
Bayesian Hypothesis Testing Policy Regularization

Anonymous Author(s)
Affiliation
Address
email

Abstract

In reinforcement learning (RL), sparse feedback makes it difficult to target long-1

term outcomes, often resulting in high-variance policies. Real-world interventions2

instead rely on prior study data, expert input, or short-term proxies to guide explo-3

ration. In this work, we propose Bayesian Hypothesis Testing Policy Regularization4

(BHTPR), a method that integrates a previously-learned policy with a policy learned5

online. BHTPR uses Bayesian hypothesis testing to determine, state by state, when6

to transfer the prior policy and when to rely on online learning.7

Submitted to the First Exploration in AI Today Workshop at ICML (EXAIT at ICML 2025). Do not distribute.

1 Introduction8

In RL settings with sparse or delayed rewards, exploration can be costly or risky—particularly in9

mobile health studies, where outcomes can only be observed infrequently or at the end of the study.10

Excessive exploration can overburden participants, causing disengagement. To reduce variance and11

speed up learning, policies guided by imperfect mediators, proximal outcomes, or previous study data12

can help guide the agent’s exploration. For example, in the mobile health algorithm “HeartSteps”,13

the RL agent targeted a “short-term, measurable behavioral or psychosocial effect through which14

that component is hypothesized to mediate desired distal health outcomes” [3]. We can view these15

proximal outcomes in terms of their induced policy, guiding the agent towards the distal outcome.16

Policy regularization is commonly used in offline RL to reduce the learned policy’s deviation from17

the behavior policy [13]. In this setting, policy regularization reduces bias in the learned policy18

caused by optimism when extrapolating beyond the observed data [4]. In this paper, we instead apply19

policy regularization to online learning with sparse, distal rewards. In this setting, rather than prevent20

optimism, policy regularization guides learning using previous study data.21

In this paper, we introduce Bayesian Hypothesis Testing Policy Regularization (BHTPR), an online22

method using Bayesian hypothesis testing to leverage previous study data. The method allows us to23

utilize this data even when the transition dynamics in the previous study environment differ from24

those in the environment of interest. In BHTPR, the agent selects the action at each timestep from25

either the policy calculated from the previous data or from the policy learned online. The probability26

of acting according to each policy is determined by a Bayesian hypothesis test. Because we do not27

directly combine Q-functions, our method allows combining data even when the outcomes from the28

two environments are on different scales. Furthermore, by falling back on the prior policy in states29

where the transition dynamics match, the agent avoids unnecessary exploration.30

We demonstrate the performance of BHTPR across a range of experiments varying episode length,31

quality of prior data, environment stochasticity, and other factors. BHTPR demonstrates good32

performance both on a simple tabular example and on a more realistic mobile health setting. We33

compare BHTPR to (1) standard epsilon-greedy exploration, and (2) using the previous study data34

as a prior on the transition function. We find that our method performs similarly to or better than35

baselines in variations in the setting and environment and is robust to parameter choices.36

2 Related Works37

Approaches for Sparse, Distal Rewards The problem of pursuing a distal outcome in the face of38

sparse feedback is a core problem of RL that has been addressed by many areas of research. Reward39

design focuses on providing structured signals that guide behavior and accelerate learning [9, 10, 2].40

Reward design is a key challenge for mobile health studies [12]. Reward shaping augments the41

environment’s reward function with additional feedback to guide the agent to learn more quickly42

without altering the optimal policy [6]. Safe RL focuses on problems “in which it is important to43

ensure reasonable system performance and/or respect safety constraints during the learning and/or44

deployment process” [1]. Finally, transfer learning leverages experience gained from similar tasks45

to improve the learning of a novel task [11, 5]. In this work, we modify exploration using external46

knowledge. We build on prior works by using Bayesian hypothesis testing to reflect the inductive47

bias that the external knowledge is correct at some states and incorrect at others.48

Policy Regularization Policy regularization is commonly used to avoid a policy deviating too49

far from its prior version or from a reference policy, improving stability, sample efficiency, and50

generalization. In offline settings, policy regularization ensures the learned policy does not deviate51

far from the behavior policy, reducing extrapolation error [13]. In online settings, methods such as52

Trust Region Policy Optimization (TRPO) constrain successive policy updates using KL divergence53

penalties[8]. Our method can be viewed as policy regularization, as it constrains the learned policy54

to use a policy derived from prior study data in certain states. Furthermore, it can be framed within55

BRAC, as discussed in Sec. 6.56

Bayesian Hypothesis Testing We are aware of one other work that explicitly incorporates Bayesian57

hypothesis testing (BHT) into an RL algorithm. Zhang et al. [14] uses BHT to interpolate between58

MDP and bandit algorithms when the true nature of the environment is not known. In contrast, our59

2

method assumes that the true environment is an MDP and the role of BHT is to learn the states in60

which the given policy is correct.61

3 Methods62

3.1 Setting and Notation63

We consider an episodic Markov decision process (MDP) setting with, with states s ∈ S , actions64

a ∈ A , reward function R(s, a) and transition function T (s, a, ·). In the experiments below, we65

assume R(s, a) is known. We define D to be the transition data collected online. We use this data66

and the reward function to learn a policy π and an MLE transition matrix T̂ . We define Dprior67

as the transition data collected from some prior study. We compute the optimal policy based on68

this transition data and the know reward function R(s, a), and call this policy πprior. We compute69

T̂prior as the MLE transition matrix using Dprior. The transition function generated from Dprior70

may match that of the new environment or it may differ in certain states. Consequently, we aim to71

rapidly differentiate between states where πprior can be utilized and states where a new policy must72

be learned online.73

3.2 Algorithm Definition74

BHTPR learns weights w(s) that reflects the agent’s belief about whether the transition dynamics in75

the current environment match those from the prior study in each state s. Then w(s) is used within76

the algorithm to decide whether to select an action in state s according to π (the policy being learned77

online) or πprior (the policy computed from the prior study data).78

3.2.1 Update rule for w(s) using Bayesian hypothesis testing79

BHTPR assumes access to data Dprior that comes from an environment with the same state space, but80

potentially different transition dynamics in some states. In order to differentiate between the states in81

which the transition dynamics are the same and those that differ, BHTPR learns a state-specific weight82

w(s) ∈ [0, 1] that represents the probability that the transition dynamics in the current environment83

match those implied by the prior data. This is formalized via Bayesian hypothesis testing, which84

updates w(s) as more transition data are collected.85

In each state, we test the null hypothesis that transitions match the prior environment against the86

alternative hypothesis that they do not. Using observed transition data, we update w(s) to reflect the87

posterior probability that the prior model is correct in that state. We use Bayes’ rule to compute this88

posterior probability, based on the likelihood of transition data under the prior and learned models.89

The update equation and further details are provided in Appx. A.90

3.2.2 BHTPR Algorithm: Using w(s) to choose between policies91

At every step of episode e, the online algorithm chooses the policy from which to select its action92

based on a draw from a Bernoulli trial, where the probability of acting according to πprior(s) is93

we(s). If the resulting value b ∼ Bernoulli(we(s)) equals 1, the agent selects its action based on94

πprior(s), otherwise it selects an action from the current learned policy π(s). Hence the agent takes95

actions based on the previous study data in proportion to the probability that the observed data was96

generated from the previous study transition function. This procedure is detailed in Algorithm 1.97

3

Algorithm 1 Bayesian hypothesis testing policy regularization

1: Input: Previous study data Dprior

2: Calculate T̂prior, πprior using Dprior; Initialize T̂ (s, a, ·), weight w0(s), policy π
3: for each episode e do:
4: Initialize episode data De(s) = {}∀s
5: Initialize state s from starting state distribution
6: while s not terminal do
7: Draw b ∼ Bernoulli(we(s))
8: if b = 1 then
9: Choose action a ∼ πprior(s)

10: else if b = 0 then
11: Choose action a epsilon-greedily from π(s)
12: end if
13: Take action a. Observe next state s′. Update data De(s) = De(s) ∪ (s, a, s′).
14: Update T̂ , π
15: s← s′

16: end while
17: Update w using Bayesian hypothesis testing (Eq. 1)
18: end for

4 Experiments98

We demonstrate the ability of BHTPR to leverage previous study data to speed up learning in settings99

with sparse, distal rewards. We show how the algorithm can outperform a standard epsilon-greedy100

approach as well as an epsilon-greedy approach using the previous study data directly as a Dirichlet101

prior on the transition function. Additional experimental details are in Appx. C.102

4.1 Environments103

We illustrate the performance of BHTPR on experiments using two environments. The first is a grid104

in which an agent must navigate from one corner to the opposite corner. This simple example allows105

us to manipulate different aspects of the environment and observe the effect on the performance of106

BHTPR. The second environment is the “Chainworld” from Nofshin et al. [7]. This reflects a realistic107

depiction of the challenges faced in a mobile health setting.108

Gridworld The state space of this environment is a 7x7 grid with four actions (up/down/left/right).109

The agent starts at the lower-left of the grid and the episode concludes when either the agent reaches110

the upper-right corner or after a fixed number of steps. The agent receives a reward of -1 per step111

until reaching the goal. When the agent reaches the goal, it receives a reward of 100 and the episode112

terminates. This is depicted in Fig. 4a in Appx. B.113

Chainworld A more realistic mobile health example, the “Chainworld” from Nofshin et al. [7],114

applies behavioral science literature to model human-AI interaction when an AI assists a human in115

a frictionful task such as adhering to a physical therapy program. Both the human and the AI are116

represented by the MDPs, where the AI MDP’s actions affect the human’s MDP. The human MDP117

represents progress towards the goal and the AI’s MDP uses the human’s MDP state and action as its118

state space. Further details are in Appx. B.119

5 Results120

As we discuss below, BHTPR has good performance across variations in the gridworld and chainworld121

environments. In the chainworld, the results are greatly shaped by the presence of the absorbing state.122

5.1 Impact of an Absorbing State on Exploration123

The main element distinguishing the chainworld environment is the consequence of exploration. In124

contrast to the gridworld, where unnecessary exploration increases the number of steps to reach the125

4

goal, exploration in the chainworld can result in disengagement after which the agent can never reach126

the goal state. Hence exploration is incredibly costly and the best algorithm in this environment is127

one that minimizes unnecessary exploration. BHTPR can reduce exploration because, once the agent128

has learned that πprox is correct, it can stop exploring in that state. In terms of Algorithm 1, this129

means acting epsilon-greedily only if b = 0 (acting according to the policy π learned online, line 11)130

and not exploring when acting according to πprior (line 9).131

Fig. 5 in Appx. D highlights the impact of exploration on the performance of BHTPR and the132

baselines in the chainworld. In the right column, equal exploration is enforced for all methods. Here133

BHTPR performs similarly to the prior on T . This holds in both the case when there is a large134

negative reward for disengagement (bottom row) and when there is not (top row). Epsilon-greedy is135

slower to learn without the large disengagement reward but performs similarly to the other two in the136

presence of a large disengagement reward. In contrast, when BHTPR is not forced to explore equally137

with the baselines, it outperforms the baselines, as seen in the left column of Fig. 5.138

For the sake of comparison between methods, in the gridworld example, we fix the amount of139

exploration to be equal across BHTPR and the baselines. In the chainworld examples, however, since140

performance is driven by exploration, BHTPR is implemented in the results that follow with unequal141

exploration in the chainworld environment (i.e. No exploration when b = 1.).142

5.2 BHTPR can learn over short episodes.143

G
ri

dw
or

ld

(a) 150-step episodes (b) 100-step episodes (c) 50-step episodes

C
ha

in
w

or
ld

(d) 50-step episodes (e) 30-step episodes (f) 20-step episodes

Figure 1: Episode length. BHTPR learns in gridworld even with short episodes, unlike the baselines.
In chainworld, episode length has limited effect due to disengagement.

Gridworld By incorporating correct actions learned from the previous study data, BHTPR is able144

to learn over short episodes. This is the case even when episodes are too short for the baselines to145

learn. Fig. 1 illustrates the performance of our method compared to the baselines in environments146

of different episode lengths. In the gridworld, all three methods are able to learn when the episodes147

are sufficiently long (Fig. 1a), however, when the episodes are short (Fig. 1c), the epsilon-greedy148

agent cannot learn at all and epsilon-greedy agent with the prior study data as a prior on T learns149

5

very slowly. BHTPR is able to learn with a greatly reduced number of steps per episode compared to150

standard epsilon-greedy learning because it quickly learns the states in which πprior is the correct151

policy and does not have to spend as many steps in the episode taking incorrect actions.1 To confirm152

this intuition, see Fig. 6 in Appx. D. Here, we mix actions from the true optimal policy with the153

learned policy for a range of fixed percentages (25, 50, and 75 percent). The figure shows that as the154

proportion of correct actions increases, the performance approaches that of BHTPR, demonstrating155

that the reason our method can learn with fewer episode steps is due to incorporating correct actions.156

Chainworld In contrast to the gridworld, the chainworld’s absorbing state limits the impact of the157

number of episode steps on the performance of each method. This is illustrated in Fig. 1(d-f), where158

we see little impact of the change in maximum steps per episode across the plots in the row. Once the159

disengagement state is reached, no further learning is possible, even if the agent has not reached the160

maximum number of steps in the episode.161

5.3 BHTPR performs well regardless of the correctness of the prior data.162

When prior study data are used to form the policy for a new study, this policy will often be incorrect163

in certain regions of the state space, for example because the new study is performed on a population164

that differs from that of the previous study. Since we do not know the number or identity of these165

states, BHTPR must perform well regardless of the number of states for which the prior study data166

are incorrect for the new setting. In Fig. 2, we vary the size of the region in which the previous study167

data matches the current environment. For the states in which the data are corrupted, the environment168

for the prior study data is randomly generated by selecting the next state for the transition function169

uniformly at random. In the first column (Figs. 2a and 2d), Dprior matches the environment perfectly,170

whereas in the next two columns, the prior study data’s environment is increasingly different from the171

target environment. In the gridworld examples, when the prior study data is perfect, using it directly172

as a prior on the transition function performs best, however BHTPR is very close in performance,173

greatly outperforming the epsilon-greedy strategy. Note that this is not reflected in the chainworld174

example (Fig. 2d) because we do not fix exploration to be equal across methods. Hence, BHTPR175

performs better even when the data is perfect because of the lower amount of exploration, otherwise176

the baseline in which the previous study data serves as a prior would be favored in this case as well.177

This highlights how much exploration is driving the performance in the chainworld. When the data178

are partially correct, our method outperforms the two baselines. Note, however, that with greater179

regions of incorrect data, the exploration parameter needs to be decayed more slowly otherwise180

BHTPR will fail to learn the optimal policy.181

The performance of BHTPR across the range of data corruption schemes shown here is related to our182

inductive bias that the data are either entirely correct or entirely wrong in each state. In contrast, in a183

setting where there is a distribution shift between the prior study environment and the environment of184

interest, we would expect the baseline in which the previous study data forms a prior to perform well.185

We confirm this intuition in Fig. 12. In these experiments, we generate an incorrect transition function186

in the corrupted states by drawing a next state uniformly at random, as before, but then instead of187

using this transition function directly, we mix the incorrect and correct transition functions together188

in a range of proportions to create a distribution shift between the previous study environment and189

the new environment. When the prior is close to the target environment (Fig. 12a), the Bayesian prior190

baseline performs slightly better; as the mismatch increases, BHTPR outperforms.191

5.4 BHTPR performs well in environments of varying levels of stochasticity.192

Varying the stochasticity of the gridworld environment, the relative performance of BHTPR is greater193

in a more deterministic environment, as demonstrated in Fig. 3. This behavior reflects the setup of194

experiments where the amount of prior study data is fixed across examples, so the maximum prior195

magnitude Tprior(s, a, ·) is highest for more deterministic environments. To confirm this, we fix the196

distribution of prior Tprior(s, a, ·), but vary the magnitude in Fig. 7 (Appx. D). Given the correct197

prior magnitude, the baseline Bayesian method can outperform; however, our method avoids this198

parameter tuning and, as demonstrated in the next section, is robust across initializations of w(s).199

1Exploration is equalized across methods in the Gridworld example, however fewer wrong actions are still
taken by BHTPR because in the states πprior is correct, the agent rapidly learns to use this. The baselines take
more incorrect actions while learning the policy online.

6

G
ri

dw
or

ld

(a) Prior environment matches
current (all states).

(b) Prior incorrect if x or y >
4.

(c) Prior incorrect if x or y >
2.

C
ha

in
w

or
ld

(d) Prior environment
matches current (all states).

(e) Prior incorrect for states
≥ 14.

(f) Prior incorrect for states ≥
8.

Figure 2: Correctness of prior study data. BHTPR performs best when prior and current environ-
ments match (a,d), but still outperforms or matches baselines when prior data are partially incorrect.

In the chainworld environment, BHTPR performs well across variations in the human’s probability of200

moving, but all methods perform best in the deterministic environment. In the leftmost panel of Fig. 3,201

the human moves with 100% probability if they take an action, and this probability decreases from202

left to right. This results in the probability of the human disengaging if they take action 0 decreasing203

from left to right (d-f). Moving from plot (d) to (e) to (f), the agent will encounter the disengagement204

state less frequently and consequently receive less feedback about the possibility of disengagement205

when taking action 0. This makes it harder for the agent to learn from random exploration, and206

consequently the benefit of injecting outside information is particularly strong in this case.207

7

G
ri

dw
or

ld

(a) Deterministic transitions. (b) 50% random transitions. (c) 75% random transitions.

C
ha

in
w

or
ld

(d) 100% prob. of move. (e) 75% prob. of move. (f) 50% prob. of move.

Figure 3: Stochasticity. In gridworld, BHTPR’s advantage is largest in deterministic environments.
In chainworld, all methods perform better when the human behaves deterministically.

6 Discussion208

Connection to other policy regularization methods As discussed in Sec. 2, BHTPR can be viewed209

as a form of policy regularization. Wu et al. [13] define a framework, BRAC, to describe different210

methods of policy regularization for off-policy RL, and we can view BHTPR as an instance of this211

framework. BRAC describes policy regularization methods in terms of a penalty on the Q-value212

objective and/or the policy objective based on how the learned policy diverges from the behavior213

policy, encouraging similarity between the learned and behavior policies. Similarly, our method214

also encourages the learned policy to be more similar to πprior, the policy learned from the data of215

the previous study. Bayesian hypothesis testing provides a principled way to set the strength of the216

penalty– here the probability of acting according to πprox.217

Limitations The main limitation of this method is that it is currently framed in a tabular setting.218

While it would be easy to use a weight w(s) to interpolate between learned and prior policies where219

both are defined in a continuous state/action setting, extending the calculation for w itself to a function220

approximation setting requires further work. We also note that compared to the baselines methods,221

BHTPR introduces additional computational overhead in terms of updating weight w(s) for all states222

after each episode. Finally, BHTPR does not account for the transfer of policies between settings223

where the state spaces are not identical.224

7 Conclusion225

Learning in a setting with sparse, distal rewards– a situation commonly encountered in mobile226

health– provides unique challenges. Policies crafted from previous study data or by experts can guide227

exploration, leading the agent to learn more quickly. Our method uses Bayesian hypothesis testing to228

incorporate prior study data in a principled way and speeds up learning across a range of settings.229

8

References230

[1] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.231

Journal of Machine Learning Research, 16(1):1437–1480, 2015.232

[2] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse233

reward design. Advances in neural information processing systems, 30, 2017.234

[3] Predrag Klasnja, Shawna Smith, Nicholas J Seewald, Andy Lee, Kelly Hall, Brook Luers,235

Eric B Hekler, and Susan A Murphy. Efficacy of contextually tailored suggestions for physical236

activity: a micro-randomized optimization trial of heartsteps. Annals of Behavioral Medicine,237

53(6):573–582, 2019.238

[4] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning239

for offline reinforcement learning. Advances in neural information processing systems, 33:240

1179–1191, 2020.241

[5] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Rein-242

forcement Learning: State-of-the-Art, pages 143–173. Springer, 2012.243

[6] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transforma-244

tions: Theory and application to reward shaping. In Icml, volume 99, pages 278–287. Citeseer,245

1999.246

[7] Eura Nofshin, Siddharth Swaroop, Weiwei Pan, Susan Murphy, and Finale Doshi-Velez. Rein-247

forcement learning interventions on boundedly rational human agents in frictionful tasks. In248

Proceedings of the... International Joint Conference on Autonomous Agents and Multiagent Sys-249

tems: AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems,250

volume 2024, page 1482, 2024.251

[8] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust252

region policy optimization. In International conference on machine learning, pages 1889–1897.253

PMLR, 2015.254

[9] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In255

Proceedings of the annual conference of the cognitive science society, pages 2601–2606.256

Cognitive Science Society, 2009.257

[10] Henry Sowerby, Zhiyuan Zhou, and Michael L Littman. Designing rewards for fast learning.258

arXiv preprint arXiv:2205.15400, 2022.259

[11] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A260

survey. Journal of Machine Learning Research, 10(7), 2009.261

[12] Anna L Trella, Kelly W Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez, and262

Susan A Murphy. Reward design for an online reinforcement learning algorithm supporting263

oral self-care. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,264

pages 15724–15730, 2023.265

[13] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement266

learning. arXiv preprint arXiv:1911.11361, 2019.267

[14] Kelly W Zhang, Omer Gottesman, and Finale Doshi-Velez. A bayesian approach to learning268

bandit structure in markov decision processes. arXiv preprint arXiv:2208.00250, 2022.269

A Bayesian Hypothesis Testing Details270

w(s) represents the posterior probability that the observed transition data was generated by T̂prior,271

the current estimate of Tprior as opposed to T̂ . We formalize this idea using Bayesian hypothesis272

testing, with null an alternative hypotheses defined as follows.273

9

Null hypothesis, H0 The transition data collected online was generated by the transition function274

implied by the prior study data, i.e. T (s, a, ·) = Tprior(s, a, ·) for all actions a ∈ A in a given state275

s.276

Alternative hypothesis, H1 The transition data collected online was not generated by the transition277

function implied by the prior study data; therefore, we calculate the likelihood of the transition data278

under the transition function being learned online.279

Per-episode update for w(s) Using the null and alternative hypotheses above, we set w(s) equal to280

the posterior probability of the null hypothesis, i.e. the probability that the prior study data is correct281

in state s.282

P (H0|D) =
P (D |H0)P (H0)

P (D)
=

P (D |H0)P (H0)

P (D |H0)P (H0) + P (D |H1)P (H1)

Letting the initial weight w0(s) be the initial P (H0), we calculate the likelihood of the data using the283

transition function calculated from the prior data, T̂prior, and the transition function learned online,284

T̂ . Then after every episode e the weight we(s) is updated accdoring to Eq. 1. Let De(s) be the set285

of all transition data {(s, a, s′)} collected in episode e starting from state s.286

we+1(s) =

[Π(s,a,s′)∈De(s)Tprior(s, a, s
′)]︸ ︷︷ ︸

likelihood of data under H0

we(s)︸ ︷︷ ︸
P (H0)

[Π(s,a,s′)∈De(s)Tprior(s, a, s
′)]︸ ︷︷ ︸

likelihood of data under H0

we(s)︸ ︷︷ ︸
P (H0)

+ [Π(s,a,s′)∈De(s)T (s, a, s
′)]︸ ︷︷ ︸

likelihood of data under H1

(1− we(s))︸ ︷︷ ︸
P (H1)

(1)

If we further assume that there are regions of the state space in which the current environment matches287

the prior study environment and others in which it does not, we can improve upon this method by288

applying smoothing to values of we(s) across steps in each episode so that states that are close289

together have similar weights. In the examples that follow, we apply an exponential moving average290

over weights at each timestep of an episode.291

B Environment Details292

B.1 Environment Visualizations293

(a) Gridworld MDP described in Sec. 4.1
(b) Human MDP from the Chainworld environ-
ment. Image from Nofshin et al. [7].

Figure 4: Two environments used in Sec. 4

10

B.2 Chainworld Additional Details294

The human is modeled by MDP Mh =< Sh, Ah, Th, Rh, γh >, representing progress towards the295

task goal. Each state reflects the amount of progress the human has made towards that goal. If the296

human takes action 0 (Fig. 4b(a)), they may stay in the same state, lose progress towards the goal297

(move back one state), or disengage (enter state sd). If instead they take action 1 (Fig. 4b(b)), they298

will either remain in the same state or progress one state closer to the goal. The human takes the299

optimal action according to their MDP. If the human disengages, they cannot re-engage.300

The AI is represented by MDP MAI =< SAI , AAI , TAI , RAI , γAI >. 2 The AI assists the human,301

who is a myopic decision-maker (low γh), at reaching the goal state. To achieve this goal, the AI302

has two possible actions. It can send an intervention that temporarily increases γh (action 1) or do303

nothing (action 0). Its two-dimensional state space is represented by SAI = [sh, ah], the human’s304

state and previous action.305

In the experiments below, we consider the AI agent’s MDP. Parameters for the human and AI MDPs306

were chosen such that the agent can reach the goal (i.e. the right combination of agent actions can307

lead the human to the goal), and such that TAI differs for the AI’s two actions (e.g. if the human is308

not sufficiently myopic, he will take action 1 regardless of AI interaction and BHTPR will have no309

impact). The environment has 10 human states. Please see Nofshin et al. [7] for more details on the310

MDP construction.311

One natural way to construct a reward function in the presence of an undesirable absorbing state is312

with a large negative reward in this state. In this case, the agent receives the large negative reward313

upon encountering the absorbing state and correctly learns to avoid taking that action again in the314

given state. Consequently, simple epsilon-greedy methods can learn in this setting. Since immediate315

feedback is available in the form of a large negative reward every time the agent encounters the316

disengagement state, this implementation of the chainworld does not represent a sparse, distal reward317

unless the action probabilities are set such that the disengagement state is not frequently encountered.318

To reflect a sparse rewards environment that we are primarily concerned with, results below do not319

use a reward function with a large negative reward in the absorbing state (instead R(s, a) = −1 in320

the absorbing state, as in all other states), however results for this variation are available in Appx. E.321

C Experiment Details322

In the experiments, we vary the following elements: stochasticity of the transitions, correctness of323

the prior study data, and the maximum number of steps per episode. By default in the gridworld,324

unless otherwise stated, the previous study data are correct for states in which the x and y coordinates325

are less than 5 (illustrated in green in Fig. 4a), and the maximum episode length is 150 steps. In the326

chainworld examples, previous study data are correct for states numbered less than or equal to 13 and327

the maximum episode length is 50. In both, the weights w0(s) in the algorithm are initialized to 0.5328

for all states and transitions are deterministic by default.329

2Our algorithm considers an episodic setting where γAI = 1.

11

D Additional Results330

Unequal Exploration Equal Exploration

N
o

D
is

en
ga

ge
m

en
tR

ew
ar

d

(a) (b)

L
ar

ge
N

eg
at

iv
e

D
is

en
ga

ge
m

en
tR

ew
ar

d

(c) (d)

Figure 5: Effect of varying disengagement reward and exploration in the chainworld environment.

12

Figure 6: As the percentage of optimal actions mixed with an epsilon-greedy increases, performance
approaches BHTPR. Plot from Grid MDP environment, previous study data matches current environ-
ment in all states.

Figure 7: Using the previous study data as a prior on T can outperform BHTPR for the correct mag-
nitude of prior, however BHTRP avoids tuning the magnitude of the prior. Grid MDP environment.

BHTPR is robust to a wide range of initial values for w0(s) (Fig. 8), though performance can improve331

slightly with expert-informed initializations.332

13

Figure 8: Comparison of initializations for algorithm parameter w(s) in the Grid MDP.

E Chainworld results with alternative reward function.333

The plots below reflect the same set up as in the body of the paper, but with a large, negative334

disengagement reward. As discussed in Sec. 4.1, a large negative reward in the disengagement state335

speeds up learning, especially for the epsilon-greedy baseline.336

(a) Chainworld, 50-step episodes (b) Chainworld, 30-step episodes (c) Chainworld, 20-step episodes

Figure 9: Episode length. In the chainworld, maximum episode length does not have a large effect
on performance.

14

(a) Chainworld, perfect prior
study data

(b) Chainworld, prior study data
incorrect for states ≥ 14

(c) Chainworld, prior study data
incorrect for states ≥ 8

Figure 10: Correctness of prior study data. Consistent with the reward function described in the
body of the paper, BHTPR performs best when the prior study data matches the current environment
(a), but also outperforms or matches baselines when the data does not match the environment of
interest in all states.

(a) Second row plot 1 (b) Second row plot 2 (c) Second row plot 3

Figure 11: Stochasticity Results are similar across levels of stochasticity, with BHTPR performing
well in all cases.

(a) 75% correct 25% in-
correct.

(b) 50% correct 50% in-
correct.

(c) 25% correct 75% in-
correct.

(d) 0% correct 100% in-
correct.

Figure 12: Distribution shift When the states with corrupted data have a transition distribution that
is close to correct, using the data as a prior on T (s, a, ·) performs best, however when the data are
entirely right or wrong, our method outperforms. Plots from Grid MDP environment.

15

	Introduction
	Related Works
	Methods
	Setting and Notation
	Algorithm Definition
	Update rule for w(s) using Bayesian hypothesis testing
	BHTPR Algorithm: Using w(s) to choose between policies

	Experiments
	Environments

	Results
	Impact of an Absorbing State on Exploration
	BHTPR can learn over short episodes.
	BHTPR performs well regardless of the correctness of the prior data.
	BHTPR performs well in environments of varying levels of stochasticity.

	Discussion
	Conclusion
	Bayesian Hypothesis Testing Details
	Environment Details
	Environment Visualizations
	Chainworld Additional Details

	Experiment Details
	Additional Results
	Chainworld results with alternative reward function.

