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ABSTRACT

Text-motion retrieval (TMR) is a significant cross-modal task that
retrieves motion sequences semantically similar to a given query
text. Existing TMR methods primarily utilize single embeddings to
represent and align text and motion sequences. However, real-world
motion sequences typically contain multiple atomic motions with
complex semantics, which is hard to precisely capture by single
embeddings. Additionally, the common co-occurring and coupling
of atomic motions further post significant challenges in effective
modeling and aligning text and motion sequences. In this paper,
we regard TMR as a Multi-Instance Multi-Label (MIML) learning
problem, where the motion sequence is viewed as a bag of atomic
motions and the text is the bag of corresponding phrases. To ad-
dress the MIML problem, we propose a novel Multi-Granularity
Semantics Interaction (MGSI) approach, which effectively captures
and aligns the semantics of text and motion sequences across var-
ious levels. Specifically, the MGSI approach initially decomposes
both the query and motion sequences into three hierarchical levels:
token, instance, and bag. Then, we utilize graph neural networks to
explicitly model their semantics correlation and perform semantics
interaction at these respective levels, precisely capturing the seman-
tics at multiple granularities. To identify and model co-occurring
atomic motions, we measure the frame-wise semantic consistency
between motions and then fuse and interact the accordant ones
to refine their representations. Finally, we exploit token, instance,
and bag-wise semantics interaction to comprehensively align text
and motions sequence. We evaluated our methods on two widely-
used benchmark datasets, HumanML3D and KIT-ML. The proposed
method achieves significant improvements, outperforming the state-
of-the-art with a 23.09% increase in Rsum on HumanML3D and a
21.84% increase on KIT-ML.

CCS CONCEPTS

+ Information systems — Multimedia and multimodal re-
trieval.

KEYWORDS

Text-motion Retrieval, Multi-modal, Cross-modal Alignment

1 INTRODUCTION

With the tremendous growth of motion generation tools and meth-
ods [7, 17, 22, 26, 27], millions of motion data advent to the world.
The ability to efficiently retrieve specific motion sequences from
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Figure 1: The comparison between the conventional method
and the proposed Multi-Granularity Semantics Interaction
(MGSI) framework for TMR. Different from the conventional
method that represents text and motion sequence with single
point embeddings to alignment, we align the query text and
the motion sequences in a hierarchical level.

this vast repository has become an increasingly critical need. Text-
motion retrieval (TMR) [15] is a typical multi-modal retrieval task
that aims to retrieve semantically similar motion sequence by the
given query text. Following the paradigms of conventional multi-
modal retrieval, e.g., text-image and text-video retrieval, numerous
TMR researches [4, 12, 14, 15, 21, 24] are raised. Tevet et al. [21]
introduce a MotionCLIP, where a motion auto-encoder is trained
not only to reconstruct motion sequences but also to align their
latent representations with the corresponding textual and visual
representations in the CLIP space [18]. Mathis et al. [15] propose
the task of text-motion retrieval and establish a series of evaluation
benchmarks with varying difficulty and introduce a joint synthesis
and retrieval framework. Yan et al. [24] adopt a dual-unimodal
transformer encoder to enable a wide range attention in text and
motion sequence and introduce a drop triplet loss function to mine
the false negative samples.

Although existing work has achieved promising retrieval per-
formance, it generally represents both the query text and motion
sequences with a single embedding for alignment. However, in
text-motion retrieval, the text and motion sequence typically con-
tain multiple instance, i.e., atomic motions in a motion sequence,
verb phrases in a sentence, and include distinct semantics instead
of the single samples with unique semantic. As shown in Fig. 1,
the text-motion pair contains three atomic motions, i.e., “walking”,
“carrying” and “put down”. The conventional methods may fall short
in accurately modeling the complicated semantics of these atomic
motions due to the simple representation approach. In addition,
these multiple atomic motions are usually co-occurring and over-
lapping with each other. As shown in Fig. 1, the motion “walking”
and “carrying” are co-occurring and overlapping with each other.
Solely aligning the single representation of query text and motion
sequence may struggle to achieve a accurate cross-modal relation
matching in these co-occurring motions, degenerating the retrieval
performance. It is necessary to develop a effective method that
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explicitly represents and accurately aligns multiple atomic motions
and corresponding text.

In this work, we argue that the text-motion retrieval can be
viewed as a classical learning problem, Multi-Instance Multi-Label
(MIML) [32], where sample is defined as a bag of multiple instances
and associated with multiple class label. Thus, we regard the text-
motion retrieval task as the MIML learning problem, in which the
motion sequence is a bag of atomic motions and the query text is
a bag of phrases corresponding to atomic motions. To address the
MIML problem of TMR, we propose a Multi-Granularity Semantics
Interaction (MGSI) approach as shown in right of Fig. 1. Specifi-
cally, in MGSI, we start by decomposing text and motion sequences
into three hierarchical levels: token, instance, and bag to represent

various granularity semantics. We employ graph neural networks

to build a text and motion graph, where the noun phrases, verbs,
and sentence (frames, atomic motions, and sequence) are viewed as
the token, instance, bag-wise nodes, respectively. Then, we propose
a novel co-occurrence motions mining approach that measures the
semantics consistency in frame-wise to score the atomic motions.

With the consistency score, the co-occurring atomic motions could

be identified and fused to generate the co-occurrence features for
update the instance nodes. The graph reasoning is applied on the
update graph to capture the complex relationships among these
components effectively. After that, we introduce a semantic inter-
action in token, instance, and bag-wise to migrate the semantics
correlation between text and motion sequence, achieving a precise
cross-modal alignment. Comprehensive evaluations conducted on
two widely used benchmark datasets, HumanML3D and KIT-ML,
demonstrate that the proposed MGSI surpasses the state-of-the-art
methods in a clear margin.

The main contributions of our work are summarised as follows:

e In this work, we formulate the text-motion retrieval as a
Multi-Instance Multi-Label (MIML) learning problem, where
text sequences are treated as a bag of verbs and motion
sequences as a bag of atomic motion instances. To the best
of our knowledge, this is the first attempt to model the text-
motion retrieval as MIML problem.

e We propose a novel multi-granularity semantics interaction
(MGSI) approach to address the MIML problem of TMR, in
which we exploit the graph neural networks to decompose
the text and motion sequences into token, instance, and
bag and perform cross-modal semantics interaction in the
corresponding granularity to enable a precise cross-modal
alignment.

o Extensive experiments on two widely-used benchmark datasets,
HumanML3D [4] and KIT-ML [16], demonstrate that our
proposed method surpasses the state-of-the-art, achieving
a 23.09% increase in Rsum on HumanML3D and a 21.84%
increase on KIT-ML.

2 RELATED WORK

2.1 Text-motion retrieval

Text-motion retrieval is received much attention in recent years [12,

15], which aims to retrieve semantics relevant motion sequences by
a given natural language. Different from conventional cross-modal
retrieval [6, 23, 28, 29, 31], the TMR is a challenging task due to the

Anonymous Authors

sequence involving multiple motions with complex semantics. In
general, existing TMR methods [4, 12, 14, 15, 21, 24] follow text-
to-image or text-to-video retrieval, representing query and motion
sequences as single-point embeddings in a common space to be re-
trieved based on their distance. Guo et al. [4] adopts the triplet loss
function to perform the motion retrieval, which is used for evaluate
the synthesis models. Mathis et al. [15] firstly establish the text to
3D human motion retrieval as a standalone task. They simply ex-
tend the state-of-the-art text-motion synthesis model TEMOS [14]
to TMR by employing the contrastive learning widely used in in-
formation retrieval. Nicola et al. [12] investigate the content-based
large volumes of spatio-temporal skeleton data retrieval by exploit-
ing the transformer-based approach that consists of a ViViT-based
motion encoder and CLIP-based [18] text encoder. Yan et al. [24]
investigate the false negative samples that semantically similar to
the anchor but are defined as the negative samples in TMR and
propose a drop triplet loss function to calibrate the supervision
provided by these false negative samples. However, these methods
primarily focus on representing the motion sequence with complex
semantics to a global representation for alignment. It inadequately
captures the diverse semantics within the motion sequence and
hardly enables a comprehensive cross-modal alignment.

2.2 Multi-instance multi-label learning

Multi-instance multi-label learning (MIML) [32] is a classical learn-
ing problem that is close to the real-world scenarios. Different from
the multi-instance learning [2] and multi-label learning [30], the
MIML is a more general problem. In MIML, a sample is defined as a
bag of multiple instances and associated with multiple class labels.
Yang et. al [25] introduce the MIML into the privileged information
and propose a MIML-FCN+ network to utilize the readily available
privileged bags, making the system more general and practical in
real world applications. Pan et. al [13] view the semi-supervised
automatic waveform recognition as a MIML problem and propose
a MIML-GAN in which a GAN is incorporated to MIML principle
to establish the adversarial learning structure, through which the
generator and the discriminator alternatively improve their feature
representation and classification abilities, respectively. Lai et. al [9]
introduce MIML into medical image classification and propose a
broad multi-instance multi-label learning to jointly learn multiple
sub-networks in a broad sense so that the diverse correlations be-
tween bags, instances, and labels can be simultaneously captured.
In this work, we regard the text-motion retrieval as MIML problem
and propose a multi-granularity semantics interaction that explic-
itly disentangle the text and motion into token, instance, and bag
and exploits the graph neural networks to model correlation of
these components. Through applying semantics interaction in cor-
responding granularity, the MGSI achieves state-of-the-art retrieval
performance in two benchmark datasets.

3 PRELIMINARY

Given a training dataset D = {(T;, Mi)}{.i ; with N text-motion
pairs, text-motion retrieval (TMR) aims to retrieve the semantics
relevant motion sequences with the query text (for clarity, we omit
the sample index in the following sections). Conventional TMR
represents the text and motion as the single point features ¢ and m
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Figure 2: The overview of our multi-granularity semantics interaction (MGSI). Initially, we adopt the text and motion encoder
to encode text and motion sequence into word and frame-level embeddings T and M, respectively. Then, we decompose the text
and motion sequences into different levels by exploiting the graph neural networks to model the semantics correspondence. By

adopting the proposed co-occurrence motion mining, the atomic motion m., and m? are fused to formulate the new nodes.

Finally, we exploit token, instance, and bag-wise semantics interaction to comprehensively align text and motions sequence.

into a common space and exploits the cross-modal distance, e.g.,
cosine similarity cos(, m), to measure and rank the semantics sim-
ilarity achieving text-motion retrieval. However, we argue that the
motion sequence consists of multiple atomic motions with diverse
semantics, the simplistic point representations hardly capture the
complicated semantics of motion sequence.

In this work, we formulate the text-motion retrieval as the multi-
instance multi-label learning (MIML) problem, where the motion
sequence and query are viewed as the bags of multiple instances.
For motion and text bags, the instances are viewed as the atomic
motions and corresponding descriptions. To solve the MIML prob-
lem, we propose a novel multi-granularity semantics interaction
(MGSI) approach that exploits the graph neural networks (GNNs) to
model the text and motion sequence into different levels, perform-
ing the corresponding level semantics interaction to achieve a pre-
cise alignment and considerable performance. Specifically, we de-
compose the text and motion sequences into different level and rep-
resent them as the graph G; = {V;, E;} and G, = {Vin, Em}, where

. . t . . m
Ve = {to, (t1)Ne, (£} } and Vi = {mo, {mi}Ne, (mi)e ), N,
indicates the number of each type nodes. The t, and m, are the
root nodes containing the sentence and sequence-level semantics.
On the textual side, the instance nodes {té}i“l are the verbs, and
the token nodes {t! }?El are the noun phrases. For the motion side,
the instance nodes {m, }?i“l indicates the representations of atomic

. i N7 .
motions, and the token nodes {my}, are each frame of atomic

motion. The edge E; and Ep, are the edge embeddings that are
illustrated in the Sec. 4. After that, we perform graph reasoning to
aggregate the semantics and semantics interaction in different level
to align the text and motion sequence achieving the comprehensive
cross-modal alignment. The overview of our methods is shown in
Fig. 2.

4 METHODOLOGY
4.1 Text Graph Construction

Given a natural language description T = {t;,---,tx,} with N;
words, we adopt a pre-trained frozen CLIP text encoder [18] to

encode T as a word sequences T = {t{,--- ,tx,}, Where t. € RY:,

We perform mean pooling for T to initialize the t,. Then, we adopt
the off-the-shelf semantic role parser [20] to extract noun phrases
and verbs from T as well as their semantic role E; of each noun
phrase. The verbs representations are leveraged as the instance
nodes {t;}ll\i“l and connected with the root node t, with direct
edges. The noun phrases are used as the token nodes {t’ ?El and
connected with corresponding instance nodes ¢;;, where the edge
e; j between i-th token node and j-th instance node is represented
by the semantics role of the token about the motion. Considering
that multiple atomic motions may occur simultaneously to the same
token node, we duplicate the token node for each semantic role and
connect them with corresponding motion nodes. In Fig. 2, we also
show the example of the constructed text graph.
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4.2 Motion Graph Construction

For the motion sequence M, we adopt the the model in previous
work [4] to extract the skeleton features My € RNmXJ%Xds where
J and ds are the number and feature dimension of skeleton nodes,
respectively. Then, the SMPL [10] is adopted to extract the frame-
level representations M = {my, -+ ,my f} from M;, where the N I
indicates the frame number. Before constructing the instance node,
we first downsample the My in the temporal domain to reduce
the length of the feature sequence. It reduces the computational
complexity while maintaining comparable performance. For motion
RNfXd

sequence representation My € ™ we downsample it into a

fixed number of features M; € RNm*dm by conducting the mean
pooling to prevent lose information of these reduced frames, where
Npm < Ny is the number of frames after downsampling.

Graph Initialization. We apply mean pooling to aggregate se-
mantics from My and get the sequence-level representations to
initialize m,. For the instance nodes, considering the motions oc-
cur sequentially, we adopt the simple yet effective slide windows
strategy [3] to construct the atomic motion instance. Specifically,
we set up multiple slide windows of different lengths with a stride
of 1 and perform overlapping as the sliding windows move. The
windows size set to w = {1,2,---,N;;,}. Given a sliding window
k, a clip feature is obtained by mean pooling over the features
within k. The motion sequences could be split as the motion clips
M, = {m! }N‘ where M, € RNeXdm and N, = Nn®m*D) 1

¢ cli=1 ¢ 4 2

remove the redundant clips from M., we exploit the previously
constructed probabilistic embedding space [14] to filter the clips:

i, = max {cos(Eh, 1nd), cos(ih, md). -+, (B ik)} (1)

where £} and iz} are the i-th noun phrase and j-th clips that
both are extracted by the pre-trained model [14]. Then, we adopt
{mé, S ,m];} to initialize the embeddings of instance nodes. For
token node m, we directly adopt the frame-level representations
of each atomic motion as the embeddings to initialize. The instance
nodes connect to the root and token nodes with edges that is calcu-
lated by:

er,i = cos(ml,ml) (2)

where cos(+, -) indicates the cosine similarity. The % € {e,0} and r
indicates the node index associated with node i.

4.3 Co-occurrence Motion Fusion.

In TMR, the atomic motion in the sequence may be co-occurring and
coupled together. Directly representing these semantically complex
data samples as point embeddings and performing alignment may
be unable to capture the abundant semantics and disturb the cross-
modal alignment affecting the retrieval performance. To address this
challenge, we introduce a co-occurring motion mining approach
by measuring the semantic consistency between atomic motions.
Then, we fuse the identified co-occurring motions to generate a
new co-occurrence motion representation. Specifically, given the

t
motion graph G™ = {Vj, Ep, }, the token nodes {m }§;1 connected
to the instance nodes m!, are used for calculating the semantics

Anonymous Authors

consistency score C; j:

AL

Cij= cos(my,m) (3

|méz||m{1| x Y

where |m,| and |m,| indicate the degree of m, and m}, respectively.
The Eq. 3 draws inspiration from the principle that co-occurring
motions may encapsulate as many semantically similar frames as
possible. After calculating the semantics consistency score, we em-
pirically set a threshold A to mine the co-occurring motions. If
the semantics consistency score Chyo;,j is larger than the threshold
A, the atomic motions i and j are identified as the co-occurring
motions, otherwise are considered as the motions that occurred
sequentially. For these co-occurring motions, the nodes m!, and mJ,
are fused to obtain the co-occurrence motions nodes by adding and
all token nodes belonging to m’, and m, are connected to the new
instance nodes. As shown in Fig. 2 (b), the Cy 2 is larger than the
threshold A. Therefore, the instance nodes m), and m}, are merged as
the newly instance nodes my, where all corresponding token nodes
are connected with the new nodes. Similarly, the corresponding
instance nodes in the textual graph G; are fused to guarantee the
structure consistent with G,,. Notable, we utilize the residual con-
nection in graph reasoning to reduce the redundancy information
introduced by these token nodes.

4.4 Graph Reasoning

Text Graph Reasoning. Considering the multiple semantics role
involved in text, we adopt the rational graph convolutional network
(R-GCN) [19] to model correlations of these nodes. Specifically,
considering the existence of two types of nodes in the text graph, we
adopt 2-layer graph convolution networks with residual connection
to capture the semantics of nodes. Based on the initialized nodes

i \Ng ,iN& .
Vit = {to, {tz};, {te},5,} and the correlation edge E; = {er,;}, the

node feature is aggregated by:
H' = ReLU(Z e, VE-Wh 4+ V)
rer

H/? =ReLU( )" e, ;H" - W2 + H')
reR

4

where e, ; indicates the semantic role of node i. The R indicates the
number of relations of node i. The ReLU(+) is the ReLU activation
function [1]. The W,>" are the learnable parameters.

Motion Graph Reasoning. Therefore, we obtain the nodes in the
motion graph V" = {ms,, {m}, }i.i“l, {mé}i\g} Similar to the textual
graph reasoning, we adopt 2-layer graph neural networks with
residual to aggregate the semantics from the neighbor nodes:

H™ = ReLU(Y e V™ - W™ + V™)
reR

H =RelU( Y er H™' - W™ + H™)
rer

©)

where the W,™™" are the learnable parameters of the motion graph.
The R is number of relations corresponding to node i.
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4.5 Semantics Interactions

Token-wise Interaction. Besides the instance and bag-wise se-
mantics interaction, we introduce a toke-wise interaction to provide
fine-grained semantics alignment as complementary. As shown in
Fig. 2(b), we add the position embeddings p; and py, to the word-
and frame-level representaions T and M and feed them into a trans-
former encoder:

Xioken = ¢t([T+Pt§M+PM]) (6)

where [-;-] is the concatenate operation. ®; is the 2-layer trans-
former encoder. We further adopt multi layer perception (MLP)
with ReLU activation function [1] to calculate the similarity:

Stoken = softmax (MLP (Xioken [0,:])) (7)

where the MLP consists of two linear layers with ReLU activation
functions. Instance-wise Interaction. We adopt the represen-
tation of instance nodes from the text and motion graph to per-
form the instance-wise semantics interaction. Specifically, given
the {t,il}ii“l and {m}, }i“l, the instance-wise similarity is calculated
by:

Na
1 . .
Sins = — E tg,. m, 8
ms Na & COS( a ma) ( )

Bag-wise Interaction. For the bag-wise semantics interaction, we
directly conduct the semantic interaction between the root node
representations of text and motion graph:

Sbag = cos(to, mo) o)

4.6 Model Training and Inference

Training. In our proposed multi-granularity multi-instance learn-
ing, the positive pair is defined as the motion containing certain
content relevant to the query text. The negative pairs are those
without any relevant content. We adopt the InfoNCE loss [28, 29]
function that is widely used in the retrieve related tasks as the
training objective function over the mini-batch B:

1 S(xi,y;)
Linfo = —— lo
e B xig‘eB & S(xi, yi) + Xz j S(xi, yj)
S(yi, xi)

S(yi» xi) + Xizj S(yi, x;)

where S(+, ) is the similarity measurement, e.g. cosine similarity.
The token-wise semantics interaction is defined as follows:

Lioken = CrossEn(Sioken) (11)

where CrossEn is the cross entropy loss function. Thus, the total
training loss function is:

Lirain = Ltoken + Lins + ~ﬁbag (12)
where Lins and Ly, indicate applying the instance-wise similarity
Sins and bag-wise similarity Spaq to the Eq 10, respectively.
Inference. After the model is converged, the similarity between

query text T and motion sequence M is computed by a combination
of the instance-wise, bag-wise, and token-wise similarities:

1
S(T.M) = 3 (Sioken +Sins +Sbag) (13)
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5 EXPERIMENTS

5.1 Datasets

We validate the proposed methods on the two widely used 3D hu-
man motion datasets: HumanML3D [4] and KIT Motion-Language
Datasets [16]:

HumanML3D [4] (HumanML3D) is currently the largest 3D hu-
man motion dataset with textual descriptions. The motion sequences
are originally from two already-existing and widely-used motion-
capture datasets AMASS [11] and HumanAct12 [5]. Following the
benchmark [15], we split the train, validation, and test set with
23384, 1460, and 4380 motions. Each motion sequence contains
approximately 3 text descriptions with different lengths.

KIT Motion-Language [16] (KIT-ML) contains 3,911 recordings of
full body motion and 6,278 text descriptions. Each motion sequence
is described in 1 to 4 texts. The average length of text descriptions
is approximately 8. Following the setup in the benchmark [15],
we adopt 4,888, 300, and 800 motion sequences as the training,
validation, and test set, respectively.

5.2 Baselines and Metrics

Baselines. We provide the comprehensive comparison with the
state-of-the-art approaches, including TEMOS (ECCV2022) [14],
MotionCLIP (ECCV2022) [21], T2M (CVPR2022) [4], DTL (MM
Asia2023) [24], TMR (ICCV2023) [15], and MoT (SIGIR2023) [12].
The MotionCLIP [21], T2M [4], and MoT [12] learn the text and mo-
tion into a common space, directly measuring the cosine similarity
between global embeddings for alignment. The TEMOS [14] and
TMR [15] employ a VAE structure to learn the text and motion into
latent space while adopting the reparameterization technique to
sample the representations from distributions for alignment [14, 15].
The DTL [24] adopts a dual-branch unimodal network to extract
motion and text embeddings and project them into a common em-
beddings space. However, the DTL splits the HumanML3D and
KIT-ML by themselves and the scale of test sets is far less than the
splits used in our work. To compare the results fairly, we adopt
the open-source code of DTL to train the model in our splits and
report the results. The other results of baselines in our work are
from their official reports.

Metrics. We adopt the common metrics to report retrieval perfor-
mance, including Recall at K (R@K), Median Rank (MedR), and
Rsum. The R@K is the fraction of queries that correctly retrieve
desired items in the top K of the ranking list. Following the bench-
mark [15], K = 1,2,3,5,10 are adopted. The MedR computes the
median rank of the correct targets for a query. Additionally, we
report the Rsum metric which is calculated by the summing of R@K
values. It evaluates retrieval performance from an overall perspec-
tive. In all tables, the metric with an upward arrow (denoted by
1) signifies that a higher value correlates with better performance
(R@K, Rsum), while the downward arrow (denoted by |) indicates
that lower values represent superior performance (MedR). The best
evaluation results are highlighted in “bold”.

5.3 Implementation Details

In this work, we adopt AdamW [8] as the optimizer with a le-4
learning rate and set the batch size to 64 on all datasets. The text
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Table 1: Performance comparison with the state-of-the-art methods on HumanML3D [4]. The “Text — Motion” indicates
text-to-motion retrieval and “Motion — Text” is the motion-to-text retrieval, respectively.

Text — Motion

Motion — Text

Methods Rsum T
R@1T R@27 R@37 R@57 R@10T MedR| R@1T R@27T R@37T R@57 R@10T MedR |
T2M [4] 1.80 3.42 4.79 7.12 12.47 81.00 2.92 3.74 6.00 8.36 12.95 81.50 63.57
TEMOS [14] 2.12 4.09 5.87 8.26 13.52 173.00 3.86 4.54 6.94 9.38 14.00 183.25 72.58
MotionCLIP [21]  2.33 5.85 8.93 12.77 18.14 103.00 5.12 6.97 8.35 12.46 19.02 91.42 99.94
MoT [12] 2.61 4.72 6.90 10.66  17.79 60.00 4.03 5.07 7.43 11.23  17.68 64.25 88.12
DTL [24] 2.69 4.93 7.42 11.36  17.71 73.00 2.33 4.50 6.50 10.31 17.48 76.00 85.24
TMR [15] 5.68 10.59 14.04 20.34 30.94 28.00 9.95 12.44 1795 23,56 32.69 28.50 178.18
MGSI (Our) 6.61 12.73 17.11 2391 34.74 24.00 10.61 13.18 19.75 26.00 36.63 22.50 201.27

Table 2: Performance comparison with the state-of-the-art methods on KIT-ML [16]. The “Text — Motion” indicates text-to-
motion retrieval and “Motion — Text” is the motion-to-text retrieval, respectively.

Text — Motion

Motion — Text

Methods Rsum T
R@17 R@27 R@37 R@57 R@107 MedR| R@17 R@27 R@37 R@57 R@107 MedR |
T2M [4] 3.37 6.99 10.84 16.87 27.71 28.00 4.94 6.51 10.72 16.14  25.30 28.50 129.39
TEMOS [14] 7.11 13.25 17.59 24.10 35.66 2400 11.69 1530 20.12 26.63 36.39 26.50  207.84
MotionCLIP [21] 4.87 9.31 1436  20.09 31.57 26.00 6.55 11.28 17.12 25.48 34.97 23.00 175.60
MoT [12] 6.23 11.07 16.54 23.92 37.15 20.00 10.56 13.49 20.61 27.61 38.04 19.50 205.22
DTL [24] 8.07 13.28 16.92 22091 36.97 18.00 9.11 14.84 19.27 26.04 39.06 17.00  206.51
TMR [15] 7.23 13.98 2036 2831 40.12 17.00 11.20 13.86 20.12 28.07 38.55 18.00 221.80
MGSI (Our) 8.91 16.28 20.87 29.64 40.84 16.00 1349 16.41 23.54 30.66 43.00 15.50 243.64

representations dimension d;, and the motion sequence dimension
dp, are set to 256 and 263, respectively. The downsampled frame
number Ny, is 200. The GNNs learned cross-modal common space
dimension is set to 256. The hyperparameter A for co-occurrence
motion filtering is empirically set to 0.8. Our experiments are im-
plemented in PyTorch-1.10 and are conducted on 8 NVIDIA A800
GPUs with 80GB memory. To enable a consistent comparison with
the baseline, we follow the settings of previous work [15] to ran-
domly select a text as the matching text for training and adopt the
first text in the test set to report the evaluation performance.

5.4 Performance Comparisons

In this subsection, we show the experimental results of the pro-
posed MGSI and the state-of-the-art (SOTA) methods of TMR on
the HumanML3D [4] and KIT-ML [16]. In Tab. 1, we observe that
the baselines [4, 12, 14, 21] show an unsatisfying performance. The
conventional approaches roughly represent the query and motion
sequences as a single point to perform a global-level alignment,
which are based on the assumption that the data instance in TMR
only involves unique semantics. However, in reality, there exist
many different motions in the query and motions sequences. Such
simplistic learning strategies may difficult to capture the complex
semantics resulting in an unsatisfying performance especially on
the fine-grained retrieval (R@1). In our work, we formulate the

TMR as the multi-instance multi-label learning trying to decom-
pose the coupled semantics in the query and motion sequences and
perform semantics alignment in corresponding levels. The signifi-
cant improvement (23.09% in Rsum) of our MGSI in HumanML3D
proves the effectiveness of our methods.

For the KIT-ML dataset, it shows that our MGSI surpasses the
current SOTA TMR approaches across all evaluation protocols with
a clear margin. Especially on the Rsum metrics, our method outper-
forms the SOTA work TMR [15] by 21.84%. Since these baselines fo-
cus on the whole similarity between queries and motion sequences,
the result indicates that such coarse-grained global similarity mod-
eling is sub-optimal for TMR. It demonstrates the superiority of
our hierarchical semantics alignment in text to 3D human motion
retrieval.

5.5 Ablation Study

The effectiveness of semantics interactions. In this subsection,
we verify the contributions of the different levels semantics in-
teractions in the proposed multi-instance multi-label learning. As
shown in Tab. 3, we observe that 1) when applying the bag-wise
semantics interaction, the model shows the worst performance,
which is close to the baselines solely aligning the point embed-
dings of text and motion (in Tab. 1 and Tab. 2). It proves that the
simplistic global semantics alignment is unsuitable for the TMR.
2) When incorporating the instance- or token-wise with bag-wise
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Table 3: Ablation study of different semantics interaction
on HumanML3D and KIT-ML. We report the results on the
text-to-motion retrieval.

HumanML3D KIT-ML
R@17 R@27 R@37T R@1T R@2T R@37
2.53 4.71 8.30 5.18 10.77  15.92
5.89 1134 1531 8.02 16.41  20.74

5.63 10.83  14.94 7.25 14.89  20.10
6.61 1273 17.11 8.91 16.28  20.87

Lioken Lins Lbag

NN X X
<X X
AN NN

Table 4: The ablation studies to investigate the proposed each
components on the HumanML3D.

Text — Motion Motion — Text

R@1T R@27 R@37 R@17 R@27 R@317

w/o downsample 6.28 12.39 17.66 10.81 13.71 20.03
w/0 motion fusion 5.97 11.80 15.79 9.41 12.11 18.35
MGSI 6.61 12.73 17.11 10.61 13.18 19.75

Methods

semantics interaction, the model achieves a considerable retrieval
performance. The improvements achieved by the instance- and
token-wise semantics interaction indicate the necessity of aligning
the query text and motion sequence in a fine-grained scale. 3) The
improvements brought by the instance-wise are larger than the
token-wise. Considering the redundant information in token, di-
rectly concatenating all tokens of text and motion without filtering
may introduce too much useless information to disturb the cross-
modal aligning. The proposed instance-wise semantics interaction
exploits the specifically designed downsample and co-occurring
motion mining to refine the semantics within motion sequences
bringing much retrieval performance. 4) The complete version of
our method, incorporating bag-, instance-, and token-wise seman-
tics interaction, shows the best retrieval performance. This proves
that our approach that focuses on semantics interactions at different
level is complementary to each other.

The effectiveness of components. To examine the usefulness of
the specific designed strategies in in MGIS, we compare the coun-
terpart without the downsample or the motion fusion on the Hu-
manML3D. As shown in Tab. 4, we observe that 1) when removing
the downsample strategy, the retrieval results are further boosted
but limited. Adopting all frame of motion sequences may introduce
significant computing costs. Therefore, we conduct and report all
experiment results on the downsampling version. 2) The retrieval
performance degenerates when we detach the co-occurrence mo-
tion fusion and straightly align the initialized instance nodes in
the text and motion graph, which proves the effectiveness of our
motion fusion strategy.

The effectiveness of clip selection. In this subsection, we aim to
verify the clip selection strategy in Sec. 4.2. The results are shown
in Tab. 5. The “Random” indicates that randomly selecting the
clips from M, constructs the instance nodes in the motion graph.
The results show that the clips M, selected by the sliding window
contain useless semantics for retrieval. The simplistic random se-
lection criterion in mining the atomic motion is ineffective. The

MM °24, October 28—-November 1, 2024, Melbourne, Australia

Table 5: The investigation of motion clip selection strategy
on HumanML3D.

Text — Motion Motion — Text

R@1T R@27 R@37 R@17 R@27 R@317

Random 2.11 3.59 5.13 2.01 3.22 5.48
MGSI 6.61 12.73 17.11 10.61 13.18 19.75

Strategies

proposed clips filter strategy in Eq. 1 utilizes the pre-constructed
cross-modal probabilistic space to find semantically similar clips
to the action phrases. The performance improvement compared to
“Random” proves that the proposed methods could effectively filter
the irrelevant clips.

Hyperparameter analysis. In this subsection, we investigate the
influence of hyperparameters A on the HumanML3D. The A is the
threshold to identify the co-occurrence motions. If the semantic
consistency score is greater than A, these actions are considered
co-occurring motions. As shown in Fig. 4, we set the A from 0.1
to 0.9. The results lead to several observations: 1) when A is small,
the retrieval performance remains lower and improves with the
increase of A, which proves that a loose criterion is insufficient to
identify the accurate co-occurrence motions. The co-occurrence
motions should maintain as many semantically consistent frames
as possible. 2) When 1 exceeds the threshold of 0.8, there is a no-
ticeable decline in retrieval performance. The higher value set for
A may overly stress the semantic consistency, imposing an overly
strict criterion. It could limit the detection of co-occurring motions,
potentially reducing the retrieval performance.

5.6 Visualization Results

In Fig. 3, we visualize the retrieval results for text-to-motion re-
trieval of the proposed MGSI and the state-of-the-art TMR [15] on
the HumanML3D. For each method, we draw the top-5 retrieved
motion sequences, where we rank the results by similarities and
give the annotation at the bottom of each motion sequence. We also
highlight the semantically similar verbs to the query by the same
color. The successful and failed retrieval results are highlighted by
the green and red border, respectively. In Fig. 3, the query contains
multiple atomic motions with different semantics, especially the
motion “walks” and “holds” are co-occurring. For the TMR, we
notice that 1) the successful retrieval result is in the fourth posi-
tion, which means that the TMR can retrieve semantically similar
motions, but with limited precision. 2) The first and second re-
turned results only contain only part of the semantics consistent
with the query. It may caused by the single-point representation
only capturing the simplistic motion semantics (“put” and “walk”)
and failing to represent the complicated motion sequences. Further
aligning these rough representations can significantly disturb the
cross-modal alignment and undermine the retrieval performance.

For the results of MGSI, we observe that 1) the proposed method
successfully retrieves the motion sequences corresponding to the
query by accurately identifying these co-occurring motions and
learning semantic correlations between the query and candidate
from multiple granularities, demonstrating our methods’ effective-
ness. 2) The second retrieved motion sequence still contains similar
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CQ A person walks forward and holds a large object in their hands, puts the object down and continues to walk. )

A person put down something
and slowly walked forward.

The person walk forward and
wipe some thing off.

A person carefully walks
down a slope.

A person walks forward and holds a
large object in their hands, puts the
object down and continues to walk.

A person raises their arms,
while walking forward.

A man walks forwards whilst

A person walks forward and holdsa A person holds both hands out
large object in their hands, puts the and walks slowly forward, putting
object down and continues to walk.  their hands down by their sides.

A person's walking forward quickly A person jogs forward and then
while holding something that they  places their hands at their side.
seem to be balancing or positioning.

putting his arms in front of
him holding something.

MGSI

Figure 3: The visualization of retrieval results. We showcase the top-5 retrieved motion sequences by the proposed MGSI and
state-of-the-art TMR, respectively. The sentences below at the motion sequences are the corresponding annotations. We adopt
the same color to the query text to highlight the verbs in the results’ annotations to help evaluate the retrieval performance.

The successful and failed retrieval results are highlighted by the green and red border, respectively.

202

200

198

Rsum

196
194
192

190

01 02 03 04 05 06

A

Figure 4: The experimental result is the investigation of the
threshold 1 in selecting the co-occurrence atomic motions.

0.7 08 09

semantics to the query (“hold”, “walks”, and “putting down”). It
demonstrates that our MGSI can successfully capture fine-grained
semantics between the text and motion sequences. 3) Although
other results are the failed retrieve results, they still contain these
co-occurring motions (“walk” and “hold”), which verifies the effec-
tiveness of the proposed co-occurrence motion mining approach.
These observations suggest that through integrating token, instance,

and bag-wise semantics interactions, our MGSI can capture both
fine-grained and overall semantics, ensuring a comprehensive se-
mantic analysis.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we conceptualize the Text-Motion Retrieval (TMR)
task as a Multi-Instance Multi-Label (MIML) learning problem,
where each motion sequence is viewed as a bag of atomic motions,
and the corresponding text as a bag of phrases. To tackle the MIML
challenge within TMR, we introduce a novel Multi-Granularity
Semantics Interaction (MGSI) approach, which effectively captures
and aligns the semantics of text and motion sequences across vari-
ous levels. Specifically, the MGSI approach decomposes both query
and motion sequences into three hierarchical levels: token, instance,
and bag. We then utilize graph neural networks to explicitly model
and interact with their semantic correlations at these levels, thus
capturing the semantics across multiple granularities accurately.
To identify and model co-occurring atomic motions, we measure se-
mantic consistency frame-wise, then fuse and interact the accordant
motions to refine their representations. Finally, we employ token,
instance, and bag-wise semantic interactions to comprehensively
align the text and motion sequences. Extensive experiments on two
widely-used datasets demonstrate the efficacy of our methods

In our future work, we plan to incorporate informative skeleton
features to enhance precise atomic motion mining, further facilitat-
ing fine-grained semantic interaction between text and motion.
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