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Abstract

Incomplete multi-view clustering (IMVC) meth-
ods typically encounter three drawbacks: (1) in-
tense time and/or space overheads; (2) intractable
hyper-parameters; (3) non-zero variance results.
With these concerns in mind, we give a simple
yet effective IMVC scheme, termed as ToRES.
Concretely, instead of self-expression affinity, we
manage to construct prototype-sample affinity
for incomplete data so as to decrease the mem-
ory requirements. To eliminate hyper-parameters,
besides mining complementary features among
views by view-wise prototypes, we also attempt
to devise cross-view prototypes to capture con-
sensus features for jointly forming worth-having
clustering representation. To avoid the variance,
we successfully unify representation learning and
clustering operation, and directly optimize the
discrete cluster indicators from incomplete data.
Then, for the resulting objective function, we pro-
vide two equivalent solutions from perspectives of
feasible region partitioning and objective transfor-
mation. Many results suggest that ToRES exhibits
advantages against 20 SOTA algorithms, even in
scenarios with a higher ratio of incomplete data.

1. Introduction
Multi-view data (MVD), generally collected from diverse
domains or modalities, is becoming increasingly common
in daily life. As a technique for handling MVD, multi-
view clustering (MVC) can partition it into distinct groups
without requiring any prior label information (Xu et al.,
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2022; Yang et al., 2021; Yu et al., 2023a; 2024a; Xia et al.,
2022b; Fu et al., 2024). However, due to transmission errors
or privacy protection, incomplete instances are unavoid-
able, which leads to existing MVC methods not working
properly. Accordingly, incomplete multi-view clustering
(IMVC) grasps widespread attention recently (Peng et al.,
2019; Liu et al., 2021; Wan et al., 2024b; Liang et al., 2023).

Given incomplete data {Dm ∈ Rdm×n}Mm=1 and index vec-
tors {wm ∈ Rnm}Mm=1 where nm and dm represent the
number and dimension of samples observed on view m,
one can construct indicator matrices {Wm ∈ Rn×nm}Mm=1

in which [Wm]i,j = 1 if [wm]j = i else [Wm]i,j =
0, ∀j = 1, 2, · · · , nm. Then, DmWm ∈ Rdm×nm repre-
sents available instances on view m. On this basis, current
methods first build self-expression affinity on each view by

min
Hm

M∑
m=1

∥DmWm −DmWmHm∥2F + λϕ(Hm)

s.t. Hm ∈ Rnm×nm ≥ 0,H⊤
m1 = 1.

(1)

Afterwards, the full affinity is restored via WmHmW⊤
m ∈

Rn×n. Due to missing instances, there will be blank rows
and columns in the full affinity. By locating these affinities
with blanks into corresponding positions, current methods
optimize a set of sketched affinities to generate the fused
full affinity H:

min
H

ψ
(
H,W1H1W

⊤
1 , · · · ,WMHMW⊤

M ;β
)

s.t. H ∈ Rn×n ≥ 0,H⊤1 = 1.
(2)

Subsequently, running spectral clustering on H generates
discrete data labels. Here, ϕ and ψ denote regularization and
fusion strategies respectively. λ and β are hyper-parameters.

Although making promising results, the paradigm adopted
by current methods typically requires at least O(n3) comput-
ing cost and O(n2) memory cost due to both WmHmW⊤

m

and H being Rn×n. Moreover, the presence of hyper-
parameters harms the extensibility of models. Even worse,
the generated results usually contain variance, which not
only decreases the reliability of clustering but also leads
to relatively poor interpretability. To alleviate these three
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Figure 1. Framework of ToRES. It builds prototype-sample affinity with small size for incomplete views, and also does not involve the
fusion stage like in Eq. (2). All prototype information is gathered via one aggregation matrix. To form desirable representation under
without the help of hyper-parameters, it designs two types of prototypes, view-wise and cross-view, to jointly explore multi-view data
features. To output stable results, it concurrently learns representation and performs clustering, and optimizes the cluster labels directly.

shortcomings, we devise a ToRES algorithm, and its frame-
work is shown in Fig. 1. Concretely, rather than building
self-expression affinity, we seek to learn the prototypes for
each incomplete view, and build prototype-sample affinity
with small size, thereby decreasing the complexity. We also
skip the fusion stage by directly gathering all prototype in-
formation using one aggregation matrix. Besides, combined
with Eqs. (1) and (2), we hold that hyper-parameters aim
at balancing the error term and regularization term so as to
form desirable clustering representation. Inspired by this,
we introduce two types of prototypes for incomplete data
to jointly explore multi-view features. Cross-view proto-
types are devoted to capturing consensus information among
views while view-wise prototypes capture complementary
information. To avoid variance, we integrate representation
learning and clustering operation together, and directly op-
timize the discrete labels from incomplete data, which not
only well preserves the original diversity of samples but also
generates stable results, decreasing the fuzziness. Then, for
minimizing the resulting objective, we give two equivalent
solutions from perspectives of feasible region partitioning
and objective transformation. Further, we organize a series
of experiments on datasets with multiple scales and missing
ratios to demonstrate the effectiveness of ToRES sufficiently.
In short, contributions in this work are as follows:
1) We design an innovative IMVC method, called ToRES. To
reduce complexity, it successfully builds prototype-sample
affinity for incomplete views instead of self-expression one.
The characteristic of friendly to computing and memory re-
sources makes ToRES able to handle large-scale problems.

2) To get rid of hyper-parameters, ToRES introduces view-
wise and cross-view prototypes for incomplete data to jointly
exploit multi-view features. The characteristic of no hyper-
parameters makes ToRES easily extensible to other scenes.

3) To eliminate variance, ToRES unifies representation learn-
ing and clustering operation, and directly learns the discrete
labels from incomplete data. The characteristic of zero vari-

ance makes ToRES own the ability to output stable results.

4) To minimize the resulting objective function, ToRES pro-
vides two optimization schemes. Experiments conducted
on several datasets with different scales and incomplete per-
centages validate ToRES’s effectiveness and strong points.

2. Related Work
We roughly classify existing IMVC algorithms into four
categories: kernel-style (Li et al., 2021b; Zhang et al., 2021;
Liu et al., 2020), NMF-style (Zhao et al., 2016; Xia et al.,
2022a; Wen et al., 2021a), graph-style (Yu et al., 2024b;
Li et al., 2021a; Chen et al., 2021; Wen et al., 2021b; Yu
et al., 2023b) and deep learning style (Lin et al., 2021;
Liu et al., 2023; Wang et al., 2021). Kernel-style meth-
ods seek to generate the kernel with consistent structures
among all partial views. For instance, Li et al. (2021b)
build up the local and global kernel alignment standard, and
introduce matrix-induced regularizer to improve the correla-
tion between kernels. NMF-style methods aim to construct
consensus representation from partial views using adaptive
view-specific weights. For instance, Wen et al. (2021a) learn
the local information and semantic consistency concurrently,
and impose adaptive weights to measure the contributions
of different views. Graph-style methods attempt to recon-
struct the similarity graph with compatible characteristics
from multiple partial views. For example, Li et al. (2021a)
jointly learn the partition space and consensus graph, and
utilize a unified partition indicator to uncover the similarity
between incomplete data. Deep learning style methods are
devoted to exploiting higher-order information from partial
views. For example, Xue et al. (2022) employ a contrastive
regularizer to exploit data correlation, and adopt a specific
encoder network to alleviate the impact of partial views.
Despite producing pleasing results, they generally suffer
from intensive overheads, hyper-parameters and non-zero
variances, which severely limits their further deployment.
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3. Methodology
3.1. Designed Framework

Denote Gm ∈ Rc×dm , Dm ∈ Rdm×n, Wm ∈ Rn×nm ,
E ∈ Rc×c, O ∈ Rc×c, L ∈ Rc×n and Em ∈ Rdm×c as
space transformation matrix, original data matrix, indicator
matrix, cross-view prototype matrix, aggregation matrix,
discrete cluster label matrix and view-wise prototype matrix,
respectively. dm, c and n represent the data dimension on
view m, the number of clusters and samples respectively.
Then, according to Fig. 1, our ToRES is formulated as

min
Gm,E,O,L,Em

M∑
m=1

∥GmDmWm −EOLWm∥2F

+ ∥DmWm −EmOLWm∥2F
s.t. GmG⊤

m = Ic,O
⊤O = Ic,

L ∈ {0, 1}c×n, ∥L:,j∥1 = 1, j ∈ {1, 2, . . . , n},

(3)

where Gm aims to transform original data to a potential
common space, and O gathers all prototype information.

3.2. Optimization

We adopt the idea of alternating optimization to solve Eq.(3).

⋆ Step-One: Optimizing O. Fixing variables Gm, E, L
and Em, Eq. (3) becomes

min
O⊤O=Ic

M∑
m=1

∥GmDmWm −EOLWm∥2F

+ ∥DmWm −EmOLWm∥2F .

(4)

We provide two schemes for solving Eq. (4).

Scheme 1:

For the first term in Eq. (4), we have

min
O

∥GmDmWm −EOLWm∥2F ⇔

min
O:,j

O⊤
:,jE

⊤EO[Am]:,j − 2[Bm]⊤:,jO:,j ,
(5)

where Am = LWmW⊤
mL⊤, Bm =

E⊤GmDmWmW⊤
mL⊤.

To solve Eq. (5), we first give the following theorem:

Theorem 3.1. Am is a diagonal matrix.

Based on Theorem 3.1, we have

min
O:,j

O⊤
:,jE

⊤EO[Am]:,j − 2[Bm]⊤:,jO:,j ⇔

min
O:,j

O⊤
:,jE

⊤E[Am]j,jO:,j − 2[Bm]⊤:,jO:,j .
(6)

Algorithm 1 Scheme 1 for solving Eq. (4)
Input: Gm, E, L, Em, Dm, Wm.
Output: O.
Construct Am, Bm, Cm.

1: for j = 1 to c do
2: Update O:,j by Eq. (8).
3: end for

For the second term in Eq. (4), we have

min
O

∥DmWm −EmOLWm∥2F ⇔

min
O:,j

O⊤
:,jE

⊤
mEm[Am]j,jO:,j − 2[Cm]⊤:,jO:,j ,

(7)

where Cm = E⊤
mDmWmW⊤

mL⊤.

Combined with Eqs. (5), (6) and (7), we have that Eq. (4)
can be transformed as

min
O:,j

O⊤
:,j

(
E⊤E

M∑
m=1

[Am]j,j +

M∑
m=1

E⊤
mEm[Am]j,j

)
O:,j

+2

(
−

M∑
m=1

Bm −
M∑

m=1

Cm

)⊤

:,j

O:,j

s.t.
1

2
O⊤

:,jIO:,j +

(
−1

2

)
= 0,

[O:,1,O:,2, · · · ,O:,j−1,O:,j+1 · · ·O:,c]
⊤
O:,j = 0,

(8)
which is a quadratic programming problem with quadratic
constraints, and can be solved within O(c3) complexity.

The detailed process of Scheme 1 is shown in Algorithm 1.

Scheme 2:

Unlike Scheme 1 solving the problem from the perspective
of feasible region partitioning, Scheme 2 aims to transform
the objective function.

For the objective function in Eq. (4), we have

Eq. (4) ⇔

max
O

M∑
m=1

Tr
(
O⊤F̃OAm +O⊤F̃mOAm +O⊤Sm

)
,

(9)
where F̃ = λmax(F)Ic − F, F̃m = λmax(Fm)Ic − Fm.
λmax(·) represents the max eigenvalue. F = E⊤E, Fm =
E⊤

mEm, Sm = 2 (Bm +Cm).

Denote f(O) =
∑M

m=1 Tr(O
⊤F̃OAm +O⊤F̃mOAm +

O⊤Sm), Ot and Ot+1 as the variable values at the t-th and
(t+ 1)-th iterations respectively. Then, we have
Theorem 3.2. With Ot+1 taking UtV

⊤
t , the following in-

equality holds

Tr
(
O⊤

t+1∇f(Ot)
)
≥ Tr

(
O⊤

t ∇f(Ot)
)
, (10)
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Algorithm 2 Scheme 2 for solving Eq. (4)
Input: Gm, E, L, Em, Dm, Wm.
Output: O.
Construct the function f(O).
t=1.

1: repeat
2: Calculate ∇f(Ot).
3: Perform SVD on ∇f(Ot) to generate Ut and V⊤

t .
4: Ot+1 = UtV

⊤
t .

5: t=t+1.
6: until ∥Ot −Ot−1∥F /∥Ot−1∥F ≤ 1e− 5.

where ∇f(·) denotes the gradient operation. Ut and Vt

are the SVD results of ∇f(Ot).

Based on Theorem 3.2, we further have

Theorem 3.3. f(O) is non-decreasing under Ot+1 taking
UtV

⊤
t .

Kindly note that in Theorem 3.3, Ot+1 lies in the feasible
region O⊤O = Ic. Thus, we can determine the solution of
O by comparing Ot+1 and Ot.

The detailed process of Scheme 2 is shown in Algorithm 2.

⋆ Step-Two: Optimizing L. Fixing variables Gm, E, O
and Em, Eq. (3) becomes

min
L

M∑
m=1

∥GmDmWm −EOLWm∥2F

+ ∥DmWm −EmOLWm∥2F
s.t. L ∈ {0, 1}c×n, ∥L:,j∥1 = 1, j ∈ {1, 2, . . . , n}.

(11)

Further, we have that Eq. (11) can be transformed as

min
L:,j

L⊤
:,jTjL:,j − Jj,:L:,j

s.t. L:,j ∈ {0, 1}c×1, ∥L:,j∥1 = 1,
(12)

where

Tj = O⊤
M∑

m=1

(
E⊤E

nm∑
k=1

[Wm]j,k +E⊤
mEm

nm∑
k=1

[Wm]j,k

)
O

J = 2

M∑
m=1

WmW⊤
mD⊤

m

(
G⊤

mE+Em

)
O.

(13)
The constraints mean that there is only one non-zero element
in every column. Thus, we can determine L;,j by comparing
the diagonal elements of Tj and the j-th row of J. That is,

i∗ = argmin
i

[Tj ]i,i − Jj,i, i ∈ {1, 2, · · · , c}. (14)

When i = i∗, Li,j is set as 1, otherwise 0.

Algorithm 3 ToRES
Input: Original data {Dm}Mm=1, index vectors {wm}Mm=1.
Output: Discrete cluster label matrix L.
Initialize: O, L, Gm, E, Em.
Construct indicator matrices {Wm}Mm=1.

1: repeat
2: Update O by Algorithm 1 or Algorithm 2.
3: Update L by Eq. (14).
4: Update Gm by Eq. (16).
5: Update E by Eq. (19).
6: Update Em by Eq. (21).
7: until convergent

⋆ Step-Three: Optimizing Gm. Fixing variables E, O, L
and Em, Eq. (3) becomes

min
GmG⊤

m=Ic
∥GmDmWm −EOLWm∥2F . (15)

Denote Pm = DmWmW⊤
mD⊤

m, Zm =

2EOLWmW⊤
mD⊤

m, P̃m = λmax(Pm)Idm
− Pm.

We have that the following theorem holds:

Theorem 3.4. The solution of Gm can be obtained by

Gm = UV⊤, (16)

where U and V are the SVD results of
(
2[Gm]preP̃m +

Zm

)
. [Gm]pre represents the value of Gm at previous step.

⋆ Step-Four: Optimizing E. Fixing variables Gm, O, L
and Em, Eq. (3) becomes

min
E

M∑
m=1

∥GmDmWm −EOLWm∥2F . (17)

By setting its derivative to zero, we can get

M∑
m=1

(GmDmWm −EOLWm)W⊤
mL⊤O⊤ = 0. (18)

Based on the principles of multi-view clustering that sample
appears on at least one view and that each cluster has at
least one instance, we have that Am = LWmW⊤

mL⊤ is
reversible. Thus, we have

E =

M∑
m=1

GmDmWmW⊤
mL⊤O⊤

(
O

M∑
m=1

AmO⊤

)−1

(19)

⋆ Step-Five: Optimizing Em. Fixing variables Gm, E, O
and L, Eq. (3) becomes

min
Em

∥DmWm −EmOLWm∥2F . (20)
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Table 1. Average Clustering Results on Datasets Webkb, Wikifea and AWA10.
Dataset Methods NoHp 20% 40% 60%

ACC NMI Purity ACC NMI Purity ACC NMI Purity
W

eb
kb

IMSC-AGL 3 50.18±0.05 0.46±0.01 78.12±0.00 60.89±0.00 0.29±0.00 78.12±0.00 50.09±0.05 0.20±0.00 78.12±0.00
AWP 0 73.17±0.00 0.12±0.00 78.12±0.00 71.08±0.00 0.46±0.00 78.12±0.00 76.12±0.00 0.59±0.00 78.12±0.00

APMC 2 77.55±0.00 0.50±0.00 78.12±0.00 80.40±0.00 11.25±0.00 80.40±0.00 70.01±0.00 23.49±0.00 70.01±0.00
IMG 3 50.81±0.00 0.12±0.00 78.12±0.00 55.71±0.05 0.67±0.03 78.12±0.00 57.75±0.00 1.37±0.00 78.12±0.00

TMBSD 2 54.04±0.00 0.82±0.00 78.12±0.00 52.14±0.00 0.99±0.00 78.12±0.00 55.59±0.06 0.12±0.00 78.12±0.00
IKMKC 2 50.14±0.00 3.42±0.00 78.12±0.00 50.90±0.00 2.50±0.00 78.12±0.00 50.81±0.00 1.03±0.00 78.12±0.00

IMVTSC-MVI 3 86.02±0.00 34.26±0.00 85.03±0.00 73.55±0.00 0.50±0.00 78.12±0.00 75.64±0.00 1.16±0.00 78.12±0.00
CPM-Nets 1 56.14±0.13 0.01±0.00 78.12±0.02 69.80±0.88 0.49±0.13 78.12±0.23 73.32±0.61 1.34±0.14 78.40±0.17
LSIMVC 4 67.36±0.00 1.01±0.00 78.12±0.00 69.27±0.00 0.20±0.00 78.12±0.00 71.84±0.02 0.26±0.00 78.12±0.00
GSRIMC 3 65.56±0.00 0.18±0.00 78.12±0.00 55.09±0.00 0.16±0.00 78.12±0.00 55.57±0.00 0.13±0.00 78.12±0.00

COMPLETER 3 62.28±0.70 6.04±0.70 78.12±0.92 61.84±0.54 5.38±0.05 78.12±0.79 64.74±0.60 5.85±0.30 78.12±0.25
TCIMC 3 78.40±0.00 1.60±0.00 78.40±0.00 78.97±0.00 4.57±0.00 78.97±0.00 78.21±0.00 0.54±0.00 78.21±0.00

LRGR-IMVC 2 68.79±0.00 3.43±0.00 78.12±0.00 72.22±0.00 1.55±0.00 78.12±0.00 61.37±0.00 2.27±0.00 78.12±0.00
BGIMVSC 2 77.83±0.00 0.13±0.00 78.12±0.00 77.83±0.00 0.23±0.00 78.12±0.00 77.74±0.00 0.14±0.00 78.12±0.00
NGSP-CGL 3 78.21±0.00 1.35±0.00 78.21±0.00 79.83±0.00 6.82±0.00 79.83±0.00 79.92±0.00 7.22±0.00 79.92±0.00

PIMVC 2 82.11±0.00 15.56±0.09 82.11±0.00 76.02±0.00 11.11±0.00 78.12±0.00 77.93±0.00 17.54±0.00 78.12±0.00
ProImp 2 67.46±0.45 16.34±0.56 78.12±0.62 65.91±0.89 12.45±0.64 78.12±0.30 66.19±0.09 11.56±0.42 78.12±0.48

HCP-IMSC 2 85.63±0.00 26.25±0.00 85.63±0.00 77.68±0.15 19.01±0.16 78.12±0.00 73.45±0.00 17.51±0.00 78.12±0.00
APADC 2 72.06±0.57 0.08±0.01 78.12±0.29 66.06±0.53 0.06±0.01 78.12±0.04 60.32±0.90 0.06±0.02 78.12±0.93

HCLS-CGL 2 77.64±0.00 0.42±0.00 78.12±0.00 77.74±0.00 0.34±0.00 78.12±0.00 77.64±0.00 0.42±0.00 78.12±0.00
Ours-1 0 86.20±0.00 32.61±0.00 86.20±0.00 85.35±0.00 31.95±0.00 85.35±0.00 73.83±0.00 4.11±0.00 78.12±0.00
Ours-2 0 86.20±0.00 32.61±0.00 86.20±0.00 85.35±0.00 31.95±0.00 85.35±0.00 73.83±0.00 4.11±0.00 78.12±0.00

W
ik

if
ea

IMSC-AGL 3 16.73±0.57 2.47±0.34 18.83±0.32 16.82±0.72 3.07±0.41 19.94±0.64 17.42±0.51 4.10±0.32 20.75±0.36
AWP 0 48.01±0.00 44.95±0.00 57.92±0.00 45.43±0.00 38.67±0.00 50.47±0.00 40.86±0.00 30.66±0.00 44.51±0.00

APMC 2 41.13±0.04 32.49±0.03 48.77±0.03 40.89±0.07 29.34±0.11 45.50±0.07 37.25±0.05 27.61±0.05 44.07±0.05
IMG 3 12.70±0.27 0.65±0.04 16.09±0.07 12.95±0.19 0.63±0.05 15.94±0.08 13.34±0.25 0.56±0.04 16.08±0.09

TMBSD 2 42.45±0.06 43.99±0.06 41.00±0.06 37.30±0.11 38.65±0.11 36.05±0.11 35.25±0.07 35.25±0.07 34.12±0.07
IKMKC 2 53.26±0.04 45.25±0.02 55.33±0.03 48.83±0.02 40.38±0.03 50.04±0.04 44.08±0.07 35.02±0.05 45.63±0.07

IMVTSC-MVI 3 48.11±3.90 45.35±2.42 53.79±3.46 45.10±3.42 41.23±2.48 50.63±3.18 44.08±2.96 32.82±1.28 46.62±1.86
CPM-Nets 1 37.46±0.15 24.62±0.88 38.36±0.90 25.63±0.45 17.86±0.08 27.98±0.15 28.07±0.81 19.39±0.14 31.26±0.18
LSIMVC 4 32.94±0.00 30.07±0.00 33.91±0.00 30.84±0.00 27.90±0.00 31.89±0.00 28.55±0.02 25.07±0.01 29.45±0.00
GSRIMC 3 37.84±3.60 27.55±3.30 42.48±3.62 38.22±3.05 28.35±2.32 42.73±2.65 38.83±2.46 26.09±1.66 43.11±1.92

COMPLETER 3 48.29±0.80 40.69±0.82 51.45±0.14 44.12±0.09 34.32±0.53 49.39±0.80 45.43±0.60 31.28±0.86 47.32±0.10
TCIMC 3 15.91±0.00 0.67±0.00 16.05±0.00 15.81±0.02 0.61±0.02 15.99±0.01 15.84±0.01 0.70±0.02 15.98±0.01

LRGR-IMVC 2 48.01±0.01 40.08±0.01 55.27±0.00 46.52±0.05 35.00±0.04 51.48±0.02 37.92±0.01 27.27±0.01 43.93±0.01
BGIMVSC 2 18.26±0.56 6.28±1.00 18.82±0.53 17.58±0.28 4.50±0.53 18.01±0.28 17.48±0.62 4.64±0.92 17.98±0.60
NGSP-CGL 3 50.01±1.29 42.14±0.52 52.70±0.95 41.19±1.95 34.78±0.41 45.64±1.00 34.73±1.26 28.03±1.08 39.80±1.17

PIMVC 2 49.86±0.13 38.34±0.17 54.50±0.12 46.85±0.23 34.62±0.05 50.84±0.07 40.09±0.27 29.69±0.24 43.64±0.26
ProImp 2 51.92±0.74 43.62±0.42 57.93±0.56 46.28±0.64 35.88±0.75 51.43±0.02 45.16±0.85 30.62±0.46 48.40±0.95

HCP-IMSC 2 37.81±0.25 23.78±0.11 42.92±0.16 35.06±0.04 19.29±0.04 39.64±0.05 37.48±0.03 22.06±0.04 42.91±0.05
APADC 2 42.15±0.62 33.89±0.72 44.17±0.49 32.07±0.82 26.25±0.64 36.86±0.01 26.60±0.97 21.81±0.71 31.06±0.11

HCLS-CGL 2 53.44±0.92 44.13±0.53 58.20±0.41 46.94±1.00 37.93±0.22 50.79±0.43 41.88±0.50 29.60±0.54 46.19±0.75
Ours-1 0 56.28±0.00 47.90±0.00 58.86±0.00 48.95±0.00 41.67±0.00 51.74±0.00 44.17±0.00 35.63±0.00 47.07±0.00
Ours-2 0 56.28±0.00 47.90±0.00 58.86±0.00 48.95±0.00 41.67±0.00 51.74±0.00 44.17±0.00 35.63±0.00 47.07±0.00

A
W

A
10

IMSC-AGL 3 13.81±0.33 1.02±0.12 20.10±0.03 13.65±0.35 0.82±0.08 20.09±0.00 12.99±0.43 0.74±0.06 20.13±0.07
AWP 0 21.36±0.00 9.75±0.00 22.65±0.00 22.03±0.00 9.90±0.00 22.96±0.00 21.95±0.00 9.34±0.00 22.67±0.00

APMC 2 \ \ \ \ \ \ \ \ \
IMG 3 \ \ \ \ \ \ \ \ \

TMBSD 2 15.18±0.06 11.51±0.07 14.05±0.05 15.26±0.05 11.69±0.05 14.06±0.05 14.47±0.08 8.84±0.09 13.32±0.08
IKMKC 2 21.90±0.17 7.50±0.07 23.58±0.09 19.21±0.17 6.11±0.19 21.88±0.09 18.39±0.19 5.71±0.27 21.75±0.13

IMVTSC-MVI 3 26.58±1.13 12.12±0.23 29.97±0.74 23.06±0.50 11.04±0.25 27.30±0.55 22.37±0.73 9.03±0.37 25.22±0.46
CPM-Nets 1 22.16±0.27 9.82±0.07 25.07±0.66 21.76±0.30 9.06±0.40 24.60±0.37 20.74±0.38 9.88±0.17 25.56±0.96
LSIMVC 4 23.00±0.24 7.90±0.12 24.29±0.25 21.87±0.29 6.68±0.09 23.71±0.23 21.09±0.20 6.33±0.16 23.44±0.18
GSRIMC 3 24.37±1.05 10.97±0.93 27.75±0.89 22.65±1.21 10.05±0.86 26.66±0.81 22.05±1.02 9.12±0.25 26.01±0.82

COMPLETER 3 20.24±0.74 5.64±0.21 22.19±0.30 18.99±0.08 5.79±0.99 22.27±0.60 22.15±0.01 5.85±0.32 22.91±0.75
TCIMC 3 22.18±0.07 1.24±0.17 22.10±0.09 21.86±0.06 1.21±0.21 21.59±0.09 20.46±0.08 1.10±0.20 20.59±0.10

LRGR-IMVC 2 24.64±0.13 12.36±0.05 28.27±0.15 24.47±0.05 12.05±0.04 27.32±0.03 22.48±0.29 9.07±0.11 25.41±0.14
BGIMVSC 2 20.22±0.01 0.42±0.02 20.31±0.01 20.19±0.02 0.39±0.03 20.24±0.02 20.20±0.01 0.36±0.01 20.23±0.01
NGSP-CGL 3 21.26±0.63 7.21±0.82 23.73±0.59 19.32±1.04 5.62±0.82 22.97±0.74 19.19±1.06 5.27±0.71 23.46±0.63

PIMVC 2 24.96±0.12 11.90±0.06 28.32±0.13 25.44±0.26 11.91±0.14 26.62±0.37 24.28±0.05 8.72±0.03 24.52±0.05
ProImp 2 22.82±0.57 9.91±0.37 27.00±0.98 22.49±0.28 10.06±0.04 27.25±0.89 20.48±0.63 8.56±0.69 25.10±0.07

HCP-IMSC 2 24.44±0.04 9.98±0.03 27.81±0.05 23.84±0.15 10.13±0.16 27.44±0.11 24.47±0.27 8.99±0.06 25.16±0.13
APADC 2 15.43±0.26 2.24±0.16 20.92±0.95 15.57±0.93 2.05±0.54 20.57±0.33 15.45±0.52 1.76±0.18 20.31±0.25

HCLS-CGL 2 20.80±0.47 7.92±0.07 23.40±0.12 21.14±0.23 7.71±0.02 23.67±0.02 22.32±0.12 7.79±0.05 24.15±0.07
Ours-1 0 28.88±0.00 13.25±0.00 30.60±0.00 26.37±0.00 12.31±0.00 27.76±0.00 24.63±0.00 9.41±0.00 26.16±0.00
Ours-2 0 28.88±0.00 13.25±0.00 30.60±0.00 26.37±0.00 12.31±0.00 27.76±0.00 24.63±0.00 9.41±0.00 26.16±0.00

The optimal solution Em is

Em = DmWmW⊤
mL⊤O⊤ (OAmO⊤)−1

. (21)

Algorithm 3 gives the whole procedure for solving Eq. (4).

For the computational complexity of ToRES, we have

Theorem 3.5. ToRES’s computational complexity is O(n).

In virtue of Theorem 3.5, ToRES can efficiently tackle
large-scale IMVC tasks.

4. Experiments and Analysis
4.1. Benchmark Datasets and Competitors

Six widely-used datasets are adopted in experiments, in-
cluding small-scale datasets: Webkb, Wikifea; middle-

5
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Table 2. Average Clustering Results on Datasets SUNRGB-D, AwAfea and EMNIST.
Dataset Methods NoHp 20% 40% 60%

ACC NMI Purity ACC NMI Purity ACC NMI Purity
SU

N
R

G
B

-D
IMSC-AGL 3 7.13±0.30 5.95±0.16 17.20±0.38 6.69±0.18 5.85±0.14 16.19±0.28 6.76±0.21 5.63±0.15 16.33±0.25

AWP 0 17.61±0.00 26.08±0.00 36.22±0.00 17.46±0.00 22.08±0.00 34.25±0.00 16.94±0.00 20.77±0.00 34.15±0.00
APMC 2 20.79±0.75 25.02±0.33 35.32±0.71 17.27±0.51 22.94±0.26 33.27±0.50 16.41±0.45 19.83±0.31 32.65±0.43
IMG 3 6.77±0.15 5.76±0.12 16.65±0.17 5.97±0.13 5.35±0.10 15.62±0.21 6.11±0.16 6.21±0.13 16.54±0.19

TMBSD 2 11.54±0.13 22.22±0.24 7.79±0.10 11.38±0.25 21.76±0.45 7.70±0.17 10.36±0.33 18.98±0.63 7.13±0.23
IKMKC 2 19.05±0.66 23.26±0.30 36.04±0.44 17.42±0.44 20.84±0.24 33.19±0.69 15.97±0.39 19.10±0.27 31.17±0.65

IMVTSC-MVI 3 16.61±0.56 20.27±0.18 32.57±0.43 15.65±0.52 16.94±0.15 29.14±0.42 14.11±0.55 13.75±0.12 25.53±0.25
CPM-Nets 1 14.04±0.09 17.71±0.18 28.52±0.90 13.87±0.62 16.76±0.86 26.98±0.67 12.55±0.30 14.87±0.45 26.02±0.95
LSIMVC 4 11.65±0.17 18.16±0.13 29.67±0.34 12.29±0.22 18.23±0.08 29.66±0.22 13.13±0.25 18.36±0.16 29.96±0.29
GSRIMC 3 17.64±0.49 25.62±0.25 36.88±0.32 17.03±0.40 24.26±0.28 35.02±0.38 15.81±0.37 20.24±0.21 34.08±0.48

COMPLETER 3 17.84±0.89 16.80±0.80 25.50±0.04 18.91±0.01 15.80±0.11 25.02±0.13 19.34±0.51 15.01±0.34 23.70±0.44
TCIMC 3 \ \ \ \ \ \ \ \ \

LRGR-IMVC 2 18.61±0.35 25.01±0.28 39.81±0.38 17.11±0.22 23.76±0.17 35.11±0.28 16.04±0.29 20.61±0.23 34.14±0.23
BGIMVSC 2 14.33±1.52 7.34±2.25 15.04±1.67 11.09±0.31 3.05±0.55 11.75±0.32 10.95±0.10 2.94±0.14 11.57±0.08
NGSP-CGL 3 18.36±0.67 23.43±0.37 35.87±0.59 15.68±0.51 20.89±0.27 32.20±0.38 15.19±0.46 19.53±0.28 30.09±0.67

PIMVC 2 16.09±0.41 24.47±0.21 35.92±0.31 14.96±0.21 22.82±0.15 34.55±0.25 14.95±0.25 20.16±0.22 33.42±0.48
ProImp 2 13.61±0.66 19.88±0.93 30.90±0.55 12.40±0.76 17.86±0.92 28.91±0.82 11.67±0.00 16.92±0.01 28.37±0.95

HCP-IMSC 2 17.50±0.40 24.24±0.27 36.76±0.28 17.61±0.39 23.40±0.21 34.42±0.45 16.27±0.32 20.08±0.33 35.82±0.46
APADC 2 9.44±0.35 8.77±0.09 19.99±0.90 9.46±0.31 8.31±0.89 19.22±0.17 8.42±0.54 7.88±0.33 18.72±0.09

HCLS-CGL 2 20.20±0.45 24.29±0.18 37.01±0.27 18.62±0.46 22.24±0.19 35.16±0.27 17.36±0.49 21.64±0.15 34.56±0.31
Ours-1 0 20.93±0.00 25.73±0.00 37.16±0.00 19.82±0.00 23.87±0.00 35.94±0.00 19.75±0.00 20.98±0.00 32.31±0.00
Ours-2 0 20.93±0.00 25.73±0.00 37.16±0.00 19.82±0.00 23.87±0.00 35.94±0.00 19.75±0.00 20.98±0.00 32.31±0.00

A
w

A
fe

a

IMSC-AGL 3 \ \ \ \ \ \ \ \ \
AWP 0 8.25±0.00 9.37±0.00 9.29±0.00 8.71±0.00 9.14±0.00 10.00±0.00 8.25±0.00 8.81±0.00 9.15±0.00

APMC 2 \ \ \ \ \ \ \ \ \
IMG 3 \ \ \ \ \ \ \ \ \

TMBSD 2 \ \ \ \ \ \ \ \ \
IKMKC 2 \ \ \ \ \ \ \ \ \

IMVTSC-MVI 3 \ \ \ \ \ \ \ \ \
CPM-Nets 1 \ \ \ \ \ \ \ \ \
LSIMVC 4 \ \ \ \ \ \ \ \ \
GSRIMC 3 \ \ \ \ \ \ \ \ \

COMPLETER 3 7.00±0.94 7.62±0.31 7.73±0.11 6.63±0.22 7.41±0.49 7.71±0.38 6.93±0.96 7.95±0.90 7.99±0.49
TCIMC 3 \ \ \ \ \ \ \ \ \

LRGR-IMVC 2 \ \ \ \ \ \ \ \ \
BGIMVSC 2 \ \ \ \ \ \ \ \ \
NGSP-CGL 3 6.46±0.19 6.00±0.31 7.24±0.26 5.90±0.19 5.22±0.31 6.72±0.24 5.70±0.17 5.06±0.27 6.65±0.19

PIMVC 2 \ \ \ \ \ \ \ \ \
ProImp 2 7.73±0.09 9.67±0.23 9.86±0.55 7.40±0.27 9.04±0.04 9.54±0.16 7.09±0.68 8.35±0.79 9.07±0.06

HCP-IMSC 2 \ \ \ \ \ \ \ \ \
APADC 2 4.92±0.00 3.05±0.76 5.82±0.09 4.72±0.21 3.02±0.53 5.91±0.43 4.52±0.58 2.81±0.46 5.54±0.45

HCLS-CGL 2 \ \ \ \ \ \ \ \ \
Ours-1 0 8.96±0.00 11.17±0.00 10.29±0.00 8.72±0.00 10.62±0.00 10.43±0.00 8.62±0.00 10.33±0.00 10.21±0.00
Ours-2 0 8.96±0.00 11.17±0.00 10.29±0.00 8.72±0.00 10.62±0.00 10.43±0.00 8.62±0.00 10.33±0.00 10.21±0.00

E
M

N
IS

T All Compared
Algorithms \ \ \ \ \ \ \ \ \

Ours-1 0 47.18±0.00 44.27±0.00 48.27±0.00 43.23±0.00 44.57±0.00 44.29±0.00 45.22±0.00 45.45±0.00 48.52±0.00
Ours-2 0 47.18±0.00 44.27±0.00 48.27±0.00 43.23±0.00 44.57±0.00 44.29±0.00 45.22±0.00 45.45±0.00 48.52±0.00

scale datasets: AWA10, SUNRGB-D; large-scale datasets:
AwAfea, EMNIST. Table 3 describes their details.

Table 3. Dataset Details.
Dataset Samples Clusters Views Feature Dimension
Webkb 1051 2 2 334,2949
Wikifea 2866 10 2 128,10
AWA10 5814 10 6 2688,2000,252,2000,2000,2000

SUNRGB-D 10335 45 2 4096,4096
AwAfea 30475 50 6 2688,2000,252,2000,2000,2000
EMNIST 280000 10 4 944,512,576,640

The following 20 classical IMVC algorithms are adopted
as the baselines to highlight the effectiveness of ToRES:
IMSC-AGL (Wen et al., 2020), AWP (Nie et al.,
2018), APMC (Guo & Ye, 2019), IMG (Zhao et al.,
2016), TMBSD (Li et al., 2021c), IKMKC (Liu et al.,
2020), IMVTSC-MVI (Wen et al., 2021b), CPM-
Nets (Zhang et al., 2019), LSIMVC (Liu et al., 2022a),
GSRIMC (Li et al., 2022a), COMPLETER (Lin et al.,

2021), TCIMC (Xia et al., 2022a), LRGR-IMVC (Cui
et al., 2022), BGIMVSC (Sun et al., 2023), NGSP-
CGL (Wong et al., 2023), PIMVC (Deng et al., 2023),
ProImp (Li et al., 2023a), HCP-IMSC (Li et al., 2022b),
APADC (Xu et al., 2023), HCLS-CGL (Wen et al., 2023).

4.2. Observations and Analysis

We summary the clustering results under the percentage of
incomplete data (PID) = 20%, 40% and 60% in Table 1 and
2, where “Ours-1” and “Ours-2” represent the results ob-
tained based on Algorithm 1 and Algorithm 2, respectively.
“NoHp” represents the number of hyper-parameters. From
these two tables, we can draw the following observations:

1) Our variance is 0 on all datasets. This is because we learn
to directly produce the labels rather than first forming spec-
tral embedding and then performing clustering operation on
it. This not only ensures clustering process and optimization
procedure to interact and facilitate mutually, but also makes
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Figure 2. Visualization of O learned on AWA10 under PID = 40 %. OAlgo1 is the O learned by Algorithm 1 while OAlgo2 is that learned
by Algorithm 2. O⊤

Algo1OAlgo1 is the matrix product result of O⊤
Algo1 and OAlgo1. Similar meaning is for O⊤

Algo2OAlgo2.

the clustering labels directly dependent on the original data,
thereby guaranteeing the results to be enhanced and stable.

2) Ours-1 has the same clustering results as Ours-2. This
indicates that the solutions acquired by Algorithm 1 and
Algorithm 2 are equivalent. To verify this point, we visualize
the learned solutions. As seen from Fig. 2 (a) and (b), the
solution O learned by Algorithm 1 is indeed equivalent to
that learned by Algorithm 2. Also, Fig. 2 (c) and (d) suggest
that these learned solutions satisfy the constraint condition.

3) APMC and IMG are incapable of tackling AWA10 since
they only work with two or three views, which largely im-
pedes their practicality and also is not conductive to extract-
ing sufficient representation for superior clustering results.
For example, on Wikifea and SUNRGB-D, they are clearly
inferior against ours. By comparison, ToRES does not en-
counter this limitation, and is applicable to multiple views.

4) Compared to AWP, IMG, IKMKC, LSIMVC, BGIMVSC,
HCP-IMSC, PIMVC and etc, which handle IMVC tasks via
subspace, NMF or kernel scheme, ToRES based on proto-
type makes preferable results in most cases. For example,
on Webkb with PID = 20%, we are higher than them by
13.03%, 35.39%, 36.06%, 18.84%, 0.57%, 8.37%, 4.09% in
ACC. This indicates that our prototype strategy is functional.

5) In comparison with CPM-Nets, COMPLETER, ProImp
and APADC that handle IMVC problems via genious neural
networks, our ToRES consistently exceeds all of them on
Webkb, Wikefea, AWA10, SUNRGBD and AwAfea under
PID = 20% and 40%. Under PID=60%, ToRES still can gen-
erate comparable results. This well suggests that even facing
deep methods, ToRES is still with strong competitiveness.

6) ToRES produces some sub-optimal results under PID
= 60%, for example on Webkb. One reason could be that
the learned prototypes are misaligned due to the absence of
cluster information, and higher PID further exacerbates this
phenomenon. Another reason is that substantial incomplete
data leads to cluster imbalance and deteriorates the quality
of learned prototypes, harming the clustering performance.

7) IMVTS-MVI receives several slightly better results than
ours, the reason of which could be that it successfully em-
beds a consensus low-rank tensor constraint into represen-
tation learning to maintain the semantic consistency, and
eliminates the gab between manifold space and feature space
by jointly running similarity graph recovery and incomplete
view inferring to deeply mine features hidden within data.

8) On SUNRGB-D with PID = 20%, AWP outperforms us
by 0.35% in NMI. Possible reasons are that AWP employs a
unified indicator to alleviate the disagreements among views
instead of separately evaluating each view, and seamlessly
integrates inter-view affinity graph with different scales by
introducing weighting strategy to adaptively adjust view ca-
pacity, thereby capturing superior clustering representation.

9) For GSRIMC, it is higher than ours by 0.39% and 1.77%
in NMI on SUNRGB-D under PID = 40% and 60% respec-
tively, possibly because GSRIMC reduces the intra-cluster
density relation by separating the biased errors caused by
incomplete data from similarity graph, and refines the graph
structure of the boundary instances by explicitly preserving
the local structure information using joint-graph learning.

10) LRGR-IMVC makes a 2.65% improvement in terms of
Purity than ours on SUNRGB-D under PID = 20%. Main
reasons could be that LRGR-IMVC maintains the seman-
tic correlation by exploring the latent relationship between
views using a graph rank constraint, and restores the in-
complete affinity relationship adaptively by integrating the
global structure and underlying information between views.

4.3. Time Overhead

As shown in Theorem 3.5, ToRES owns linear computing
cost. To further highlight ToRES’s time-friendly character-
istic, we count the running time in Fig. 3. We can observe

1) TCIMC encounters the slowest running speed. Particu-
larly, on AWA10 that contains only 5814 samples, it con-
sumes 198282.32 seconds. This is mainly due to the intro-
duction of tensor constraints, which typically bring about
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Figure 3. Time Overhead Comparison.

higher computing cost. Methods such as TMBSD, IMVTSC-
MVI, GSRIMC, etc, similarly suffer from such restrictions.

2) IMSC-AGL, IMG, BGIMVSC, AWP, HCP-IMSC, etc, re-
quire more time than us. The reasons are that these subspace
based methods typically need to construct self-expression
relation. In contrast, ToRES successfully builds prototype-
sample affinity with small size, and also does not involve
spectral embedding, thus consuming relatively less time.

3) IKMKC, NGSP-CGL and HCLS-CGL are slower than us,
which is mainly because IKMKC requires constructing the
kernel with full size, NGSP-CGL needs to count the nearest
neighbor sets of all sample pairs, and HCLS-CGL intro-
duces additional confidence graphs. This results in them
experiencing a at least quadratic computational complexity.

4) APMC, LSIMVC and PIMVC take slightly less time than
us because of the non-iterative scheme and diagonal element
reciprocal strategy. Nevertheless, due to APMC ignoring
the view-specific truncated similarities, LSIMVC separately
exploiting the geometric structure and representation, and
PIMVC only employing the simplest linear relation to fit
the space mapping, they generally generate inferior results.

5) ToRES can work properly on all of these datasets, which
include small-scale, middle-scale and large-scale datasets.
Especially, on EMNIST with 280000 samples, it only con-
sumes 635.10 seconds. This illustrates that ToRES is time-
friendly and can efficiently tackle datasets with diverse sizes.

4.4. Memory Overhead

We also measure the memory overhead to highlight ToRES’s
memory-friendly characteristic. As reported in Table 4,
ToRES owns the lowest memory requirements in most cases.

Table 4. Memory Overhead Comparison (GB).
Methods Webkb Wikifea AWA10 SUNRGB-D AwAfea EMNIST

IMSC-AGL 0.29 1.59 13.86 18.70 \ \
AWP 0.21 1.30 11.09 18.18 94.46 \

APMC 0.09 0.23 \ 3.75 \ \
IMG 0.16 0.69 \ 10.48 \ \

TMBSD 0.33 1.88 22.77 26.82 \ \
IKMKC 0.17 1.49 10.05 20.71 \ \

IMVTSC-MVI 0.27 1.57 20.78 23.04 \ \
LSIMVC 0.13 0.48 5.34 6.60 \ \
GSRIMC 0.30 2.52 29.81 33.91 \ \
TCIMC 0.49 2.92 33.18 \ \ \

LRGR-IMVC 0.20 1.09 11.34 15.92 \ \
BGIMVSC 0.17 0.92 8.88 20.13 \ \
NGSP-CGL 0.26 1.95 14.24 27.58 126.71 \

PIMVC 0.44 0.62 4.19 7.40 \ \
HCP-IMSC 0.35 1.61 19.59 24.03 \ \
HCLS-CGL 0.20 2.00 13.92 27.22 \ \

Ours 0.22 0.20 2.36 3.68 11.58 26.34

4.5. Ablation Studies

To investigate the effectiveness of each type of prototypes,
we organize some ablation studies, and present the results
in Table 5, where “CVP ” and “VWP” represent the results
acquired based on cross-view prototypes and view-wise
prototypes respectively. As seen, we can integrate these two
parts’ information to generate better results. More ablation
studies are presented in Section K of the Appendix.
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Table 5. Ablation Study for View-wise and Cross-view Prototypes
Dataset Ablation

Study
20% 40% 60%

ACC NMI Purity ACC NMI Purity ACC NMI Purity

Webkb
CVP 64.99 1.90 78.12 64.99 1.66 78.12 69.17 1.81 78.12
VWP 51.19 3.50 78.12 51.95 2.72 78.12 56.90 2.94 78.12
Ours 86.20 32.61 86.20 85.35 31.95 85.35 73.83 4.11 78.12

Wikifea
CVP 54.47 46.91 57.78 47.87 41.79 50.45 42.25 34.82 45.88
VWP 52.51 46.18 57.50 48.89 40.09 51.31 44.80 33.04 46.19
Ours 56.28 47.90 58.86 48.95 41.67 51.74 44.17 35.63 47.07

AWA10
CVP 16.51 2.84 21.53 15.63 2.59 21.04 14.55 2.00 20.55
VWP 16.70 1.84 20.11 17.05 1.52 20.09 16.46 1.04 20.14
Ours 28.88 13.25 30.60 26.37 12.31 27.76 24.63 9.41 26.16

SUNRGB-D
CVP 15.52 19.00 31.68 13.72 17.51 30.27 12.41 15.67 28.15
VWP 15.40 5.98 16.23 13.50 4.01 14.11 12.52 3.57 13.11
Ours 20.93 25.73 37.16 19.82 23.87 35.94 19.75 20.98 32.31

AwAfea
CVP 6.68 6.88 7.99 6.41 6.27 7.98 5.80 5.53 7.30
VWP 4.23 1.44 4.34 4.38 1.42 4.63 4.20 1.36 4.32
Ours 8.96 11.17 10.29 8.72 10.62 10.43 8.62 10.33 10.21

EMNIST
CVP 37.15 24.68 39.40 31.30 20.86 33.81 30.66 18.16 34.17
VWP 13.31 2.76 13.31 16.91 5.92 16.91 16.50 5.36 16.60
Ours 47.18 44.27 48.27 43.23 44.57 44.29 45.22 45.45 48.52

5. Limitation and Future Work
In the paper we equally treat cross-view prototypes and
view-wise prototypes. Devising a weighting scheme for
them could be more reasonable, as views generally have
different levels of importance. Besides, we count the time
overhead proportion of optimization variables. As seen in
Fig. 4, Gm takes the most time, which is mainly because it
requires performing SVD on the matrix with size dm × dm.
Thus, providing more innovative solutions for Gm in the
future could further accelerate the running speed of ToRES.

E(2.21%)
Em(2.33%)

Gm(70.99%)

L(12.42%)

O(12.05%)

(a) AwAfea

E(4.19%)
Em(5.46%)

Gm(53.15%)

L(28.24%)

O(8.97%)

(b) EMNIST

Figure 4. Time Overhead Proportion of Em, E, O, L and Gm.

6. Conclusion
In this work, we devise an IMVC algorithm with resource-
friendly and extensible as well as stable properties, named
ToRES. Instead of self-expression affinity, which not only
contains blanks but also requires intensive resource con-
sumption, ToRES successfully constructs prototype-sample
affinity with low complexity. Specially, it introduces two
types of prototypes to jointly exploit preferable representa-
tion. Owing to not involving hyper-parameters, it is easily
extended to other scenes. Also, it directly learns discrete
cluster labels from incomplete data, effectively preserving
original information and ensuring result stability. Two equiv-
alent solutions are developed for the resulting problem. Ex-
perimental results well demonstrate ToRES’s advantages.
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of Machine Learning. There are many potential societal
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A. Proof of Theorem 3.1
Proof. Denote hm = [

∑nm

l=1[Wm]1,l, · · · ,
∑nm

l=1[Wm]k,l, · · · ,
∑nm

l=1[Wm]n,l]1×n
. For the element [Am]i,j , i ̸= j, we

have
[Am]i,j = Li,:WmW⊤

m[L⊤]:,j

= Li,:diag(hm)[Lj,:]
⊤

=

n∑
k=1

Li,kLj,k

nm∑
l=1

[Wm]k,l

=

n∑
k=1

0

nm∑
l=1

[Wm]k,l

= 0.

(22)

For [Am]i,i, we have

[Am]i,i =

n∑
k=1

Li,kLi,k

nm∑
l=1

[Wm]k,l

=
n∑

k=1

Li,k

nm∑
l=1

[Wm]k,l

= Li,:h
⊤
m.

(23)

Thus, we have that Am is a diagonal matrix.

B. Proof of Theorem 3.2
Proof. According to

f(O) =

M∑
m=1

Tr(O⊤F̃OAm +O⊤F̃mOAm +O⊤Sm), (24)

we have

∇f(O) =

M∑
m=1

F̃OAm + F̃⊤OA⊤
m + F̃mOAm + F̃⊤

mOA⊤
m + Sm. (25)

Given the fact that F̃ = λmax(F)Ic−F, F = E⊤E, F̃m = λmax(Fm)Ic−Fm, Fm = E⊤
mEm and Am = LWmW⊤

mL⊤,
we know that F̃, F̃m and Am are symmetric. Thus, we can further get

∇f(O) =
M∑

m=1

2F̃OAm + 2F̃mOAm + Sm. (26)

Denote the SVD of ∇f(Ot) as UtΣtV
⊤
t . We have

Tr
(
O⊤∇f(Ot)

)
= Tr

(
O⊤UtΣtV

⊤
t

)
= Tr

(
V⊤

t O
⊤UtΣt

)
≤ Tr (Σt) , (27)

where the inequality holds based on the facts that V⊤
t O

⊤Ut is an orthogonal matrix and that the diagonal elements of Σt

is non-negative. Especially, when V⊤
t O

⊤Ut = I, that is, O = UtV
⊤
t , the third equality holds. Thus, for any O, with

Ot+1 = UtVt, we have
Tr
(
O⊤∇f(Ot)

)
≤ Tr

(
O⊤

t+1∇f(Ot)
)
. (28)

Specially, when O takes Ot, Eq. (28) still holds. Thus, we have

Tr
(
O⊤

t ∇f(Ot)
)
≤ Tr

(
O⊤

t+1∇f(Ot)
)
. (29)

12
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C. Proof of Theorem 3.3
Proof. Combined with Eqs. (26) and (29), we have

Tr

(
O⊤

t+1

(
M∑

m=1

2F̃OtAm + 2F̃mOtAm + Sm

))
≥ Tr

(
O⊤

t

(
M∑

m=1

2F̃OtAm + 2F̃mOtAm + Sm

))
. (30)

Combined with the definition of f(O) in Eq. (24), we further have

1 ≥
M∑

m=1

Tr
(
O⊤

t F̃OtAm +O⊤
t F̃mOtAm +O⊤

t Sm

)
= f(Ot),

(31)

where

1 =

M∑
m=1

Tr
(
2O⊤

t+1F̃OtAm + 2O⊤
t+1F̃mOtAm −O⊤

t F̃OtAm −O⊤
t F̃mOtAm +O⊤

t+1Sm

)
. (32)

Before proving f(Ot+1) ≥ f(Ot), we only need to prove

f(Ot+1) ≥ 1 , (33)

that is, prove that the following inequality holds

f(Ot+1)− 1 ≥ 0. (34)

Combined with Eqs. (24) and (32), we need to prove

2 + 3 ≥ 0, (35)

where

2 =

M∑
m=1

Tr
(
O⊤

t+1F̃Ot+1Am − 2O⊤
t+1F̃OtAm +O⊤

t F̃OtAm

)
and

3 =

M∑
m=1

Tr
(
O⊤

t+1F̃mOt+1Am − 2O⊤
t+1F̃mOtAm +O⊤

t F̃mOtAm

)
.

.

Given that matrices Am and F̃ are symmetric, we have

Tr(O⊤
t+1F̃OtAm) = Tr(A⊤

mO⊤
t F̃

⊤Ot+1) = Tr(O⊤
t F̃

⊤Ot+1A
⊤
m) = Tr(O⊤

t F̃Ot+1Am). (36)

Thus, we have

2 =

M∑
m=1

Tr
(
O⊤

t+1F̃Ot+1Am −O⊤
t+1F̃OtAm −O⊤

t F̃Ot+1Am +O⊤
t F̃OtAm

)
=

M∑
m=1

Tr
(
(Ot+1 −Ot)

⊤F̃(Ot+1 −Ot)Am

)
≥0.

(37)

Besides, F̃m is also symmetric, and therefore we can get

Tr(O⊤
t+1F̃mOtAm) = Tr(O⊤

t F̃mOt+1Am). (38)

13
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Thus, for 3 , we have

3 =

M∑
m=1

Tr
(
O⊤

t+1F̃mOt+1Am −O⊤
t+1F̃mOtAm −O⊤

t F̃mOt+1Am +O⊤
t F̃mOtAm

)
.

=

M∑
m=1

Tr
(
(Ot+1 −Ot)

⊤F̃m(Ot+1 −Ot)Am

)
≥ 0.

(39)

Combined with Eqs. (37) and (39), we have that Eq. (35) holds. That is, Eq. (34) holds and Eq. (33) holds.

Combined with Eqs. (33) and (31), we have
f(Ot+1) ≥ f(Ot), (40)

which indicates that under Ot+1 taking UtV
⊤
t where Ut and V⊤

t are the SVD results of ∇f(Ot), f(O) is non-decreasing.

D. Proof of Theorem 3.4
Proof. For the optimization problem

min
GmG⊤

m=Ic
∥GmDmWm −EOLWm∥2F ,

by expanding F -norm, we have

min
Gm

∥GmDmWm −EOLWm∥2F ⇔

min
Gm

Tr
(
GmDmWmW⊤

mD⊤
mG⊤

m − 2GmDmWmW⊤
mL⊤O⊤E⊤ +EOLWmW⊤

mL⊤O⊤E⊤
)
⇔

min
Gm

Tr
(
GmDmWmW⊤

mD⊤
mG⊤

m − 2GmDmWmW⊤
mL⊤O⊤E⊤

)
⇔

min
Gm

Tr
(
GmPmG⊤

m −GmZ⊤
m

)
,

(41)

where Pm = DmWmW⊤
mD⊤

m, Zm = 2EOLWmW⊤
mD⊤

m.

Combined with GmG⊤
m = Ic, we further have

min
Gm

Tr
(
GmPmG⊤

m −GmZ⊤
m

)
⇔

min
Gm

Tr
(
Gm (Pm − λmax(Pm)Idm

)G⊤
m −GmZ⊤

m

)
⇔

max
Gm

Tr
(
GmP̃mG⊤

m +GmZ⊤
m

)
.

(42)

where P̃m = λmax(Pm)Idm
−Pm.

Denote g(Gm) = Tr
(
GmP̃mG⊤

m +GmZ⊤
m

)
. Its derivative ∇g (Gm) is GmP̃⊤

m +GmP̃m +Zm. Thus, the solution of

Gm can be set as UV⊤, where U and V are the SVD results of [Gm]preP̃
⊤
m + [Gm]preP̃m + Zm. [Gm]pre represents

the value of Gm at previous iteration. Considering that P̃m is a symmetric matrix, thus, we can perform SVD on
2[Gm]preP̃m + Zm to generate U and V, and thereby obtain the solution of Gm.

E. Proof of Theorem 3.5
Proof. The computational cost of the proposed algorithm ToRES is mainly composed of optimizing O, L, Gm, E and Em.

14
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When updating O using Algorithm 1, the construction of Am = LWmW⊤
mL⊤ = (L⊙Qm)L⊤ will take O(cn +

c2n). Bm = E⊤GmDmWmW⊤
mL⊤ = E⊤Gm (Dm ⊙Hm)L⊤ will take O(dmn + c2dm + cdmn + c2n). Cm =

E⊤
mDmWmW⊤

mL⊤ = E⊤
m (Dm ⊙Hm)L⊤ will take O(dmn + cdmn + c2n). Qm ∈ Rc×n = 1c×1 · hm, Hm ∈

Rdm×n = 1dm×1 · hm, hm = [
∑nm

l=1[Wm]1,l, · · · ,
∑nm

l=1[Wm]k,l, · · · ,
∑nm

l=1[Wm]n,l]1×n
. The constructions of E⊤E

and E⊤
mEm will take O(c3) and O(c2dm) respectively. Using quadratic programming with quadratic constraints to solve O

will take O(c4). Thus, the computational complexity of updating O by Algorithm 1 is O(c2d+ cdn+ c2Mn+ c4), where
d =

∑M
m=1 dm.

When updating O using Algorithm 2, the constructions of F̃, F̃m, Am and Sm will take O(c3), O(c2dm+c3), O(cn+c2n)
and O(dmn+ c2dm + cdmn+ c2n) respectively. Calculating ∇f(O) will take O(c3). The singular value decomposition
and singular matrix multiplication of ∇f(O) will take both O(c3). Thus, the computational complexity of updating O by
Algorithm 2 is O(cdn+ c2nM + c2d+Mc3).

When updating L, the constructions of Tj and J will take O(c3 + c2d) and O(ndc + nc2M) respectively. Thus, the
computational complexity of updating L is O(c3n+ c2dn+ nc2M).

When updating Gm, constructing P̃m, (2[Gm]preP̃m + Zm) and performing SVD on it will take O(dmn+ d2mn+ d3m),
O(cd2m) and O(c2dm) respectively. Thus, updating Gm will take O(d2mn+ d3m + c2dm). The computational complexity
of updating all Gm is O(n

∑M
m=1 d

2
m +

∑M
m=1 d

3
m + c2d).

When updating E, constructing GmDmWmW⊤
m, O

∑M
m=1 AmO⊤ and its inverse will take O(dmn+ cdmn), O(c3) and

O(c3) respectively. Thus, the computational complexity of updating E is O(cdn+ c2n+ c3).

When updating Em, it will take O(dmnc + dmc
2 + c3). Thus, the computational complexity of updating all Em is

O(dnc+ dc2 +Mc3).

In addition, commonly, c≪ n, M ≪ n, and the data dimension dm is a constant and independent of the sample number n.

Therefore, we have that the computational complexity of ToRES is O(c3n+c2Mn+c2dn+n
∑M

m=1 d
2
m+

∑M
m=1 d

3
m+c4)

when using Algorithm 1. When using Algorithm 2, the computational complexity of ToRES is O(c2nM +Mc3 + c3n+

c2dn+ n
∑M

m=1 d
2
m +

∑M
m=1 d

3
m). They are both linear with respect to the number of samples n. Thus, the computational

complexity of our ToRES is O(n).

F. Detailed Derivations for Optimization Variables Gm, E, O, L and Em

In this section, we give detailed derivations about Gm, E, O, L and Em.

⋆ Step-One: Optimizing O.

With other variables fixed, Eq. (3) about O becomes

min
O⊤O=Ic

M∑
m=1

∥GmDmWm −EOLWm∥2F + ∥DmWm −EmOLWm∥2F .

Scheme 1:

For ∥GmDmWm −EOLWm∥2F , we have

min
O

∥GmDmWm −EOLWm∥2F ⇔

min
O

Tr
(
GmDmWmW⊤

mD⊤
mG⊤

m − 2GmDmWmW⊤
mL⊤O⊤E⊤ +EOLWmW⊤

mL⊤O⊤E⊤
)
⇔

min
O

Tr
(
EOLWmW⊤

mL⊤O⊤E⊤ − 2GmDmWmW⊤
mL⊤O⊤E⊤

)
⇔

min
O

Tr
(
EOLWmW⊤

mL⊤O⊤E⊤ − 2E⊤GmDmWmW⊤
mL⊤O⊤

)
⇔

min
O

Tr
(
O⊤E⊤EOLWmW⊤

mL⊤ − 2
[
E⊤GmDmWmW⊤

mL⊤]⊤ O
)
⇔

min
O:,j

O⊤
:,jE

⊤EO[Am]:,j − 2[Bm]⊤:,jO:,j ,

(43)
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where Am = LWmW⊤
mL⊤, Bm = E⊤GmDmWmW⊤

mL⊤.

According to Theorem 3.1, we can get

min
O:,j

O⊤
:,jE

⊤EO[Am]:,j − 2[Bm]⊤:,jO:,j ⇔

min
O:,j

O⊤
:,jE

⊤E[Am]j,jO:,j − 2[Bm]⊤:,jO:,j .

Thus, we have
min
O

∥GmDmWm −EOLWm∥2F ⇔

min
O:,j

O⊤
:,jE

⊤E[Am]j,jO:,j − 2[Bm]⊤:,jO:,j .
(44)

For ∥DmWm −EmOLWm∥2F , we have

min
O

∥DmWm −EmOLWm∥2F ⇔

min
O

Tr
(
DmWmW⊤

mD⊤
m − 2DmWmW⊤

mL⊤O⊤E⊤
m +EmOLWmW⊤

mL⊤O⊤E⊤
m

)
⇔

min
O

Tr
(
EmOLWmW⊤

mL⊤O⊤E⊤
m − 2DmWmW⊤

mL⊤O⊤E⊤
m

)
⇔

min
O

Tr
(
EmOLWmW⊤

mL⊤O⊤E⊤
m − 2E⊤

mDmWmW⊤
mL⊤O⊤

)
⇔

min
O

Tr
(
O⊤E⊤

mEmOLWmW⊤
mL⊤ − 2

[
E⊤

mDmWmW⊤
mL⊤]⊤ O

)
⇔

min
O:,j

O⊤
:,jE

⊤
mEmO[Am]:,j − 2[Cm]⊤:,jO:,j ⇔

min
O:,j

O⊤
:,jE

⊤
mEm[Am]j,jO:,j − 2[Cm]⊤:,jO:,j ,

(45)

where Cm = E⊤
mDmWmW⊤

mL⊤.

Thus, we can get

min
O

M∑
m=1

∥GmDmWm −EOLWm∥2F + ∥DmWm −EmOLWm∥2F ⇔

min
O:,j

M∑
m=1

O⊤
:,jE

⊤E[Am]j,jO:,j − 2[Bm]⊤:,jO:,j +O⊤
:,jE

⊤
mEm[Am]j,jO:,j − 2[Cm]⊤:,jO:,j ⇔

min
O:,j

O⊤
:,j

(
E⊤E

M∑
m=1

[Am]j,j +

M∑
m=1

E⊤
mEm[Am]j,j

)
O:,j + 2

(
−

M∑
m=1

Bm −
M∑

m=1

Cm

)⊤

:,j

O:,j .

(46)

Considering that the feasible region O⊤O = Ic is equivalent to O⊤
:,jO:,j = 1, O⊤

:,jO:,i = 0, i = [1, 2, · · · , c] and i ̸= j.
j = 1, 2, · · · c. Therefore, we have

min
O⊤O=Ic

M∑
m=1

∥GmDmWm −EOLWm∥2F + ∥DmWm −EmOLWm∥2F ⇔

min
O:,j

O⊤
:,j

(
E⊤E

M∑
m=1

[Am]j,j +

M∑
m=1

E⊤
mEm[Am]j,j

)
O:,j + 2

(
−

M∑
m=1

Bm −
M∑

m=1

Cm

)⊤

:,j

O:,j

s.t.
1

2
O⊤

:,jIO:,j +

(
−1

2

)
= 0, [O:,1,O:,2, · · · ,O:,j−1,O:,j+1 · · ·O:,c]

⊤
O:,j = 0.

(47)

Scheme 2:
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In conjunction with Eqs. (43) and (45), we can get

min
O

M∑
m=1

∥GmDmWm −EOLWm∥2F + ∥DmWm −EmOLWm∥2F ⇔

min
O

M∑
m=1

Tr
(
O⊤E⊤EOLWmW⊤

mL⊤ − 2
[
E⊤GmDmWmW⊤

mL⊤]⊤ O+

O⊤E⊤
mEmOLWmW⊤

mL⊤ − 2
[
E⊤

mDmWmW⊤
mL⊤]⊤ O

)
⇔

min
O

M∑
m=1

Tr
(
O⊤E⊤EOAm +O⊤E⊤

mEmOAm − 2B⊤
mO− 2C⊤

mO
)
⇔

min
O

M∑
m=1

Tr
(
O⊤FOAm +O⊤FmOAm −O⊤Sm

)
,

(48)

where F = E⊤E, Fm = E⊤
mEm, Sm = 2 (Bm +Cm), Bm = E⊤GmDmWmW⊤

mL⊤, Cm = E⊤
mDmWmW⊤

mL⊤.

Due to O⊤O = Ic, we further have

min
O

M∑
m=1

Tr
(
O⊤FOAm +O⊤FmOAm −O⊤Sm

)
⇔

min
O

M∑
m=1

Tr
(
O⊤ (F− λmax(F)Ic)OAm +O⊤ (Fm − λmax(Fm)Ic)OAm −O⊤Sm

)
⇔

max
O

M∑
m=1

Tr
(
O⊤F̃OAm +O⊤F̃mOAm +O⊤Sm

)
,

(49)

where F̃ = λmax(F)Ic − F, F̃m = λmax(Fm)Ic − Fm.

Combined with f(O) =
∑M

m=1 Tr(O
⊤F̃OAm +O⊤F̃mOAm +O⊤Sm) and Theorem 3.3, we know that under Ot+1

taking UtV
⊤
t where Ut and V⊤

t are SVD results of ∇f(Ot), the function f(O) is non-decreasing. Meanwhile, the solution
Ot+1 = UtV

⊤
t lies in the flexible region O⊤O = Ic. Thus, we can take Ot+1 as the solution of O when Ot+1 and Ot

satisfy the condition ∥Ot+1 −Ot∥F /∥Ot∥F ≤ 1e− 5.

⋆ Step-Two: Optimizing L.

With other variables fixed, Eq. (3) about L becomes

min
L

M∑
m=1

∥GmDmWm −EOLWm∥2F + ∥DmWm −EmOLWm∥2F

s.t. L ∈ {0, 1}c×n, ∥L:,j∥1 = 1, j ∈ {1, 2, . . . , n}.

Combined with Eq. (43), we have

min
L

∥GmDmWm −EOLWm∥2F ⇔

min
L

Tr
(
EOLWmW⊤

mL⊤O⊤E⊤ − 2GmDmWmW⊤
mL⊤O⊤E⊤

)
⇔

min
L

Tr
(
L⊤O⊤E⊤EOLWmW⊤

m − 2O⊤E⊤GmDmWmW⊤
mL⊤

)
⇔

min
L

Tr
(
L⊤O⊤E⊤EOLWmW⊤

m − 2WmW⊤
mD⊤

mG⊤
mEOL

)
.

(50)

Considering that

WmW⊤
m = diag

[nm∑
l=1

[Wm]1,l, · · · ,
nm∑
l=1

[Wm]k,l, · · · ,
nm∑
l=1

[Wm]n,l

]
1×n

 , (51)
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we can have that
min
L

Tr
(
L⊤O⊤E⊤EOLWmW⊤

m − 2WmW⊤
mD⊤

mG⊤
mEOL

)
⇔

min
L:,j

L⊤
:,jO

⊤E⊤EO

nm∑
k=1

[Wm]j,kL:,j − 2
(
WmW⊤

mD⊤
mG⊤

mEO
)
j,:

L:,j ,
(52)

Combined with Eqs. (50) and (52), we have

min
L

∥GmDmWm −EOLWm∥2F ⇔

min
L:,j

L⊤
:,jO

⊤E⊤EO

nm∑
k=1

[Wm]j,kL:,j − 2
(
WmW⊤

mD⊤
mG⊤

mEO
)
j,:

L:,j .
(53)

Additionally, based on Eq. (45), we have

min
L

∥DmWm −EmOLWm∥2F ⇔

min
L

Tr
(
EmOLWmW⊤

mL⊤O⊤E⊤
m − 2DmWmW⊤

mL⊤O⊤E⊤
m

)
⇔

min
L

Tr
(
L⊤O⊤E⊤

mEmOLWmW⊤
m − 2O⊤E⊤

mDmWmW⊤
mL⊤

)
⇔

min
L

Tr
(
L⊤O⊤E⊤

mEmOLWmW⊤
m − 2WmW⊤

mD⊤
mEmOL

)
⇔

min
L:,j

L⊤
:,jO

⊤E⊤
mEmO

nm∑
k=1

[Wm]j,kL:,j − 2
(
WmW⊤

mD⊤
mEmO

)
j,:

L:,j .

(54)

Combined with Eqs. (53) and (54), we have

min
L

M∑
m=1

∥GmDmWm −EOLWm∥2F + ∥DmWm −EmOLWm∥2F ⇔

min
L:,j

M∑
m=1

L⊤
:,jO

⊤E⊤EO

nm∑
k=1

[Wm]j,kL:,j − 2
(
WmW⊤

mD⊤
mG⊤

mEO
)
j,:

L:,j+

L⊤
:,jO

⊤E⊤
mEmO

nm∑
k=1

[Wm]j,kL:,j − 2
(
WmW⊤

mD⊤
mEmO

)
j,:

L:,j ⇔

min
L:,j

L⊤
:,j

(
O⊤

M∑
m=1

(
E⊤E

nm∑
k=1

[Wm]j,k +E⊤
mEm

nm∑
k=1

[Wm]j,k

)
O

)
L:,j

− 2

(
M∑

m=1

WmW⊤
mD⊤

m

(
G⊤

mE+Em

)
O

)
j,:

L:,j .

(55)

Thus, we have

min
L∈{0,1}c×n,∥L:,j∥1=1,j∈{1,2,...,n}

M∑
m=1

∥GmDmWm −EOLWm∥2F + ∥DmWm −EmOLWm∥2F ⇔

min
L:,j∈{0,1}c×1,∥L:,j∥1=1,j∈{1,2,...,n}

L⊤
:,jTjL:,j − Jj,:L:,j ,

(56)

where

Tj = O⊤
M∑

m=1

(
E⊤E

nm∑
k=1

[Wm]j,k +E⊤
mEm

nm∑
k=1

[Wm]j,k

)
O

J = 2

M∑
m=1

WmW⊤
mD⊤

m

(
G⊤

mE+Em

)
O.
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The constraints L ∈ {0, 1}c×n, ∥L:,j∥1 = 1, j ∈ {1, 2, . . . , n} indicate that there is only one non-zero element in each
column. Meanwhile, the operation L⊤

:,jTjL:,j means taking the diagonal elements of Tj ∈ Rc×c. Therefore, we can
determine L;,j by comparing the diagonal elements of Tj and the j-th row of J ∈ Rn×c. When i = i∗, Li,j is set as 1,
otherwise 0, where

i∗ = argmin
i

[Tj ]i,i − Jj,i, i ∈ {1, 2, · · · , c}.

⋆ Step-Three: Optimizing Gm.

With other variables fixed, Eq. (3) about Gm becomes

min
GmG⊤

m=Ic

M∑
m=1

∥GmDmWm −EOLWm∥2F . (57)

Due to {Gm}Mm=1 aiming at projecting respective views and being related to views, thus {Gm}Mm=1 are mutually indepen-
dent. On basis of this, we can equivalently transform Eq. (57) as

min
GmG⊤

m=Ic
∥GmDmWm −EOLWm∥2F .

In virtue of Theorem 3.4, we can obtain the solution of Gm.

⋆ Step-Four: Optimizing E.

With other variables fixed, Eq. (3) about E becomes

min
E

M∑
m=1

∥GmDmWm −EOLWm∥2F .

Since this is an unconstrained optimization problem, we can get the optimal solution by setting its derivative to zero. Thus,
we have

M∑
m=1

(GmDmWm −EOLWm)W⊤
mL⊤O⊤ = 0.

That is, we have

EOL

M∑
m=1

WmW⊤
mL⊤O⊤ =

M∑
m=1

GmDmWmW⊤
mL⊤O⊤. (58)

Due to Am = LWmW⊤
mL⊤ being reversible, we can get

E =

(
M∑

m=1

GmDmWmW⊤
m

)
L⊤O⊤

(
O

M∑
m=1

AmO⊤

)−1

.

⋆ Step-Five: Optimizing Em.

With other variables fixed, Eq. (3) about Em becomes

min
Em

M∑
m=1

∥DmWm −EmOLWm∥2F . (59)

View-wise prototypes {Em}Mm=1 are related to individual views, and thus are independent of each other. Eq. (59) can be
simplified as

min
Em

∥DmWm −EmOLWm∥2F .

It is an unconstrained optimization problem, and therefore, by setting its derivative to zero, we can get

(DmWm −EmOLWm)W⊤
mL⊤O⊤ = 0. (60)

19



Towards Resource-friendly, Extensible and Stable Incomplete Multi-view Clustering

That is,

DmWmW⊤
mL⊤O⊤ = EmOLWmW⊤

mL⊤O⊤. (61)

Thus, the optimal solution is

Em = DmWmW⊤
mL⊤O⊤ (OAmO⊤)−1

.

G. More Related Work
For effectively grouping multi-view data, a series of methods have been proposed recently. For instances, Ma et al. (2024)
concurrently perform the symmetrization and localization of affinity matrix so as to discover good neighbors automatically,
and exploits local structure of unified affinity without needing conventional rank constraints and extra pre-searching
hyper-parameters. Wan et al. (2024a) generate diverse representation by mapping original samples into multiple potential
embedding spaces, and unify representation learning and k-means together so as to get rid of the impact of the procedure
separation. Liang et al. (2022a) establish the generalization bound by approximating the eigen functions of basic kernel
matrices to efficiently tackle out-of-sample points, and provide a uniform stability for the single-view scenarios. Li et al.
(2019) introduce hierarchical self-expressive layers to recover potential low-dimensional spaces hierarchically, and exploit
complicated relationships between views via a reciprocal subspace learning to encode multi-view information. Wan et al.
(2022) provide a continual clustering scheme to deal with new view data, and aggregate all view information via a late
fusion strategy. Liang et al. (2024) maintain the consistency of kernel parameters by building up the excess clustering risk,
and decrease the computing overhead by substituting for the eigen decomposition using SVD. Li et al. (2023b) describe
the cluster distributions by approximating the rank of 3rd-order Schatten p-norm to exploit knowledge between views,
and utilize one-side constraint to consider the spatial structure embedded into each view. Wan et al. (2023) automatically
weight base matrices with various dimensions to address the dimension-fixed issue, and map original data into various
low-dimensional spaces to produce comprehensive representation. Liang et al. (2022b) introduce a min-max paradigm to
perform robust learning, and utilize the reduced gradient descent strategy to optimize the convex objective. Pan & Kang
(2021) employ graph filtering to clear high-frequency noise so as to maintain the geometric features, and construct the
consensus graph via contrastive learning to decrease the impact of incomplete graphs. Other methods like (Li et al., 2024;
Fu et al., 2023; Li et al., 2023c; Liang et al., 2022c; Liu et al., 2022b) are also well investigated.

H. The URLs of Benchmark Datasets
In this subsection, we provide the URLs of Benchmark Datasets used in Table 3.

Small-scale Datasets:

Webkb: https://www.cs.cmu.edu/˜webkb/

Wikifea: http://svcl.ucsd.edu/projects/crossmodal/

Middle-scale Datasets:

AWA10: https://cvml.ista.ac.at/AwA2/

SUNRGB-D: https://rgbd.cs.princeton.edu/

Large-scale Datasets:

AwAfea: https://cvml.ista.ac.at/AwA/

EMNIST: https://www.nist.gov/itl/products-and-services/emnist-dataset

Their brief description is as follows:

1. Webkb: It is sampled from diverse web-pages, and consists of 1051 samples. The cluster number is 2, and the data
dimensions on 2 views are 334 and 2949.

2. Wikifea: It is extracted from multimedia documents, and contains 2866 samples. The cluster number is 10, and the
data dimensions on 2 views are 128 and 10.
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3. AWA10: This image dataset characterizes animals with various attributes, and has 5814 samples. There are 10 clusters.
The data dimensions on 6 views are 2688, 2000, 252, 2000, 2000 and 2000 respectively.

4. SUNRGB-D: This image dataset is collected through RGB-D sensors in scene understanding, and has 10335 samples.
There are 45 clusters. The data dimensions on 2 views are both 4096.

5. AwAfea: It describes different animal properties via a group of image feature extractors. The numbers of samples and
clusters are 30475 and 50 respectively. The data dimensions on 6 views are 2688, 2000, 252, 2000, 2000 and 2000.

6. EMNIST: It is composed of different handwritten character digits. The numbers of samples and clusters are 280000
and 10. The feature dimensions on 4 views are 944, 512, 576 and 640 respectively.

I. Detailed Descriptions for 20 Comparison Algorithms
The detailed descriptions of these 20 comparison algorithms are as follows:

1. IMSC-AGL (Wen et al., 2020). This algorithm integrates spectral learning and graph learning techniques to
capture view-shared features for incomplete data, and mines consensus low-rank characteristics by introducing a
co-regularization item to discover the intrinsic space structure among samples.

2. AWP (Nie et al., 2018). This algorithm introduces adaptive Procrustes Average scheme into spectral rotation to relieve
the negative factor of clustering capacity differences between views, and decreases the disagreements by assessing
views using a consistent indicator rather than individually to increase its applicability.

3. APMC (Guo & Ye, 2019). This algorithm combines inter- and intra- view affinity information via a group of
landmarks to sufficiently extract non-linear relations between instances, and generates the class indicator by performing
spectral clustering on the merged similarity graph under the help of Gaussian kernel function.

4. IMG (Zhao et al., 2016). This algorithm transforms multi-modal samples to a complete representation space instead
of projecting views into the common subspace, and builds up the connection between partial-view instances and
complete-view instances via a Laplacian graph to preserve tight global structure.

5. TMBSD (Li et al., 2021c). This algorithm preserves global block-diagonal structure across views using several
spectral embedding matrices under the guidance of view-consistency, and generates representation with strong
separability by a tensor nuclear norm regularizer to reveal the potential data cluster membership.

6. IKMKC (Liu et al., 2020). This algorithm incorporates kernel completion into clustering procedure to get rid of the
limitation of pre-specified base kernels, and explicitly encourages incomplete kernels to reciprocally pad each other so
as to better serve clustering.

7. IMVTSC-MVI (Wen et al., 2021b). This algorithm couples graph-learning manifold space and view-inferring
feature space to exploit the hidden information of incomplete views, and forms intra-view representation by leveraging
high-order correlations between views through a low-rank tensor regularizer.

8. CPM-Nets (Zhang et al., 2019). This algorithm gathers structured representation hidden into all views and samples
via encoding networks instead of completing missing views based on the combination of available views, and handles
patterns flexibly by improving the representation separability using a clustering-like classification loss.

9. LSIMVC (Liu et al., 2022a). This algorithm unifies graph embedding learning and representation learning into a
framework based on matrix factorization, and extracts sparse individual representation and consensus representation as
well as structured representation via ℓ1 norm and local graph embedding constraints.

10. GSRIMC (Li et al., 2022a). This algorithm avoids complicated partial feature recovering by just exploiting the
pre-computed sub-graphs belonging to each view to eliminate mistakes in optimization, and decouples the polished
graph structure from biased error via a tensor nuclear paradigm.

11. COMPLETER (Lin et al., 2021). This algorithm performs across-view sample restoration and representation
learning alternatively in perspective of information theory, and maximizes the mutual information and minimizes the
conditional entropy via contrastive learning and dual prediction respectively to aggregate informative features.
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12. TCIMC (Xia et al., 2022a). This algorithm leverages the spatial structure and complementary representation through
Schatten p-norm to refine the similarity of interview graph, and encodes the low-rank information embedded into
unmissing data via connected component constraint to appropriately determine the number of clusters.

13. LRGR-IMVC (Cui et al., 2022). This algorithm employs graph embedding and Laplacian rank constraints to reduce
the negative influence of incomplete samples on latent co-correlations learned across views, and concurrently utilizes
local, global and potential representation within views to adaptively restore partial structure.

14. BGIMVSC (Sun et al., 2023). This algorithm produces probability consistent characteristics with all true elements
by reformulating the standard spectral clustering procedure, and adopts a weighted learning mechanism to automatically
measure the contributions of diverse views in the framework optimization.

15. NGSP-CGL (Wong et al., 2023). This algorithm characterizes the data distribution by taking advantage of both
pair-wise neighbor and group-wise structure features, and forms clustering-friendly representation by improving the
quality of unified graph matrix using a neighbor-group embedding item.

16. PIMVC (Deng et al., 2023). This algorithm utilizes the projection learning strategy to alleviate the impact of
information imbalance between views, and exploits heterogeneous geometric features inside the samples by imposing
an uncorrelated scatter matrix constraint and a graph constraint on the union subspace.

17. ProImp (Li et al., 2023a). This algorithm applies a dual-stream network framework containing a twin contrastive
loss and a twin attention layer to support the within-cluster instance commonality, and recovers data by utilizing the
sample relationship from observed views to retain the cross-view instance versatility.

18. HCP-IMSC (Li et al., 2022b). This algorithm maintains high-order view and sample correlations by constructing
several three-order tensor affinities to recover the space structure of partial instances, and merges view-wise similarities
in a self-weighted way to restrict samples with incomplete views to their neighborhoods.

19. APADC (Xu et al., 2023). This algorithm relieves the impact of inaccurate imputed values by adaptively projecting
features that are learned by autoencoders into a shared space, and aligns the distribution between incomplete and
complete data by minimizing the mean discrepancy loss to facilitate common representation.

20. HCLS-CGL (Wen et al., 2023). This algorithm designs a confidence graph with set-neighbor affinity to characterize
the neighbor probability between any two instances, and captures consistent representation at graph structure level
instead of from original data to reduce the impact of noise and outliers.

J. More Observations and Analysis from Table 1 and Table 2
1. ToRES wins the ability to produce eye-catching clustering results. For instance, ToRES defeats all comparison methods

in ACC under PID = 20% and 40%; ToRES consistently makes the best results on AwAfea in ACC, NMI and Purity;
ToRES outperforms all competitors with remarkable margins on all datasets under PID = 40% in Purity. Under other
circumstances, ToRES still can provide competitive results. This well illustrates that ToRES is effective for diverse
IMVC problems.

2. ToRES can properly deal with all of the early-mentioned datasets. By contrast, some of comparison algorithms can
not run on certain datasets and report the “\” error due to the considerable memory overheads or the limitations of
algorithm itself. Especially on EMNIST, which consists of 280000 samples, all competitors output out-of-memory
errors while ToRES still can normally execute. This demonstrates that ToRES is memory-friendly and more practical
for coping with IMVC tasks.

3. ToRES can make clear improvements compared to the second best algorithms. For example, on Webkb with PID =
40% and in terms of ACC, NMI and Purity, it exceeds APMC, HCP-IMSC and APMC by 4.95%, 12.94% and 4.95%,
respectively. On Wikifea with PID = 20%, it exceeds HCLS-CGL, IMVTSC-MVI and HCLS-CGL by 2.84%, 2.55%
and 0.66%, respectively. Although receiving some sub-optimal results under certain situations, they are not significantly
lower than the best results and still remain competitive. This indicates that ToRES is capable of producing comparable
results in multiple situations.

22



Towards Resource-friendly, Extensible and Stable Incomplete Multi-view Clustering

4. ToRES consistently outperforms methods IMSC-AGL, IMG, TMBSD, IKMKC, LSIMVC, BGIMVSC, APADC, etc,
which is mainly due to the facts that it can deeply mine multi-view representation by jointly utilizing two types of
prototypes, and that it can well preserve the diversity information of original samples by directly learning discrete
cluster labels from incomplete data. Comparison algorithms like IMSC-AGL, IMG and LSIMVC are with at least three
hyper-parameters, and however even with the assistance of so many hyper-parameters, they still can not defeat us in
terms of any one metric, which once again highlights the superiorities of our proposed ToRES.

K. Additional Ablation Studies
K.1. Ablation for Optimizable Prototypes

Besides being able to generate prototypes through learning, we also can utilize heuristic sampling schemes to generate
prototypes. The difference is that the prototype generation process of heuristic schemes is finished before optimizing other
variables. That is, the prototype generation process of heuristic schemes and the subsequent variable optimization process
are separated from each other. By contrast, our optimizable prototype strategy enables prototypes and other variables to
communicate so as to move towards a mutually reinforcing direction. To highlight its advantages, we conduct four group
comparison experiments, as shown in Fig. (5), where “EmEF”, “EmF” and “EF” represent the clustering results acquired
based on finished Em and E (i.e., finished view-wise prototypes and finished cross-view prototypes), finished Em (i.e.,
finished view-wise prototypes), finished E (i.e., finished cross-wise prototypes), respectively. “Ours” is the results based on
optimizable view-wise prototypes and optimizable cross-view prototypes. As seen, we receive the best clustering results in
most cases, which demonstrates that the optimizable prototypes are more desirable.

K.2. Ablation for the Strategy of Directly Learning Discrete Cluster Labels

Current IMVC methods usually adopt a two-step strategy to generate the cluster labels, that is, first forming the spectral
embedding and then executing the spectral partitioning operation on it. We hold that this two-step strategy is not very
recommendable since the final labels are heavily dependent on the quality of formed spectral embedding. Unlike them, we
directly optimize the discrete labels from incomplete data. This allows the final results to directly come from the original
samples, not only well maintaining the diversity information of multi-view data, but also making the clustering procedure
and variable optimization procedure able to negotiate with each other to enhance mutually. To verify this point, we carry out
some ablation studies, and present the results in Table 6. It can be seen that in addition to enjoying zero-variance, the mean
of our clustering results is higher in most cases. Also, our time consumption is consistently lower than that of two-step
strategy. These clearly illustrate that the strategy of directly learning discrete cluster labels from incomplete data is effective
and preferable, and that our ToRES is with the ability to generate both stable and superior clustering results.

Table 6. Clustering Result Comparison Between Two-step Strategy and Ours.

Dataset Ablation
Study

20% 40% 60%

ACC NMI Purity Time ACC NMI Purity Time ACC NMI Purity Time

WebKB Two-step 78.50±0.00 18.37±0.00 78.50±0.00 11.68 71.55±0.00 7.92±0.00 78.12±0.00 11.78 70.50±0.00 6.78±0.00 78.12±0.00 11.83
Ours 86.20±0.00 32.61±0.00 86.20±0.00 3.37 85.35±0.00 31.95±0.00 85.35±0.00 3.43 73.83±0.00 4.11±0.00 78.12±0.00 3.39

Wiki Two-step 52.75±1.61 45.46±0.88 56.90±1.42 53.30 48.60±2.60 38.75±1.76 53.31±2.39 54.72 43.74±2.19 31.15±0.93 47.86±1.85 46.93
Ours 56.28±0.00 47.90±0.00 58.86±0.00 1.36 48.95±0.00 41.67±0.00 51.74±0.00 1.36 44.17±0.00 35.63±0.00 47.07±0.00 1.44

AWA10 Two-step 25.97±1.03 10.44±0.35 29.09±0.58 66.22 24.27±0.92 9.72±0.47 28.02±0.76 71.43 21.93±0.80 9.27±0.35 25.41±0.50 71.69
Ours 28.88±0.00 13.25±0.00 30.60±0.00 17.57 26.37±0.00 12.31±0.00 27.76±0.00 29.19 24.63±0.00 9.41±0.00 26.16±0.00 31.86

SUNRGBD Two-step 17.47±0.56 22.30±0.24 35.86±0.41 516.95 16.77±0.40 19.85±0.21 33.04±0.31 481.63 16.96±0.42 18.38±0.21 31.51±0.32 511.87
Ours 20.93±0.00 25.73±0.00 37.16±0.00 46.13 19.82±0.00 23.87±0.00 35.94±0.00 76.13 19.75±0.00 20.98±0.00 32.31±0.00 76.62

AwAfea Two-step 8.94±0.14 10.09±0.19 10.39±0.19 803.32 8.85±0.08 10.01±0.11 11.06±0.10 768.91 8.61±0.27 9.54±0.26 10.50±0.28 728.40
Ours 8.96±0.00 11.17±0.00 10.29±0.00 238.92 8.72±0.00 10.62±0.00 10.43±0.00 230.98 8.62±0.00 10.33±0.00 10.21±0.00 234.21

L. Single-view Effectiveness and Performance Comparison
Sometimes we may encounter some datasets with only one view. Previously, we mainly concentrate on multi-view datasets.
When facing single-view data, how is the performance of the algorithm? To this end, we conduct clustering on one view
of the early-mentioned dataset. Table 7 reports the single-view clustering results. It is easy to find that methods APMC,
IMG, IMVTSC-MVI, CPM-Nets, GSRIMC, COMPLETER, ProImp and APADC are incapable of coping with single-view
data. Although IMSC-AGL, AWP, TMBSD, IKMKC, LSIMVC, TCIMC, LRGR-IMVC, NGSP-CGL and HCP-IMSC can
normally execute, they typically generate sub-optimal results. By comparison, in addition to running properly on single-view
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Figure 5. Ablation study for optimizable Em and E.
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data, we are also able to outperform the strong competitors in most cases. These results well reveal that our ToRES not only
is applicable for handling single-view data, but also can provide relatively superior clustering results.

Table 7. Clustering Result Comparison on Single-view Data.
Methods 20% 40% 60%

WebKB Wikifea AWA-10 SUNRGB-D AwAfea WebKB Wikifea AWA-10 SUNRGB-D AwAfea WebKB Wikifea AWA-10 SUNRGB-D AwAfea

IMSC-AGL 73.93±0.00 26.47±1.04 16.31±0.28 7.22±0.23 \ 71.46±0.00 22.07±1.19 15.78±0.66 6.78±0.27 \ 68.32±0.00 20.83±1.65 15.78±0.66 6.30±0.19 \
AWP 69.17±0.00 51.88±0.00 18.99±0.00 6.90±0.00 3.41±0.00 73.74±0.00 48.39±0.00 17.58±0.00 9.58±0.00 4.02±0.00 70.78±0.00 27.50±1.02 14.23±0.00 5.86±0.00 5.13±0.00

APMC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IMG \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

TMBSD 61.77±0.85 39.84±0.61 13.65±0.07 7.28±0.09 \ 61.23±0.13 33.59±0.79 13.36±0.01 7.93±0.06 \ 58.15±0.00 28.34±0.99 13.36±0.01 9.04±0.02 \
IKMKC 72.31±0.00 52.69±0.81 19.31±0.53 10.23±0.25 \ 68.51±0.00 50.27±1.32 17.42±0.02 9.70±0.30 \ 68.51±0.00 45.12±0.02 16.74±0.27 9.35±0.26 \

IMVTSC-MVI \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CPM-Nets \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
LSIMVC 74.50±0.00 36.11±0.00 18.38±0.07 9.99±0.25 \ 68.41±0.00 33.81±0.00 17.87±0.08 10.21±0.20 \ 64.03±0.00 30.57±0.00 18.44±0.03 10.34±0.25 \
GSRIMC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

COMPLETER \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
TCIMC 78.02±0.00 12.82±0.36 19.16±0.02 \ \ 78.02±0.00 13.53±0.36 15.09±0.21 \ \ 78.02±0.00 13.24±0.23 18.17±0.01 \ \

LRGR-IMVC 77.64±0.00 52.11±0.15 19.32±0.16 10.67±0.16 \ 77.64±0.00 47.49±0.00 18.53±0.05 10.95±0.19 \ 77.64±0.00 39.01±0.01 18.04±0.03 10.91±0.11 \
BGIMVSC 77.93±0.00 37.44±1.00 19.15±0.05 11.51±0.36 \ 77.93±0.00 35.39±1.22 18.75±0.05 11.44±0.70 \ 77.74±0.00 32.39±1.24 18.11±0.07 11.23±0.45 \
NGSP-CGL 77.16±0.00 37.89±2.38 18.84±0.40 10.89±0.23 6.26±0.06 76.88±0.00 34.23±1.94 18.28±0.31 11.25±0.22 5.96±0.05 76.88±0.00 32.79±1.66 17.79±0.36 10.66±0.65 5.72±0.06

PIMVC 76.74±1.56 54.39±0.03 19.90±0.06 10.26±0.40 \ 76.23±1.23 51.12±0.00 18.18±0.03 10.16±0.20 \ 75.21±1.02 45.54±0.02 18.56±0.42 10.50±0.28 \
ProImp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

HCP-IMSC 78.02±0.00 49.28±0.04 17.40±0.10 11.14±0.27 \ 78.02±0.00 47.33±0.98 16.63±0.03 10.97±0.29 \ 78.02±0.00 41.97±0.70 17.86±0.14 11.05±0.27 \
APADC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

HCLS-CGL 77.16±0.00 35.13±0.05 19.28±0.00 11.59±0.28 \ 76.97±0.00 29.10±0.00 18.59±0.00 11.33±0.13 \ 79.59±0.00 28.87±0.02 18.33±0.00 10.98±0.21 \
Ours 80.69±0.00 55.13±0.00 19.97±0.00 10.45±0.00 6.63±0.00 80.11±0.00 48.43±0.00 18.78±0.00 10.91±0.00 6.24±0.00 79.64±0.00 46.16±0.00 18.89±0.00 10.94±0.00 5.79±0.00

M. Effectiveness in Extracting Multi-view Information
Multi-view datasets typically contain more diverse information than single-view datasets. To demonstrate that ToRES can
effectively extract the information from multiple views for better clustering, we cluster each view separately, and compare
the results of each individual view with the results obtained from multiple views, as presented in Table 8, where “V1”
represents the clustering results on view 1, and “MV” represents the results acquired from multiple views. Similar meanings
are for “V2” ∼ “V6”. From Table 8, we can observe that the generated multi-view results are superior to single-view results
in most cases. This well illustrates the effectiveness of the proposed ToRES in extracting information from multiple views.

Table 8. Effectiveness of ToRES in Extracting Multi-view Information.

Dataset Webkb Wikifea AWA10

V1 V2 MV V1 V2 MV V1 V2 V3 V4 V5 V6 MV

20% 62.51 80.69 86.20 17.10 55.13 56.28 18.21 19.97 19.09 21.60 20.92 23.63 28.88
40% 61.18 80.11 85.35 16.15 48.43 48.95 18.06 18.78 19.07 20.16 19.66 25.73 26.37
60% 57.09 79.64 73.83 16.05 46.16 44.17 18.64 18.89 20.67 20.66 19.93 23.15 24.63

SUNRGB-D EMNIST AwAfea

V1 V2 MV V1 V2 MV V1 V2 V3 V4 V5 V6 MV

20% 17.03 10.45 20.93 35.41 42.80 47.18 6.34 6.63 6.61 7.79 6.74 8.26 8.96
40% 16.65 10.91 19.82 35.85 39.71 43.23 6.15 6.24 6.46 7.26 6.27 7.81 8.72
60% 16.07 10.94 19.75 31.54 35.89 45.22 5.82 5.79 5.98 6.82 6.31 7.44 8.62

N. Convergence
In this section, we conduct convergence analysis on the proposed ToRES from theoretical and experimental perspectives
respectively.

Denote the objective of Eq. (3) as F
(
{Gm}Mm=1,E,O,L, {Em}Mm=1

)
, the solutions at the k-th iteration as {G(k)

m }Mm=1,
E(k), O(k), L(k), {E(k)

m }Mm=1. When optimizing O, based on the given {G(k)
m }Mm=1, E(k), L(k) and {E(k)

m }Mm=1, the
solution O(k+1) at the (k + 1)-th iteration can be obtained by Algorithm 1 or Algorithm 2. Thus, we always have

F
(
{G(k)

m }Mm=1,E
(k),O(k+1),L(k), {E(k)

m }Mm=1

)
≤ F

(
{G(k)

m }Mm=1,E
(k),O(k),L(k), {E(k)

m }Mm=1

)
. (62)

When optimizing L, based on the given {G(k)
m }Mm=1, E(k), O(k+1) and {E(k)

m }Mm=1, the solution L(k+1) at the (k + 1)-th
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Figure 6. Convergence Curves.

iteration can be obtained by Eq. (14). Thus, we have

F
(
{G(k)

m }Mm=1,E
(k),O(k+1),L(k+1), {E(k)

m }Mm=1

)
≤ F

(
{G(k)

m }Mm=1,E
(k),O(k+1),L(k), {E(k)

m }Mm=1

)
. (63)

When optimizing each Gm, based on the given E(k), O(k+1), L(k+1) and {E(k)
m }Mm=1, the solution G

(k+1)
m at the (k+1)-th

iteration can be acquired by Eq. (16). Thus, for all {G(k+1)
m }m=1, we have

F
(
{G(k+1)

m }Mm=1,E
(k),O(k+1),L(k+1), {E(k)

m }Mm=1

)
≤ F

(
{G(k)

m }Mm=1,E
(k),O(k+1),L(k+1), {E(k)

m }Mm=1

)
. (64)

When optimizing E, based on the given {G(k+1)
m }Mm=1, O(k+1), L(k+1) and {E(k)

m }Mm=1, the solution E(k+1) at the
(k + 1)-th iteration can be acquired by Eq. (19). Thus, we have

F
(
{G(k+1)

m }Mm=1,E
(k+1),O(k+1),L(k+1), {E(k)

m }Mm=1

)
≤ F

(
{G(k+1)

m }Mm=1,E
(k),O(k+1),L(k+1), {E(k)

m }Mm=1

)
.

(65)
When optimizing each Em, based on the given {G(k+1)

m }Mm=1, E(k+1), O(k+1) and L(k+1), the solution E
(k+1)
m at the

(k + 1)-th iteration can be acquired by Eq. (21). Thus, for all {E(k+1)
m }Mm=1, we have

F
(
{G(k+1)

m }Mm=1,E
(k+1),O(k+1),L(k+1), {E(k+1)

m }Mm=1

)
≤ F

(
{G(k+1)

m }Mm=1,E
(k+1),O(k+1),L(k+1), {E(k)

m }Mm=1

)
.

(66)
Combined with Eqs. (62), (63), (64), (65) and (66), we can get that

F
(
{G(k+1)

m }Mm=1,E
(k+1),O(k+1),L(k+1), {E(k+1)

m }Mm=1

)
≤ F

(
{G(k)

m }Mm=1,E
(k),O(k),L(k), {E(k)

m }Mm=1

)
, (67)

which indicates that during the process of alternatively optimizing {Gm}Mm=1,E,O,L and {Em}Mm=1, the objective in
Eq. (3) is monotonically decreasing. In addition, the objective has the lower bound. According to alternating optimization
theory, our ToRES will be convergent.

Then, to validate its convergence experimentally, we draw the evolution curve of the objective during iterations, as shown
in Fig. (6). It can be seen that the objective value decreases monotonically, and reaches a stable state within about forty
iterations, which well demonstrates the convergence of ToRES.
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