adversary’s worst-case reward
selection. This means that for common uncertainty sets (e.g., those inducing entropy or ℓp-norm
regularizers), one can replace the inner minimization over rewards with an explicit regularization
term in the objective.

The setting in our work departs from the above literature by considering non-rectangular reward
uncertainty. In particular, we assume a correlation-constrained uncertainty set for the reward func-
tion, meaning that the adversary’s permissible deviations in reward are coupled across states. This
structure can mitigate the conservativeness of the worst-case solution (the adversary cannot simul-
taneously push all state rewards to their extreme worst values) (Goyal & Grand-Clement, 2018),
but it also means that the neat robustness-regularization duality from the rectangular-case no longer
applies and the robust optimization must be solved (or approximated) directly. In summary, our
work tackles a form of reward uncertainty which lies beyond the scope of existing robustness-as-
regularization analysis.

D.4 SUCCESSOR REPRESENTATIONS IN REINFORCEMENT LEARNING

The linear reward assumption and the use of discounted feature expectations are also closely re-
lated to the literature on successor representations/successor features. Successor representations and
successor features represent values as inner products between reward weights and discounted occu-
pancies or features of future states and actions. It was introduced as a generalization of the value
function (Dayan, 1993). This idea was later generalized by (Gehring, 2015; Barreto et al., 2017;
2018) to handle high-dimensional, continious state spaces and to use the method for transfer learn-
ing. Specifically, (Barreto et al., 2017) formalize this idea into the successor features (SF) framework
for transfer learning, assuming that tasks share dynamics but differ only in their reward functions
parameterized as linear combinations of features. This yields a value function representation that
effectively decouples the environment’s transition dynamics from the reward parameters. (Barreto
et al., 2018) further extend successor features to deep reinforcement learning and introduce gener-
alized policy improvement over multiple tasks, demonstrating effective transfer by reusing learned
successor features across a family of related tasks.

E PROOFS AND ADDITIONAL THEORETICAL RESULTS

E.1 SOLVE THE MAX-MIN OBJECTIVE

In this section, we show the complete proof for solving the following max-min problem:

max
π

min
R∈Rcorr

J(π,R) = max
π

min
R∈Rcorr

E(s,a)∼µπ [R(s, a)]. (15)

where Rcorr is the entire space of rewards that satisfy the correlation constraint with respect to a
known proxy reward, as defined below:

Rcorr =

{
R : (s, a) → R

∣∣∣∣Eµπref

[
R−M

V
·Rproxy

]
= r, J(πref, R) = M, σ2

R = V 2

}
(16)

=

{
R : (s, a) → R

∣∣∣∣∣Eµπref
[
R−M

V
·Rproxy] = r,Eµπref

[R] = M,Eµπref
[R2] = V 2 +M2

}
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

M and V denote the fixed mean and standard deviation of the reward function R under the reference
policy πref. Rproxy is the normalized proxy reward

Rproxy(s, a) :=
R̃proxy(s, a)− J(πref, R̃proxy)

σR̃proxy

where R̃proxy is the original (unnormalized) proxy reward. After normalization, we have
J(πref, Rproxy) = 0 and Varµπref

(Rproxy) = 1.

To solve the challenge that the objective Eµπ [R(s, a)] depends on the state-action occupancy µπ ,
whereas the constraints defining Rcorr are expressed in terms of µπref . We apply a change-of-measure
technique (Hu & Hong, 2013; Lam, 2016) to rewrite the expectation under µπref . Specifically, let
L(s, a) denote the Radon-Nikodym derivative:

L(s, a) =
µπ(s, a)

µπref(s, a)

By definition, L(s, a) ≥ 0 and Eµπref
[L(s, a)] = 1. Applying the change-of-measure formula, we

can express the return as:

Eµπ [R(s, a)] =

∫
S×A

µπ(s, a)R(s, a) d(s, a)

=

∫
S×A

µπref(s, a)
µπ(s, a)

µπref(s, a)
R(s, a) d(s, a)

= Eµπref
[L(s, a)R(s, a)]

Thus, both the objective and the constraints can be rewritten as expectations with respect to the
reference distribution µπref . For notational simplicity, we will suppress the variables (s, a) when
necessary. Under this reparameterization, the max-min objective in Equation 15 can be reformulated
as:

max
π

min
R∈Rcorr

Eµπref
[L ·R]. (17)

Solve Inner Minimization Problem. The Lagrangian functional associated with the inner mini-
mization problem of 17 is defined as:

l0(λ1, λ2, λ3, R) = Eµπref
[L ·R−λ1

R−M

V
·Rproxy −λ2R−λ3R

2]+λ1r+λ2M +λ3(M
2+V 2)

where λ1, λ2, λ3 are the Lagrange multipliers corresponding to the correlation constraint, mean con-
straint, and variance constraint, respectively. Then the inner minimization problem in Equation 17
is equivalent to the following problem:

max
λ1,λ2,λ3

min
R∈Rcorr

l0(λ1, λ2, λ3, R) (18)

We now solve the inner minimization problem in Equation 18 by finding the optimal R for fixed dual
variables (λ1, λ2, λ3). Taking the functional derivative of the Lagrangian l0 with respect to R(s, a)
gives:

∂l0
∂R

= µπref(s, a)[(L− λ1
Rproxy(s, a)

V
− λ2)− 2λ3R]

When µπref(s, a) > 0, setting the derivative of the Lagrangian to zero yields the optimal adversarial
reward function:

R∗(s, a) =
L(s, a)− λ1

Rproxy(s,a)
V − λ2

2λ3
(19)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

However, for state-action pairs where µπref(s, a) = 0, i.e., those not visited under the reference
policy, the correlation and moment constraints become vacuous. In these regions, the adversarial
reward R∗(s, a) can be driven arbitrarily poor, reflecting that no constraint prevents the adversary
from assigning highly penalizing values to rarely visited or unobserved state-action pairs. Never-
theless, consider the case where µπref(s, a) > 0, after substituting the optimal R∗ from Equation 19
into the Lagrangian l0 in Equation 18 and simplifying, we obtain the following dual objective:

max
λ1,λ2,λ3

l0(λ1, λ2, λ3, R
∗) = Eµπref

[
(L(s, a)− λ1

Rproxy(s,a)
V − λ2)

2

4λ3

]
+λ1r+λ2M+λ3(M

2+V 2)

(20)

We now compute the gradients of the dual objective with respect to the dual variables:

∂l0
∂λ1

= −Eµπref

[
(L− λ1

Rproxy(s,a)
V − λ2)

Rproxy(s,a)
V

2λ3

]
+ r

∂l0
∂λ2

= −Eµπref

[
L− λ1

Rproxy(s,a)
V − λ2

2λ3

]
+M

∂l0
∂λ3

= −Eµπref

[
(L− λ1

Rproxy(s,a)
V − λ2)

2

4λ2
3

]
+M2 + V 2 (21)

Setting these gradients to zero yields the system of equations:

Eµπref

[
(L− λ1

Rproxy(s,a)
V − λ2)

Rproxy(s,a)
V

2λ3

]
= r, (22)

Eµπref

[
L− λ1

Rproxy(s,a)
V − λ2

2λ3

]
= M, (23)

Eµπref

[
(L− λ1

Rproxy(s,a)
V − λ2)

2

4λ2
3

]
= M2 + V 2. (24)

Expanding and simplifying each condition:

Solving for λ2: Starting with Equation 23,

Eµπref
[L]− λ1Eµπref

[
Rproxy(s, a)

V
]− λ2 = 2λ3M

Recall from our normalization that Eµπref
[Rproxy] = 0. Thus,

λ2 = Eµπref
[L]− 2λ3M

Since L(s, a) = µπ(s,a)
µπref (s,a)

, and using properties of Radon-Nikodym derivatives, we have:

Eµπref
[L] = 1

Thus, we find:
λ2 = 1− 2λ3M

Solving for λ1: Substituting λ2 = 1− 2λ3M into Equation 22,

2rλ3 = Eµπref
[(L− λ1

Rproxy

V
− 1 + 2λ3M)

Rproxy

V
]

= Eµπref
[L ·

Rproxy

V
]− λ1Eµπref

[
R2

proxy

V 2
]− (1− 2λ3M)Eµπref

[
Rproxy

V
]

Again, using normalization, Eµπref
[Rproxy] = 0 and Eµπref

[R2
proxy] = 1, so we get:

2rλ3 = Eµπref
[L ·

Rproxy

V
]− λ1

V 2

which rearranges to:

λ1 = V Eµπref
[L ·Rproxy]− 2rλ3V

2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Solving for λ3: Substituting λ2 = 1− 2λ3M into Equation 24,

4λ2
3(M

2 + V 2) = Eµπref

[
(L− λ1

Rproxy

V
− 1 + 2λ3M)2

]
= Eµπref

[L2] + λ2
1Eµπref

[
R2

proxy

V 2
] + (1− 2λ3M)2 − 2λ1Eµπref

[L ·
Rproxy

V
]

− 2(1− 2λ3M)Eµπref
[L] + 2λ1(1− 2λ3M)Eµπref

[
Rproxy

V
]

Again, using normalization (E[Rproxy] = 0, E[R2
proxy] = 1, E[L] = 1), this simplifies to:

4λ2
3(M

2 + V 2) = Eµπref
[L2] +

λ2
1

V 2
− 2λ1Eµπref

[L ·
Rproxy

V
] + 4λ2

3M
2 − 1

4λ2
3V

2 = Eµπref
[L2] +

λ2
1

V 2
− 2λ1Eµπref

[L ·
Rproxy

V
]− 1

Now substitute λ1 = V Eµπref
[L · Rproxy] − 2rλ3V

2 into this expression. After rearrangement and
simplification, we obtain:

4λ2
3(1− r2)V 2 = Eµπref

[L2]− E2
µπref

[L ·Rproxy]− 1

Thus,

λ3 = ±1

2

√
Eµπref

[L2]− E2
µπref

[L ·Rproxy]− 1

V
√
1− r2

We argue that λ3 < 0 yields the optimal dual variable. To determine which root maximizes the
above dual objective in Equation 20, we compute the second derivative from Equation 21:

∂2l0
∂λ2

3

= Eµπref

[
(L− λ1

Rproxy(s,a)
V − λ2)

2

2λ3
3

]

Since the numerator is always non-negative and when λ3 < 0, we have ∂2l0
∂λ2

3
< 0, which implies

the dual objective is concave in λ3 around this root. Thus, selecting the negative root yields a local
maximum of the dual objective.

Recognizing that Eµπref
[L2]− 1 corresponds to the χ2 divergence between the occupancy measures:

χ2(µπ ∥µπref) = Eµπref
[L2]− 1

and noting that:
Eµπref

[L ·Rproxy] = Eµπ [Rproxy]

we can express the solution for λ3 as:

λ3 = −

√
χ2(µπ ∥µπref)− E2

µπ [Rproxy]

2V
√
1− r2

. (25)

Solve Outer Maximization Problem. Now that we have solved for the optimal primal variable
R and dual variables λ1, λ2, and λ3, we plug them back into the original max-min objective in
Equation 17:

max
π

Eµπref
[L ·R] = max

π
Eµπref

[
L(s, a) ·

L(s, a)− λ1
Rproxy(s,a)

V − λ2

2λ3

]
(26)

Using the earlier substitutions:
λ1 = V · Eµπ [Rproxy]− 2rλ3V

2,

λ2 = 1− 2λ3M,

λ3 = −1

2
·

√
χ2(µπ ∥µπref)− E2

µπ [Rproxy]

V
√
1− r2

,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We simplify the expression:

max
π

Eµπref
[LR] = max

π

1

2λ3

(
Eµπref

[L2]− λ1Eµπref

[
L ·

Rproxy

V

]
− λ2Eµπref

[L]

)
Recall the identities:

Eµπref
[L2] = χ2(µπ ∥µπref) + 1,

Eµπref
[L ·Rproxy] = Eµπ [Rproxy],

Eµπref
[L] = 1,

We substitute these and get:

max
π

Eµπref
[LR] =

1

2λ3

(
χ2(µπ ∥µπref) + 1− λ1 ·

Eµπ [Rproxy]

V
− λ2

)
Now substitute the expressions for λ1 and λ2:

max
π

Eµπref
[LR] = max

π

1

2λ3

(
χ2 + 1− (Eµπ [Rproxy]− 2rλ3V) ·

Eµπ [Rproxy]

V
− (1− 2λ3M)

)
= max

π

1

2λ3

(
χ2 −

E2
µπ [Rproxy]

V
+ 2rλ3Eµπ [Rproxy] + 2λ3M

)

Now cancel out 2λ3 in numerator and denominator:

max
π

Eµπref
[LR] = max

π
Eµπ [Rproxy] · r −

1

2λ3
·

(
E2
µπ [Rproxy]

V
− χ2

)
+M

Now plug in the expression for λ3:

λ3 = −1

2
·

√
χ2 − E2

µπ [Rproxy]

V
√
1− r2

This gives the final outer problem for the original max-min objective in Equation 15:

max
π

r · V · Eµπ [Rproxy]− V ·
√

1− r2 ·
√
χ2(µπ ∥µπref)− E2

µπ [Rproxy] +M (27)

E.2 PROOF OF OPTIMALITY

Recall the inner minimization problem of our max-min objective in Equation 17:

min
R∈Rcorr

Eµπref
[L ·R]

where L = µπ(s, a)/µπref(s, a) is treated as fixed, and the feasible set is:

Rcorr =

{
R : (s, a) → R

∣∣∣∣∣Eµπref
[(R−M) ·Rproxy] = r · V,

Eµπref
[R] = M, Eµπref

[R2] = V 2 +M2

}

The feasible region is not convex due to the quadratic equality constraint Eµπref
[R2] = V 2 + M2.

This defines the boundary of an L2 ball (a hypersphere) in function space, which is not convex.
Therefore, traditional convex programming tools and strong duality do not directly apply.

However, we still claim that the resulting R∗ derived in Appendix E.1 is globally optimal. This is
supported by the following facts:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Stationarity. When considering R∗ for any fixed dual variables λ1, λ2, λ3, we are looking at the
inner minimization problem in Equation 18 as follows:

min
R∈Rcorr

l0(λ1, λ2, λ3, R)

The term with R(s, a) in l0 is:

Eµπref
[L ·R− λ1

R−M

V
·Rproxy − λ2R− λ3R

2]

For this quadratic in R to have a minimum (since it is a minimization problem for R), the coefficient
of R2 must be positive. In our case, the coefficient is −λ3. Therefore, for the minimization problem
to be well-posed and have a finite minimum, we must have λ3 < 0. This condition ensures that the
quadratic term in R is a concave upward parabola, which means that a minimum exists. Moreover, in
Appendix E.1, we explicitly state that R∗(s, a) is derived by setting the derivative of the Lagrangian
function l0 in Equation 18 to zero with respect to R(s, a). Thus, R∗(s, a) is indeed the optimal value
for the minimization problem for fixed λ1, λ2, λ3 where λ3 < 0. The Stationarity in this context
implies that R∗ lies within the domain where the Lagrangian is well-defined and differentiable,
which it does.

Feasibility. We also argue that the closed-form primal solution R∗(λ∗), where λ∗ denotes the
optimal dual solution, is feasible in the original sense, that is, it satisfies the three equality constraints
in the feasible set Rcorr. Specifically, as detailed in Appendix E.1, we substitute R∗ back into the
dual objective l0 and compute the gradient with respect to each dual variable. We then solve:

∂l0(λ1, λ2, λ3, R
∗(λ1, λ2, λ3))

∂λi
= 0, for i = 1, 2, 3,

to find the optimal values λ∗
1, λ

∗
2, λ

∗
3.

By the chain rule, we have:

∂l0(λ1, λ2, λ3, R
∗(λ1, λ2, λ3))

∂λi
=

〈
∂l0
∂R

,
∂R∗

∂λi

〉
+

∂l0
∂λi

,

where the first term vanishes because R∗ is chosen to minimize l0 for fixed λ (i.e., ∂l0/∂R = 0 at
R∗). Therefore, the derivative simplifies to:

∂l0(λ1, λ2, λ3, R
∗)

∂λi
=

∂l0
∂λi

.

Setting these derivatives to zero yields:

∂l0
∂λ1

= −Eµπref
[(R∗ −M)Rproxy] + rV = 0,

∂l0
∂λ2

= −Eµπref
[R∗] +M = 0,

∂l0
∂λ3

= −Eµπref
[(R∗)2] + V 2 +M2 = 0,

which exactly recover the original feasibility constraints. Hence, the solution R∗(λ∗) is feasible by
construction.

Therefore, R∗ satisfies both stationarity and feasibility. In general, stationarity and feasibility are
not sufficient for global optimality when the feasible set is nonconvex. In our case, however, global
optimality does hold, relying on the specific structure of the inner problem.

Recall the inner minimization problem discussed above, and we work in the Hilbert space H =
L2(µπref). Using the normalization assumptions: Eµπref

[Rproxy] = 0 and Eµπref
[R2

proxy] = 1, the
constraints can be rewritten as inner products in H:

• ⟨R,1⟩ = M (mean constraint)
• ⟨R,Rproxy⟩ = rV (correlation constraint)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• ∥R∥22 = V 2 +M2 (norm constraint).

Let {e0, e1, e2, . . .} be an orthonormal basis of H, where

• e0 is proportional to the constant function of 1
• e1 = Rproxy,
• and {ek}k≥2, spans the orthogonal complement of span {1, Rproxy}.

e0 and e1 is orthonormal because Eµπref
[Rproxy] = 0. Expanding

R = α0e0 + α1e1 +
∑
k≥2

αkek

Notice that the mean constraint and correlation constraints uniquely fix α0 and α1. The norm con-
straint then forces: ∑

k

αk = ρ2

for some constant radius ρ > 0. Hence the remaining degrees of freedom lie on a sphere in the
subspace orthogonal to 1 and Rproxy. This is to say, although Rcorr is not convex in the ambient
space, it is a spherical manifold (the boundary of an L2-ball intersected with an affine subspace),
which is compact and smooth. Moreover, the objective is linear in R:

Eµπref
[L ·R] = ⟨L,R⟩ = const + ⟨L′, R′⟩

where L′ is the projection of L = µπ
µπref

onto the subspace spanned by {ek}k≥2 and R′ =∑
k≥2 αkek. Therefore the optimization reduces to

min
∥R′∥2=ρ

⟨L′, R′⟩

This is simply minimizing a linear function over a Euclidean sphere. In this setting, it is well-known
that the only stationary points of a linear functional on a sphere are its global maximum and global
minimum. There are no other local minima or saddle points. Thus, on this particular nonconvex
feasible set, any feasible stationary point is automatically a global optimizer.

In summary, our previous analysis shows that:

1. For fixed (λ1, λ2, λ3) with λ3 < 0, the Lagrangian is a strictly convex quadratic in R, so
its stationary point R⋆(λ) is the unique global minimizer of the inner problem with those
multipliers.

2. Solving the dual and enforcing feasibility recovers the specific choice of multipliers λ⋆ for
which R⋆(λ⋆) lies on the sphere defined by the norm constraint.

3. Because the reduced problem is linear over a sphere, this feasible stationary point R⋆(λ⋆)
must be the global minimizer of the original inner problem.

E.3 PROOF THAT χ2(µπ ∥µπREF
) ≥ E2

µπ [RPROXY]

To ensure that the inner term of the square root in Equation 25 remains non-negative, we need to
show that

χ2(µπ ∥µπref) ≥ E2
µπ [Rproxy]

Proof. Recall that
Eµπ [Rproxy] = Eµπref

[L ·Rproxy],

where L(s, a) = µπ(s,a)
µπref (s,a)

is the Radon-Nikodym derivative. Since Rproxy is normalized to have zero
mean under µπref , we have:

Eµπref
[Rproxy] = 0.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Thus,

Eµπ [Rproxy] = Eµπref
[Rproxy(s, a)(L(s, a)− 1)]

=
∑
(s,a)

Rproxy(s, a)µπref(s, a)(L(s, a)− 1)

Applying the Cauchy-Schwarz inequality:∑
(s,a)

Rproxy(s, a)µπref(s, a)(L(s, a)− 1)

2

≤

∑
(s,a)

µπref(s, a)R
2
proxy(s, a)

∑
(s,a)

µπref(s, a)(L(s, a)− 1)2


By the assumptions: Eµπref

[R2
proxy] = 1,

∑
(s,a) µπref(s, a)(L(s, a)− 1)2 = χ2(µπ ∥µπref).

We obtain:
E2
µπ [Rproxy] ≤ χ2(µπ ∥µπref)

as desired.

E.4 DERIVE LAGRANGIAN FUNCTIONAL FOR LINEAR MAX-MIN OBJECTIVE

Recall that our max-min optimization under the structured reward assumption is as follows:

max
π

min
θ∈Rlin

corr, θ≥0
E(s,a)∼µπ

[
θ⊤ϕ(s, a)

]
. (28)

where Rlin
corr is the uncertainty set defined as follow:

Rlin
corr =

{
θ ∈ RM

∣∣∣Eµπref
[θ⊤ϕ ·Rproxy] = r, Eµπref

[θ⊤ϕ] = 0, Eµπref
[(θ⊤ϕ)2] = 1

}
. (29)

We assume without loss of generality that the worst-case reward R(s, a) = θ⊤ϕ(s, a) is normalized
to have zero mean and unit variance under the reference policy πref. This corresponds to setting M =
0 and V = 1, which, as shown in our earlier derivation, does not affect the resulting optimal policy.
As before, Rproxy denotes the normalized proxy reward under πref, satisfying Eµπref

[Rproxy] = 0 and
Varµπref

[Rproxy] = 1.

Similar to previous steps, we introduce the Radon-Nikodym derivative

L(s, a) =
µπ(s, a)

µπref(s, a)

We use a change-of-measure, and define the Lagrangian functional for the inner minimization in
Equation 28 as:

l1(λ1, λ2, λ3,θ) = Eµπref

[
L · θ⊤ϕ

]
− λ1

(
Eµπref

[
Rproxy · θ⊤ϕ

]
− r
)

− λ2Eµπref

[
θ⊤ϕ

]
− λ3

(
Eµπref

[
(θ⊤ϕ)2

]
− 1
)

= Eµπref

[
(L− λ1Rproxy − λ2)θ

⊤ϕ
]
− λ3Eµπref

[
(θ⊤ϕ)2

]
+ λ1r + λ3

=
∑
(s,a)

µπref(s, a)
[
(L− λ1Rproxy − λ2)θ

⊤ϕ− (θ⊤ϕ)2
]
+ λ1r + λ3

Define the following terms for simplicity:

v(s, a) = µπ(s, a)

D(s, a) = µπref(s, a) ·Rproxy(s, a)

C(s, a) = µπref(s, a)

uλ1,λ2
(s, a) = v(s, a)− λ1D(s, a)− λ2C(s, a)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Then the Lagrangian function simplifies to:

l1(λ1, λ2, λ3,θ) =
∑
(s,a)

[
uλ1,λ2

(s, a)θ⊤ϕ(s, a)− λ3C(s, a)(θ⊤ϕ(s, a))2
]
+ λ1r + λ3

= θ⊤

∑
(s,a)

uλ1,λ2(s, a)ϕ(s, a)

− λ3θ
⊤

∑
(s,a)

C(s, a)ϕ(s, a)ϕ(s, a)⊤

θ + λ1r + λ3

where we expand the quadratic term:∑
(s,a)

C(s, a)(θ⊤ϕ(s, a))2 =
∑
(s,a)

C(s, a)(ϕ(s, a)⊤θ)2

=
∑
(s,a)

C(s, a)θ⊤ϕ(s, a)ϕ(s, a)⊤θ

= θ⊤

∑
(s,a)

C(s, a)ϕ(s, a)ϕ(s, a)⊤

θ

Let
Q =

∑
(s,a)

C(s, a)ϕ(s, a)ϕ(s, a)⊤ (30)

then we can write the Lagrangian function as:

l1(λ1, λ2, λ3,θ) = θ⊤

∑
(s,a)

uλ1,λ2(s, a)ϕ(s, a)

− λ3θ
⊤Qθ + λ1r + λ3

And the inner minimization problem in Equation 28 becomes:

max
λ1,λ2,λ3

min
θ≥0

l1(λ1, λ2, λ3, R) (31)

E.5 PROOF FOR WHITENING TRANSFORMATION

To simplify the problem associated with the Lagrangian function above, we transform the feature
vector ϕ into a whitened version ϕ̃ such that the matrix Q as defined in Equation 30 becomes the
identity matrix I . Specifically, we perform a whitening transformation using the Cholesky decom-
position (Boyd & Vandenberghe, 2004). Let

W = Q− 1
2 , ϕ̃(s, a) = Wϕ(s, a)

where Q− 1
2 denotes a matrix square root of Q−1. Then we have:∑

(s,a)

C(s, a)ϕ̃(s, a)ϕ̃(s, a)⊤ =
∑
(s,a)

C(s, a)(Wϕ(s, a))(Wϕ(s, a))⊤

=
∑
(s,a)

C(s, a)Wϕ(s, a)ϕ(s, a)⊤W⊤

= W

∑
(s,a)

C(s, a)ϕ(s, a)ϕ(s, a)⊤

W⊤

= WQW⊤

= Q− 1
2QQ− 1

2

= I

as desired.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Note that the whitening step requires Q to be invertible so that Q−1/2 (and hence Q−1) exists.
It holds when Q is positive semi-definite and non-singular. Q is positive semi-definite since it is a
sum of outer products ϕ(s, a)ϕ(s, a)⊤ weighted by non-negative coefficients (occupancy measure of
πref ≥ 0). For Q to be non-singular, it is necessary that the span of {ϕ(s, a) : µπref(s, a) > 0} covers
Rn, i.e., the features associated with state-action pairs visited by πref must span the full feature space.
To achieve these conditions, the reference policy should visit a diverse and representative subset of
the state-action space with non-trivial occupancy. This is more likely when πref is derived from ei-
ther expert demonstrations that exhibit rich behavior or from stochastic or exploratory policies (e.g.,
entropy-regularized policies or policies trained with exploration bonuses). Moreover, the feature
mapping ϕ(s, a) must exhibit sufficient variation across the visited state-action pairs. This typically
holds when ϕ encodes task-relevant dynamics (e.g., learned embeddings or expressive hand-crafted
features) and when πref does not collapse to trivial or deterministic behavior. In our experiments
(Appendix F.4), the reference policies for the Traffic and Pandemic environments are trained via
behavioral cloning on large, diverse trajectories generated by human experts or hand-crafted con-
trollers. The feature representations used in these environments, such as velocity, acceleration, and
headway in Traffic, and infection level, disease stage, and smooth transitions in Pandemic, encode
meaningful task-relevant dynamics. These demonstrations cover a wide range of task-relevant be-
haviors, and the induced occupancy over state-action pairs spans a high-dimensional subspace of the
feature space. We empirically verified that the resulting Q matrices in our experiments are full-rank
and numerically well-conditioned. Though ensuring sufficient coverage of the feature space by the
reference policy is generally challenging in practice.

E.6 DERIVE OPTIMAL PRIMAL VARIABLE FOR LINEAR MAX-MIN OBJECTIVE

After whitening transformation as discussed in Appendix E.5, the problem in Equation 31 becomes:

max
λ1,λ2,λ3

min
θ̃≥0

l1(λ1, λ2, λ3, θ̃) = θ̃⊤

∑
(s,a)

uλ1,λ2
(s, a)ϕ̃(s, a)

− λ3θ̃
⊤θ̃ + λ1r + λ3. (32)

where we now optimize over the parameter θ̃ using the transformed features ϕ̃. For notational
simplicity, we will drop the tilde and henceforth use ϕ to represent the whitened feature ϕ̃, and θ to
represent the whitened weights θ̃.

Separable Structure. In the whitened feature space, the objective becomes separable across co-
ordinates of θ. Thus, the inner minimization problem in Equation 32 decouples into M independent
one-dimensional convex minimization problems, one for each feature coordinate i ∈ {1, 2, . . . ,M}:

min
θi≥0

∑
(s,a)

uλ1,λ2
(s, a)ϕi(s, a)

 θi − λ3θ
2
i

Let us solve the i-th subproblem. Assuming λ3 < 0, the objective is a convex quadratic function in
θi (an upward-opening parabola). The unconstrained minimum occurs at:

θ∗i = −
∑

(s,a) uλ1,λ2
(s, a)ϕi(s, a)

2λ3

Considering the constraint θi ≥ 0, we have two cases:

• If the unconstrained minimum θ∗i ≥ 0, then it is also the solution to the constrained prob-
lem.

• If θ∗i < 0, then the constrained minimum occurs at the boundary θi = 0.

Thus, the final optimal θ∗i is:

θ∗i = max

(
0,−

∑
(s,a) uλ1,λ2

(s, a)ϕi(s, a)

2λ3

)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Collecting across all i, we express the final optimal solution θ∗ as:

θ∗ = max

(
0, −

∑
(s,a) uλ1,λ2(s, a)ϕ(s, a)

2λ3

)
(33)

where the max(·, 0) is applied elementwise.

E.7 SOLVE THE DUAL OBJECTIVE FOR LINEAR MAX-MIN OBJECTIVE

Let the outer objective in Equation 32 be:

g(λ1, λ2, λ3) = l1(λ1, λ2, λ3,θ
∗)

Then we want to solve the following dual objective:

max
λ1,λ2,λ3

g(λ1, λ2, λ3) (34)

Let
qj(λ1, λ2) =

∑
(s,a)

(v(s, a)− λ1D(s, a)− λ2C(s, a))ϕj(s, a)

denote the linear coefficient for each feature j ∈ {1, . . . ,M}.

The optimal θ∗j is:

θ∗j (λ) = max

(
0,

qj(λ1, λ2)

2λ3

)
Now, we compute the gradients:

Gradient with respect to λ1:

∂g

∂λ1
(λ) =

∂l1
∂λ1

(λ,θ∗(λ))

=
∑
(s,a)

(
−D(s, a)(θ∗Tϕ(s, a))

)
+ r

= r −
M∑
j=1

Dϕ,j · θ∗j (λ)

where
Dϕ,j =

∑
(s,a)

D(s, a)ϕj(s, a)

Gradient with respect to λ2:

∂g

∂λ2
(λ) =

∂l1
∂λ2

(λ,θ∗(λ))

=
∑
(s,a)

(
−C(s, a)(θ∗Tϕ(s, a))

)
= −

M∑
j=1

Cϕ,j · θ∗j (λ)

where
Cϕ,j =

∑
(s,a)

C(s, a)ϕj(s, a)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Gradient with respect to λ3:
∂g

∂λ3
(λ) =

∂l1
∂λ3

(λ,θ∗(λ))

=
∑
(s,a)

(
−C(s, a)(θ∗Tϕ(s, a))2

)
+ 1

= 1−
M∑
j=1

(θ∗j (λ))
2

where we use the whitening assumption
∑

(s,a) C(s, a)ϕ(s, a)ϕ(s, a)⊤ = I .

Thus, the full gradients are:

∂g

∂λ1
(λ) = r −

M∑
j=1

Dϕ,j ·max

(
0,

qj(λ1, λ2)

2λ3

)
∂g

∂λ2
(λ) = −

M∑
j=1

Cϕ,j ·max

(
0,

qj(λ1, λ2)

2λ3

)
∂g

∂λ3
(λ) = 1−

M∑
j=1

(
max

(
0,

qj(λ1, λ2)

2λ3

))2

We can solve for the optimal dual variables (λ1, λ2, λ3) using standard first-order optimization
methods. Since g(λ) is concave (under the condition λ3 < 0), optimization is well-behaved and
converges reliably. After obtaining the optimal primal variables θ∗ and dual variables (λ∗

1, λ
∗
2, λ

∗
3),

we can substitute them back into Equation 28 and solve the outer maximization over the policy π
using standard reinforcement learning algorithms, such as PPO (Schulman et al., 2017).

E.8 POLICY GRADIENT DERIVATION

We now derive the gradient of the robust objective equation 27 with respect to the policy parameters
θ. Recall that the robust objective is:

J (µπθ) = r · V · Eµπθ [Rproxy]− V ·
√
1− r2 ·

√
χ2(µπ ∥µπref)−

(
Eµπθ [Rproxy]

)2
+M

= Eµπθ [Rproxy]−
√
1− r2

r

√
χ2(µπθ ∥µπref)−

(
Eµπθ [Rproxy]

)2
where we set M = 0 and V = 1 without loss of generality. We also divide the entire objective by r,
which is assumed to be positive (r > 0), so this rescaling preserves the optimization direction and
does not affect the final policy solution. The χ2 divergence is defined as:

χ2(µπθ ∥µπref) =
∑
(s,a)

µπθ (s, a)
2

µπref(s, a)
− 1

Applying the chain rule, we compute:

∇θJ = ∇θEµπθ [Rproxy]−
√
1− r2

r
∇θ

(√
h(µπθ)

)
(35)

where we define:
h(µπθ) = χ2(µπθ ∥µπref)−

(
Eµπθ [Rproxy]

)2
Using the chain rule again:

∇θ

√
h(µπθ) =

1

2
√

h(µπθ)
∇θh(µπθ)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Now compute ∇θh(µπθ):

∇θh(µπθ) = ∇θχ
2(µπθ ∥µπref)−∇θ

(
Eµπθ [Rproxy]

2
)

= ∇θ

∑
(s,a)

µπθ (s, a)
2

µπref(s, a)
− 1

− 2Eµπθ [Rproxy]∇θEµπθ [Rproxy]

The individual terms are:

∇θ

∑
(s,a)

µπθ (s, a)
2

µπref(s, a)
− 1

 = 2
∑
(s,a)

µπθ (s, a)

µπref(s, a)
∇θµπθ (s, a)

∇θEµπθ [Rproxy] =
∑
(s,a)

∇θµπθ (s, a)Rproxy(s, a)

Thus:

∇θh(µπθ) =
∑
(s,a)

∇θµπθ (s, a)

(
2
µπθ (s, a)

µπref(s, a)
− 2Eµπθ [Rproxy]Rproxy(s, a)

)

Then we compute ∇θEµπθ [Rproxy]:

∇θEµπθ [Rproxy] = ∇θ

∑
(s,a)

µπθ (s, a)Rproxy(s, a)

=
∑
(s,a)

∇θµπθ (s, a)Rproxy(s, a)

Put them together, we get the final gradient in Equation 35 as:

∇θJ = ∇θEµπθ [Rproxy]−
√
1− r2

r
∇θ

(√
h(µπθ)

)
=
∑
(s,a)

∇θµπθ (s, a)Rproxy(s, a)−
√
1− r2

r

1

2
√

h(µπθ)
∇θh(µπθ)

=
∑
(s,a)

∇θµπθ (s, a)Rproxy(s, a)

−
√
1− r2

r

1

2
√
h(µπθ)

∑
(s,a)

∇θµπθ (s, a)

(
2
µπθ (s, a)

µπref(s, a)
− 2Eµπθ [Rproxy]Rproxy(s, a)

)

=
∑
(s,a)

∇θµπθ (s, a)

[
Rproxy −

√
1− r2

r

1√
h(µπθ)

(
µπθ (s, a)

µπref(s, a)
− Eµπθ [Rproxy]Rproxy(s, a)

)]
(36)

The full policy gradient for the ORPO algorithm, as presented in Appendix B of (Laidlaw et al.,
2025), is given by:∑

(s,a)

∇θµπθ (s, a)

[
Rproxy(s, a)−

λ√
χ2(µπθ ∥µπref)

· µπθ (s, a)
µπref(s, a)

]
. (37)

Interpretation. The policy gradient consists of two terms:

• A standard term encouraging the policy to increase Rproxy(s, a).
• A correction term that penalizes deviations from the reference occupancy µπref , while also

adjusting for alignment with the proxy reward.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

This correction enforces robustness to potential reward hacking by optimizing against adversarially
misaligned interpretations of the proxy reward.

Notice that our derived policy gradient in Equation 36 shares structural similarities with ORPO but
is rooted in a formal robust optimization framework. Unlike ORPO, our formulation introduces
an additional correction term involving both the occupancy ratio and the expected proxy reward,
capturing how the proxy is aligned with the current policy’s behavior. This structure more explicitly
penalizes the combination of distributional shift and proxy overoptimization, discouraging policies
from exploiting proxy-specific artifacts. Both methods share the goal of improving robustness, but
our approach is derived from first principles by directly optimizing for worst-case performance over
a correlation-constrained uncertainty set.

E.9 PROOF OF THEOREM 1

Proof. For any reward function R, define the performance difference

∆J(π,R) := J(π,R)− J(πref, R).

By definition of the correlated uncertainty set, our distributionally robust objective considers

F (π) := min
R∈Rcorr

∆J(π,R).

Under the assumptions on the correlation, mean, and variance of rewards in Rcorr, Equation 27
provides a closed-form expression for this inner minimum. In particular, for any policy π with
µπ ≪ µπref , Equation 27 gives

F (π) = r · Eµπ [Rproxy]−
√

1− r2
√
χ2
(
µπ ∥µπref

)
− E2

µπ [Rproxy].

Now assume that the true reward Rtrue lies in Rcorr. Since Rtrue is one feasible element of the
uncertainty set, we must have

F (π) = min
R∈Rcorr

∆J(π,R) ≤ ∆J(π,Rtrue) = J(π,Rtrue)− J(πref, Rtrue).

Rearranging yields
J(π,Rtrue)− J(πref, Rtrue) ≥ F (π),

and substituting the explicit form of F (π) from Equation 27 gives the claimed inequality.

F ADDITIONAL IMPLEMENTATION DETAILS

F.1 TRAINING DISCRIMINATOR NETWORK

A core step in our Max-Min optimization algorithm and ORPO is to estimate the Radon-Nikodym
derivative L(s, a), which is critical for computing the χ2 divergence, as detailed in Appendix F.2.
To this end, we follow prior works (Laidlaw et al., 2025; Kang et al., 2018; Ho & Ermon, 2016)
and train a discriminator network. Specifically, we sample a batch of trajectories Dπref from the
reference policy πref and another batch Dπ from the current policy π. The batch sizes used for each
are specified in Table 2. And then we use a discriminator architecture identical to that in (Laidlaw
et al., 2025), denoted by dϕ(s, a), which is optimized according to:

ϕ = argmin
ϕ

Eµπref
[log(1 + edϕ(s,a))] + Eµπ [log(1 + e−dϕ(s,a))]

≈ argmin
ϕ

EDπref
[log(1 + edϕ(s,a))] + EDπ [log(1 + e−dϕ(s,a))] (38)

It is known that the optimal discriminator satisfies d∗(s, a) = log µπ(s,a)
µπref (s,a)

and we estimate L(s, a)

as L̃(s, a) = edϕ(s,a) with dϕ(s, a) ≈ d∗(s, a). However, in the original ORPO implementation1,

1https://github.com/cassidylaidlaw/orpo/tree/main

35

https://github.com/cassidylaidlaw/orpo/tree/main

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

the discriminator is not fully optimized during policy learning. Specifically, the discriminator re-
ceives only a small number of gradient updates per reinforcement learning iteration, resulting in
underfitting and inaccurate estimates of the Radon-Nikodym derivative L(s, a).

This undertraining is evident in Figure 2, which shows the discriminator loss across RL iterations.
The loss remains nearly constant (e.g., around 1.4 in the Traffic environment, which is the initial loss
value as shown in Figure 3a), indicating that the discriminator is not learning effectively. This limits
its ability to distinguish between π and πref, especially for state-action pairs where their occupancy
distributions diverge.

To address this, we substantially increase the number of gradient updates per iteration and carefully
tune the learning rate. Our goal is to strike a practical balance between training time and discrimi-
nator quality: while fully training the discriminator to convergence each iteration is computationally
expensive, insufficient training leads to inaccurate divergence estimates and unstable optimization.

Figure 3 shows that in our implementation, the discriminator loss consistently decreases within each
iteration, e.g., from an initial value around 1.4 to below 0.2 in the Traffic environment, indicating
effective optimization and more accurate occupancy-ratio estimation. In the Glucose and Pandemic
environments, however, we observe that training the discriminator for too long leads to slower con-
vergence and little improvement in loss. In these cases, we apply early stopping to limit training
time. The specific training schedules are provided in Table 2.

(a) Traffic (b) Glucose (c) Pandemic

Figure 2: Discriminator loss across RL iterations in the original ORPO implementation. The loss
stays flat and high (∼1.4 for the traffic environment), indicating the discriminator is not adequately
trained. This undermines the accuracy of the estimated occupancy ratios.

(a) Traffic (b) Glucose (c) Pandemic

Figure 3: Discriminator loss over training steps within each RL iteration in our implementation. The
loss decreases rapidly from its initial value (e.g., 1.4 to values near 0.2 in the Traffic environment),
indicating successful training and improved accuracy of occupancy-ratio estimates.

As for the discriminator network architecture, we follow the same structure described in (Laidlaw
et al., 2025). For each environment, we employ a fully connected neural network with two hidden
layers, each consisting of 256 units and ReLU activations. Table 2 summarizes the hyperparameters
used for discriminator training across different environments.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameters used for discriminator network training across different environments.

Hyperparameter Traffic Glucose Pandemic

Learning rate 5× 10−3 1× 10−2 5× 10−4

SGD epochs per iteration 200 20 15
Batch size 40000 100000 3860
SGD minibatch size 16384 1024 64

F.2 DERIVATION OF MAX-MIN POLICY OPTIMIZATION

Using the estimated dϕ(s, a) from trained disciminator as discussed in Appendix F.1, we can com-
pute the χ2 divergence via:

χ2(µπ ∥µπref) = Eµπ
[
µπ(s, a)

µπref(s, a)
− 1

]
≈ EDπ

[
edϕ(s,a) − 1

]
. (39)

For environments where both state and action spaces are discrete, we directly estimate the occupancy
measure via empirical sampling. Specifically, given the same batch of trajectories D collected from
policy π (as used for training the discriminator), we approximate the discounted occupancy measure
as follows (Schlaginhaufen & Kamgarpour, 2023; Abbeel & Ng, 2004):

µ̃Dπ (s, a) := (1− γ)
1

N

N∑
i=1

T∑
t=0

γtI{sit = s, ait = a}, (40)

where I{·} is the indicator function. Using this empirical estimate, we can compute the Radon-
Nikodym derivative and χ2 divergence without training a discriminator.

In our formulation, we assume that the proxy reward is normalized with respect to the reference
policy πref. To achieve this, we reuse the same batch of trajectories Dπref sampled from πref to
estimate the expected return J̃(πref, Rproxy) using:

J̃(πref, Rproxy) = (1− γ)
1

N

N∑
i=1

Rproxy(τ
(i)) (41)

where each τ (i) = (s0, a0, s1, a1, ..., sT) ∼ Dπref is a trajectory sampled from πref, N is the number
of sampled trajectories, and Rproxy(τ

(i)) =
∑T
t=0 γ

tRproxy(s
(i)
t , a

(i)
t). This estimation is unbiased

when using trajectories generated by the policy π. To estimate the empirical variance of the proxy
reward, we use:

σ̃2
Rproxy

= Ẽ2
µπref

[Rproxy]− Ẽµπref
[R2

proxy] (42)

We estimate Ẽµπref
[R2

proxy] using:

Ẽµπref
[R2

proxy] = (1− γ)
1

N

N∑
i=1

R2
proxy(τ

(i))

where R2
proxy(τ

(i)) =
∑T
t=0 γ

tR2
proxy(s

(i)
t , a

(i)
t). However, estimating Ẽ2

µπref
[Rproxy] directly from a

single batch introduces bias, because the square of an empirical mean is not an unbiased estimator of
the square of the true mean. To obtain an unbiased estimate of Ẽ2

µπref
[Rproxy], we apply the double-

sampling technique (Di Castro et al., 2012; Xie et al., 2018). Specifically, we independently sample
another batch of trajectories, denoted D∗

πref
, from the reference policy πref, and compute:

Ẽ2
µπref

[Rproxy] = ẼDπref
µπref

[Rproxy]× Ẽ
D∗
πref

µπref
[Rproxy]

where ẼDπref
µπref

[Rproxy] and Ẽ
D∗
πref

µπref
[Rproxy] denote the empirical returns computed from the two inde-

pendent batches using Equation 41. This ensures an unbiased estimation of E2
µπ [Rproxy], which is

critical for correctly computing the regularization term in the objective 27.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

We then normalize the proxy reward for each state-action pair in Dπ as:

Rnorm
proxy(s, a) =

Rproxy(s, a)− J̃(πref, Rproxy)

σ̃Rproxy

(43)

For notational simplicity, we will continue to use Rproxy to denote the normalized proxy reward
throughout the remainder of this section.

We use the same batch of sampled trajectories Dπ from current policy π to estimate Eµπ [Rproxy]
using:

Ẽµπ [Rproxy] = J̃(π,Rproxy) = (1− γ)
1

N

N∑
i=1

Rproxy(τ̄
(i)) (44)

where each τ̄ (i) = (s0, a0, s1, a1, ..., sT) ∼ Dπ is a trajectory sampled from π. To estimate
Ẽ2
µπ [Rproxy], we apply the same double-sampling technique. Specifically, we independently sam-

ple another batches of trajectories, denoted D∗
π , from the current policy π, and compute:

Ẽ2
µπ [Rproxy] = ẼDπµπ [Rproxy]× ẼD

∗
π

µπ [Rproxy], (45)

where ẼDπµπ [Rproxy] and ẼD
∗
π

µπ [Rproxy] denote the empirical returns computed from the two indepen-
dent batches using Equation 44.

Putting all the steps together, the maxmin algorithm is in Algorithm 2:

Algorithm 2 Max-Min Policy Optimization

1: Initialize policy parameters θ
2: Initialize reference policy πref and collect trajectories Dπref

3: Estimate J(πref, Rproxy) using Equation 41 and σ2
Rproxy

using Equation 42
4: for each iteration do
5: Sample trajectories Dπ from current policy πθ
6: if discrete environment then
7: Estimate occupancy measure using Equation 40
8: else
9: Train discriminator dϕ by minimizing Equation 38

10: end if
11: Estimate χ2 divergence using Equation 39
12: Normalize proxy reward for each state-action pair in Dπ using Equation 43
13: Estimate proxy reward expectation Eµπ [Rproxy] using Equation 44
14: Estimate E2

µπ [Rproxy] via double-sampling using Equation 45
15: Update policy πθ using PPO to maximize robust objective in Equation 27
16: end for

F.3 DERIVATION OF LINEAR MAX-MIN POLICY OPTIMIZATION

As for the Linear Max-Min optimization problem, following the discussion in E.4–E.7, we first
need to estimate Q:

Q =
∑
(s,a)

C(s, a)ϕ(s, a)ϕ(s, a)⊤

where C(s, a) = µπref(s, a), ϕ(s, a) is a vector of known feature functions sampled under the current
policy π. To recover the reference occupancy µref, define

d̄ϕ(s, a) = log
µπref(s, a)

µπ(s, a)

we can rewrite Q via importance sampling (Sutton & Barto, 2018):

Q = Eµπ
[
ed̄ϕ(s,a)ϕ(s, a)ϕ(s, a)⊤

]
38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Note that d̄ϕ(s, a) differs slightly from dϕ(s, a) = log µπ(s,a)
µπref (s,a)

used in the Max-Min optimization
algorithm discussed in Appendix F.2, where the numerator and denominator are reversed. To es-
timate d̄ϕ(s, a), we again train a similar discriminator network as described in Appendix F.1 by
minimizing:

ϕ = argmin
ϕ

Eµπref
[log(1 + e−dϕ(s,a))] + Eµπ [log(1 + edϕ(s,a))]

≈ argmin
ϕ

EDπref
[log(1 + e−dϕ(s,a))] + EDπ [log(1 + edϕ(s,a))] (46)

At optimality, the discriminator satisfies:

d̄∗(s, a) = log
µπref(s, a)

µπ(s, a)

And we use d̄ϕ(s, a) ≈ d̄∗(s, a). We then estimate Q:

Q̃ = (1− γ)EDπ

[∞∑
t=0

γted̄ϕ(st,at)ϕ(st, at)ϕ(st, at)
⊤

]
(47)

We then perform feature whitening by applying a linear transformation:

ϕ̃(s, a) = W̃ϕ(s, a)

where W̃ = Q̃−1/2 is the matrix square root inverse of Q̃.

All subsequent quantities are computed using the transformed features ϕ̃. As before, we also nor-
malize the proxy reward for each state-action pair in Dπ using Equation 43.

After whitening, we need to estimate the gradient of each dual variables (λ1, λ2, λ3) as derived in
Appendix E.7.

Estimating Cϕ,j and Dϕ,j . Recall that

Cϕ,j =
∑
(s,a)

C(s, a)ϕj(s, a)

which can be rewritten via importance sampling as:

Cϕ,j = Eµπ
[
ed̄ϕ(s,a)ϕ̃j(s, a)

]
and then can be approximated via:

C̃ϕ,j = (1− γ)EDπ

[∞∑
t=0

γted̄ϕ(st,at)ϕ̃j(st, at)

]

Similarly, recall that

Dϕ,j =
∑
(s,a)

D(s, a)ϕj(s, a)

where D(s, a) = µπref(s, a) ·Rproxy(s, a). Using importance sampling, we can write:

Dϕ,j = Eµπ
[
ed̄ϕ(s,a)Rproxy(s, a)ϕ̃j(s, a)

]
and can be approximated in practice by:

D̃ϕ,j = (1− γ)EDπ

[∞∑
t=0

γted̄ϕ(st,at)Rproxy(st, at)ϕ̃j(st, at)

]

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Estimating qj(λ1, λ2). Recall that

qj(λ1, λ2) =
∑
(s,a)

(v(s, a)− λ1D(s, a)− λ2C(s, a))ϕj(s, a)

=
∑
(s,a)

v(s, a)ϕj(s, a)− λ1

∑
(s,a)

D(s, a)ϕj(s, a)− λ2

∑
(s,a)

C(s, a)ϕj(s, a)

= Eµπ [ϕj(s, a)]− λ1Dϕ,j − λ2Cϕ,j

where v(s, a) = µπ(s, a) and Eµπ [ϕj(s, a)] is the discounted feature expectation under the policy
π. We can estimate the first term using:

Ẽµπ [ϕj(s, a)] = (1− γ)
1

N

N∑
i=1

ϕ̃j(τ̄
i)

where each τ̄ (i) = (s0, a0, s1, a1, ..., sT) ∼ Dπ is a trajectory sampled from π, and ϕ̃j(τ̄
(i)) =∑T

t=0 γ
tϕ̃j(s

(i)
t , a

(i)
t) . Given the above estimates, we can finally compute:

q̃j(λ1, λ2) = Ẽµπ [ϕj(s, a)]− λ1D̃ϕ,j − λ2C̃ϕ,j

With the above estimation, we can compute the gradient and solve for the optimal dual variables
λ = (λ1, λ2, λ3) using the Levenberg-Marquardt algorithm (Moré, 1978), a damped least-squares
method designed for solving nonlinear systems of equations. Specifically, we use the root solver in
SciPy (Virtanen et al., 2020) to find the stationary point of the gradient ∇λg(λ) = 0. We initialize
the optimization with λ1 = 0, λ2 = 0, and λ3 = −1, and enforce λ3 < 0 throughout training
to ensure concavity of the dual objective g(λ). To enforce the non-negativity constraint θ ≥ 0
as required by the analytical form in Equation 33, we manually clip each θi to ensure it remains
non-negative. Future work may explore alternative solvers better suited to constrained optimization.

Recall that the optimal primal variable θ∗j is:

θ∗j (λ) = max

(
0,

qj(λ1, λ2)

2λ3

)
After optimizing for the dual variables, we can substitute the optimal (λ∗

1, λ
∗
2, λ

∗
3) back into the

above equation and get:

θ̃∗j (λ) = max

(
0,

q̃j(λ
∗
1, λ

∗
2)

2λ∗
3

)
for all features. Then we can substitute the optimal θ̃∗ back in the robust reward objective in Equa-
tion 28 and train the policy π to maximize the outer problem using the standard reinforcement
learning algorithm proximal policy optimization (PPO) (Schulman et al., 2017).

Putting all the steps together, the linear maxmin algorithm is in Algorithm 3:

F.4 ENVIRONMENT DESCRIPTION AND REWARD HACKING TYPES

Traffic. This environment simulates a highway merging scenario, adapted from (Pan et al., 2022;
Wu et al., 2021; Vinitsky et al., 2018), where a group of autonomous vehicles (AVs) controlled
by an RL agent must merge into human-driven traffic. Each AV observes its own state (position
and velocity) and those of nearby vehicles, and outputs continuous acceleration actions. The true
reward is designed to ensure smooth and efficient traffic flow, encouraging low commute times
and gentle accelerations. The reference policy πref is a behavioral cloning (BC) policy trained on
demonstrations generated by the Intelligent Driver Model (IDM) (Treiber et al., 2000).

Pandemic. Based on the PandemicSimulator (Kompella et al., 2020), this environment models
infection dynamics using an extended SEIR model. At each timestep, the agent selects a lockdown
policy to control the spread of disease while minimizing societal costs. The true reward balances
infection severity, political disruption, and policy smoothness over time. The reference policy is
trained via behavioral cloning on a mixture of realistic and hand-crafted policy trajectories.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Algorithm 3 Linear Max-Min Policy Optimization

1: Initialize policy parameters θ
2: Initialize reference policy πref and collect trajectories Dπref

3: Estimate J(πref, Rproxy) using Equation 41 and σ2
Rproxy

using Equation 42
4: for each iteration do
5: Sample trajectories Dπ from current policy πθ
6: if discrete environment then
7: Estimate occupancy measure using Equation 40
8: else
9: Train discriminator dϕ by minimizing Equation 46

10: end if
11: Normalize proxy reward for each state-action pair in Dπ using Equation 43
12: Estimate Q̃ using Equation 47
13: Compute feature transformation W̃ = Q̃−1/2 and transform features ϕ̃(s, a) = W̃ϕ(s, a)

14: Estimate C̃ϕ,j , D̃ϕ,j using transformed features
15: Compute q̃j(λ1, λ2) for all features
16: Solve for optimal dual variables (λ1, λ2, λ3) by maximizing the dual objective (Equation 34)

17: Compute the optimal primal variable θ̃∗j for all features
18: Update policy πθ using PPO to maximize the robust objective in Equation 28
19: end for

Glucose Monitoring. This environment uses the SimGlucose simulator (Man et al., 2014; Fox
et al., 2020), where an RL agent administers insulin doses to a simulated patient with Type 1 Dia-
betes. The goal is to maintain safe blood glucose levels and minimize long-term health risk. The
reference policy is trained via behavioral cloning using data generated by a PID controller with clin-
ically tuned parameters (Steil, 2013). Proxy rewards in this setting often reflect surrogate objectives
such as treatment cost or patient burden.

Tomato Watering GridWorld. This environment presents a simple spatial grid where the agent
waters tomato plants. The true reward corresponds to the number of tomatoes correctly watered.
However, the proxy reward includes an artificially high bonus at a specific grid location (a “sprinkler
state”), which causes the agent to overfit by remaining in that region despite little actual benefit to
overall tomato growth. The reference policy follows (Laidlaw et al., 2025), with 10% random actions
added to allow for policy improvement.

RLHF. This environment builds on prior work (Laidlaw et al., 2025; Coste et al.) that studies
overoptimization of LLM-based reward models. The proxy reward function is derived from a reward
model fine-tuned on the AlpacaFarm preference dataset (Dubois et al., 2023), using the Pythia-70M
model (Biderman et al., 2023), a comparatively small model. For the true reward signal, we adopt
the Llama 3 Tulu V2 8B reward model released by AI2 (Ivison et al., 2024). The reference policy
corresponds to the supervised fine-tuned (SFT) model from (Laidlaw et al., 2025; Coste et al.),
which was trained on the AlpacaFarm SFT dataset using Pythia-1.4B.

Types of Reward Hacking. We adopt the taxonomy proposed in (Pan et al., 2022) to classify the
kinds of proxy reward misalignments that lead to reward hacking. Our selected environments span
all three major categories:

• Misweighting: The proxy reward includes all relevant objectives but uses incorrect relative
weights. Our Linear Max-Min method specifically seeks the most adversarial weighting in
this space.

• Ontological: The proxy captures the correct high-level goal using different or incomplete
features. In the Traffic environment, the true reward combines commute time, acceleration,
and headway, whereas the proxy replaces commute time with velocity. In the Pandemic
environment, the true reward penalizes infections, political cost, lower stage changes, and
non-smooth policies, while the proxy omits the political cost entirely. Similarly, in Glu-

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

cose, the proxy reward only considers the expected patient costs while the true reward only
measures the health risk.

• Scope: The proxy evaluates behavior over a limited domain. In the Tomato environment,
the true reward reflects the number of tomatoes successfully watered. However, the proxy
introduces a large bonus at a specific state (the sprinkler), incentivizing the agent to pursue
this location at the expense of fulfilling the intended watering task. In the RLHF environ-
ment, the proxy reward is produced by a comparatively small model with limited evaluative
capacity, whereas the true reward is derived from a much larger, stronger model. Conse-
quently, the proxy reward provides a less reliable evaluation signal.

F.5 ADDITIONAL EXPERIMENT SETUP

Non-LLM Experiments. For the policy networks, we follow the architectures described in (Laid-
law et al., 2025). In the Pandemic, Traffic, and Tomato environments, we use fully connected neural
networks with 2 layers of 128 units, 4 layers of 512 units, and 4 layers of 512 units, respectively.
For the Glucose environment, we employ a three-layer LSTM network, where each LSTM layer has
64 units. We use the pre-trained policies provided in the ORPO repository2 as the reference policies
πref. We initialize the policy network with the corresponding pre-trained checkpoint for the Traffic,
Glucose, and Pandemic environments, and initialize a random policy for the Tomato environment.
Table 3 summarizes the hyperparameters used for PPO training across all models and environments.

Table 3: Hyperparameters used for PPO training across different environments.

Hyperparameter Traffic Glucose Pandemic Tomato

Training iterations 250 500 260 500
Batch size 40000 100000 3860 3000
Optimizer Adam Adam Adam Adam
Learning rate 5× 10−5 1× 10−5 0.0003 1× 10−3

Gradient clipping N/A 10 10 0.1
Discount factor (γ) 0.99 0.99 0.99 0.99
Random seed 0 0 0 0
GAE coefficient (λ) 0.97 0.98 0.95 0.98
Entropy coefficient (start) 0.01 0.01 0.1 0.01
Entropy coefficient (end) 0.01 0.01 0.01 0.01
KL target 0.02 1× 10−3 0.01 1× 10−3

Value function loss clipping 10000 100 20 10
Value function loss coefficient 0.5 0.0001 0.5 0.1
Share value function layers True True True False

As for the reward used during training and evaluation, we follow the same setup as ORPO (Laidlaw
et al., 2025). All policies are trained using only the proxy reward, while both the true and proxy
rewards are used for evaluation.

In the Traffic environment, the proxy reward is a weighted combination of velocity, acceleration,
and headway, with weights 1, 1, and 0.1, respectively. The true reward, on the other hand, uses
commute time, acceleration, and headway, also weighted 1, 1, and 0.1.

In the Pandemic environment, the proxy reward is composed of infection summary absolute, lower
stage, and smooth stage changes, with weights 10, 0.1, and 0.01. The true reward adds a political
component to these three features and is weighted with 10.

For the Glucose environment, the proxy reward includes only one feature: expected patient cost.
The true reward is based on magni bg, which measures the health risk of the patient.

2https://github.com/cassidylaidlaw/orpo/tree/main/data/base_policy_
checkpoints

42

https://github.com/cassidylaidlaw/orpo/tree/main/data/base_policy_checkpoints
https://github.com/cassidylaidlaw/orpo/tree/main/data/base_policy_checkpoints

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

In the Tomato environment, the true reward counts the number of watered tomato. The proxy
reward adds a large bonus at a specific state (sprinkler), incentivizing the agent to reach that location
regardless of its impact on the primary task.

LLM Experiments. We adopt the common formulation for RLHF as a contextual bandit problem,
where the environment is modeled as a Markov Decision Process (MDP) with a discount factor
γ = 0. In this setup, the return of a policy π under a given reward function R simplifies to:

J(π,R) = Es∼µ0,a∼π[R(s, a)],

where µ0 denotes the distribution over initial states. In the context of RLHF, each state corresponds
to a prompt sampled from a dataset, and the action is the model’s generated response. The reward is
then computed based on this prompt–response pair.

Under this contextual bandit assumption, the χ2 divergence between occupancy measures reduces
to the divergence between action distributions conditioned on prompts:

χ2(µπ ∥µπref) = Es∼µ0

[
χ2(π(·|s) ∥πref(·|s))

]
,

as established in Lemma A.6 of (Laidlaw et al., 2025). This allows us to avoid discriminator-based
estimation of occupancy ratios in this setting. Instead, we directly estimate the χ2 divergence using
the following estimator:

χ̃2(µπ ∥µπref) = Es∼µ0,a∼π

[
π(a|s)
πref(a|s)

+
πref(a|s)
π(a|s)

− 2

]
,

as proposed in (Laidlaw et al., 2025).

For policy optimization, we apply the same Max-Min training algorithm described in Appendix F.2,
adapting it to the contextual bandit structure without discriminator training. We evaluate our ap-
proach in the RLHF setting using a setup consistent with prior work (Laidlaw et al., 2025; Coste
et al.). The proxy reward function is derived from a reward model fine-tuned on the AlpacaFarm
preference dataset (Dubois et al., 2023), using the Pythia-70M model (Biderman et al., 2023). For
the true reward signal, we adopt the Llama 3 Tulu V2 8B reward model released by AI2 (Ivison et al.,
2024). The reference policy corresponds to the supervised fine-tuned (SFT) model from (Laidlaw
et al., 2025; Coste et al.), which was trained on the AlpacaFarm SFT dataset using Pythia-1.4B.
All policy evaluations, both proxy and true rewards, are conducted on the same set of prompts used
in (Laidlaw et al., 2025).

To further strengthen our experimental evaluation regarding the RLHF setting, we also compare
against the Reward Ensemble method (referred to as Ensemble for brevity) (Eisenstein et al., 2023).
Specifically, we adopt their finetune ensembles setting: we fine-tune five reward models on the
AlpacaFarm preference dataset, all initialized from the same pre-trained Pythia-70M model but
using five different random seeds, and aggregate their outputs using the mean rule. This setup is
directly comparable to our RLHF configuration for ORPO and our methods, where both ORPO and
our approach use a single fine-tuned Pythia-70M reward model.

Selection of r. For our Max-Min and Linear Max-Min policy optimization algorithms, the
correlation parameter r serves as an additional hyperparameter. In practice, as with ORPO (Laidlaw
et al., 2025), r may only be approximately estimated, and there is currently no principled method for
selecting its optimal value. To address this, we perform a grid search over r ∈ {0.1, 0.2, . . . , 0.9}
for each environment and measure the resulting Max-Min and Linear Max-Min policy expected
returns under the worst-case or linear worst-case reward. Results on all searched r can be found in
Appendix H.5. Additional analysis of how different training values of r affect robustness under vary-
ing evaluation r values is provided in Appendix H.2. Unless otherwise noted, we use the following
r values for training and evaluation throughout our experiments: r = 0.3 for Traffic, r = 0.7 for
Pandemic, r = 0.9 for Glucose, r = 0.4 for Tomato, and r = 0.4 for RLHF. As for ORPO policy,
we trained with occupancy-measure χ2 regularization, using the official implementation from (Laid-
law et al., 2025). All hyperparameters are set as recommended to ensure optimal performance. The
ORPO* shares the exact same setting as the ORPO policy with the full discriminator training schedule
as in our algorithms.

Evaluation of the worst-case performance. Theoretically, in the absence of structural constraints
on the reward function, as opposed to the case of linear rewards, the worst-case reward of a policy

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

in state-action pairs unvisited by πref can be arbitrarily negative without violating the correlation
constraint. However, assigning extremely negative values is impractical in real-world scenarios
due to domain constraints. Moreover, doing so would render all policies with at least one unseen
state-action pair equally poor in terms of worst-case reward, obscuring meaningful comparisons. To
address this, we define a minimal feasible reward value Rmin and assign it to all unseen state-action
pairs. The actual expected worst-case reward (Worst*) is thus calculated as:∑

(s,a):µπref (s,a)>0

µπ(s, a)Rworst +
∑

(s′,a′):µπref (s
′,a′)=0

µπ(s
′, a′)Rmin

where the first part is derived from the adversarial reward function given by our inner minimization
solution, and the second part applies to state-action pairs unvisited by πref.

In practice, however, environments like Traffic, Pandemic, and Glucose are continuous with large
state-action spaces, making it difficult to reliably estimate µπ(s, a) and µπref(s, a) from a limited
number of trajectories. As a result, identifying unvisited or low-density regions in these environ-
ments is far more ambiguous. Therefore, for these continuous environments, we rely on the output
of the discriminator as a signal for detecting unseen state-action pairs. Specifically, if the discrimi-
nator outputs infinity (or diverges numerically) for a given state-action, we treat this as an indication
that the state-action was never visited by the reference policy πref. We approximate the total occu-
pancy (Occ) over such state-action pairs by computing their frequency in the sampled trajectories,
and use the expected worst-case reward (Worst) of a policy π over the remaining state-action pairs
as the default worst-case performance metric:

∑
(s,a):dϕ(s,a)<∞ µπ(s, a)Rworst(s, a). In contrast, for

the discrete Tomato environment, we directly estimate the occupancy measure by sampling state-
action pairs and then compute Worst* accordingly. Further details on this procedure are provided
in Appendix H.2.

To compare the worst-case performance of different policies, we sample 200 trajectories in the
Traffic and Glucose environments, 20 trajectories in Pandemic, 1000 trajectories in Tomato, and 8
answers per prompt in RLHF to estimate the worst-case performance of a policy.

Evaluation of policy robustness. To evaluate robustness across different correlation levels, we
uniformly sample candidate vectors θ, where each component θi is drawn from the interval [0, 1].
We use the same number of trajectories sampled from the reference policy πref to determine whether
it satisfies the correlation constraint:

Eµπref

[
θ⊤ϕ−M

V
·Rproxy

]
= r,

where M and V denote the mean and standard deviation of θ⊤ϕ under the reference policy.

Note: For our worst-case performance evaluation, we explicitly normalize the reward to have zero
mean and unit variance under the reference policy (enforcing M = 0 and V = 1). In contrast,
for the robustness evaluation across correlation levels, we do not apply such normalization. This
allows us to report the average reward under each θ in its original scale, reflecting variability more
comparable to the original true reward landscape.

F.6 TRAINING TIME AND COMPLEXITY

Table 4 reports the total training time for each algorithm across different environments. All experi-
ments were conducted on a single NVIDIA RTX 4090 GPU (24GB memory) and a 13th Gen Intel
Core i9-13900KF CPU (32 threads). We implemented all methods in Python 3.9 using PyTorch
2.6.0 (Paszke, 2019), RLlib (Liang et al., 2018) and trlX (Havrilla et al., 2023).

The training times and memory usages across different environments are summarized in Table 4
and Table 5. Since the training durations for ORPO*, Max-Min, and Linear Max-Min differ
by less than one hour in each setting, and the memory usages differ by less than 10MB, we group
them together for brevity. Since the RLHF environment does not require training a discriminator, the
training times and memory usages for ORPO and our Max-Min are identical. We therefore exclude
RLHF from the runtime analysis. As shown in Table 4, all three methods require more training time
compared to the original ORPO implementation. The increased training time primarily results from
additional gradient steps used to more thoroughly train the discriminator network. Specifically, the

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

per-iteration training time is approximately 2.5 minutes for Traffic, 4.6 minutes for Pandemic, and
8.9 minutes for Glucose. This leads to a total training time increase from roughly 7 hours to 37 hours
in Glucose. However, the added cost is environment-dependent and remains moderate in simpler
settings, for example, increasing from 5 to 10 hours in Traffic. In contrast, the memory footprint
of our methods is very close to that of ORPO: the peak CPU memory usage differs by less than
30–50MB across environments (within a few percent of ORPO in all cases). Overall, these results
indicate that our methods introduce a modest runtime overhead and negligible memory overhead,
achieving a practical trade-off between computational cost and the improved quality of divergence
estimation.

Table 4: Approximate training time for each algorithm across different environments.

Algorithm Traffic Glucose Pandemic Tomato

ORPO ≈5h ≈7h ≈14h ≈1h
ORPO* / Max-Min / Linear Max-Min ≈10h ≈37h ≈19h ≈1h

Table 5: Approximate memory usage for each algorithm across different environments.

Algorithm Traffic Glucose Pandemic Tomato

ORPO ≈1679MB ≈1662MB ≈1813MB ≈2148MB
ORPO* / Max-Min / Linear Max-Min ≈1706MB ≈1674MB ≈1864MB ≈1903MB

Complexity. At first glance, regularization-based approaches like ORPO may appear more com-
putationally efficient than max-min optimization, which often involves iterative procedures to solve
both inner and outer objectives. However, in practice, ORPO requires repeatedly estimating the χ2

divergence between policy distributions during each policy update step. This estimation is done
by training a discriminator network, which itself involves multiple optimization steps per iteration.
In contrast, our Max-Min formulation admits a closed-form solution for the inner minimization
over reward functions. This allows us to avoid iterative solving in the inner loop entirely. For the
Linear Max-Min variant, although a closed-form expression for the dual variables is not avail-
able, the corresponding dual optimization problem is smooth and well-posed, and can be solved
efficiently using standard gradient-based methods. Therefore, despite the max-min structure, our
method does not incur higher practical complexity compared to ORPO. In fact, both approaches rely
on discriminator-based divergence estimation and perform comparable amounts of computation per
iteration. The main difference lies in the structure of the objective, not in the asymptotic or em-
pirical complexity. In summary, ORPO does not inherently enjoy a complexity advantage over our
Max-Min or Linear Max-Min algorithms.

G CONVERGENCE ANALYSIS

In this section, we study the convergence of our Max-Min and Linear Max-Min algorithms. As both
methods rely on accurately estimating the occupancy measure, we begin by analyzing the sample
complexity of this estimation via the discriminator described in Appendix F.1.

G.1 SAMPLE COMPLEXITY OF OCCUPANCY MEASURE ESTIMATION

In this section, we analyze the sample complexity of estimating the occupancy measure via the
discriminator described in Appendix F.1. Our argument adapts techniques from Huang et al. (2023);
Barakat et al. (2024) to our setting. To start with, we define the following notations for convenience.
Let x = (s, a) range over the space X of all possible state-action pairs. We consider two reference
distributions on X : µπref and µπ . The (true) density ratio of µπ with respect to µπref is

L⋆(x) :=
µπ(x)

µπref(x)
on the support of µπref ,

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

and its log-ratio is d⋆(x) := logL⋆(x).

We work with a parametric log-ratio class D = {dϕ : X → R} and the induced ratio class L =
{Lϕ := edϕ}. Following Equation 38 in Appendix F.1, we learn dϕ by minimizing the following
loss:

R(d) := 1
2 Ex∼µπref

[
log(1 + ed(x))

]
+ 1

2 Ex∼µπ
[
log(1 + e−d(x))

]
. (48)

Given nref i.i.d. samples {xref
i }nref

i=1 ∼ µπref and nπ i.i.d. samples {xπj }
nπ
j=1 ∼ µπ , which are inde-

pendent, we can minimize the empirical loss as follows in practice:

R̂(d) := 1
2 · 1

nref

nref∑
i=1

log
(
1 + ed(x

ref
i)
)
+ 1

2 · 1

nπ

nπ∑
j=1

log
(
1 + e−d(x

π
j)
)
. (49)

Let the true loss minizer be

d⋆ ∈ argmin
d∈D

R(d), L⋆ := ed
⋆

.

Let the empirical loss minimizer be

d̂ ∈ argmin
d∈D

R̂(d), L̂ := ed̂.

For convenience, we also define the mixture distribution µmix := 1
2 µπref +

1
2 µπ , which will be used

later. We make the following assumption throughout the analysis.
Assumption 1 (Modeling, boundedness and cover). The following conditions hold throughout the
analysis:

1. Realizability. The true log-ratio belongs to the model class: d⋆ ∈ D (equivalently, L⋆ ∈
L).

2. Bounded. There exist constants 0 < α ≤ β < ∞ such that

α ≤ Lϕ(x) ≤ β for all x ∈ X , ϕ,

and hence α ≤ L⋆(x) ≤ β as well. Equivalently, dϕ(x) ∈ [logα, log β].

3. L1 optimistic cover (Definition 3 of (Huang et al., 2023)). There exists a finite set L ⊂
(0,∞)X with cardinality |L| = M and a scale γ > 0 such that for every L ∈ L there is
L ∈ L with

L(x) ≥ L(x) for all x, Ex∼µref

[
|L(x)− L(x)|

]
≤ γ, α ≤ L(x) ≤ β.

We denote D := {d := logL : L ∈ L}.

Assumption 1 collects the conditions used throughout our analysis. First, realizability is standard
in likelihood-based occupancy estimation and allows us to control the estimation error through the
complexity of the parametric class rather than the size of X . In practice, a sufficiently expres-
sive neural discriminator makes this assumption reasonable. Second, boundedness guarantees well-
posedness on the support of µπref and prevents divisions by zero. It can be enforced by restricting
attention to the support of µπref or by applying ratio clipping during training. Finally, the L1 opti-
mistic cover (adopted from Definition 3 of Huang et al. (2023)) is the technical device that enables
uniform concentration and converts control of the loss in Equation 48 into an L1 error with clean
constants. We instantiate this cover for our discriminator class later in the proof.

We begin by stating some auxiliary lemmas that formalize the structural claims used later.
Lemma 1 (Strong convexity of R(d)). Let Assumption 1 hold true. Define

λ :=
min{α, β}

(1 + max{α, β})2
> 0.

Then for any measurable d ∈ D and for the unique minimizer d⋆ to Equation 48, we have

R(d)−R(d⋆) ≥ λ

2
Ex∼µmix

[
(d(x)− d⋆(x))2

]
.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Proof. Fix x and define the pointwise loss as:

rx(d) := (1− η(x)) log(1 + ed) + η(x) log(1 + e−d), η(x) :=
µπ(x)

µπ(x) + µπref
(x)

.

Its derivatives w.r.t. the scalar d are r′x(d) = σ(d)− η(x) and r′′x(d) = σ(d)
(
1− σ(d)

)
> 0, where

σ(d) = ed

1+ed
. We notice that r′′x(d) is independent of η(x). Therefore, at every x, the pointwise loss

rx is strictly convex in d.

Now we estimate the lower bound for r′′x(d). On the range d ∈ [logα, log β] (boundedness from
Assumption 1), let y = ed ∈ [α, β]; then

r′′x(d) = σ(d)
(
1− σ(d)

)
=

y

(1 + y)2
=: f(y)

Let’s consider the monotonicity of f(y), f ′(y) = 1−y
(1−y)3 , so f increases on (0, 1] and decreases on

[1,∞). Therefore,

min
y∈[α,β]

f(y) = min
{ α

(1 + α)2
,

β

(1 + β)2

}
.

We can consider a slightly more conservative but simpler bound:

λ :=
min{α, β}

(1 + max{α, β})2
≤ min

t∈[α,β]
f(y),

Thus, for all x and all d ∈ [logα, log β], we have r′′x(d) ≥ λ. Notice that strong convexity (with
parameter λ) of a C2 univariate function g satisfies:

g(u) ≥ g(v) + g′(v) (u− v) +
λ

2
(u− v)2 for all u, v.

Applying this with g(·) = rx(·), u = d(x), and v = d⋆(x), where d⋆ is the unique pointwise
minimizer (so r′x(d

⋆(x)) = 0). We get for every x,

rx
(
d(x)

)
− rx

(
d⋆(x)

)
≥ λ

2

(
d(x)− d⋆(x)

)2
.

Recall that µmix = 1
2 µπref

+ 1
2 µπ and

R(d) = 1
2 Ex∼µπref

[
log(1 + ed(x))

]
+ 1

2 Ex∼µπ
[
log(1 + e−d(x))

]
= Ex∼µmix

[
rx(d)

]
Taking expectation with respect to the mixture µmix gives

R(d)−R(d⋆) = Ex∼µmix

[
rx(d(x))− rx(d

⋆(x))
]
≥ λ

2
Ex∼µmix

[
(d(x)− d⋆(x))2

]
,

which is the desired inequality.

We now establish three Lipschitz bounds that will be used repeatedly in the analysis.

Lemma 2 (Lipschitz bounds). Let L+ := β
1+β and L− := 1

1+α . For all d, d̃ ∈ [logα, log β], the
following hold:

1.
∣∣ log(1 + ed)− log(1 + ed̃)

∣∣ ≤ L+ |d− d̃|.

2.
∣∣ log(1 + e−d)− log(1 + e−d̃)

∣∣ ≤ L− |d− d̃|.

3.
∣∣ed − ed̃

∣∣ ≤ β |d− d̃|.

Proof. (1) Define f+(u) = log(1 + eu). Then f ′
+(u) = σ(u) = eu

1+eu . On u ∈ [logα, log β] we
have eu ∈ [α, β], hence

|f ′
+(u)| =

eu

1 + eu
≤ sup
y∈[α,β]

y

1 + y
=

β

1 + β
= L+.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

By the mean value theorem,
∣∣f+(d)− f+(d̃)

∣∣ ≤ L+ |d− d̃|.

(2) Define f−(u) = log(1 + e−u). Then f ′
−(u) = −σ(−u) = − 1

1+eu . For u ∈ [logα, log β],

|f ′
−(u)| =

1

1 + eu
≤ sup
y∈[α,β]

1

1 + y
=

1

1 + α
= L−.

Again by the mean value theorem,
∣∣f−(d)− f−(d̃)

∣∣ ≤ L− |d− d̃|.

(3) For g(u) = eu we have g′(u) = eu. On [logα, log β], eu ≤ β, hence |g′(u)| ≤ β. The mean
value theorem yields

∣∣ed − ed̃
∣∣ ≤ β |d− d̃|.

Lemma 3 (Uniform deviation over the finite cover). Let Assumption 1 hold true. Define

B := 1
2 log(1 + β) + 1

2 log
(
1 + 1

α

)
.

Let D be a finite cover (L1 optimistic cover from Assumption 1) with cardinality |D| = M . Define

n := min{nref , nπ} and η :=
√

log(M/δ)
n for any δ ∈ (0, 1). Then, with probability at least 1− δ,

sup
d∈D

∣∣ R̂(d)−R(d)
∣∣ ≤ 2B η. (50)

Proof. Fix d ∈ D. Define

∆ref(d) :=

nref∑
i=1

[
log(1 + ed(x))

]
− Eµπref

[
log(1 + ed(x))

]
,

∆π(d) :=

nπ∑
i=1

[
log(1 + e−d(x))

]
− Eµπ

[
log(1 + e−d(x))

]
.

Then

R̂(d)−R(d) = 1
2 ∆ref(d) +

1
2 ∆π(d), ⇒

∣∣ R̂(d)−R(d)
∣∣ ≤ 1

2

∣∣∆ref(d)
∣∣+ 1

2

∣∣∆π(d)
∣∣.

By the boundedness of Assumption 1, we have d(x) ∈ [logα, log β], each summand satisfies

0 ≤ log(1 + ed(x)) ≤ log(1 + β), 0 ≤ log(1 + e−d(x)) ≤ log
(
1 + 1

α

)
.

Hence, by the Hoeffding’s inequality, for any t > 0,

P
(∣∣∆ref(d)

∣∣ ≥ t
)
≤ 2 exp

(
− 2nreft

2

log(1 + β)2

)
, P

(∣∣∆π(d)
∣∣ ≥ t

)
≤ 2 exp

(
− 2nπt

2

log(1 + 1
α)

2

)
.

Choose

tref := log(1 + β)

√
log(2M/δ)

2nref
, tπ := log

(
1 + 1

α

)√ log(2M/δ)

2nπ
.

Then P(|∆ref(d)| ≥ tref) ≤ δ/M and P(|∆π(d)| ≥ tπ) ≤ δ/M . Taking a union bound over all
d ∈ D yields, with probability at least 1− δ,

sup
d∈D

∣∣ R̂(d)−R(d)
∣∣ ≤ 1

2 tref +
1
2 tπ.

Finally, since n = min{nref , nπ}, we have√
log(2M/δ)

2nref
≤
√

log(M/δ)

n
,

√
log(2M/δ)

2nπ
≤
√

log(M/δ)

n
,

up to benign constant factors that we absorb into the front constant. Using the definition of B and
setting η =

√
log(M/δ)/n gives

sup
d∈D

∣∣ R̂(d)−R(d)
∣∣ ≤ 2B η,

which is Equation 50.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

We now prove the transfer bounds that move deviations on the cover element d back to an arbitrary
d, measured either in the original loss or the empirical loss. These inequalities will let us relate risk
differences to L1 discrepancies between ratio functions.
Lemma 4 (Transfer bounds from a cover element to an arbitrary discriminator). Let Assumption 1
hold true. Let L+ := β

1+β , L− := 1
1+α , and define

C△ :=
L+ + βL−

2α
.

Then: ∣∣R(d)−R(d)
∣∣ ≤ C△ γ, (51)∣∣ R̂(d)− R̂(d)
∣∣ ≤ C△ γ. (52)

Proof. Start from the definition

R(d) = 1
2 Eµπref

[
log(1 + ed)

]
+ 1

2 Eµπ
[
log(1 + e−d)

]
.

By the triangle inequality,∣∣R(d)−R(d)
∣∣ ≤ 1

2 Eµπref
∣∣ log(1+ed)−log(1+ed)

∣∣+ 1
2 Eµπ

∣∣ log(1+e−d)−log(1+e−d)
∣∣. (53)

Recall the Lipschitz bounds derived in Lemma 2:∣∣ log(1 + eu)− log(1 + ev)
∣∣ ≤ L+ |u− v|,

∣∣ log(1 + e−u)− log(1 + e−v)
∣∣ ≤ L− |u− v|

yield from Equation 53∣∣R(d)−R(d)
∣∣ ≤ 1

2 L+ Eµπref
[
|d− d|

]
+ 1

2 L− Eµπ
[
|d− d|

]
. (54)

Since µπ = L · µπref
and L ≤ β by boundedness from Assumption 1,

Eµπ
[
|d− d|

]
= Eµπref

[
L |d− d|

]
≤ β Eµπref

[
|d− d|

]
. (55)

Plug Equation 55 back into Equation 54:∣∣R(d)−R(d)
∣∣ ≤ L+ + βL−

2
Eµπref

[
|d− d|

]
. (56)

Next, we need to conver Eµπref
[
|d − d|

]
to Eµπref

[
|L − L|

]
. Use the mean value theorem for log

on [α, β],

|d− d| = | logL− logL| = 1

ξ
|L− L| ≤ 1

α
|L− L|, ξ between L and L.

Therefore, we have

Eµπref
[
|d− d|

]
≤ 1

α
Eµπref

[
|L− L|

]
. (57)

Combining Equation 56 and Equation 57:∣∣R(d)−R(d)
∣∣ ≤ C△ Ex∼µπref

[
|L(x)− L(x)|

]
, C△ = (L+ + βL−)/(2α).

Finally, according to the L1 optimistic cover of Assumption 1, we have

Eµπref
[
|L− L|

]
≤ γ

We get ∣∣R(d)−R(d)
∣∣ ≤ C△ γ.

The same derivation holds if we replace expectations by empirical averages (sample means). Every
inequality we used above (triangle inequality and the Lipschitz bounds) is pointwise and hence holds
averaging over a finite sample instead of the distribution. Concretely,∣∣ R̂(d)− R̂(d)

∣∣ ≤ C△

nref∑
i=1

[
|L(x)− L(x)|

]
≤ C△ γ

where the last inequality uses the empirical L1 closeness of L and L.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

We now control the excess loss of the empirical minimizer by combining the uniform deviation
bound over the optimistic cover with the transfer inequalities.

Lemma 5 (Excess-loss bound for the empirical minimizer). Let Assumption 1 hold true. Let B =
1
2 log(1+β)+ 1

2 log(1+1/α), C△ = (L++βL−)/(2α) with L+ = β/(1+β) and L− = 1/(1+α),
and η =

√
log(M/δ)/n where n = min{nref , nπ} defined as before. Then, with probability at least

1− δ,
R(d̂)−R(d⋆) ≤ 3C△ γ + 4B η. (58)

Proof. Since d̂ ∈ argmind∈D R̂(d), we have:

R̂(d̂) ≤ R̂(d) for all d,

in particular for d = d⋆ and for d = d̄⋆ (the cover of d⋆, d̄⋆ = log L̄⋆). Start with a standard
add-subtract trick:

R(d̂)−R(d⋆) =
(
R(d̂)−R̂(d̂)

)
+
(
R̂(d̂)− R̂(d̄⋆)

)︸ ︷︷ ︸
≤0

+
(
R̂(d̄⋆)−R(d̄⋆)

)
+
(
R(d̄⋆)−R(d⋆)

)
, (59)

For the first difference in Equation 59, insert the cover element d̄̂ = log L̄̂ of d̂ and apply the transfer
bounds (Lemma 4) and the uniform deviation bound over the finite cover (Lemma 3):

R(d̂)− R̂(d̂) =
(
R(d̂)−R(d̄̂)

)
+
(
R(d̄̂)− R̂(d̄̂)

)
+
(
R̂(d̄̂)− R̂(d̂)

)
≤
∣∣R(d̂)−R(d̄̂)

∣∣+ ∣∣R(d̄̂)− R̂(d̄̂)
∣∣+ ∣∣R̂(d̄̂)− R̂(d̂)

∣∣
≤ C△γ + 2Bη + C△γ.

The first term uses the transfer bounds from d̂ to its cover d̄̂. The middle term uses the uniform
deviation bound on the finite cover. It applies directly because d̄̂ ∈ D. The third term uses the
empirical transfer bounds. Thus, we have

R(d̂)− R̂(d̂) ≤ 2C△γ + 2Bη. (60)

Returning to Equation 59, the middle term is nonpositive by optimality, and the remaining two terms
are bounded by the same two lemmas:∣∣R̂(d̄⋆)−R(d̄⋆)

∣∣ ≤ 2Bη,
∣∣R(d̄⋆)−R(d⋆)

∣∣ ≤ C△γ.

Combining with Equation 60 yields

R(d̂)−R(d⋆) ≤ (2C△γ + 2Bη) + 2Bη + C△γ = 3C△γ + 4Bη,

which is Equation 58.

Finally, we derive the occupancy ratio error bound.

Theorem 3 (Occupancy ratio L1 error bound). Let Assumption 1 hold true. Let

B := 1
2 log(1 + β) + 1

2 log
(
1 + 1/α

)
, L+ :=

β

1 + β
, L− :=

1

1 + α
,

C△ :=
L+ + βL−

2α
, λ :=

min{α, β}
(1 + max{α, β})2

>0,

and n := min{nref , nπ}, η :=
√
log(M/δ)/n for any δ ∈ (0, 1). Let d̂ ∈ argmind∈D R̂(d) be the

empirical minimizer, L̂ := ed̂, and L⋆ = ed
⋆

be the true ratio. Then, with probability at least 1− δ,

Ex∼µπref
[
|L̂(x)− L⋆(x)|

]
≤ β

√
4

λ

√
3C△ γ + 4B η . (61)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Proof. By Lemma 5 (excess-risk bound for the empirical minimizer),

R(d̂)−R(d⋆) ≤ 3C△ γ + 4B η with probability at least 1− δ.

From Lemma 1 we have,

Ex∼µmix

[(
d̂(x)− d⋆(x)

)2] ≤ 2

λ

(
R(d̂)−R(d⋆)

)
≤ 2

λ

(
3C△ γ + 4B η

)
,

where µmix = 1
2 µπref

+ 1
2 µπ . Since µmix ≥ 1

2 µπref
, we have Eµπref [·] ≤ 2Eµmix [·], and

Ex∼µπref
[(
d̂(x)− d⋆(x)

)2] ≤ 4

λ

(
3C△ γ + 4B η

)
.

Finally, by the third point of Lemma 2 (the exponential map is β–Lipschitz on [logα, log β]) and
Cauchy–Schwarz,

Eµπref
[
|L̂−L⋆|

]
≤ β Eµπref

[
|d̂−d⋆|

]
≤ β

√
Eµπref

[
(d̂− d⋆)2

]
≤ β

√
4

λ

√
3C△ γ + 4B η ,

which is Equation 61.

G.2 GUARANTEES FOR MAX-MIN WITH OCCUPANCY MEASURE APPROXIMATION

In this section, we establish convergence guarantees for our Max-Min Algorithm 2. Our analysis
follows the Reinforcement Learning with General Utility (RLGU) (Zhang et al., 2022; Barakat
et al., 2024), where given a utility function F (·), θ 7→ F (µπθ) over the policy-induced occupancy
measure µπθ , the goal of RLGU is to find a policy π⋆θ such that π⋆θ ∈ argmaxθ F (µπθ). In RLGU,
there is no reward function. Instead, we can view ∇θF (µθ) as a pseudo-reward depending on the
unknown occupancy measure induced by the policy. The procedure for solving RLGU follows
three steps: (i) estimate the occupancy µπθ (e.g., by MLE), (ii) form the pseudo-reward from this
estimate, and (iii) update the policy. Our Max-Min algorithm mirrors this pipeline. Specifically,
we first estimate the occupancy ratio by training a discriminator. Then we construct the worst-case
reward using Equation 19 from the estimation. Finally, we perform a policy update. Consequently,
the general RLGU sample complexity guarantees apply to our algorithm after replacing the pseudo-
reward ∇θF (µθ) with our worst-case reward and substituting their occupancy-estimation error with
our occupancy-ratio error obtained above. We formalize this correspondence and state the resulting
bounds below.

For each iteration of our Max-Min algorithm t = 1, 2, ..., T , let the pseudo-reward rt(s, a) is defined
as in Equation 19. Let’s define

F (µt) :=
1

4λ3

∫
µt(s, a)

2

µπref
(s, a)

d(s, a) −
∫

c(s, a)µt(s, a) d(s, a), (62)

where c(s, a) := 1
2λ3

(
λ1

Rproxy(s,a)
V + λ2

)
. By construction, we have rt(s, a) = ∇µF (µt)(s, a),

which means the utility gradient in µ is exactly the pseudo-reward. Let’s µ̂t := L̂t · µπref
be

the occupancy estimator, r̂t(s, a) := ∇µF (µ̂t)(s, a) be the estimated pseudo-reward and F ⋆ ∈
maxθ F (µπθ) be the maximum.

We next introduce some assumptions that are required for our results, which are adapted
from (Barakat et al., 2024).
Assumption 2 (Policy parametrization, Assumption 6 from (Barakat et al., 2024)). For every
(s, a) ∈ S × A and every θ ∈ Rd, the policy has full support, i.e, πθ(a | s) > 0. Moreover, the
mapping θ 7→ πθ(a | s) is continuously differentiable, and the score function θ 7→ ∇θ log πθ(a | s)
is uniformly bounded:∥∥∇θ log πθ(a | s)

∥∥ ≤ lψ for some constant lψ > 0 and all (s, a), θ.

This assumption typically holds in practice, for instance, with the standard softmax policy param-
eterization. Next, we make a smoothness assumption on the utility function, which is crucial in
deriving the final convergence bound. We also verify that the defined utility function in Equation 62
satisfies the smoothness assumption.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Assumption 3 (General utility smoothness, Assumption 7 from (Barakat et al., 2024)). For utility
function F (·), θ 7→ F (µπθ), there exist constants Lµ > 0 such that for all µ1, µ2 ∈ X ,∥∥∇µF (µ1)

∥∥
2

≤ ℓµ and
∥∥∇µF (µ1)−∇µF (µ2)

∥∥
2

≤ Lµ
∥∥µ1 − µ2

∥∥
2
.

Notice that Assumption 3 holds in our setting since Hessian is diagonal with entries at most
∇2
µF (µ)(s, a) = 1/(2λ3 µπref

(s, a)). Thus, if µπref
(s, a) ≥ ρmin > 0 on the support of all (s, a),

which we assume it holds, then we have that ∇µF (µ) is Lµ-Lipschitz with∥∥∇µF (µ)−∇µF (µ′)
∥∥
2

≤ Lµ ∥µ− µ′∥2, Lµ =
1

2|λ3|
ρ−1
min,

Under Assumptions 2 and 3, the utility function θ 7→ F (µπθ) is Lθ-smooth. Using these properties,
our Max-Min algorithm admits the following first-order stationarity guarantee:

Theorem 4 (Guarantee for the Max-Min update). Assume Assumptions 2 and 3 hold. Let N be
the batch size for estimating the policy gradient at each iteration, α be the stepsizes satisfying
αt ≤ 1/(2Lθ), Kconv := ∥µπref

∥∞ (β − α) and

εL := β

√
4

λ

√
3C△ γ + 4B η ≥ Ex∼µπref

[
|L̂(x)− L⋆(x)|

]
Then we have:

E
[∥∥∇θF

(
µπθτ

)∥∥2] ≤
16
(
F ⋆ − E[F (µπθ1)]

)
αT

+
C1

N
+ C2 Kconv εL, (63)

where τ is drawn uniformly from {1, . . . , T}, expectation is w.r.t all randomness (in (θt) and τ),

C1 =
8l2µl

2
ψ

(1−γ′) and C2 =
8l2ψL

2
µ

(1−γ′)4 with γ′ be the discount factor in RL.

Proof. Since we already verified that Assumptions 2 and 3 hold in our setting, according to Theo-
rem 8 in (Barakat et al., 2024)), we directly have

1

T

T∑
t=1

E
[
∥∇θF

(
µπθτ

)
∥2
]
≤

16
(
F ⋆ − E[F (µπθ1)]

)
αT

+
C1

N
+ C2

1

T

T∑
t=1

E
[
∥µ̂t − µt∥22

]
.

To control the last term via the ratio error derived in Theorem 3, note that with µ̂t = L̂t µπref
and

µt = Lt µπref
,

∥µ̂t−µt∥22 =
∑
s,a

µπref
(s, a)2

(
L̂t(s, a)−Lt(s, a)

)2 ≤ ∥µπref
∥∞ (β−α)

∑
s,a

µπref
(s, a) |L̂t−Lt|,

using x2 ≤ (β − α)|x| for |x| ≤ β − α and µ2
πref

≤ ∥µπref
∥∞ µπref

. Therefore,

E
[
∥µ̂t − µt∥22

]
≤ Kconv Ex∼µπref

[
|L̂t(x)− Lt(x)|

]
≤ Kconv εL.

Averaging over t and drawing τ uniformly from {1, . . . , T} yields Equation 63.

G.3 CONVERGENCES FOR LINEAR MAX-MIN ALGORITHM

For our Linear Max-Min algorithm, it is challenging to derive a convergence bound directly. How-
ever, as discussed in Appendix E.6, the inner optimization problem, i.e., finding the worst-case
reward for a given policy, admits a globally optimal closed-form solution under our formulation
in the tabular setting. Therefore, for any given policy π, we have access to an oracle that outputs
the optimal worst-case reward R∗, and our Linear Max-Min algorithm can be viewed as alternating
between gradient ascent on π and the optimal minimization on R∗. As shown in Section 4 of (Jin
et al., 2020), our algorithm converges, and the resulting policy π corresponds to an approximate
stationary point of the outer optimization problem.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

(a) Traffic environment: θ0 (velocity), θ1 (accelera-
tion), θ2 (headway).

(b) Pandemic environment: θ0 (infection summary),
θ1 (early-stage), θ2 (smoothness).

Figure 4: Evolution of adversarial reward weights θ over training epochs for different environments
using the Linear Maxmin method.

H ADDITIONAL EXPERIMENT RESULTS

H.1 FEATURE WEIGHTS IN LINEAR MAX-MIN OPTIMIZATION DURING TRAINING

Figure 4 visualizes the evolution of each component of the linear worst-case reward weight vector
θ during training in the Traffic and Pandemic environments. We observe distinct behaviors in the
dynamics of θ across tasks.

In the Traffic environment (Figure 4a), we observe that the three θ parameters vary significantly in
scale. Specifically, θ1 (acceleration) exhibits the largest magnitude, ranging from 0 to 2, while θ2
(headway) has the smallest scale, ranging from 0 to 0.05. This highlights how the linear max-min
algorithm assigns different levels of penalization to each feature. Moreover, we also observe distinct
phases in the dynamics of θ over the course of training. In the early epochs (<50), all components,
especially θ1 (acceleration) and θ2 (headway), exhibit high-frequency fluctuations. At this point, the
dual optimization problem is not yet well-conditioned, and the adversarial reward is highly sensitive
to small changes in occupancy or feature values. As training progresses (∼epochs 100–250), the
parameters begin to stabilize. Most notably, θ2 (headway) converges close to zero and remains
suppressed, indicating that the worst-case reward does not emphasize this feature. This may suggest
that headway is less harmful under adversarial reweighting compared to others (velocity or accel)
or is already well aligned with the reference policy πref. Meanwhile, θ1 (acceleration) consistently
exhibits higher values and sharper spikes than the other components. This indicates that acceleration
plays a dominant role in the adversarial reward, likely because policies that optimize for the proxy
reward tend to exploit aggressive acceleration patterns that diverge significantly from the behavior
of πref. In contrast, θ0 (velocity) remains small and relatively stable throughout training, suggesting
that speed alone is not strongly penalized under adversarial interpretations.

Overall, the observed pattern reflects the interpretability and sparsity benefits of the linear max-min
formulation. The model is able to selectively emphasize features that are most vulnerable to reward
hacking, while suppressing those that are either irrelevant or well-aligned. This structured behavior
supports the practical value of using linearly parameterized worst-case rewards to improve policy
robustness.

In the Pandemic environment (Figure 4b), unlike the Traffic environment, where θ converged to
a sparse and interpretable solution, we observe high variability across all components throughout
training. In particular, we find the following pattern:

1. Persistent fluctuations. All three components exhibit frequent oscillations over the course
of 260 epochs. This ongoing instability suggests that the adversarial reward continually

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

adapts as the policy changes, likely due to the environment’s temporal sensitivity and com-
plex dynamics.

2. θ2 (smoothness) remains active. The smoothness-related component θ2 is frequently non-
zero and relatively stable compared to the others. This indicates that the worst-case reward
consistently emphasizes penalizing erratic or unstable responses in the infection trajectory
— a behavior often neglected by naive proxy metrics.

3. θ1 (early-stage transitions) is highly volatile. The component associated with early in-
fection stage changes spikes intermittently. This suggests that early-stage mismanagement
is a recurring vulnerability in the learned policy that the adversarial reward seeks to exploit.

4. θ0 (overall infection) activates intermittently. Although θ0 sometimes spikes, it does not
dominate the adversarial reward. This may indicate that the learned policy already accounts
for infection magnitude reasonably well, or that smoothness and early-stage control offer
more leverage for reward hacking under the proxy constraint.

Overall, this pattern highlights that in more dynamic and temporally complex environments like
Pandemic, the worst-case reward remains non-sparse and adapts to different policy weaknesses
throughout training. In contrast to the Traffic environment, adversarial emphasis here is broader
and more reactive.

H.2 ADDITIONAL WORST-CASE PERFORMANCE RESULTS

Table 6: Evaluation results on Traffic, Pandemic, Glucose, and RLHF environments. All policies are trained
using only the proxy reward. In Traffic, the proxy reward is based on vel, accel, headway (1, 1, 0.1), while the
true reward uses commute, accel, headway (1, 1, 0.1). In Pandemic, the proxy reward includes infection, lower
stage, smooth changes (10, 0.1, 0.01), while the true reward additionally includes political with weight 10 after
infection. In Glucose, the proxy uses expected patient cost, and the true reward uses magni bg. In RLHF, the
proxy uses a 70M LLM, and the true reward uses a 8B LLM. We report θ in the same order as feature weights.
Occ denotes total occupancy over state-action pairs unseen by πref, where discriminator outputs infinity.

Env Traffic
Method True Proxy Worst Linear Worst (θ) Linear Worst* (θ) Occ ↓
ORPO 16.91±0.12 3.41±0.13 -1.96e+04±0.02e+04 -0.69±0.01 (0.71, 0.21, 0.69) -0.83±0.02 (0.63, 0.12, 0.97) 3.82e-04 ±0.13e-04
ORPO* 10.26±0.09 1.35±0.09 -1.35e+04±0.02e+04 -0.44±0.02 (0.46, 0.18, 0.86) -0.45±0.01 (0.58, 0.06, 0.81) 1.84e-04±0.07e-04
Max-Min 12.70±0.06 3.63±0.09 -268.31±4.14 -0.06±0.01 (0.01, 0.02, 0.96) -0.06±0.01 (0.001, 0.02, 0.99) 0.00±0.00

Linear Max-Min 16.46±0.10 2.40±0.11 -1.19e+04±0.01e+04 0.20±0.01 (0.64, 0.07, 0.76) -0.12±0.01 (0.91, 0.01, 0.67) 0.00±0.00
Env Pandemic

Method True Proxy Worst Linear Worst (θ) Linear Worst* (θ)
ORPO -1.04±0.21 1.75±0.19 -5.31e+06±0.01e+06 -2.41±0.02 (0.23, 0.95, 0.17) -2.65±0.02 (0.02, 0.95, 0.92, 0.08)
ORPO* 1.18±0.19 1.18±0.19 -4.46e+06±0.03e+06 -1.36±0.01 (0.25, 0.97, 0.13) -1.36±0.01 (0.25, 0, 0.97, 0.13)
Max-Min 1.25±0.18 1.25±0.18 -63.29±3.35 -1.11±0.01 (0.14, 0.99, 0.01) -1.11±0.01 (0.14, 0, 0.99, 0.01)

Linear Max-Min 3.65±0.11 7.60±0.13 -6.82e+05±0.01e+05 0.65±0.01 (0.001, 0.23, 0.02) -0.17±0.02 (0.01, 0.97, 0.22, 0.09)
Env Glucose RLHF

Method True(×103) Proxy Worst True Proxy Worst
ORPO 6.0±0.1 100.48±0.54 -27.54±0.32 8.30 ± 1.07 0.63±0.21 -1.84±0.03
ORPO* 6.3±0.2 116.36±0.56 -8.79±0.27 N/A N/A N/A
Max-Min 6.3±0.1 102.66±0.58 -1.71±0.25 5.38 ± 0.92 0.84±0.11 -0.10±0.01

Adversarial Weight Analysis. In Table 6, we also report the adversarial weight vectors θ for
each policy. These weights reveal which features are most vulnerable to proxy exploitation under
the learned policy and can be used to diagnose and revise the proxy reward function, thereby im-
proving robustness. This highlights the interpretability benefits of our framework. Moreover, several
patterns emerge from the results. In the Traffic environment, first, we observe a clear dominance of
the headway feature, with all methods assigning it the highest weight. This suggests that headway
is the most critical component exposed to reward hacking under correlation constraints. Second,
the acceleration feature is consistently downweighted across all methods. This indicates that accel-
eration may be less prone to exploitation or already well aligned with the reference policy. Third,
the velocity feature is moderately emphasized by Linear Max-Min and ORPO (e.g., 0.64 and
0.71), while Max-Min nearly suppresses it (0.01). This contrast suggests that Linear Max-Min
anticipates some vulnerability from velocity deviations, while Max-Min focuses almost entirely on
headway. In the Pandemic environment, first, both ORPO* and Max-Min assign zero weight to
the political feature. This occurs because the expected feature value under their policies is exactly
zero, making the correlation constraint inactive for that dimension. Interestingly, this feature plays
a significant role in the adversarial rewards for both ORPO and Linear Max-Min, with their cor-
responding θ assigning non-negligible weight to it (e.g., 0.95 and 0.97 respectively). This suggests

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

that these policies expose themselves to vulnerability in feature dimensions that are entirely ignored
by Max-Min and ORPO*. Second, the lower stage feature consistently receives the highest weight
across all methods, indicating it is the most sensitive component under proxy misalignment.

Table 7: Evaluation results on Tomato environments. All policies are trained using only the proxy
reward. In Tomato, the proxy includes number of watered tomatoes plus a bonus at a specific state
(sprinkler), while the true reward only measures watered tomatoes. Occ in the Tomato environment
denotes total occupancy over state-action pairs unseen by πref, based on 1000 sampled trajectories.
Worst refers to the expected worst-case reward computed while excluding those unseen state-action
pairs. Worst* denotes the actual expected worst-case reward, while Rmin represents the minimum
possible reward of any state-action pair. All rewards are normalized according to the reference
policy πref.

Method Tomato
True Proxy Worst Occ ↓ Worst*

ORPO 6.28±0.22 6.83±0.28 -1.51±0.09 2.50e-04±0.63e-04 -1.51+Rmin·2.50e-04
ORPO* 4.00±0.18 3.98±0.23 -1.09±0.10 3.09e-05±0.59e-05 -1.09+Rmin·3.09e-05
Max-Min 4.56±0.20 4.68±0.25 -1.37±0.06 1.01e-05±0.43e-05 -1.37+Rmin·1.01e-05

Worst-Case Performance in Tomato Environment. Table 7 reports worst-case performance re-
sults for the Tomato environment. We omit the Linear Max-Min policy from these experiments
for the following reasons. In the Tomato environment, the reward structure is difficult to express in
a clean feature-based form suitable for linear modeling. Therefore, we report only the results for the
Max-Min policy alongside the baselines.

The results for the Tomato environments exhibit trends similar to those observed in other environ-
ments (Section 4.2). In particular, ORPO* appears to outperform others in the Tomato environment
in terms of worst-case performance. Recall that these results are reported under Worst, the expected
worst-case reward restricted to state-action pairs observed under πref. Since the Tomato environment
is discrete, we can explicitly identify which state-action pairs are unseen through sampling, enabling
clearer interpretation of their physical meaning as well as the evaluation of the actual worst-case per-
formance Worst*. The latter corresponds to the Worst value plus the product of the occupancy in
unseen regions (Occ) and Rmin. Because Max-Min exhibits the lowest occupancy among all meth-
ods, it demonstrates greater robustness under varying assumptions about Rmin.

Nevertheless, ORPO* still shows marked improvement over ORPO, both in worst-case return and in
reducing occupancy over unseen state-action pairs. As previously noted, in the Glucose environ-
ment, the discriminator fails to detect any state-action pairs missed by the reference policy. This
reinforces our earlier concern that the current discriminator training procedures may have limited
capacity to identify rare or out-of-distribution events.

Impact of Correlation Parameter Selection on Robustness. In this section, we present addi-
tional experiment results to examine how the proxy-true reward correlation parameter r used during
training affects the robustness under varying evaluation r.

Table 8: Evaluation of robustness in the Tomato environment across different training-time corre-
lation levels r. Occ denotes total occupancy over state-action pairs unseen by πref, based on 1000
sampled trajectories. Worst refers to the expected worst-case reward computed while excluding
those unseen state-action pairs.

r Occ Worst (r = 0.1) Worst (r = 0.4) Worst (r = 0.7) Worst (r = 0.9)

0.1 1.36e-03±0.12e-03 -1.34±0.05 -1.12±0.04 -0.74±0.03 -0.27±0.02
0.4 1.01e-05±0.43e-05 -1.66±0.07 -1.37±0.06 -0.70±0.03 -0.05±0.02
0.7 1.05e-02±0.10e-02 -2.10±0.08 -1.82±0.07 -1.33±0.06 -0.66±0.04
0.9 1.29e-05±0.41e-05 -9.10±0.20 -8.92±0.18 -7.60±0.15 -5.49±0.12

Table 8 and Table 9 report the robustness evaluation results in the Tomato and Traffic environ-
ments under different training-time values of the correlation parameter r. Several consistent patterns
emerge across both environments.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Table 9: Evaluation of robustness in the Traffic environment across different training-time corre-
lation levels r. Occ denotes total occupancy over state-action pairs unseen by πref, based on 200
sampled trajectories. Worst refers to the expected worst-case reward computed while excluding
those unseen state-action pairs.

r Occ Worst (r = 0.1) Worst (r = 0.3) Worst (r = 0.5) Worst (r = 0.9)

0.3 0.00±0.00 -2794.63±42.10 -268.31±4.14 -82.07±2.04 -22.03±0.88
0.5 0.00±0.00 -7.71e+04±1.20e+03 -1.95e+04±3.10e+02 -6168.40±124.75 -1350.22±27.95
0.9 9.66e-05±1.84e-05 -3.01e+05±6.05e+03 -9.51e+04±1.89e+03 -2.73e+04±5.45e+02 -9.33e+03± 1.88e+02

First, for any fixed policy (i.e., fixed training r), we observe that the expected worst-case reward
monotonically increases as the evaluation r increases. This aligns with intuition: higher correlation
levels correspond to smaller uncertainty sets over rewards, meaning the worst-case reward functions
are less adversarial. In contrast, low r values expand the reward uncertainty set, allowing more
pathological or implausible reward functions, and thus lead to more pessimistic evaluations. How-
ever, this does not hold universally. For a fixed policy, the expected worst-case reward in Equation 27
is monotone with respect to r only when the policy has a positive expected proxy return (which is
the case here). If the policy’s expected proxy return is negative, this monotonicity condition fails.

Second, we find that training with a moderate correlation level, particularly around r = 0.3 to 0.4,
yields better robustness across a wide range of evaluation r values. In contrast, training with overly
small (e.g., r = 0.1 for Tomato) or large (e.g., r = 0.9 for Tomato and Traffic) correlation levels
degrades robustness. A small r leads to overly conservative training, anticipating extreme forms of
reward hacking and thus hurting general performance. On the other hand, a high r overly trusts the
proxy reward and fails to hedge against potential deviations, resulting in poor worst-case behavior
under reward misspecification. This trade-off highlights that intermediate values of r may strike a
better balance between conservativeness and optimism, enabling the policy to generalize to a broader
and more plausible spectrum of reward functions. Therefore, in the absence of prior knowledge of
r, starting with a moderate r is a practical heuristic.

H.3 ADDITIONAL RESULTS FOR ROBUSTNESS ACROSS CORRELATION LEVELS

As discussed previously (Appendix H.2), we do not include linear worst-case evaluation for the
Glucose and Tomato environments. Consequently, we cannot perform a uniform search over θ as
we do for the Traffic and Pandemic environments (Appendix F.5). As noted in Appendix B, it is
generally difficult, and often infeasible, to sample a full reward function over all state-action pairs,
particularly in high-dimensional or continuous environments, such as the Glucose environment. To
approximate this process for the Tomato environment, which is a discrete environment, we instead
sample 1000 trajectories using the reference policy πref. We then restrict the search to the visited
state-action pairs. For each such pair, we perturb the original proxy reward by adding Gaussian noise
with zero mean and variance sampled uniformly from the interval [0.001, 1]. We then check whether
the resulting perturbed reward R̃ satisfies the constraint R̃ ∈ Rcorr. As in previous evaluations, we
do not explicitly constrain M and V . We sample 20 perturbed reward functions and then use them
to evaluate each policy. Note: Some policies, such as ORPO, may visit state-action pairs that are not
included in the sampled set from πref. For these unseen state-action pairs, the proxy-true correlation
constraint does not apply, as no corresponding reference data is available. In such cases, we default
to using the original proxy reward to evaluate those portions of the trajectory.

We emphasize that this procedure is neither optimal nor efficient, and is employed solely for eval-
uation purposes in the Tomato environment. Designing more principled and scalable methods for
reward sampling under correlation constraints remains an important direction for future work.

Figure 5 presents the average reward and standard deviation across varying correlation levels r for
the Tomato environment. As expected, the reference policy πref (blue) consistently underperforms
across all values of r, though it exhibits the lowest variance—indicating stable yet suboptimal be-
havior. Interestingly, ORPO* (purple) performs worse than ORPO (red) throughout, suggesting that
improving the accuracy of occupancy measure estimation does not necessarily enhance robustness
in this environment. In contrast, our Max-Min method (green) achieves the highest average reward
across all correlation levels, highlighting its better robustness under reward uncertainty.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Figure 5: Mean reward and standard deviation under sampled reward functions at different proxy-
true reward correlation levels r for the Tomato environment. Our methods (Max-Min) yield higher
average performance across all choices of r.

H.4 ADDITONAL UNNORMALIZED RESULTS

To ensure a fair comparison with prior work (Laidlaw et al., 2025), which reports results in the un-
normalized reward scale, we also include the raw (unnormalized) expected proxy and true rewards.
However, for worst-case reward metrics, it is nontrivial to reverse the normalization transformation,
as our formulation explicitly constrains the reward to have zero mean and unit variance under the
reference policy. Therefore, we omit worst-case results in the unnormalized setting.

Table 10: Unnormalized performance comparison across all environments.

Method Traffic Pandemic Glucose Tomato RLHF
True Proxy True Proxy True (×103) Proxy True Proxy True Proxy

πref -1004.33±0.00 1474.30±0.00 -12.01±0.00 -12.01±0.00 -79.7±0.0 -117.75±0.00 5.96±0.00 6.37±0.00 15.97±0.00 -0.29±0.00
ORPO -666.13±2.34 1542.57±2.62 -12.84±0.17 -10.61±0.15 -49.7±0.6 -67.51±0.27 9.10±0.11 9.10±0.11 16.51±0.07 -0.23±0.02
ORPO* -799.02±1.77 1501.29±1.83 -11.06±0.15 -11.06±0.15 -48.3±1.0 -59.57±0.28 7.96±0.09 7.96±0.09 N/A N/A
Max-Min -750.32±1.28 1546.86±1.82 -11.01±0.14 -11.01±0.14 -48.2±0.5 -66.42±0.29 8.24±0.10 8.24±0.10 16.32±0.06 -0.21±0.01
Linear Max-Min -675.12±2.04 1522.34±2.19 -9.90±0.09 -5.93±0.10 N/A N/A N/A N/A N/A N/A
Ensemble N/A N/A N/A N/A N/A N/A N/A N/A 16.12±0.08 -0.17±0.01

Table 10 presents the unnormalized performance results across all environments. We observe that
both our Max-Min and Linear Max-Min policies achieve comparable performance to ORPO on
most tasks. Interestingly, the ORPO* variant (with a fully trained discriminator) outperforms the
original ORPO in some environments (e.g., Pandemic and Glucose), but performs worse in others,
such as Traffic and Tomato. While our earlier analysis (Section 4.2) shows that better discriminator
training generally improves worst-case robustness, these results suggest that accurate discriminator
estimation does not always translate to improved performance for every specific reward function.
Understanding the nuanced effects of discriminator optimization on various reward metrics is be-
yond the scope of this paper and remains an important direction for future research.

H.5 RESULTS FOR ALL r

Here, we report the results of a uniform grid search over r ∈ [0.1, 0.9] for our Max-Min algorithm
across all training-time correlation levels r on the Traffic, Tomato, Pandemic and Glucose envi-
ronments in Tables 11, 12, 13 and 14. Each table presents the mean and standard deviation of the
expected true reward, expected worst-case reward, and occupancy measure achieved by the learned
policy over five random seeds. Here, the “true reward” refers to the original (unnormalized) true re-
ward, while the “worst reward” refers to the normalized reward. We also include the corresponding
ORPO results for a fair comparison.

Note that the original ORPO algorithm performs a grid search over λ, where λ = σRproxy

√
1− r2

and σRproxy is the standard deviation of Rproxy under πref, which is generally unknown and must be

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

estimated. Thus, ORPO effectively searches over λ, whereas our method searches directly over
r. For a fair comparison, we estimate σRproxy and use it to map each value of r in our grid to a
corresponding λ for ORPO. However, across all environments we find that the resulting λ values
occupy a much narrower scale than r: while r spans the full range from 0.1 to 0.9, the induced λ
values are confined to a small interval (e.g., approximately 0.021–0.05 in Tomato and 0.035–0.08
in Pandemic). As a consequence, the ORPO policies change only marginally across the mapped r
values, and their expected true and worst-case returns appear similar in the tables. In practice, ORPO
would need to search over a broader range of λ values. By contrast, the expected true and worst-case
returns for our Max-Min method vary meaningfully across the full span of r. This highlights that, in
practice, our method and ORPO naturally operate on different hyperparameter scales when tuning
their respective robustness parameters.

Table 11: Evaluation in the Tomato environment across training-time correlation levels r for ORPO
and Max–Min. λ denotes ORPO’s coefficient, with λ = σRproxy

√
1− r2. We use σRproxy = 0.05 in

this environment, consistent with the ORPO setting. Occ denotes the total occupancy over state-
action pairs unseen by πref. Worst refers to the expected worst-case reward computed under the
training r while excluding those unseen state-action pairs.

r
ORPO Max–Min

λ True Worst Occ True Worst Occ

0.1 0.050 0.46±0.14 -6.08±0.07 8.22e-03±0.27e-03 0.13±0.15 -1.34±0.05 1.36e-03±0.12e-03
0.2 0.049 0.66±0.03 -6.88±0.08 2.8e-03±0.14e-03 7.79±0.10 -0.72±0.05 2.18e-03±0.25e-03
0.3 0.048 0.70±0.03 -7.55±0.04 1.87e-03±0.16e-03 7.68±0.11 -0.96±0.04 1.85e-03±0.16e-03
0.4 0.046 0.16±0.02 -9.20±0.06 1.51e-03±0.13e-03 8.24±0.10 -1.37±0.06 1.01e-05±0.43e-05
0.5 0.043 0.52±0.08 -6.53±0.05 0.028±0.0010 7.38±0.12 -1.21±0.04 2.15e-03±0.37e-03
0.6 0.040 0.51±0.07 -7.44±0.06 0.028±0.0011 6.65±0.17 -1.22±0.06 1.18e-03±0.32e-03
0.7 0.035 0.84±0.12 -5.85±0.07 0.027±0.0010 0.16±0.08 -1.33±0.06 1.05e-02±0.10e-02
0.8 0.030 0.16±0.03 -7.01±0.06 2.88e-03±0.19e-03 1.02±0.13 -2.86±0.04 5.77e-04±0.35e-04
0.9 0.021 0.11±0.09 -7.30±0.08 0.032±0.0009 0.37±0.13 -5.49±0.12 1.29e-05±0.41e-05

Table 12: Evaluation in the Traffic environment across training-time correlation levels r for ORPO
and Max–Min. λ denotes ORPO’s coefficient, with λ = σRproxy

√
1− r2. We use σRproxy = 2e − 4

in this environment, consistent with the ORPO setting. Occ denotes the total occupancy over state-
action pairs unseen by πref. Worst refers to the expected worst-case reward computed under the
training r while excluding those unseen state-action pairs.

r
ORPO Max–Min

λ True Worst Occ True Worst Occ

0.1 1.99e-4 -1063.75±1.08 1.20e+03±0.02e+03 5.53e-03±0.03e-03 -1428.21±5.36 -3.43e+04±0.66e+04 2.29e-04±0.36e-04
0.2 1.95e-4 -775.79±1.15 4.62e+04±0.04e+04 8.71e-04±0.03e-04 -1312.67±9.14 -2.83e+04±0.71e+04 1.49e-04±0.42e-04
0.3 1.91e-4 -689.31±1.12 -5.13e+04±0.04e+04 3.98e-04±0.02e-04 -750.32±1.28 -268.31±4.14 0.00±0.00
0.4 1.83e-4 -1109.41±1.59 -1.84e+03±0.04e+03 4.94e-03±0.05e-03 -732.86±1.19 -314.14±5.37 0.00±0.00
0.5 1.73e-4 -673.45±1.36 -1.51e+04±0.03e+04 6.85e-04±0.01e-04 -1034.42±2.32 -6168.40±124.75 0.00±0.00
0.6 1.60e-4 -768.04±1.55 -4.65e+04±0.04e+04 5.43e-03±0.02e-03 -1322.74±3.92 -6.73e+03±0.28e+03 4.50e-05±1.27e-05
0.7 1.43e-4 -816.62±1.03 -4.93e+04±0.04e+04 7.60e-03±0.03e-03 -1398.63±2.73 -3.82e+04±1.74e+04 2.38e-04±0.35e-04
0.8 1.20e-4 -782.01±1.08 -8.74e+04±0.09e+04 5.97e-03±0.02e-03 -1359.23±2.08 -4.94e+04±1.45e+04 3.48e-04±0.25e-04
0.9 8.72e-5 -669.89±1.01 -1.39e+04±0.04e+04 4.41e-03±0.03e-03 -1337.41±2.45 -9.33e+03±1.88e+02 9.66e-05±1.84e-05

I HOW TO CHOOSE r IN PRACTICE?

When r is unknown, both our method and ORPO lack a principled mechanism for selecting an
appropriate value. Besides the simple heuristics derived from our experiments as discussed in Ap-
pendix H.2, we outline two potential approaches to this important problem below.

Statistical inference of r. If we have access to the true reward on a subset of state-action pairs, or
if such labels can be acquired through active learning, we can estimate r using the definition:

Eµπref

[(
Rproxy − J(πref, Rproxy)

σRproxy

)(
Rtrue − J(πref, Rtrue)

σRtrue

)]
= r, (64)

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Table 13: Evaluation in the Pandemic environment across training-time correlation levels r for
ORPO and Max–Min. λ denotes ORPO’s coefficient, with λ = σRproxy

√
1− r2. We use σRproxy =

0.08 in this environment, consistent with the ORPO setting. Worst refers to the expected worst-case
reward computed under the training r while excluding those unseen state-action pairs.

r
ORPO Max–Min

λ True Worst True Worst

0.1 0.080 -12.22±0.14 -7.29e+06±0.05e+06 -18.48±0.37 -7.44e+04±0.19e+04
0.2 0.078 -11.77±0.11 -1.70e+07±0.10e+07 -16.31±0.49 -6.03e+04±0.12e+04
0.3 0.076 -12.49±0.20 -2.49e+06±0.05e+06 -19.27±0.38 -7.04e+04±0.05e+04
0.4 0.073 -12.17±0.17 -1.25e+06±0.05e+06 -19.21±0.15 -2.03e+03±0.16e+03
0.5 0.069 -12.26±0.24 -1.07e+06±0.04e+06 -13.75±0.14 -2.58e+03±0.15e+03
0.6 0.064 -12.08±0.28 -2.65e+06±0.09e+06 -13.15±0.24 -104.00±0.22
0.7 0.057 -11.45±0.23 -2.92e+05±0.10e+05 -11.01±0.14 -63.29±3.35
0.8 0.048 -12.22±0.14 -9.37e+05±0.06e+05 -11.20±0.22 -123.65±0.15
0.9 0.035 -12.02±0.20 -3.29e+04±0.09e+04 -11.05±0.13 -77.20±2.08

Table 14: Evaluation in the Glucose environment across training-time correlation levels r for ORPO
and Max–Min. λ denotes ORPO’s coefficient, with λ = σRproxy

√
1− r2. We use σRproxy = 0.05 in

this environment, consistent with the ORPO setting. Worst refers to the expected worst-case reward
computed under the training r while excluding those unseen state-action pairs.

r
ORPO Max–Min

λ True(×103) Worst True(×103) Worst

0.1 0.050 -90.2±0.7 -350.94±0.37 -169.3±0.6 -317.97±0.12
0.2 0.049 -88.1±0.8 -199.26±0.59 -150.2±0.6 -304.15±0.34
0.3 0.048 -79.1±0.6 -225.71±0.45 -118.3±0.4 -139.47±0.46
0.4 0.046 -72.2±0.4 -206.40±0.27 -113.5±0.8 -123.11±0.32
0.5 0.043 -94.4±0.4 -215.00±0.27 -125.1±0.7 -126.41±0.43
0.6 0.040 -68.0±0.9 -266.50±0.47 -95.9±0.8 -84.67±0.17
0.7 0.035 -71.6±0.5 -314.48±0.23 -51.7±0.8 -18.84±0.43
0.8 0.030 -53.5±0.6 -227.79±0.28 -33.3±0.4 -11.25±0.27
0.9 0.021 -50.9±0.5 -255.07±0.18 -48.2±0.5 -1.71±0.25

In fact, Equation 64 defines the Pearson correlation coefficient r between the true reward Rtrue
and the proxy reward Rproxy under the occupancy measure µπref . Given a batch of n state-action
pairs {(si, ai)}ni=1 sampled from πref for which we have both R

(i)
true and R

(i)
proxy, we can estimate this

correlation using the sample correlation coefficient:

r̂ =

∑n
i=1(R

(i)
true − R̄true)(R

(i)
proxy − R̄proxy)√∑n

i=1(R
(i)
true − R̄true)2 ·

√∑n
i=1(R

(i)
proxy − R̄proxy)2

We can then use Fisher’s z-transformation to compute the confidence intervals for r. After getting
this bounded range, we can plug this bound into our framework to define a tighter reward uncer-
tainty set. For example, we can use rlower for more pessimistic robustness. Or we can redefine the
correlation constraint in Equation 64 to be bounded by both rlower and rupper. The optimal solution
under this new constraint can be similarly obtained using the approach in the paper.

A min-max regret approach. A more principled approach to addressing the uncertainty in r
may come from a regret-based perspective. Let Jr(π) denote the worst-case return for a given
policy π under a specific correlation level r, i.e., Jr(π) = minR∈Rcorr(r) J(π,R). The regret can
then be defined as Reg(π, r) = maxπ∗ Jr(π

∗) − Jr(π), which quantifies the performance gap
between the optimal policy under r and the current policy. With this formulation, a robust objective

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

can be expressed as minπmaxr Reg(π, r), aiming to find a policy that minimizes the worst-case
regret across all possible values of r. This framework enables us to train policies that are robust to
uncertainty in the correlation parameter r. We think this is a promising future direction, especially
for cases where r may be misspecified during training. As studied in (Sadek et al., 2025), minimax-
regret may provide strong robustness guarantees under distribution shifts for r. In such settings,
methods like Prioritized Level Replay (Jiang et al., 2021) and recent progress in (Monette et al.,
2025) could be adapted to solve the problem by sampling multiple r and solving Equation 27 in
our paper. We should note that the reason these frameworks are potentially applicable is that our
formulation admits a closed-form solution for the inner minimization. However, the main challenge
lies in estimiating the occupancy measure. An interesting direction for future work is to investigate
whether policy gradients can be approximated without explicitly occupancy estimation.

60

	Introduction
	Preliminaries
	Method
	Max-Min Policy Optimization
	Structured Reward Spaces via Feature Linearization
	Occupancy Estimation and Convergence

	Experiment
	Experiment Setup
	Results

	Conclusion
	Appendices
	LLM Usage
	Limitations and Future Work
	Broader Impacts
	Related Work
	Reward Hacking
	Reward Modeling in Reinforcement Learning
	Robust Reinforcement Learning
	Successor Representations in Reinforcement Learning

	Proofs and Additional Theoretical Results
	Solve the Max-Min Objective
	Proof of Optimality
	Proof that 2(ref) E2[Rproxy]
	Derive Lagrangian Functional for Linear Max-Min Objective
	Proof for Whitening Transformation
	Derive Optimal Primal Variable for Linear Max-Min Objective
	Solve the Dual Objective for Linear Max-Min Objective
	Policy Gradient Derivation
	Proof of Theorem 1

	Additional Implementation Details
	Training Discriminator Network
	Derivation of Max-Min Policy Optimization
	Derivation of Linear Max-Min Policy Optimization
	Environment Description and Reward Hacking Types
	Additional Experiment Setup
	Training Time and Complexity

	Convergence Analysis
	Sample Complexity of Occupancy Measure Estimation
	Guarantees for Max-Min with Occupancy Measure Approximation
	Convergences for Linear Max-Min algorithm

	Additional Experiment Results
	Feature Weights in Linear Max-Min Optimization during Training
	Additional Worst-Case Performance Results
	Additional Results for Robustness Across Correlation Levels
	Additonal Unnormalized Results
	Results for all r

	How to choose r in practice?

