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Abstract

Personalized text generation aims to infer users’001
writing style preferences from their historical002
texts and generate outputs that faithfully reflect003
these stylistic characteristics. Existing solu-004
tions primarily adopt two paradigms: retrieval-005
augmented generation (RAG) and parameter-006
efficient fine-tuning (PEFT). While these ap-007
proaches have advanced the field, they suffer008
from two critical limitations: (1) the entangle-009
ment of content semantics and stylistic patterns010
in historical texts impedes accurate modeling011
of user-specific writing preferences; and (2)012
scalability challenges arising from both RAG’s013
inference latency by retrieval operations and014
PEFT’s parameter storage requirements for per015
user model. To overcome these limitations, we016
propose StyleVector, a training-free framework017
that disentangles and represents personalized018
writing style as a vector in LLM’s activation019
space, enabling style-steered generation dur-020
ing inference without requiring costly retrieval021
or parameter storage. Comprehensive experi-022
ments demonstrate that our framework achieves023
a significant 8% relative improvement in per-024
sonalized generation while reducing storage025
requirements by 1700 × over PEFT method.026

1 Introduction027

Large language models (LLMs) have demonstrated028

unprecedented capabilities in text generation and029

complex reasoning through pre-training on massive030

corpora. However, these models still function as031

"one-size-fits-all" systems, optimized for average-032

case scenarios, and fail to adapt to individual users’033

unique preferences. The increasing demand for034

personalized AI assistants highlights the need to035

customize LLMs to better align with the specific036

preference of each user (Kirk et al., 2024; Chen037

et al., 2024a; Au et al., 2025; Cai et al., 2024; Jang038

et al., 2023; Lin et al., 2024; Zhang et al., 2024b;039

Liu et al., 2024a; Zhu et al., 2025).040

Personalized text generation has emerged as a041

critical research frontier (Salemi et al., 2024b; Ku- 042

mar et al., 2024; Alhafni et al., 2024; Chen and 043

Moscholios, 2024). Consider a scenario where 044

given an email subject x and a user u’s historical 045

subject-email pairs Pu, the system must infer the 046

user’s writing style from Pu to generate stylisti- 047

cally consistent emails. Current approaches pre- 048

dominantly fall into two categories: (1) Retrieval- 049

augmented generation (RAG) methods (Zhang 050

et al., 2023; Salemi and Zamani, 2024a,b), which 051

enhance input prompts by retrieving personalized 052

information from Pu, and (2) parameter-efficient 053

fine-tuning (PEFT) methods (Salemi and Zamani, 054

2024a; Tan et al., 2024a; Zhuang et al., 2024), 055

which train per-user adapter modules using Pu. De- 056

spite their merits, these methods suffer from criti- 057

cal limitations: (a) The inherent entanglement of 058

user-agnostic content semantics and user-specific 059

stylistic patterns in historical data impedes accu- 060

rate style inference. (b) The substantial inference 061

latency of RAG’s retrieval mechanisms and stor- 062

age requirements of PEFT’s per-user parameters 063

renders these solutions impractical for real-world 064

deployment at scale. 065

Recent advances in activation engineering (Zou 066

et al., 2023; Liu et al., 2023; Rimsky et al., 2024) 067

reveal that LLMs encode features and concepts as 068

linear directions in hidden activation space. These 069

directional vectors can effectively steer model be- 070

havior through simple linear interventions during 071

inference. Building on these insights, we reveal 072

that user-specific writing styles can similarly be rep- 073

resented as directional vectors in activation space. 074

This leads to an elegant solution for personalized 075

generation: (1) By contrasting the hidden activa- 076

tions between user-authentic responses (contain- 077

ing both content and style) and model-generated 078

generic responses (content-preserving but style- 079

agnostic), we can derive "style vector" that con- 080

tains personal stylistic signatures. (2) The derived 081

style vector could be used to steer model generation 082
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towards user-specific writing styles through sim-083

ple linear interventions during inference, without084

parameter updates or extensive retrieval.085

To this end, we present StyleVector, an efficient,086

training-free framework that only requires storing087

one vector for each user to achieve high-quality088

personalized text generation. As shown in Fig-089

ure 1, our methodology comprises three key steps:090

(1) generating style-agnostic responses for histor-091

ical inputs using a base LLM, (2) deriving style092

vectors by contrasting hidden activations between093

authentic user responses and generated neutral re-094

sponses, and (3) steering generation during infer-095

ence through linear activation interventions with096

the obtained style vectors.097

Comprehensive evaluations on LaMP (Salemi098

et al., 2024b) and LongLaMP (Kumar et al., 2024)099

benchmarks for short- and long-form personaliza-100

tion respectively demonstrate our method’s effec-101

tiveness. Experimental results show that StyleVec-102

tor achieves 8% relative improvement in personal-103

ization quality while reducing storage requirements104

by 1700× over PEFT-based methods.105

Our contributions are summarized as follows:106

• We reveal that user-specific writing styles107

can be represented as linear directions in ac-108

tivation space through contrastive analysis109

between authentic user responses and style-110

agnostic model outputs.111

• We propose a training-free personalized gen-112

eration framework through simple linear acti-113

vation interventions, requiring only 2|Pu| for-114

ward passes (zero back-propagation) per user115

and compresses personalized information into116

a single vector.117

• Experiments on both short- and long-form per-118

sonalization benchmarks show the effective-119

ness of our method, while significantly reduc-120

ing storage and inference latency compared to121

retrieval-based and adapter-based approaches.122

2 Preliminaries123

2.1 Problem Formulation124

Personalized text generation aims to infer the user’s125

writing style preferences based on the text created126

from their history and generate outputs that align127

with those preferences. Formally, for each user128

u: given an input prompt x specifying task re-129

quirements (e.g., an email subject), the language130

model M generates output ŷ = M(x, Pu) con- 131

ditioned on both x and the user’s historical data 132

Pu = {(xi, yi)}|Pu|
i=1 , where each pair (xi, yi) rep- 133

resents previous interactions (e.g., subject-email 134

pairs). The ground truth output y represents the 135

user-customized response that reflects u’s unique 136

writing style (e.g., personalized email drafts). 137

2.2 Base Solutions 138

Retrieval-Augmented Generation (RAG) 139

RAG-based approaches achieve personalization 140

through context-aware retrieval. Given input x, 141

the system retrieves k most relevant historical re- 142

sponses from Pu using retriever R, then generates 143

personalized responses by combining retrieved 144

documents R(x, Pu, k) with the input prompt: 145

ŷ = M(x,R(x, Pu, k)) (1) 146

Parameter-Efficient Fine-Tuning (PEFT) 147

PEFT methods customize LLMs by training 148

lightweight adapters (e.g., LoRA (Hu et al., 2021)) 149

on user-specific data while keeping base model 150

parameters frozen (Tan et al., 2024b). For each 151

user u, a distinct adapter θu is trained via: 152

θ∗u = argmin
θ

∑
(xi,yi)∈Pu

L(M(xi; θ), yi) (2) 153

where L(·) denotes the sequence-to-sequence 154

cross-entropy loss. During inference: 155

ŷ = M(x; θu) (3) 156

2.3 Limitations of Base Solutions 157

Existing approaches face the following two funda- 158

mental constraints. 159

Entangled Style-Content Representation Both 160

RAG and PEFT methods process historical entries 161

pi as monolithic units. However, each historical 162

entry contains both the user-agnostic semantics 163

corresponding to the input xi and the user-specific 164

writing style (Fisher et al., 2024). This entangle- 165

ment impedes accurate style modeling, particularly 166

for RAG methods that retrieve documents based on 167

semantic matching, and the semantic-dominated 168

retrieved contexts lead to style dilution (see Sec- 169

tion 4.5 for examples). 170

Scalability Bottlenecks As summarized in Ta- 171

ble 1, existing methods suffer from three critical 172
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Figure 1: The overall framework of StyleVector.

Metric RAG PEFT StyleVector

Training Time/User O(|Pu|)* O(|Pu|) O(|Pu|)*
Latency/Query O(|Pu|) O(Load+Merge) O(1)
Storage/User O(|Pu|D) O(rDL) O(D)

* Training-free. Denotes pre-processing cost.

Table 1: System Efficiency Comparison.

scalability constraints: training time, inference la-173

tency and storage requirement. Due to space con-174

straints, we have placed the complexity analysis of175

the baseline in the Appendix D. These compounded176

costs render existing methods challenging for real-177

world deployment at scale (Salemi and Zamani,178

2024a). We also provide empirical cost compar-179

isons in Section 4.2.180

3 Method181

Our StyleVector framework aims to identify a user-182

specific style vector through contrastive activation183

analysis, then steer LLM generation via targeted184

activation intervention. As shown in Figure 1, the185

process comprises three stages: (1) Style-agnostic186

response generation, (2) Style vector extraction187

through contrastive activation analysis, and (3) Ac-188

tivation steering during inference.189

3.1 Generating Style-Agnostic Response190

Given a user u with historical interactions Pu =191

{(xi, yi)}|Pu|
i=1 , where xi denotes an input and yi192

the user-authored response, we first generate style-193

agnostic responses {ŷi}|Pu|
i=1 by instructing any gen-194

eral LLM Mg with the input xi: 195

ŷi = Mg(xi). (4) 196

Please note that the general LLM Mg is designed 197

to generate responses that are independent of the 198

user’s style and only related to the input seman- 199

tics. It does not necessarily need to be the same 200

as a personalized large model M ; it can be any 201

model, whether open-source or closed-source. We 202

conduct experiments in Appendix C.2 to show the 203

robustness on Mg of our method. 204

In this way, yi denotes the user-authentic content, 205

containing both content semantics and stylistic pat- 206

terns. Model-generated generic ŷi only preserves 207

content semantics related to xi but stripped of per- 208

sonal style. By contrasting yi and ŷi, we could 209

disentangle user-specific style from user-agnostic 210

semantics. 211

3.2 Extracting Style Vector 212

We extract style vectors through contrastive anal- 213

ysis of hidden activations. Let hℓ(r) ∈ Rd denote 214

the hidden states of the last token at layer ℓ when 215

processing text r. The positive and negative activa- 216

tions of history piece i can be represented as: 217

aℓp,i = hℓ(xi ⊕ yi), aℓn,i = hℓ(xi ⊕ ŷi), (5) 218

where ⊕ denotes concatenation the strings of input 219

and output. Then we can obtain the user style 220

vector by considering all history pieces: 221

sℓu = f([aℓp,i, a
ℓ
n,i]

|Pu|
i=0 ), (6) 222
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where f(·) is an extracting function that takes all223

the positive and negative activations and returns a224

single style vector. The essence of the function f is225

to find a direction in the activation space that points226

from style-agnostic samples to user-authentic sam-227

ples. There could be many possible functions, and228

here we discuss three strategies:229

1) Mean Difference. The most straightforward230

approach computes the mean difference between231

positive and negative activations:232

sℓu =
1

|Pu|

|Pu|∑
i=1

(aℓp,i − aℓn,i). (7)233

sℓu represents the average direction in the activation234

space that distinguishes user-specific style patterns235

from style-agnostic ones.236

2) Logistic Regression. We can also employ237

logistic regression to find a direction that best238

separates positive and negative examples. Let239

X = [aℓp,1; ...; a
ℓ
p,|Pu|; a

ℓ
n,1; ...; a

ℓ
n,|Pu|] be the ma-240

trix of all activations, and y = [1, ..., 1,−1, ...,−1]241

be the corresponding labels. The style vector is242

obtained by:243

w = argmin
w

∑
i

log(1 + e−yiXiw), (8)244

where w denotes the normal vector to the decision245

boundary. When moving in the direction of w, the246

model’s predicted probability of being a positive247

sample will monotonically increase. We use the248

normalized w as the style vector:249

sℓu =
w

∥w∥2
, (9)250

3) Principal Component Analysis. The Princi-251

pal Component Analysis (PCA) approach finds the252

steering vector sℓu by identifying the direction of253

maximum variance in the differences between pos-254

itive and negative activations. Let ∆i = aℓp,i − aℓn,i255

be the difference between the i-th pair of posi-256

tive and negative activations. PCA computes the257

first principal component of the set {∆i}∪{−∆i},258

which can be formulated as:259

sℓu = arg max
v:∥v∥=1

|Pu|∑
i=1

(∆T
i v)

2. (10)260

This formulation ensures that: 1. The resulting261

vector sℓu has unit norm 2. It maximizes the pro-262

jected variance of the activation differences 3. The263

inclusion of −∆i enforces symmetry around the 264

origin, making the solution invariant to the choice 265

of which sample is positive or negative 266

The solution to this optimization problem is 267

given by the first eigenvector of the matrix 268∑|Pu|
i=1 (∆i∆

T
i + (−∆i)(−∆T

i )), which can be effi- 269

ciently computed using Singular Value Decompo- 270

sition (SVD). 271

3.3 Steering Personalized Generation 272

After obtaining the style vector, we can steer the 273

model’s generation by intervene the hidden states 274

at inference time. In this work, we only consider 275

intervene one layer ℓ, which could be selected via 276

validation set. Let hℓ(x) denote the hidden states 277

at layer ℓ when processing input x. We use the 278

most straightforward approach directly adds the 279

scaled style vector to the hidden states of the token 280

position t: 281

h′ℓ(x)t = hℓ(x)t + αsℓu (11) 282

where α is a scaling factor controlling the strength 283

of steering. Following (Rimsky et al., 2024), we 284

intervene every token position of the generated text 285

after the end of the initial prompt t ≥ |x|. We also 286

try different positions experimentally in Section 287

4.2. 288

Efficiency Analysis For pre-processing, our 289

method requires only 2|Pu| forward passes of 290

LLMs to obtain activations and the style vector 291

extracting is negligible when compared with the 292

cost of LLMs. For storage, the final style vec- 293

tor sℓu only requires D-dimensional vector storage. 294

For additional inference latency, activation steering 295

only introduces D element-wise addition overhead. 296

The complexity analysis is summarized in Table 1. 297

4 Experiments 298

4.1 Experimental Setup 299

Benchmarks and Evaluation We adopt LaMP 300

benchmark (Salemi et al., 2024b) and LongLaMP 301

benchmark (Kumar et al., 2024), which are de- 302

signed for evaluating short-form and long-form 303

personalized text generation, respectively. We ex- 304

clude email generation tasks for both datasets since 305

it involves private data that we cannot access. We 306

choose the user split for both benchmarks and the 307

dataset statistics are presented in Table 4. Follow- 308

ing previous works (Tan et al., 2024a; Salemi and 309

Zamani, 2024a), we use ROUGE-L and METEOR 310

as evaluation metrics. 311
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Benchmark Metric Non-personalized RAG-based PEFT-based Ours Improv.
LLaMA2 BM25 Contriever SFT DPO

LongLaMP: Abstract Generation
ROUGE-L 0.2056 0.2020 0.2035 0.2038 0.2020 0.2060 0.2%
METEOR 0.2950 0.2911 0.2922 0.2929 0.2933 0.2973 0.8%

LongLaMP: Topic Writing
ROUGE-L 0.1299 0.1235 0.1256 0.1303 0.1277 0.1361 4.7%
METEOR 0.1874 0.1782 0.1853 0.1914 0.1901 0.1949 4.0%

LongLaMP: Review Generation
ROUGE-L 0.1380 0.1388 0.1391 0.1364 0.1320 0.1448 5.0%
METEOR 0.1614 0.1655 0.1663 0.1574 0.1446 0.1804 11.8%

LaMP: News Headline Generation
ROUGE-L 0.0398 0.0403 0.0403 0.0407 0.0401 0.0411 3.2%
METEOR 0.0790 0.0792 0.0807 0.0800 0.7910 0.0809 2.5%

LaMP: Scholarly Title Generation
ROUGE-L 0.1086 0.0909 0.0919 0.1100 0.1047 0.1366 25.8%
METEOR 0.2337 0.2066 0.2086 0.2348 0.1930 0.2575 10.2%

LaMP: Tweet Paraphrasing
ROUGE-L 0.2506 0.2554 0.2571 0.2341 0.2204 0.2827 12.8%
METEOR 0.2588 0.2603 0.2634 0.2503 0.2389 0.3042 17.5%

Table 2: The performance results on LongLaMP and LaMP personalized text generation benchmarks. The best
score is in bold and the second best is underlined.

Baselines We compare our proposed StyleVec-312

tor with RAG-based personalization methods and313

PEFT-based personalization methods.314

For RAG-based personalization, we employ two315

widely-used retrievers BM25 (Robertson et al.,316

2009) and Contriever (Lei et al., 2023).317

For PEFT-based personalization, we fine-tune318

user-specific LoRA adapter (Hu et al., 2021) for319

each user using their profile Pu = (xi, yi)
|Pu|
i=0 , us-320

ing SFT loss in Equation 2. Additionally, since321

we obtained style-agnostic responses, we also em-322

ploy DPO loss (Rafailov et al., 2024) to guide the323

model to generate user-authentic responses rather324

than style-agnostic responses.325

Implementation Details We implement our pro-326

posed StyleVector and all baselines with Llama-2-327

7B-chat (Touvron et al., 2023). For the RAG ap-328

proach, we set the number of retrieved documents329

k = 2; for the PEFT approach, we set the rank330

of LoRA to 8. For StyleVector, unless otherwise331

specified, we will use gpt-3.5-turbo to generate332

style-neutral responses and employ the simplest333

mean difference extracting function. We demon-334

strate the performance of using different extracting335

functions and general models in Appendix. We336

conduct experiments on the validation set to select337

the appropriate number of intervention layer ℓ and338

intervention strength α for each task. For more339

details, please refer to Appendix B.340

4.2 Main Results341

By comparing our method with the baseline in342

terms of generation performance and efficiency, we343

Task Averaged Cost ↓ SFT RAG Ours

Abstract
Generation

TT/User (s) 131.98 0.64 27.23
IL/Query (s) 22.59 18.90 15.59

IL/5-Query (s) 94.75 96.97 79.23
SS/User (MB) 17.00 0.35 0.01

Review
Generation

TT/User (s) 62.45 0.44 11.65
IL/Query (s) 18.88 8.23 11.75

IL/5-Query (s) 77.33 52.52 59.69
SS/User (MB) 17.00 0.10 0.01

News Headline
Generation

TT/User (s) 123.28 1.22 22.16
IL/Query (s) 25.52 12.47 10.32

IL/5-Query (s) 105.00 78.08 57.80
SS/User (MB) 17.00 0.83 0.01

Scholarly Title
Generation

TT/User (s) 112.31 0.51 22.53
IL/Query (s) 25.43 9.52 10.49

IL/5-Query (s) 104.33 50.68 54.30
SS/User (MB) 17.00 0.26 0.01

Table 3: Comparison of Training Time (TT, for train-
free RAG and StyleVector, represents pre-processing
time), Inference Latency (IL) and Storage Space (SS)
requirements across different methods. The lowest cost
in in bold.

demonstrate that our approach can achieve strong 344

generation performance while maintaining high ef- 345

ficiency. 346

Generation Performance Comparison Table 2 347

shows the generation performance comparison and 348

We can observe that: 349

• StyleVector demonstrates superior perfor- 350

mance across both short-term and long-term 351

personalized text generation tasks. Notably, 352

StyleVector achieves averaged 11% and 8% 353

relative improvements on ROUGE-L and ME- 354

TEOR compared with RAG-based methods 355
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Figure 2: Performance comparison across different in-
tervention layers l.

and PEFT-based methods, respectively.356

• Both RAG-based and PEFT-based methods357

show unstable performance and cannot consis-358

tently improve base model across all tasks.359

RAG-based methods are more effective in360

tasks with less user history (review genera-361

tion and tweet paraphrasing are the two tasks362

with the least user history), while PEFT per-363

forms better in scenarios with more historical364

data as it provides more training texts.365

Efficiency Comparison Table 3 shows the scala-366

bility comparison, where we implement Contriver367

as the retriever of RAG.368

• In terms of training time, our method is369

training-free and requires only 1/5 of the pre-370

processing time compared to SFT. However,371

since RAG uses smaller retrievers (e.g., the372

Contriever model we use is no larger than373

0.1B), RAG’s preprocessing time is the short-374

est.375

• In terms of inference latency, RAG is faster376

on tasks with less user history, but it becomes377

significantly slower on tasks with more user378

history. SFT takes too long to load and merge379

LoRA, making it unsuitable for scenarios that380

require frequent updates. Our method is inde-381

pendent of user history and does not require382

prolonged loading, making it a more versatile383

approach.384

• In terms of storage space, our method only385

requires storing a single vector per user, mak-386

ing it unquestionably the most space-efficient,387

which occupies about 1/1700 of the space re-388

quired by SFT.389
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Figure 3: Performance comparison across different in-
tervention strengths α.

4.3 Steering Analysis 390

Analysis of layers and multipliers The interven- 391

tion layer ℓ and the intervention strength α are two 392

important hyperparameters of our method. In this 393

section, we analyze the impact of different values 394

of ℓ and α on generation performance. The results 395

are shown in Figure 2 and Figure 3, from which we 396

can observe that: 397

• The activations controlling the model’s 398

writing style are typically reflected in the 399

middle to later layers. As shown in Fig- 400

ure 2, although there may be subtle differences 401

across tasks, in general, the most effective in- 402

tervention occurs when modifying the middle 403

to later layers of the model (around layer 15 404

and beyond). Linear probing results in Sec- 405

tion 4.4 also lead to the similar conclusion. 406

• Positive intervention can guide the model to 407

generate in the user’s style, while negative 408

intervention can push it away from that 409

style. As shown in Figure 3, when α < 0, 410

the negative intervention causes the model’s 411

generated content to drift away from the user’s 412

style, resulting in a score lower than that of the 413

non-personalized model. However, if α is too 414

large, it can cause abnormal activation values, 415

thereby disrupting the generation process. 416

4.4 Style Vector Analysis 417

Probing Study To investigate how writing style 418

features are encoded in the model’s hidden states, 419

we conduct a linear probing analysis across differ- 420

ent layers of the base LLM. For each user u ∈ U , 421

we construct a binary classification task where the 422

positive samples are the user’s authentic historical 423
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texts yi ∈ Pu, and the negative samples are our424

framework’s style-agnostic responses ŷi generated425

for the same input contexts. We extract hidden426

states at layer l for all samples and train a logistic427

regression classifier to distinguish between authen-428

tic and generated texts. Figure 4 shows the aver-429

aged probing results across all users, which reveals430

two key findings:431

• High Layer-wise Separability. All lay-432

ers achieve strong classification performance433

(AUC > 0.85), suggesting that user-specific434

stylistic patterns are robustly encoded through-435

out the network. This confirms our hypothesis436

that style information persists in the model’s437

internal representations, even when not explic-438

itly supervised.439

• The activations controlling the model’s440

writing style are typically reflected in the441

middle to later layers. The AUC increases442

with the depth of the layers, which aligns443

with our empirical findings in Section 4.3,444

where style steering interventions in these445

layers yielded optimal generation quality.446

The progressive feature refinement suggests447

that stylistic attributes are gradually distilled448

through the forward pass, reaching maximal449

linear separability in higher layers.450

4.5 Case Study451

To demonstrate the effectiveness of our method,452

we analyze a representative case from user_310 in453

LaMP: News Headline Generation benchmark in454

Figure 5, demonstrating three key insights about455

our style vector approach:456

• Style vector encodes user preferences. The457

highlighted tokens are the top 5 tokens that458

most closely match the style vector among all459

historical tokens. We can observe that the top-460

5 tokens (":", "ips", "for", "What", "Need") in461

historical headlines reveal consistent stylistic462

patterns of using subtitles and combinations463

such as "tips for" or "what need". 464

• Style vector can steer personalized gener- 465

ation. Our method generates "Keeping Your 466

Teen Safe Online: Tips and Strategies for Par- 467

ents", which naturally incorporates 3 key style 468

tokens (":", "ips", "for") while maintaining 469

content fidelity. However, the generation by 470

baselines can not match user style preferences. 471

• It’s necessary to decouple style from seman- 472

tic. We list style ranking and semantic rank- 473

ing of each historical headline, where style 474

ranking represents the ranking results based 475

on the similarity between the historical head- 476

line embeddings with the style vector, and se- 477

mantic ranking represents the ranking results 478

obtained by Contriver (Lei et al., 2023). We 479

can observe that headlines with higher style 480

rankings exhibit stronger alignment with user- 481

preferred stylistic patterns. However, there ex- 482

ists significant divergence between style rank- 483

ing and semantic ranking. For RAG-based 484

methods, the semantic-dominated retrieved 485

headlines fail to provide useful patterns about 486

stylistic preferences. 487

• Style Transfer.We tried rewriting the user’s 488

historical texts in a certain style (by instruct- 489

ing GPT) to recalculate the style vector, in or- 490

der to observe whether we can steer the model 491

to generate in the desired style. We targeted 492

two styles: "exclamatory tone, ending with 493

an exclamation mark" and "removal of colons 494

and subheadings." The results show that our 495

method can achieve style transfer while main- 496

taining semantic fidelity, further demonstrat- 497

ing that the style vector can indeed encode the 498

user’s writing style. 499

5 Related Work 500

5.1 Personalized Text Generation 501

The rapid evolution of LLMs has fundamentally 502

transformed content generation paradigms, shift- 503

ing from generic outputs to sophisticated personal- 504

ized text generation. Current methodologies in per- 505

sonalized generation predominantly fall into two 506

technical categories: Retrieval-Augmented Gen- 507

eration (RAG) approaches leverage users’ histori- 508

cal content (Pu) through dynamic retrieval mech- 509

anisms. While foundational work (Zhang et al., 510

2023; Salemi and Zamani, 2024a; Salemi et al., 511

2024a; Richardson et al., 2023) established ba- 512

sic retrieval frameworks, recent innovations have 513
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Input
Generate a headline for the following article: “Here are a few tips to keep your teen safe when using 
the Internet and other web-based technologies. If you think it's an awkward conversation; you can 
hand them this blog to read.”

Ground Truth 
Output Social Media Gone Awry: Tips for Teens to Stay Safe

User 
History

User-created Headlines Style
Ranking

Semantic 
Ranking

The Anxiety of Hiring a Nanny: Tips for the Screening Process 1 16
Leading Causes of Injury Death Among Children: What Parents Need to Know 2 14
Summer Camp Safety: Essential Questions Parents Should Ask 3 12
Protecting your child after a disclosure of sexual abuse: What parents need to 
know. 4 13

Parent Alert: Tips for Keeping Your Children Safe this Summer 5 2
Internet Predators: Parents, Monitor Your Children! 8 1
Talking to Your Child About the School Shooting in Newtown, CT 12 4
Stop Bullying: Teach Your Child Empathy and Limit Their Intake of Violence 15 3
If You See Something, Please Do  Something to Prevent Child Abuse 17 11

LLaMA Set boundaries and rules for internet use
+SFT Use parental controls to limit access to inappropriate content
+RAG Talking to Your Teen About Online Safety: It's Time to Get Real
+Ours Keeping Your Teen Safe Online: Tips and Strategies for Parents

Style 
Transfer

+ ‘!’ Tips for Keeping Your Teen Safe Online: A Must-Read for Parents!
- ’:’ 5 Tips to Keep Your Teen Safe Online

Figure 5: Case study of user_310 in News Headline Generation task. The highlighted tokens are the top 5 tokens that
most closely match the style vector among all historical tokens. The underline words are the words that match the
ground truth. ’Style Ranking’ represents the ranking results based on the similarity between the historical headline
embeddings with the style vector. ’Semantic Ranking’ represents the ranking results obtained by Contriver (Lei
et al., 2023).

enhanced these paradigms. Richardson et al.514

(2023); Zhang (2024); Tan et al. (2025) developed515

profile-augmented prompting strategies, while516

Salemi and Zamani (2024b) introduced feedback-517

driven retrieval model optimization, demonstrat-518

ing improved personalization accuracy. Parameter-519

Efficient Fine-Tuning (PEFT) methods adopt an520

alternative paradigm by adapting per-user param-521

eters through lightweight adapter modules. Com-522

parative studies (Salemi and Zamani, 2024a) reveal523

that PEFT approaches, particularly those employ-524

ing user-specific adapter tuning (Tan et al., 2024a;525

Zhuang et al., 2024; Liu et al., 2024b; Ding et al.,526

2025), achieve competitive personalization while527

maintaining computational efficiency.528

5.2 Activation Engineering529

Emerging research in activation engineering has530

uncovered that LLMs encode semantic concepts as531

linear subspaces within hidden activation represen-532

tations (Zou et al., 2023; Liu et al., 2023; Rimsky533

et al., 2024). This geometric interpretation enables534

targeted behavioral steering through linear inter-535

ventions during inference. Turner et al. (2023) 536

pioneered activation addition using contrastive- 537

derived steering vectors for sentiment and topic 538

control, while Rimsky et al. (2024) enhanced steer- 539

ing precision through mass-mean activation dif- 540

ferentials. Zhang et al. (2024a) identified truth- 541

correlated heads via linear probing, achieving en- 542

hanced veracity through targeted modulation. Com- 543

plementing this, Chen et al. (2024b) developed 544

multi-directional orthogonal steering to amplify 545

truthfulness in model responses. 546

6 Conclusion 547

In this work, we demonstrate that user’s writing 548

style can be represented as a vector in LLM’s 549

activation-space. Based on this insight, we intro- 550

duces a simple yet effective frame, StyleVector, 551

that achieves personalized text generation through 552

inference time intervention, without parameter up- 553

dates or retrievals. Experiments on both short- and 554

long-form personalization benchmarks show our 555

method can achieve strong generation performance 556

while maintaining high efficiency. 557
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Limitations558

While our framework demonstrates significant ad-559

vantages in efficiency and effectiveness, several560

limitations warrant discussion to guide future re-561

search:562

Our training-free style vector derivation, though563

efficient, may not achieve optimal disentanglement564

of style from content. The current contrastive ap-565

proach relies on the model’s inherent ability to566

separate these features through simple activation567

arithmetic. Future work could explore hybrid ap-568

proaches that combine our parametric-free method569

with lightweight optimization techniques to refine570

the style vectors while maintaining storage effi-571

ciency.572

The single-vector user representation, while573

storage-efficient, potentially conflates multiple574

stylistic dimensions (e.g., lexical preferences, syn-575

tactic structures, and discourse patterns). A more576

granular approach could represent users through577

sparse combinations (Cunningham et al., 2023;578

Lieberum et al., 2024) of concept-specific vectors,579

enabling precise control over individual style com-580

ponents.581

Our evaluation focuses on established bench-582

marks (LaMP and LongLaMP) that assume do-583

main homogeneity within each user’s historical584

data. However, real-world personalization scenar-585

ios often involve cross-domain style consistency –586

users may employ distinct stylistic registers across587

different tasks (e.g., formal emails vs. casual so-588

cial media posts). Current benchmarks lack the589

capability to assess whether learned style vectors590

can: (1) preserve task-appropriate stylistic varia-591

tions within users, or (2) prevent negative interfer-592

ence between conflicting domain-specific patterns.593

Future work should develop cross-domain person-594

alization benchmarks that incorporate mixed-task595

histories.596

Ethics Statement597

The experimental datasets are publicly available598

from some previous works, downloaded via of-599

ficial APIs. The information regarding users in600

all datasets has been anonymized, ensuring there601

are no privacy concerns related to the users. We602

do not disclose any non-open-source data, and we603

ensure that our actions comply with ethical stan-604

dards. We use publicly available pre-trained mod-605

els, i.e., LLaMA-2, Contriver, and APIs, i.e., GPT-606

3.5-turbo, DeepSeek-Chat. All the checkpoints and607

datasets are carefully processed by their authors to 608

ensure that there are no ethical problems. 609
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Algorithm 1 Personalized Generation with Style
Steering

Require: User interaction history Pu =

{(xi, yi)}|Pu|
i=1 , general LLM Mg, intervention

layer ℓ, scaling factor α, input query x
Ensure: Personalized generation model M

1: Stage 1: Generate Style-Agnostic Responses
2: for each data pair (xi, yi) ∈ Pu do
3: Generate style-agnostic response ŷi ←

Mg(xi)
4: end for
5: Stage 2: Extract Style Vector
6: for each data pair (xi, yi) ∈ Pu do
7: Compute positive activation aℓp,i ←

hℓ(xi ⊕ yi)
8: Compute negative activation aℓn,i ←

hℓ(xi ⊕ ŷi)
9: end for

10: Extract style vector sℓu ← f({aℓp,i, aℓn,i}
|Pu|
i=1 )

11: Stage 3: Activation Steering
12: for each generation position t ≥ |x| do
13: Retrieve original activation hℓ(x)t
14: Inject style vector h′ℓ(x)t ← hℓ(x)t + αsℓu
15: end for

A Algorithm 810

The complete procedure is formalized in Algo- 811

rithm 1. 812

B Experiment Details 813

DPO Baseline The DPO algorithm (Rafailov 814

et al., 2024) reframes preference learning by di- 815

rectly optimizing a policy to align with human pref- 816

erences without explicit reward modeling. Since 817

we obtained style-agnostic responses, we also em- 818

ploy DPO loss (Rafailov et al., 2024) to guide 819

the model to generate user-authentic responses yi 820

rather than style-agnostic responses ŷi. 821

θ∗u = argmin
θ

∑
(xi,yi,ŷi)∈Pu

− log σ

(
β log

Mθ(yi | xi)
Mref(yi | xi)

− β log
Mθ(ŷi | xi)
Mref(ŷi | xi)

)
(12)

822

where Mθ is the policy with adapter θu, Mref is 823

the reference policy (base model M with frozen 824

parameters), σ denotes the sigmoid function, and β 825

controls deviation from the reference policy. This 826

approach enables parameter-efficient preference 827
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Figure 6: Performance comparison across different ex-
tracting functions and intervention positions t.

alignment through lightweight adapters while main-828

taining the base model’s capabilities.829

Implementation Details All experiments were830

performed on a cluster of 8 NVIDIA RTX 3090831

GPUs, with implementations built upon the Py-832

Torch framework (Paszke et al., 2019), Hugging-833

Face Transformers (Wolf, 2019) library. To save834

computational resources, we apply 8-bit quantiza-835

tion and greedy decoding for all methods.836

C Additional Experimental Analysis837

C.1 Analysis of Extracting Function and838

Intervention Position839

We compare three different extracting functions840

in Equation 5 and different intervention token po-841

sitions t in Equation 11. We use three different842

intervention positions: intervening on all input to-843

kens, intervening only on the last input token, and844

intervening on each newly generated token. The845

results are shown in Figure 6. As we can see, using846

any extracting function and intervention position847

results in significant improvements in personalized848

text generation. Although it is very simple and849

does not introduce excessive complexity, the per-850

formance of the Mean Difference function is still851

highly superior. Moreover, the more tokens are852

intervened, the more pronounced the performance853

improvement.854

C.2 Analysis of General Model Selection855

We compare the different choices of the general856

LLM Mg in Equation 4 which is designed to gener-857
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Figure 7: Performance comparison with different
generic models Mg .

ate style-agnostic responses. The results are shown 858

in Figure 7, from which we can observe that the 859

proposed StyleVector is robust over different gen- 860

eral models. The general model does not have to be 861

the same as the model being intervened (LLaMA- 862

2-7b); in fact, text generated by a more powerful 863

model tends to have a higher relevance to the input 864

x, greater diversity, and is more conducive to the 865

extraction of style vectors. 866

C.3 Clustering 867

Figure 8 illustrates the distribution of clustered 868

style vectors for all users in two tasks of the LaMP 869

benchmark. As can be seen, the dimensionality- 870

reduced user style vectors can be grouped into sev- 871

eral clusters, indicating that different users may 872

share similar writing styles. 873

Additionally, in Figure 9, we provide examples 874

of some clusters and highlight the significant writ- 875

ing style patterns of these clusters. For example, 876

in the case of cluster 1, the users within it share 877

two writing style patterns: one prefers starting with 878

numbers, and likes adding parentheses at the end 879

to supplement the content. For cluster 2, all users 880

share one pattern: they tend to use the dash ’–’ to 881

connect elements in the title. 882
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Cluster 1

User 
ID User-created Headlines

127
The 10 Least Affordable Major Metro Areas (PHOTOS)

5 Things Your Real Estate Agent Won't Tell You (VIDEO)

628
13 Classic Photos Of Phil Jackson Back When He Was The Knicks' Hipster Iconoclast

13 Ways Johnny Manziel's Pro Day Was The Most Johnny Football Thing Ever (GIFs/PHOTOS)

1325
On 'Cats' 30th Anniversary, A Brief History (SLIDESHOW)
'La Boheme' At Philadelphia Opera Uses High-Tech Van Goghs And Renoirs (PHOTOS)

1652
9 Reasons You Should Get A Hair Gloss Treatment (Instead Of A Normal Dye Job)
13 Lessons We Can Learn From Veteran Actresses' Style (PHOTOS)

Cluster 2

288
The Sponsors Of Obamacare Repeal Are Trying To Fool America -- And Fellow Republicans
Clinton Lays Out Agenda For Making Child Care Better -- And More Affordable'

1900
Chris Christie Video Shows That GOP Empathy Is Real -- And Limited
Trump Has 2 Events This Weekend -- And Both Benefit His Businesses

1401
Obama Hits The Trail For Hillary Clinton -- And To Cement His Legacy For Generations
Trump Scrambles For A Win -- Any Win, Really -- As He Nears 100 Days

Figure 9: Case study of clustering writing patterns in News Headline Generation task. The highlighted tokens are
the shared writing styles in cluster.

D Scalability Bottlenecks of Baselines883

As summarized in Table 1, existing methods suffer884

from three critical scalability constraints:885

• Training Time. PETF demands user-886

specific adapter optimization with complexity887

O(|Pu|), incurring significant costs for large888

user bases due to the heavy back-propagations.889

RAG is training-free, eliminating gradient-890

based training overhead but requiring O(|Pu|)891

vectorization pre-processing.892

• Inference Latency. In addition to the nor-893

mal decoding latency of the language model,894

RAG suffers from O(|Pu|) retrieval latency,895

which makes it inefficient for users with long896

histories. For PEFT, the process of loading897

these adapters can introduce overhead, partic-898

ularly in scenarios requiring frequent updates899

or real-time interactions.900

• Storage Overhead. RAG stores all histor-901

ical interactions (O(|Pu|) per user), scaling902

poorly for long-term usage. PETF main-903

tains O(rDL) storage for each user (typically904

0.1%-1% of base model parameters), where r905

is the rank of LoRA, L is the number of layers906

and D is the model hidden dimension.907

E Datasets and Task Definition908

This paper utilizes the LaMP benchmark and909

LongLaMP benchmark for evaluation. We only se-910

# User Input Length Output Length # History

Abstract Generation 4560 33.82 144.28 120.30
Topic Writing 2453 28.36 263.03 50.39

Review Generation 1822 119.39 304.54 34.39
News Headline Generation 2376 29.97 9.78 287.16
Scholarly Title Generation 2500 152.81 9.26 89.61

Tweet Paraphrasing 1496 29.76 16.93 17.74

Table 4: Datasets statistics. We report the number of
users in test set, the averaged length of input x and
output y, and the averaged number of histories |Pu|.

lect generation tasks in the two benchmarks and the 911

statistics are shown in Table 4. We show the input- 912

output pair formats where the text in {BRACES} 913

can be replaced with content specific to different 914

users and queries: 915

LongLaMP: Abstract Generation This task fo- 916

cuses on generating personalized abstracts for tech- 917

nical documents or articles based on the provided 918

title and keywords. 919

INPUT: Generate an abstract for the title "{ti-
tle}" using the following items: "{keywords}"
OUTPUT: {abstract}

920

LongLaMP: Review Generation This task in- 921

volves generating personalized product reviews that 922

align with the user’s preferences, based on the prod- 923

uct description and the score assigned to the prod- 924

uct by the user. 925
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INPUT: Generate the review text written by
a reviewer who has given an overall rating of
{rating} for a product with description "{de-
scription}". The summary of the review text
is "{summary}".
OUTPUT: {review}

926

LongLaMP: Topic Writing This task focuses927

on generating a personalized long-form Reddit post928

on a given topic from its summary written by user.929

INPUT: Generate the content for a Reddit post
"{summary}".
OUTPUT: {post}

930

LaMP: News Headline Generation This task931

focuses on generating a personalized news headline932

for a given user-created article.933

INPUT: Generate a headline for the following
article "{article}".
OUTPUT: {headline}

934

LaMP: Scholarly Title Generation This task935

requires language models to generate titles for an936

input abstract of an paper.937

INPUT: Generate a title for the following ab-
stract of a paper "{abstract}".
OUTPUT: {title}

938

LaMP: Tweet Paraphrasing This task requires939

language models to generate a tweet in the style of940

a user given an input tweet.941

INPUT: Paraphrase the following tweet with-
out any explanation before or after it "{origi-
nal tweet}".
OUTPUT: {tweet}

942
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