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Abstract

Recent models in cross-lingual semantic role
labeling (SRL) rely heavily on BiLSTMs, a
derivation of RNNSs, as their main encoders.
However, a previous study in dependency
parsing has shown that RNN-based cross-
lingual models are ineffective in distant lan-
guages. Therefore, we propose graph neu-
ral networks (GNNs) built on dependency
trees to replace BiLSTMs’ role as the en-
coder for cross-lingual models. We hypoth-
esize that encoding sentences based on their
dependency trees helps cross-lingual SRL mod-
els achieve better generalization. Through a
simple encoder-decoder architecture, we com-
pare various GNN:s, i.e., gated graph convolu-
tional networks (GGCNs), graph attention net-
works (GATSs), two-attention relational GAT's
(2ATT-GATs), and modified self-attention net-
works from Transformer (SATs). We focus on
a zero-shot setting and evaluate the models in
23 languages available in Universal Proposition
Bank. The evaluation shows that 2ATT-GAT's
outperform other GNNs. Moreover, compar-
isons against BILSTM-based models show that
2ATT-GATs are more effective for building
cross-lingual SRL models, especially in lan-
guages with different word orders.

1 Introduction

Semantic role labeling (SRL) is a task to deter-
mine the predicates of a sentence and argument
roles for each corresponding predicate, as shown in
Figure 1. SRL supports many natural language pro-
cessing (NLP) tasks, e.g., information extraction
(Christensen et al., 2010), abstractive summariza-
tion (Khan et al., 2015), and machine translation
(Rapp, 2022). However, SRL resource availabil-
ity is low, hindering the performance of other NLP
tasks in diverse languages. Cross-lingual SRL mod-
els try to solve this problem by training the mod-
els in resource-rich languages and transferring the
models to resource-poor languages.

SRL predicate

recommend.01

ARGO ARG2

ARGM- ARG1
MOD

I:I:' | would | | recommend | | him

| aux obj

nsubj

| [to] [anyone |
case
obl

punct

root

dependency parsing

Figure 1: An example of the SRL task (top) and the
dependency parsing task (bottom) applied to a sentence
taken from UPB. The red color indicates path intersec-
tions in both tasks.

A study in cross-lingual dependency parsing
(Ahmad et al., 2019) proves that recurrent neu-
ral network (RNN)-based cross-lingual models are
sensitive to word orders, making them unable to
transfer effectively to distant languages. Despite
the developments in cross-lingual SRL, recent mod-
els still heavily rely on BiLSTMs, the derivation of
RNN:G, as their encoders, e.g., Fei et al. (2020), Cai
and Lapata (2020), and Conia et al. (2021).

We propose to apply GNNs over universal depen-
dency trees provided by Universal Dependencies
(UD) (Nivre et al., 2016b, 2020) as the encoder
for cross-lingual models. We hypothesize that en-
coding sentences based on their dependency trees
makes cross-lingual SRL models generalize better.
We provide two main reasons: (1) Many predicate-
argument paths and argument roles in SRL intersect
with dependency paths and dependency relations
in dependency parsing (Marcheggiani and Titov,
2017), as shown in Figure 1. (2) Universal depen-
dency tree, representing a sentence’s grammatical
structure in a language-universal scheme, is a more
generalized representation across languages than
word sequences.

We experiment on various GNNs as an encoder
to extract language-universal information from



dependency trees, including GGCNs (Marcheg-
giani and Titov, 2017), graph attention networks
(GATs) (Velickovié et al., 2017), modified rela-
tional GATs (Wang et al., 2020) (2ATT-GATsS), and
modified self-attention networks from Transformer
(Shaw et al., 2018) (SATs). We apply GGCNs and
2ATT-GATs since they have been proven useful
to encode dependency trees in monolingual SRL
(Marcheggiani and Titov, 2017) and sentiment anal-
ysis (Wang et al., 2020), respectively. We com-
pare 2ATT-GATs with GAT's that treat the depen-
dency tree as unlabeled. In addition, we employ
SATs as it is taken from self-attention in the pop-
ular Transformer (Vaswani et al., 2017). Further-
more, we compare the best GNN-based model with
BiLSTMs-based models to show the effectiveness
of the GNN-based model in cross-lingual SRL.

SRL consists of four steps, i.e., predicate de-
tection, predicate sense disambiguation, argument
detection, and argument labeling. Following pre-
vious work in cross-lingual SRL (Fei et al., 2020),
we focus on argument detection and argument la-
beling in the dependency-based SRL. We conduct
experiments in a zero-shot setting to find the most
transferable networks across languages.

We train and evaluate the models in seven and 23
languages provided by Universal Proposition Bank
(UPB) v1.0 and UPB v2.0, respectively. Through-
out the paper, we show that in cross-lingual SRL:

1. 2ATT-GATs outperform other GNN-based
SRL models, indicating that 2ATT-GATs
transfer more effectively across languages
than other GNNss.

2. 2ATT-GATs perform better than BiLSTM-
based SRL models, even when built on inac-
curate dependency trees, especially in target
languages with different word orders than the
source language.

2 Background

2.1 Universal Proposition Bank

Universal Proposition Bank (UPB) is a dataset con-
taining SRL annotations across languages. UPB
v1.0 (Akbik et al., 2015, 2016) provides SRL an-
notations for nine treebanks and eight languages,
including English and other seven languages shown
at the left side of Table 1. UPB v2.0 (Jindal et al.,
2022) provides SRL annotations for 43 treebanks
and 23 languages, shown in Table 1. UPB is an-
notated semi-automatically through filtered annota-

v1.0 and v2.0 v2.0
Chinese (ZH) Czech (CS) Dutch (NL)
Finnish (FI) Greek (EL) Polish (PL)
Italian (IT) Korean (KO) Telugu (TE)
Spanish (ES) Romanian (RO)  Indonesian (ID)
French (FR) Hindi (HI) Japanese (JA)
German (DE) Marathi (MR) Russian (RU)
Portuguese (PT) | Tamil (TA) Ukrainian (UK)
Hungarian (HU)  Vietnamese (VI)

Table 1: List of target languages available in UPB v1.0
and UPB v2.0.

tion projection and bootstrap training (Akbik et al.,
2015). UPB v2.0 has significantly improved over
UPB v1.0 regarding SRL annotation quality, lan-
guage scope, and availability of span-based SRL
annotations (Jindal et al., 2022).

2.2 Universal Dependencies

Universal Dependencies is a dataset that contains
consistent syntactic annotations across languages,
i.e., part-of-speech (POS) tags, morphological fea-
tures, and syntactic dependencies. UD v1 (Nivre
et al., 2016b) and UD v2 (Nivre et al., 2020) have
different annotation schemes' in word segmenta-
tion, pos tags, morphological features, and syn-
tactic relations. UD v1 and UD v2 have 40 and
37 universal dependencies relations, respectively.
UPB v1.0 and UPB v2.0 that we use throughout
the experiments are annotated based on UD v1.4
(Nivre et al., 2016a) and UD v2.9 (Zeman et al.,
2021), respectively.

2.3 Dependency-based Semantic Role
Labeling

Dependency-based SRL labels the argument heads
for each predicate in a sentence based on its depen-
dency tree. For example, in Figure 1, the phrase
"to anyone" is the argument "ARG2" of the predi-
cate "recommend". Based on the dependency tree,
"anyone" is the head of the phrase "to anyone".
Therefore, dependency-based SRL annotates the
edge that connects "recommend" and "anyone"
with "ARG2" label.

2.4 Related Works

Existing models in cross-lingual SRL rely on BiL-
STMs as their main encoders despite the find-
ings in Ahmad et al. (2019), which prove that
RNN-based models perform ineffectively in dis-
tant languages for dependency parsing task. Fei

"https://universaldependencies.org/v2/summary.html
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Figure 2: The architecture applied to a sentence with
"recommend" as the predicate.

et al. (2020) propose parameter generation net-
work (PGN)-BiLSTMs to build a cross-lingual SRL
model. Cai and Lapata (2020) propose BiLSTM-
based models as semantic role labeler and compres-
sor in their architecture. Conia et al. (2021) pro-
pose BiLSTM-based universal sentence encoder
and BiLSTM-based universal predicate-argument
encoder to encode predicate-related and predicate-
argument information.

GNNs have been used to encode dependency
trees in monolingual SRL and aspect-based sen-
timent analysis (ABSA). In monolingual SRL,
Marcheggiani and Titov (2017) employ GGCNs on
top of BiLSTMs to incorporate dependency trees
as graphs. In ABSA, Wang et al. (2020) and Jiang
et al. (2021) employ relational GATs (R-GATs)
and attention-based relational GCNs (ARGCNs),
respectively. They apply GNNs on top of modified
dependency trees to establish direct connections
between aspects and their corresponding words.

3 Model

We apply a common encoder-decoder architecture
for comparing various GNN-based and BiLSTM-
based cross-lingual SRL models. The architecture
consists of an input layer (i.e., predicate indicator
embedding and contextualized multilingual word
embedding), an encoder, and a decoder (i.e., linear
scorer), as shown in Figure 2.

3.1 Input Layer

For each word in a sentence, we concatenate predi-
cate indicator embedding, p¢, and contextualized
multilingual word embedding, ¢, to produce the
final word representation, h;, as shown in Equation
1.

= [pt]|] (1)
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Figure 3: Dependency graph of a sentence converted
from its dependency tree.

that represents whether a word is a predicate or
not (Fei et al., 2020). We compare contextualized
multilingual word embedding from two language
models, i.e., multilingual BERT (mBERT) (De-
vlin et al., 2019) and XLM-RoBERTa (XLM-R)
(Conneau et al., 2020). Both mBERT and XLLM-R
produce embedding at a subword level according to
WordPiece tokenization (Wu et al., 2016). We take
the left-most subword as the representation for the
corresponding word following Wang et al. (2019).
To generate the word embedding, ¢!, we adopt the
method proposed by existing cross-lingual SRL.
Conia et al. (2021) concatenate the last four hid-
den layers obtained from corresponding pre-trained
language models. Given the result of concatena-
tion, ¥, they apply a feed-forward neural network
(FNN) and Swish activation function (Ramachan-
dran et al., 2018), as shown in Equation 2. They
also apply a dropout after the activation function.

¢! = Swish(W7{ + b) )
3.2 Encoder

We experiment with various GNN-based and
BiLSTM-based encoders. GNNs that we apply
are graph attention networks (GATs), two-attention
relational GATs (2ATT-GATs), gated graph con-
volutional networks (GGCNs), and modified self-
attention networks from Transformer (SATSs).

In GNN-based models, we encode a sentence
by forming a dependency graph based on its de-
pendency tree, which consists of dependency arcs
and dependency relations. We follow the method
proposed by Marcheggiani and Titov (2017). They
convert a dependency tree to a graph by adding
edges that flow in the opposite direction of the
original dependency arcs and edges that flow from
nodes to themselves. Figure 3 displays the depen-
dency graph of the dependency tree at the bottom
of Figure 1.



3.2.1 Graph Attention Networks

Given a graph that consists of nodes, ¢, and edges,
e, GATs (Velickovi¢ et al., 2017) update each node
representation, h;, according to its neighbor node
representations, using multi-head attention mech-
anism that employs K heads. GATs utilize an at-
tention weight, «, to measure the contribution of
neighbor node representations when updating the
corresponding node representation, h;. The atten-
tion weight, o, for the edge that connects node i
and node 7, is calculated by taking the dot-product
between a weight vector, &, with the concatena-
tion of linearly transformed h; and h_; The result
of the dot-product is passed to a LeakyReL.U acti-
vation function, LR, and softmax function, SM, as
shown in Equation 3.

o, = SM(LR(Z* - (Wi |[WFR]) ()

3.2.2 Two-attention Relational Graph
Attention Networks

Since GATS treat a graph as unlabeled (Velickovic¢
et al., 2017), Wang et al. (2020) modify GATs
to use two attention weights. The first attention
weight contains node representations, while the
second includes dependency-type representations
taken from dependency types that represent depen-
dency arcs and relations in the dependency trees.
Instead of using different equations for both atten-
tions as in Wang et al. (2020), we find that applying
the FNNs (Velickovi€ et al., 2017) for calculating
both attentions works best for our task. Therefore,
we explain the modification in this section.

Equation 3 shows how we calculate the first at-
tention weight, a. To calculate the second attention
weight, 3, we slightly modify Equation 3 to encode
dependency-type representation, 7?] , as shown in
Equation 4.

B = SM;(LR(&" - W) (4)

We obtain node representations from attention
weight « and (3, as shown in Equation 5 and Equa-

tion 6. N indicag> the set of neighbor nodes of

—
node 7. hfm- and h! i are the node representations
in layer [ obtained from attention weight « and [3,
respectively.

— —
hhi= Y afWFRl- (5)
JEN;

—
Hhi= X AW ©
JEN;
Finally, we calculate the node representation in
layer I, h;, by applying an FNito the concate-

nation of node representation hla’z- and fg: . We
concatenate the node representation from each at-
tention head, k (Equation 7), except in the final
layer where we take the average of node represen-
tations (Equation 8). L indicates the number of
layers, while W and b indicate weight matrix and
bias in the FNN. We optionally apply an activation
function, o.

— —

W = o (A (WAL RG]+ b4). 1< L ()

1 IRy iy S

hi = (2= > (WHh il [hig ;] +5%)), 1 = L (8)
K=

3.2.3 Gated Graph Convolutional Networks

Marcheggiani and Titov (2017) propose GGCNs
to encode syntactic features from dependency trees
in monolingual SRL models. Equation 9 shows

how to calculate node representation, h,, in layer
[. GGCNs separate the weight matrices, W g;,,
according to the direction of dependency arcs,
i.e., original direction, opposite direction, and self-
direction. Meanwhile, b,..; represents the depen-
dency relation. Unlike regular GCNs (Kipf and
Welling, 2017), GGCNs employ a scalar gate, g;;,
to measure the importance of neighbor node repre-
sentations when updating the corresponding node
representation.

EZZ = ReLU( Z gij(WdiTijhij + brelij» ©
JEN;

3.2.4 Modified Self-attention Networks

Self-attention with relative position representations
(Shaw et al., 2018) is an extension of the self-
attention in Transformer (Vaswani et al., 2017) to
include edges that represent relative positions be-
tween words. The self-attention can be categorized
as GNNss since they receive input as a graph con-
sisting of nodes and edges. Referring to the paper
(Shaw et al., 2018), we modify edge representations
from representing relative positions to representing
dependency types. Instead of a fully connected
graph as input, SATSs take a graph formed over the
sentence’s dependency tree, as shown in Figure 3.



3.3 Decoder

We apply a linear scorer as the decoder. We con-
catenate node representation for each word, h;,
with the predicate node representation, h,, ;. Pred-
icate node representation is taken from the node
representation, h;, of the sentence’s predicate. Af-
ter that, we apply an FNN to produce the final node
representation with an embedding size equal to the
number of arguments, n. We then apply a softmax
function, SM, to produce the probability for each
label, z, as shown in Equation 10. We train the
model to minimize the cross-entropy loss.

P(2) = SM(W[E;||fp] + b)., z € [1,n] (10)
4 Experiment Results

4.1 Datasets

We conduct experiments using datasets from UPB
v1.0 and UPB v2.0. The dataset distribution
can be found in Appendix A.1. In UPB v1.0,
UP_English-EWT is annotated based on UD v2,
while the other languages are annotated based on
UD vl1.4. Since UP_English-EWT in UPB v1.0
is annotated based on UD v2, we use its SRL an-
notations to construct a cross-lingual SRL. model
for target languages in UPB v2.0. To construct a
cross-lingual SRL model for UPB v1.0, we con-
vert syntactic annotations of UP_English-EWT
(UPB v1.0) to UD v1.4 using the script available
at Zhang et al. (2021)%. We merge annotations
from English Web Treebank (EWT) (Bies et al.,
2012), PropBank v3 (Kingsbury and Palmer, 2002;
Palmer et al., 2005; Gildea and Palmer, 2002), and
UD v1.4 (Nivre et al., 2016a).

4.2 Settings

We focus on conducting experiments in a zero-
shot setting to examine the model’s transferabil-
ity across languages. We train the model in En-
glish and evaluate the model in seven languages
and 23 languages from UPB v1.0 and UPB v2.0,
respectively, as shown in Table 1. Furthermore,
we compare the performance of the cross-lingual
model against the monolingual model to illustrate
the generalization achieved by each model.

We use gold and predicted dependency trees for
model evaluation. We train dependency parsers
from scratch using Stanza (Qi et al., 2020) to pro-
duce predicted dependency trees for languages in

“https://github.com/zzsfornlp/zmsp

UPB v1.0. For languages in UPB v2.0, we use pre-
trained models provided by Stanza®. Appendix B.1
shows each dependency parser’s unlabeled attach-
ment score (UAS) and labeled attachment score
(LAS).

Following Conia et al. (2021), we train the model
for 30 epochs by increasing the learning rate lin-
early for 1 epoch and decreasing linearly for 15
epochs. We use AdamW (Loshchilov and Hutter,
2019) as the optimizer. We run the experiments
five times and report the average F1 scores and
standard errors. We choose the best epoch from
each experiment based on the F1 score of the En-
glish validation set. Appendix B.2 explains the
implementation details and hyperparameters we
use throughout the experiments. We choose most
hyperparameter values based on previous studies.

4.3 Comparison Among GNN-based SRL
Models

We compare the performance of various GNN-
based SRL models, i.e., GGCNs, SATs, GATs, and
2ATT-GATs, by substituting the encoder part in the
architecture (Figure 2) with these GNNs. We stack
three layers of GNNs and freeze mBERT as our
contextualized word embedding to solely observe
the influence of GNNSs.

The left side of Table 2 shows the F1 score of
each model evaluated using the test sets in UPB
v1.0 and UPB v2.0 with predicted dependency
trees. The results with gold dependency trees are
available in Appendix C. In the monolingual set-
ting, as indicated by EN, SATs achieve the highest
F1 score for both datasets. Meanwhile, in the cross-
lingual setting, as shown in AVG, GGCNs perform
the best in UPB v1.0, while 2ATT-GATs perform
the best in UPB v2.0.

Although GGCNs outperform 2ATT-GATs in
UPB v1.0, if we extract the F1 scores of languages
available in UPB v1.0 from UPB v2.0, i.e., FI,
IT, ES, FR, DE, PT, and ZH, 2ATT-GATs still
outperform GGCNs in all these languages. As
we know, UPB v1.0 and UPB v2.0 are annotated
semi-automatically (Akbik et al., 2015). UPB v2.0
has significantly improved over UPB v1.0 regard-
ing SRL annotations quality (Jindal et al., 2022).
Therefore, we believe the evaluation against UPB
v2.0 is more crucial.

SExcept for UP_Japanese-GSDLUW and

UP_French-Rhapsodie, where we train from scratch
since the models are unavailable.



Lang | GGCNs SATs GATs 2ATT-GATs l;:i,%[:ﬂl\}/[ A+Ts BiLSTM  3BiLSTMs
UPB v1.0
EN 80.50+009  80.89+0.04 79.77+005 | 80.04+0.05 82.19+0.10 79.72+005  80.23+0.08
FI 54.10+0.09 53.95+017 48.95+032 | 53.17+0.10 52.83+0.15 39.85+0.19  40.18+022
IT 57.57+0a3  57.33+014 54914026 | 57.12+0.08 56.45+0.10 47.20+019  46.74+0.30
ES 54.32+011  54.88+017 50.44+015 | 54.69+0.12 52.41+0.16 41.77+015  41.52+0.05
FR 46.92+012 46.18+012  44.60+028 | 46.28+0.20 45.58+0.23 40.64+032  40.70+031
DE 58.75+021  58.65+00s 57.06%0.10 | 58.80-+0.07 56.18+0.13 41.45+024  41.99+0.12
PT 53.60+0.04 53.12+013  52.50+0.13 | 53.33+0.07 52.86+0.16 44.38+024  44.10+0.12
ZH 37.83+014 37.54+026 37.07+011 | 38.42+0.16 40.01+0.24 32.87+037  32.53+023
AVG | 51.87+005 51.67+009 49.36+0.11 | 51.69+0.07 50.90+0.07 41.17+013  41.11+0.11
UPB v2.0
EN 80.20+008  80.71+0.06 79.63+008 | 79.65+0.02 81.99+0.10 79.51+008  80.08=+0.08
CS 56.60+020 56.86+0.12  55.93+006 | 57.79+0.11 55.19+023 47.13+006  47.50+0.13
EL 58.394+030 58.56+052  59.68+027 | 60.69+0.36 59.48+0.21 56.05+0.16  55.53+027
KO 39.31+024 38.26+077 41.25+025 | 42.20+045 35.01+054 27.75+020  27.84+0.99
RO 52.43+007 52.65+019  53.51+0.20 | 53.24+0.17 54.41+0.09 48.71+030 47.83+031
HI 47.26+007  47.93+008 44.80+022 | 48.40+0.14 42.69+0.44 27.49+084  27.30+044
MR 3543+059 37.86+086 39.53+170 | 38.94+1.01 36.17+0.96 27.224+189  26.31+1.60
TA 31.64+027 33.74+054 34.58+0.66 | 34.25+0.40 30.70+0.75 23.64+084  22.20+0388
HU 50.084027 50.90+026 48.27+0.14 | 51.00+0.12 46.65+0.21 39.05+029  39.52+039
PL 57.73+012  57.54+008 57.57+014 | 59.85+0.16 57.01+033 51.65+011  51.19+033
TE 46.27+064  45.09+055 42.66+072 | 47.01+0.82 40.1240.99 3597+130  32.84+055
NL 62.94+020 62.81+021 63.00+019 | 63.39+0.15 58.39+0.28 51.95+036 52.42+0.10
ID 53.354+034 53.43+023 58.82+0.25 | 54.24+0.10 56.80+0.32 56.55+034  55.00+035
JA 36.07+015  36.12+039  36.30+051 | 36.82+0.11 33.39+1.08 23.76+107  21.40+1.07
RU 57.63+022  58.69+035 59.43+0.27 | 58.88+0.23 58.95+0.29 55.49+024  55.48+023
UK 57.39+004 58.45+016 57.18+026 | 58.62+0.12 57.59+027 52.80+039  52.98+0.17
ZH 42.88+033  44.13+031  45.55+033 | 44.77+0.16 47.73+0.19 48.54+046  47.95+034
VI 25.78+005 26.11+014  27.48+0.03 | 26.51+0.14 27.32+0.08 29.39+029 27.34+036
FI 53.54+011  54.09+013  52.92+0.13 | 54.46+0.04 54.37+0.17 51.544013  51.83+023
IT 57.31+010 57.81+015 58.00+0.12 | 58.52+0.07 58.14+0.19 55.23+016  54.97+0.12
ES 54.10+006 54.85+0.10 55.82+0.06 | 55.68+0.09 55.02+0.21 51.02+0.13  50.51+0.06
FR 61.55+014 61.82+010 62.05+019 | 62.43+0.04 60.60+0.25 59.81+015 59.88+0.26
DE 58.34+006 58.80+0.14  59.34+008 | 59.39+0.07 53.92+031 41.40+038  43.10+0.23
PT 65.554+008 65.82+010 66.37+0.07 | 66.09+0.07 65.85+0.11 64.05+017  63.71+0.10
AVG | 50.50+004 50.97+013 51.31+008 | 51.88+0.09 49.81+0.16 44.62+011  44.11+023

Table 2: F1 scores (%) in UPB v1.0 and UPB v2.0 test sets with predicted dependency trees (frozen mBERT).
The bold score in each language indicates the highest F1 score among GNN-based models, i.e., GGCNs, SATsS,
GATs, and 2ATT-GATs. The underlined score in each language indicates the highest F1 score among 2ATT-GATs,
BiLSTM+2ATT-GATs, BiLSTM, and 3BiLSTMs. AVG indicates the average F1 score of each model for all

languages except English.

In UPB v2.0, 2ATT-GATs outperform other
GNN:gs, indicating that 2ATT-GAT's can generalize
better across languages. However, GATs some-
times perform better in languages that have rela-
tively low LAS, i.e., MR, TA, ID, VI, and RU*.
We conjecture that GATs are more robust to inac-
curate dependency relation labels because GAT's
treat dependency trees as unlabeled. Clearer ev-
idence can be shown in ID, where the F1 scores
decrease significantly when we replace gold with
predicted dependency trees except for GATS’ be-

*UAS/LAS of each language: 79.85/70.63 (MR),
80.89/72.30 (TA), 87.31/77.33 (D), 77.58/74.16 (VI),
84.42/81.41 (RU Taiga), and 90.44/87.2 (RU GSD).

5F1 scores of ID using gold trees: 57.184:0.26 (GGCNs),
57.05£0.20 (SATs), 59.054+0.21 (GATs), and 58.06+0.13
(2ATT-GATs).

cause the UAS of predicted dependency trees in ID
is relatively high compared to LAS, i.e., 8§7.31 and
77.33.

4.4 Comparison of 2ATT-GATs Against
BiLSTM-based SRL Models

We compare 2ATT-GAT's with the widely used net-
work in cross-lingual SRL, i.e., BILSTMs. We
build the first BILSTM-based SRL model by stack-
ing one BiLSTM layer with two layers of 2ATT-
GATs (BiLSTM+2ATT-GATs). We also compare
2ATT-GATs with syntax-agnostic models, i.e., a
model with one layer of BILSTM as the encoder
(BiLSTM) and a model with three layers of BiL-
STMs as the encoder (3BiLSTMs).

The right side of Table 2 shows the F1 score
of each model. The results with gold dependency
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Figure 4: F1 scores (%) in UPB v2.0 test set using predicted dependency trees. Each language has two bars, i.e., the
left bar indicates the F1 score for BILSTM+2ATT-GATs, and the right bar indicates the F1 score for 2ATT-GATs.

trees are available in Appendix C. From EN, we
can see that BILSTM+2ATT-GATSs perform best
in the monolingual setting. BILSTM+2ATT-GAT's
also perform better than syntax-agnostic models,
i.e., BILSTM and 3BiLSTMs, in the cross-lingual
setting. This indicates that the help of syntax im-
proves performance in both settings even though
the syntax provided is not accurate.

Among the syntax-aware models, 2ATT-GAT's
perform the best in the cross-lingual setting. The
context for each word learned through BiLSTMs,
i.e., what words precede and follow each word in
a sentence, might be too specific to the language
it is trained with. By encoding the sentence over
its dependency tree, we let information flow based
on the sentence’s grammatical structure, which is
more universal across languages.

Figure 4 compares the F1 scores of
BiLSTM+2ATT-GATs and 2ATT-GATs for
each language in UPB v2.0. We know that the
models are trained in English that has a subject-
verb-object (SVO) word order. If we look deeper,
for certain languages with subject-object-verb
(SOV) word order, i.e., DE, KO, HI, MR, TA,
TE, NL, and JA, 2ATT-GATs show significant
improvements over BILSTM+2ATT-GATs. This
proves that 2ATT-GATs have better transferability
to languages with diverse word orders than the
BiLSTM-based models.

BiLSTM+2ATT-GATs sometimes perform bet-
ter than 2ATT-GATs in languages with the same
word order as English, i.e., SVO word order, includ-
ing RU, RO, ID, VI, and ZH. We confirm that in

RU, the predicted dependency trees decrease the F1
score a little more significantly for 2ATT-GATSsS.
For the other languages, the quality of the depen-
dency trees (especially the dependency relations),
which is relatively low in the original dataset, might
be why 2ATT-GATs perform worst.

4.5 Obtaining the Best Model

We conduct thorough experiments with the num-
ber of layers and contextualized multilingual word
embedding that we use. Using frozen mBERT as
contextualized multilingual word embedding, we
compare the result of stacking one layer, two layers,
and three layers of 2ATT-GATs as the encoder. We
find that two layers of 2ATT-GATs and three layers
of 2ATT-GATs give the best F1 score in UPB v1.0
and UPB v2.0, respectively.

We further experiment with two and three layers
of 2ATT-GATs using mBERT and XLM-R as the
contextualized multilingual word embeddings and
fine-tune them. We provide the evaluation results in
Appendix C. In UPB v1.0, a combination of frozen
mBERT and two layers of 2ATT-GATs gives the
best F1 score. Meanwhile, in UPB v2.0, fine-tuned
XLM-R with two layers of 2ATT-GATs gives the
best F1 score.

We further analyze why two layers of 2ATT-
GATs perform better than three layers of 2ATT-
GATs. In Figure 5, we group the F1 score differ-
ence between two 2ATT-GATs and three 2ATT-
GATs for each dependency range, i.e., the number

®F1 scores of RU using gold trees: 59.9340.18 (2ATT-
GATs) and 59.59+0.36 (BiLSTM+2ATT-GATs).
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Figure 5: F1 score differences (%) between 2layers+mBERT and 3layers+mBERT in UPB v1.0 dev set (predicted).

of edges lies between the predicate and its argu-
ment. The evaluation shows that 2ATT-GATs per-
form better than three 2ATT-GAT's because they
perform better in d = 1 and d = 2, and the depen-
dency range (d) in languages mostly lies in 1-2.

4.6 Comparison of the Best Model Against
Existing Works

We compare the best model on UPB v1.0 with
existing works, i.e., Fei et al. (2020) and Zhang
et al. (2021), as shown in Table 3. Fei et al. (2020)
translate and project the SRL annotations from the
source language to the target language to be in-
cluded as part of the training set. Zhang et al.
(2021) employ multi-task learning consisting of
dependency parsing task and SRL task and include
the dependency parsing task of the source and tar-
get language as part of the training process. Since
both previous works have not been evaluated using
UPB v2.0, we compare the F1 score in UPB v1.0.
The evaluation results of our best model in UPB
v2.0 can be seen in Appendix C.

It can be seen in Table 3 that 2ATT-GATSs under-
perform previous models. Since our goal is to find
the most transferable networks to build the cross-
lingual model, unlike the other models, we do not
include any knowledge of sentences from the target
language in the training process. Our work can
complement these previous works and provide im-
portant insights regarding the architecture design
for building future cross-lingual SRL models.

5 Conclusions and Future Works

Through a simple encoder-decoder architecture, we
show that GNNs are better than BiLSTMs for build-
ing cross-lingual SRL models, especially in distant
languages. Encoding sentences based on their de-
pendency trees helps create a more generalized
cross-lingual SRL model rather than using word

2layers+ 2layers+
Lang | mBERT mBERT Fei  Zhang
(gold) (predicted)
FI 57.47+024  53.82+021 545 599
FR 48.80+028  46.27+0.25 64.8 56.6
DE 62.50+024  58.78+0.13 65.0 60.2
IT 60.96+0.10 57.73+0.13 58.7 60.6
PT 57.21+004 53.41+012 56.0 59.5
ES 57744010 54.47+0.07 625 573
ZH 43.03+0.10 38.87+0.11 - -

Table 3: F1 scores (%) in UPB v1.0 test set.

sequences. Furthermore, through empirical exper-
iments comparing four types of GNNs using 23
languages available in UPB, we conclude that two-
attention relational GATs are the most effective
GNNE.

In the future, we can extend our model to in-
corporate language-specific information to distin-
guish characteristics between languages. This can
be useful for training the model in a few-shot set-
ting where we include the target sentences in the
training set. Furthermore, in the experiments, we
compare two-attention relational GATs with modi-
fied self-attention networks from Transformer. We
can further analyze the effect of incorporating two-
attention relational GAT's to replace self-attention
in Transformer in the cross-lingual SRL domain.

Limitations

The limitation of this work is that we focus on
argument detection and argument labeling in cross-
lingual SRL, assuming that the sentences’ gold
predicates are easy to obtain. Furthermore, we
focus on conducting experiments in a zero-shot set-
ting. The availability of target sentences in the train-
ing set might affect the models’ behavior, which
should be investigated further.
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Lang Train Dev Test
UPB v1.0
English (EN) 12,542 1,974 2,060
Finnish (FI) 12,217 716 648
Italian (IT) 12,837 489 489
Spanish (ES) 28,492 3,206 1,995
French (FR) 14,553 1,596 298
German (DE) 14,118 799 977
Portuguese (PT) | 7,494 938 936
Chinese (ZH) 3,997 500 500
UPB v2.0
English (EN) 12,542 1,974 2,062
Czech (CS) 102,993 11,311 12,203
Greek (EL) 1,662 403 456
Korean (KO) 27,410 3,016 3,276
Romanian (RO) 35,911 2,247 2,272
Hindi (HI) 13,304 1,659 1,684
Marathi (MR) 373 46 47
Tamil (TA) 400 80 120
Hungarian (HU) | 910 441 449
Polish (PL) 31,496 3,960 3,942
Telugu (TE) 1,051 131 146
Dutch (NL) 18,078 1,394 1,472
Indonesian (ID) 4,482 559 557
Japanese (JA) 14,100 1,014 1,086
Russian (RU) 19,894 1,525 1,482
Ukrainian (UK) | 5,496 672 892
Chinese (ZH) 3,997 500 500
Vietnamese (VI) | 1,400 800 800
Finnish (FI) 27,198 3,239 3,422
Italian (IT) 29,685 2,277 2,518
Spanish (ES) 28,474 3,054 2,147
French (FR) 17,968 2,970 1,712
German (DE) 166,849 19,233 19,436
Portuguese (PT) 16,633 2,376 2,367

Table 4: Number of sentences available for each lan-
guage in UPB v1.0 and UPB v2.0.

A Artifacts

A.1 Dataset Distribution

Table 4 shows the dataset distribution in Universal
Proposition Bank (UPB). Since we run our exper-
iments in a zero-shot setting, we only use the dev
set and test set for languages other than English.

A.2 Licenses

Complete UPB v1.0 and UPB v2.0 contain anno-
tations from Universal Dependencies (UD) v1.4
and UD v2.9. Therefore, we provide the license
for each UD treebank in Table 5. Despite UD’s
inherited license, UPB v1.0 and UPB v2.0 also
have a CDLA-Sharing-1.0 license. We also re-
trieve annotations from PropBank v3, English Web
Treebank, and UD v1.4 to form English SRL anno-
tations based on UD v1.4. Therefore, we provide
the license for PropBank v3, i.e., CC BY-SA 4.0,
and English Web Treebank, i.e., LDC User Agree-
ment for Non-Members.

We refer to publicly available codes to help pre-
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Treebank [ License

UDv14
UD_English CCBY-SA 4.0
UD_Chinese CC BY-NC-SA 4.0
UD_Finnish CCBY-SA 4.0
UD_Spanish CC BY-NC-SA 3.0 US
UD_Spanish-AnCora GNU GPL 3.0
UD_French CC BY-NC-SA 3.0 US
UD_German CC BY-NC-SA 3.0 US
UD_Italian CC BY-NC-SA 3.0
UD_Portuguese-Bosque CCBY-SA 4.0

UD v2.9
UD_English-EWT CC BY-SA 4.0
UD_Chinese-GSD CCBY-SA 4.0
UD_Czech-CAC CCBY-SA 4.0
UD_Czech-CLTT CCBY-SA 4.0

UD_Czech-FicTree
UD_Czech-PDT

CCBY-NC-SA 4.0
CCBY-NC-SA 3.0

UD_Dutch-Alpino CCBY-SA 4.0
UD_Dutch-LassySmall CCBY-SA 4.0
UD_Finnish-FTB CCBY 4.0
UD_Finnish-TDT CCBY-SA 4.0
UD_French-GSD CCBY-SA 4.0
UD_French-Rhapsodie CCBY-SA 4.0
UD_French-Sequoia LGPL-LR
UD_German-GSD CCBY-SA 4.0
UD_German-HDT CCBY-SA 4.0

UD_Greek-GDT
UD_Hindi-HDTB
UD_Hungarian-Szeged
UD_Indonesian-GSD
UD_Italian-ISDT
UD_Italian-ParTUT
UD_Italian-PoSTWITA

CCBY-NC-SA 3.0
CCBY-NC-SA 4.0
CCBY-NC-SA 3.0
CCBY-SA 4.0

CCBY-NC-SA 3.0
CCBY-NC-SA 4.0
CCBY-NC-SA 4.0

UD_Italian-TWITTIRO CCBY-SA 4.0
UD_Italian-VIT CC BY-NC-SA 3.0
UD_Japanese-GSD CCBY-SA 4.0
UD_Japanese-GSDLUW CCBY-SA 4.0
UD_Korean-GSD CCBY-SA 4.0
UD_Korean-Kaist CCBY-SA 4.0
UD_Marathi-UFAL CCBY-SA 4.0
UD_Polish-LFG GNU GPL 3.0
UD_Polish-PDB CC BY-NC-SA 4.0
UD_Portuguese-Bosque CCBY-SA 4.0
UD_Portuguese-GSD CCBY-SA 4.0
UD_Romanian-Nonstandard CCBY-SA 4.0
UD_Romanian-RRT CCBY-SA 4.0
UD_Romanian-SiMoNERo CCBY-SA 4.0
UD_Russian-GSD CCBY-SA 4.0
UD_Russian-Taiga CCBY-SA 4.0
UD_Spanish-AnCora CCBY 4.0
UD_Spanish-GSD CCBY-SA 4.0
UD_Tamil-TTB CC BY-NC-SA 3.0
UD_Telugu-MTG CCBY-SA 4.0
UD_Ukrainian-IU CC BY-NC-SA 4.0
UD_Vietnamese-VTB CCBY-SA 4.0

Table 5: License for each treebank in UD v1.4 and
UD?2.9 that we use in the experiments.

process the data and build the model. We provide
the list of repositories with their corresponding
licenses, i.e., Zhang et al. (2021)7 (GPL-3.0),
https://github.com/UniversalPropositions/tools
(Apache-2.0), Gordi¢ (2020)% (MIT), and
Marcheggiani and Titov (2017)° (Apache-2.0).

We access all the resources we mentioned above
solely for academic research. We make sure that
we obey the intended use for each artifact.

B Training

B.1 Dependency Parsers

We train the dependency parsers using Stanza with
a 0.0005 learning rate, 70,000 max steps, and
10, 000 max steps before stopping. Table 6 shows

"https://github.com/zzsfornlp/zmsp
8https://github.com/gordicaleksa/pytorch-GAT
*https://github.com/diegma/neural-dep-srl



Treebank Dev Test

UAS LAS UAS LAS

UPB v1.0
UP_English-EWT 92.18 90.27 91.39 89.48
UP_Chinese 87.28 85.11 88.31 86.13
UP_Finnish 92.15 90.82 90.28 89.04
UP_Spanish 91.68 89.75 91.15 88.95
UP_Spanish-AnCora 94.06 92.81 93.80 92.39
UP_French 92.50 91.08 89.89 87.61
UP_German 92.70 91.13 89.45 87.31
UP_Italian 94.12 92.75 93.70 92.36
UP_Portuguese-Bosque 93.20 92.02 92.45 91.05
UPB v2.0

UP_English-EWT 92.46 90.86 91.42 89.82
UP_Chinese-GSD 85.11 83.19 87.06 85.13
UP_Czech-CAC 92.97 91.62 93.43 91.68
UP_Czech-CLTT 89.13 86.98 88.32 86.09
UP_Czech-FicTree 94.68 93.11 94.61 92.76
UP_Czech-PDT 93.74 92.24 93.50 91.87
UP_Dutch-Alpino 94.53 92.24 92.87 90.42
UP_Dutch-LassySmall 90.77 87.62 92.12 89.11
UP_Finnish-FTB 93.77 92.29 94.03 92.41
UP_Finnish-TDT 91.97 90.41 92.24 90.74
UP_French-GSD 95.66 94.45 93.47 91.87
UP_French-Rhapsodie 87.75 83.25 86.42 81.88
UP_French-Sequoia 93.54 92.23 93.10 91.70
UP_German-GSD 91.78 88.61 89.65 85.62
UP_German-HDT 95.18 93.64 95.30 93.72
UP_Greek-GDT 91.77 90.43 92.93 91.19
UP_Hindi-HDTB 96.62 94.49 96.68 94.43
UP_Hungarian-Szeged 87.64 84.10 86.72 83.25
UP_Indonesian-GSD 86.49 76.25 87.31 77.33
UP_Italian-ISDT 94.41 92.84 94.37 93.16
UP_Italian-ParTUT 92.76 90.52 93.10 91.40
UP_Italian-PoSTWITA 87.21 83.20 88.33 84.41
UP_Italian-TWITTIRO 87.25 81.64 84.85 79.77
UP_Italian-VIT 90.63 88.82 91.54 89.05
UP_Japanese-GSD 96.09 95.47 95.11 94.21
UP_Japanese-GSDLUW 96.12 95.82 95.35 95.12
UP_Korean-GSD 88.22 85.41 89.65 87.07
UP_Korean-Kaist 91.35 90.39 90.41 89.45
UP_Marathi-UFAL 74.55 64.32 79.85 70.63
UP_Polish-LFG 97.56 96.73 97.80 96.92
UP_Polish-PDB 94.17 92.69 94.58 93.16
UP_Portuguese-Bosque 94.25 92.51 94.85 93.54
UP_Portuguese-GSD 94.44 93.34 94.21 93.23
UP_Romanian-Nonstandard 93.18 90.04 91.43 87.75
UP_Romanian-RRT 91.96 88.60 91.93 88.45
UP_Romanian-SiMoNERo 93.38 91.21 93.78 91.86
UP_Russian-GSD 90.55 87.80 90.44 87.21
UP_Russian-Taiga 83.94 79.32 84.42 81.41
UP_Spanish-AnCora 93.83 92.16 93.82 92.00
UP_Spanish-GSD 91.91 89.79 91.93 89.58
UP_Tamil-TTB 81.24 73.48 80.89 72.30
UP_Telugu-MTG 92.90 86.25 93.07 85.58
UP_Ukrainian-1U 91.14 89.34 90.10 88.24
UP_Vietnamese-VTB 78.92 74.99 77.58 74.16

Table 6: UAS and LAS of each treebank’s dependency
parser.

UAS and LAS for each treebank in UPB v1.0 and
UPB v2.0.

B.2 SRL Models

We build the code for training and evaluation using
PyTorch library'?. We use the transformers library
provided by Hugging Face'! to produce contextu-
alized multilingual word embedding from mBERT
(i.e., bert-base-multilingual-cased)
and XLM-R (i.e., xIm-roberta-base).

We refer to Gordi¢ (2020) to implement GATs.
Following the implementation, we use ELU (Clev-
ert et al., 2016) as the activation function in each
layer, o, except in the final layer where we use
Swish, the same activation function that we use in
the input layer. We tried to use the same activation

Ohttps://pytorch.org/
https://huggingface.co/

14

Hyperparameter Value
learning rate 1073
minimum learning rate 10°°
weight decay 1077
word embedding learning rate 107°
word embedding minimum 10-6
learning rate
word embedding weight decay 1077
batch size 32
epochs 30
warmup epochs 1
cooldown epochs 15
number of attention heads, K 8
predicate indicator embedding size, p; | 64
multilingual word embedding size, ¢; 512
edge embedding size, 77 64
LSTM hidden size 512
GATs, SATs, and 2ATT-GATs

. . 64
hidden size
GATs, SATs, and 2ATT-GAT's same as input
output size (576)
GGCNs hidden size 5?711663) as Input
GGCNs output size ?g%-:) as input
dropout in input layer 0.2
dropout before decoder 0.3
GATs best node and edge dropout 0.2
SATSs best node and edge dropout 0.2
2ATT-GATs best node 0.3
and edge dropout ’
GGCNs best dropout 0.5

Table 7: Hyperparameter values for cross-lingual and
monolingual SRL models.

function for every layer, but this setting works best
in this task. We use the same skeleton as GATs for
implementing 2ATT-GATs and SATs, where node
and edge dropouts are placed at the beginning of
every layer.

In SATs, we experiment with two settings for the
edge representations, i.e., a;;. First, we used the
same edge representation for each attention head,
k. Then, we used different edge representations for
each attention head. The results show that using
the same edge representation in each attention head
works best for this task. Therefore, we use this
setting when comparing SATs with other GNNSs.

For the implementation of GGCNs, we refer
to the original implementation, i.e., Marcheggiani
and Titov (2017)'2, and its reimplementation in
PyTorch'3. Following the reimplementation in Py-
Torch, we use LeakyReL U as the activation func-
tion for GGCNss in each layer, except in the final
layer where we use Swish. We place the dropout
at the end of every layer.

Phttps://github.com/diegma/neural-dep-srl
Bhttps://github.com/kdrivas/Graph-convolutional



Lang | Gold Predicted
CS 61.444008 61.42+007
EL 68.80+009  67.90+0.16
KO 46.76+0.19  47.06+0.20
RO 55.554+005 55.36+0.04
HI 48.73+015  48.97+o0.16
MR 41.78+041  42.19+080
TA 40.734+034  37.79+052
HU 54.86+007  53.94+0.10
PL 62.85+010 63.01+0.11
TE 56.51+047  56.19+046
NL 65.36+014  64.69+0.11
ID 63.83+013  63.22+007
JA 37.82+075  38.22+0.80
RU 62.40+019  62.02+0.16
UK 60.85+0.17  60.63+0.15
ZH 42.33+072  41.68+0.75
VI 28.80+0.14  29.30+0.15
FI 58.28+010 57.95+0.11
IT 60.82+010  60.53+0.07
ES 57.97+000  58.29+0.07
FR 64.384+0.10 63.65+0.11
DE 61.35+011  60.86+0.09
PT 67.754+007  67.31+007

Table 8: F1 scores (%) in UPB v2.0 test set with gold
dependency trees (left) and predicted dependency trees
(right) (2layers+XLM-R+fine-tuned).

We provide the hyperparameter values we use to
train the SRL models in Table 7. For GNN-based
models, we search for the best dropout in 0.1 — 0.5
with a 0.1 increment.

We use Tesla P100 to train the models. Train-
ing time for GNN-based models ranges from 3-4
hours. Training time for BILSTM+2ATT-GAT's
and BiLSTM ranges from 4-5 hours. Meanwhile,
for 3BiLSTMs, it takes around 10 hours to train a
model. We run the experiment 5 times and produce
two models for each setting, i.e., a model trained
on UPB v1.0 and a model trained on UPB v2.0.
The estimation of total GPU hours is 2,000.

C Supporting Results

Table 9 shows the F1 scores for GNN-based
and BiLSTM-based cross-lingual and monolingual
SRL models using gold dependency trees.

Table 10 shows the average F1 scores of target
languages in dev sets using different numbers of
layers, i.e., two layers and three layers, and differ-
ent contextualized multilingual word embeddings,
i.e., mBERT and XLM-R.

Table 8 shows the F1 scores of the best model
(2layers+XLM-R-+fine-tuned) for each language in
the UPB v2.0 test set.
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BiLSTM+

JATT-GATs BiLSTM  3BiLSTMs

Lang | GGCNs SATs GATs 2ATT-GATs

UPB v1.0
EN 83.82+006 84.19+005 82.77+004 | 83.21+0.07 85.35+0.14 79.72+005  80.23+0.08
FI 58.02+009 57.77+019  52.07+028 | 56.82+0.08 56.18+0.24 39.85+0.19  40.18+0.22
IT 61.09+012  60.77+023  57.18+029 | 60.52+0.09 59.00=+0.10 47.20+0.19  46.74+0.30
ES 57.39+012  58.12+017  52.70+018 | 57.97+0.16 55.02+0.20 41.77+015  41.52+005
FR 49.42+014 48.99+020 46.04+019 | 48.68+0.17 47.87+0.15 40.64+032  40.70+031
DE 62.78+027 62.38+005 60.31+015 | 62.63+0.09 59.55+022 41.45+024  41.99+0.12
PT 57.60+0.05 56.90+0.15 55.2640.17 | 57.18+0.08 56.35+0.24 44.38+024  44.10+0.12
ZH 42.12+020  42.00+£020 39.63+0.14 | 42.60+0.16 43.51+0.14 32.87+037  32.53+0.23
AVG 55.49+006 55.28+013 51.88+013 | 55.20+0.08 53.93+0.14 41.17+013  41.11+011
UPB v2.0
EN 83.93+008 84.39+006 82.82+009 | 83.26+0.07 85.37+0.10 79.51+008  80.08+0.08
CS 56.42+019  56.75+011  55.83+007 | 57.70+0.10 55.16+0.24 47.13+006  47.50+0.13
EL 59.57+033  59.64+057 60.84+026 | 61.80+0.35 60.66+0.21 56.05+016  55.53+027
KO 39.07+022  38.20+0s0 40.83+026 | 42.14+0.48 34.94+0.59 27.754+029  27.84+0.99
RO 52.64+000 52.83+019 53.82+0.20 | 53.37+0.17 54.47 +0.14 48.71+030 47.83+031
HI 46.77+008 47.41+008 44.63+023 | 47.93+0.12 42.45+0.46 27.49+084  27.30+044
MR 34.57+099 37.08+068 37.43+166 | 39.16+1.02 36.73+1.44 27.22+189  26.31+1.60
TA 34.83+034 36.51+036 38.25+057 | 37.74+0.63 33.76+0.79 23.64+084  22.20+0388

HU 52.334+020 53.14+017  49.34+014 | 52.81+0.11 48.44+40.25 39.05+029  39.52+039
PL 57.56+017  57.26+008 57.50+0.13 | 59.75+0.15 56.80+0.34 51.65+011  51.19+033
TE 44.50+072 42941062 40911068 | 44.44+051 39.21+1.2 35.97+130  32.84+055

NL 63.81+026 63.95+021  63.38+0.14 | 64.34+0.19 59.15+023 51.95+036  52.42+0.10
ID 57.18+026  57.05+020 59.05+0.21 | 58.06+0.13 60.49+0.23 56.55+034  55.00+03s5
JA 35.70+0.13  35.87+043  35.96+054 | 36.35+0.09 33.15+1.13 23.76+107  21.40+1.07
RU 58.84+023  59.82+025 59.59+024 | 59.93+0.18 59.59+0.36 55.49+024  55.48+0.23
UK 57.89+008 58.88+0.18  57.53+021 | 59.14+0.15 58.18+0.25 52.80+039  52.98+0.17
ZH 44224027  45.51+020 45.89+031 | 45.99+0.22 48.68+0.20 48.54+046  47.95+034
VI 25.14+004  25.32+015  27.95+0.04 | 26.04+007 27.07+0.11 29.39+029  27.34+036
FI 53.89+011  54.37+014  53.12+011 | 54.84+0.03 54.7440.19 51.54+013  51.83+023
IT 57.80+005 58.29+018  58.24+008 | 58.91+0.09 58.73+0.20 55.23+016  54.97+0.12

ES 53.59+007 54.37+008 55.47+0.07 | 55.27+0.11 54.75+0.20 51.02+0.13  50.51+0.06
FR 63.03+011  63.13+013  62.67+019 | 63.79+0.06 61.52+0.18 59.81+015  59.88+0.26
DE 58.89+005 59.31+015  59.80+006 | 59.89-+0.07 54.44 4031 41.40+038  43.10+023

PT 66.14+006 66.31+013  66.74+0.09 | 66.51+0.03 66.30+0.13 64.05+017  63.71x0.10
AVG | 51.06+007 51.48+013 51.51+007 | 52.43+0.07 50.41+0.19 44.62+011  44.11+023

Table 9: F1 scores (%) on UPB v1.0 and UPB v2.0 test sets with gold dependency trees (frozen mBERT). The
bold score in each language indicates the highest F1 score among GNN-based models, i.e., GGCNs, SATs, GATs,
and 2ATT-GATs. The underlined score in each language indicates the highest F1 score among 2ATT-GATsS,
BiLSTM+2ATT-GATs, BiLSTM, and 3BiLSTMs. AVG indicates the average F1 score of each model for all
languages except English.

2dayers+ 2layers+ 2dayers+ 2layers+ 3layers+ 3layers+ 3layers+ 3layers+
mBERT+ XLM-R+ mBERT+ XLM-R+
mBERT ¢ e-tunea  XLM-R fine-tuned MBERT e tuned XEM-R 4 e-tuned
UPB v1.0

AVG (gold) | 56.45+0.05 55.00+0.05 55.87+0.15 54.33+010  56.15+011  55.05+0.08 56.00+0.13  54.45+0.13
AVG (pred) | 53.34+005 524140033 52.93+0.13 51.95+0.11 52994011  52.43+008  52.96+009 51.95+0.11

UPB v2.0

AVG (gold) | 52.41+0.10 54.63+0.11 54.05+0082  55.34+006  52.67+008 54.30+009  53.71+008 55.26+008
AVG (pred) | 51.64+012 53.95+010  53.25+0.12  54.93+009  51.93+007 53.62+007  52.89+009 54.72+0.08

Table 10: Average F1 scores (%) of target languages in UPB v1.0 and UPB v2.0 dev sets using gold and predicted
dependency trees.
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