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ABSTRACT

Most sRGB-based LLIE methods suffer from entangled luminance and color,
while the HSV color space offers insufficient decoupling at the cost of introduc-
ing significant red and black noise artifacts. Recently, the HVI color space has
been proposed to address these limitations by enhancing color fidelity through
chrominance polarization and intensity compression. However, existing methods
could suffer from channel-level inconsistency between luminance and chromi-
nance, and misaligned color distribution may lead to unnatural enhancement re-
sults. To address these challenges, we propose the Variance-aware Channel Re-
calibration Network for Low Light Image with Distribution Alignment (VCR), a
novel framework for low-light image enhancement. VCR consists of two main
components, including the Channel Adaptive Adjustment (CAA) module, which
employs variance-guided feature filtering to enhance the model’s focus on regions
with high intensity and color distribution. And the Color Distribution Alignment
(CDA) module, which enforces distribution alignment in the color feature space.
These designs enhance perceptual quality under low-light conditions. Experimen-
tal results on several benchmark datasets demonstrate that the proposed method
achieves state-of-the-art performance compared with existing methods.

1 INTRODUCTION

Low-Light Image Enhancement (LLIE) (Hu et al., 2025; Zhou et al., 2023; Kim et al., 2022; Zeng
et al., 2025; Wang et al., 2025; Jiang et al., 2024) aims to improve the brightness, contrast, and visi-
bility of details in images captured under poor illumination. Due to the inherent limitations of imag-
ing sensors in low-light conditions, such images often suffer from severe noise and degradation. As
a fundamental preprocessing step, low-light enhancement can benefit a wide range of downstream
vision tasks such as object detection (Zou et al., 2023), instance segmentation (Bolya et al., 2019),
and image matching (Cheng et al., 2025). However, standard RGB-based (sRGB) methods often
struggle due to the strong coupling between color and luminance, leading to unnatural brightness or
color distortions after enhancement. Effectively decoupling color and luminance remains an open
and challenging problem.

To tackle the above challenges, low-light image enhancement methods can be grouped into three
categories. Traditional approaches (Wang et al., 2022) in the sRGB space often suffer from strong
coupling between luminance and color, resulting in unnatural brightness and severe color distor-
tions. Inspired by the Kubelka-Munk (Gevers et al., 2012) theory, some methods (Guo & Hu, 2023)
adopt the HSV color space to decouple brightness from chrominance, enabling more controllable
enhancement. However, HSV-based methods tend to introduce artifacts such as red discontinuity
and black plane noise, which degrade image quality. To address these issues, CIDNet (Yan et al.,
2025) proposes the HVI color space for low-light conditions, which improves both color fidelity and
visual naturalness. Specifically, it mitigates red-channel artifacts through hue-saturation plane po-
larization and suppresses black noise via a learnable intensity compression transform. However, due
to the varying dynamic ranges of luminance and chrominance, different feature channels may focus
unevenly across the space, leading to channel-level feature misalignment and reduced enhancement
accuracy.
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(a) (b)

Figure 1: (a) Different feature channels focus on different regions. By selectively filtering channels,
regions with consistent brightness and color distributions are enhanced, leading to improved overall
enhancement performance. (b) Consistency in color space distribution helps the image achieve a
more natural appearance, leading to more realistic and visually pleasing enhancement results.

Building on the discussion of HVI-based methods, we identify two key challenges that remain un-
solved for achieving more accurate and robust low-light image enhancement: (1) How to selectively
filter luminance and chrominance channels to focus on regions with strong intensity and color
variation. Although previous methods (Yan et al., 2025) mitigate red discontinuity and black plane
noise via chrominance polarization and learnable intensity compression, inconsistencies may still
arise due to the spatial misalignment of luminance and color focus across different channels. This
might lead to artifacts or color shifts during enhancement. As illustrated in Figure 1(a), a more effec-
tive channel-wise feature filtering mechanism could suppress noisy or irrelevant activations in dark
regions and improve enhancement quality. (2) How to optimize the color distribution of enhanced
images. We observe that color distortion is fundamentally linked to the distribution of chrominance
in the feature space. While earlier methods decouple luminance and color, they often overlook the
structure of color distribution itself. As shown in Figure 1(b), imposing a consistency constraint on
color distribution could play a crucial role in producing clearer and more natural subjective results
under low-light conditions.

To effectively address the challenges of channel-level inconsistency and color distortion in low-light
image enhancement, we propose Variance-aware Channel Recalibration Network with Distribution
Alignment (VCR). Our approach introduces two key modules: the Channel Adaptive Adjustment
(CAA) module and the Color Distribution Alignment (CDA) module. In CAA, we first design a
Variance-aware Channel Filtering (VCF) stage to identify and mask channels with large variance
between luminance and chrominance distributions. These filtered features are then adaptively fused
with the original ones, allowing the model to focus on regions of joint distributional saliency of
luminance and color while preserving feature independence to suppress artifacts. Subsequently,
we introduce the Triplet Channel Enhancement (TCE) stage (Zhou et al., 2021; Hou et al., 2021),
which builds inter-channel and spatial dependencies through rotation-based operations followed by
residual transformations, enabling more robust channel-wise feature enhancement. In CDA, we
enforce a distribution consistency constraint between the enhanced image and a real-scene reference
in the color feature space. The above alignment allows the model to learn a more realistic color
distribution and effectively reduces color shifts in low-light conditions.

Our contributions can be summarized as follows:

• We propose a novel framework, Variance-aware Channel Recalibration Network for Low-Light
Image with Distribution Alignment (VCR), which achieves superior performance on the low-light
image enhancement task.

• We design the Channel Adaptive Adjustment (CAA) module to adaptively filter and enhance lu-
minance and chrominance features at the channel level, improving perceptually realistic lighting
and color characteristics. Additionally, we introduce the Color Distribution Alignment (CDA)
module, which enforces consistency in the color feature distribution, leading to clearer and more
natural results.

• Extensive experiments and ablations on ten benchmark datasets demonstrate the effectiveness
and generalization ability of our method, establishing a new state-of-the-art in low-light image
enhancement.
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2 RELATED WORKS
In this section, we review existing approaches for low-light image enhancement.
Traditional Methods. Early low-light enhancement relied on heuristic image processing tech-
niques that do not require training data. Histogram equalization (Pizer et al., 1987) and gamma cor-
rection (Rahman et al., 2016) amplify contrast and brightness by redistributing pixel intensities, but
they disregard scene illumination and may produce over-enhanced or washed-out results. Retinex-
based approaches (Land & McCann, 1971; Rahman et al., 2004) decompose an image into illumi-
nation and reflectance components, refining the illumination estimate with structure prior. While
more physically grounded, these methods assume ideal inputs and suffer from noise amplification
and color distortion in real-world low-light scenarios.
Learning-Based Methods. The advent of deep learning transformed low-light enhancement into
a data-driven task. Supervised models such as RetinexNet (Wei et al., 2018) and KinD (Zhang et al.,
2019) integrate Retinex decomposition within a CNN, but their reliance on accurate illumination
estimation can amplify noise and lead to color shifts. ZeroDCE (Guo et al., 2020) and RUAS (Liu
et al., 2021) bypass explicit decomposition by learning pixel-adaptive curves or spatial structure
search, which may introduce artifacts and unstable chrominance. Flow-based LLFlow (Wang et al.,
2022) achieves high restoration fidelity through normalizing flows but incurs substantial computa-
tional cost and depends on paired supervision. GAN-based methods such as EnlightenGAN (Jiang
et al., 2021) enhance perceptual realism via adversarial training but may produce unrealistic tex-
tures. SNR-Aware networks (Xu et al., 2022) incorporate noise priors to suppress artifacts, which
may suffer from the color unconsistency. Recent transformer-based architectures, including LL-
Former (Wang et al., 2023) and RetinexFormer (Cai et al., 2023), capture long-range dependencies
but do not explicitly enforce channel-level alignment. Bread (Guo & Hu, 2023) decouples the en-
tanglement of noise and color distortion by using YCbCr color space, while GSAD (Hou et al.,
2023) builds a global structure-aware diffusion process to improve the quality, which may exhibit
issues such as local overexposure or color shift. QuadPrior (Wang et al., 2024) introduces four phys-
ical priors establishing constraints for enhancing illumination; however, the complex optimization
process results in excessive parameter count and computational cost. CIDNet (Yan et al., 2025)
introduces HVI color-space to mitigate red discontinuities and black noise. Despite the consider-
able advancements made by existing methods, they typically neglect the distributional disparities of
inter-channels, which may result in uneven enhancement and residual color biases.
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Figure 2: The overall pipeline of the VCR process begins by transforming the input into the HVI
space. Next, it is processed by the Channel Adaptive Adjustment module, which includes Variance-
aware Channel Filtering and Triplet Channel Enhancement stage. These techniques aim to empha-
size regions with a high consistency of luminance and chromaticity by filtering and enhancing the
channels. After this recalibration, the features are refined, and the HV components are aligned with
ground-truth statistics via the Color Distribution Alignment (CDA) module to mitigate color shifts.
Finally, the enhanced output is reconstructed in the sRGB color space.
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3 METHODS

The proposed variance-aware channel recalibration scheme with distribution alignment is illustrated
in Figure 2. The input image is mapped into the HVI color space to disentangle luminance from chro-
maticity and fed into the Channel Adaptive Adjustment module, which comprise a Variance-aware
Channel Filtering stage to suppress discrepancies in feature distributions and a Triplet Channel En-
hancement stage to build inter-channel and spatial dependencies. Upon recalibration, both features
pass through the enhancement network, where the HV channels undergo distribution alignment with
the ground truth via the Color Distribution Alignment (CDA) module subsequently. Finally, the
enhanced HVI representation is mapped back to the RGB domain. In this section, we explain the
role of the HVI transformation and each submodule.

3.1 HVI COLOR SPACE

In the standard sRGB color space, image brightness and chromatic information are tightly coupled
across the three color channels, which may disrupt the perceived illumination or color balance of the
entire image when making adjustments to any individual channel. Although the HSV color space
separates intensity from chromaticity, it inadvertently amplifies noise in regions of extreme red and
near-black areas, producing pronounced ”red-discontinuity” and ”black-plane” artifacts during en-
hancement. To address the above limitations, the HVI color space has been proposed to alleviate

Algorithm 1: HVI Color Transform and Perceptual-inverse HVI Transform
Input: sRGB image I with channels IR, IG, IB
Output: Enhanced sRGB image Ĩ
; // k: density-k; αS , αI: scaling; ε = 10−8

foreach pixel x in I do
Imax(x)←max{IR(x), IG(x), IB(x)},;
Imin(x)←min{IR(x), IG(x), IB(x)};
if Imax(x) = 0 then

S(x)←0, H(x)←0

else

S(x)← Imax(x)− Imin(x)

Imax(x)
;

if Imax(x) = IR(x) then

H(x)←
( IG(x)− IB(x)

Imax(x)− Imin(x)

)
mod 6;

else if Imax(x) = IG(x) then

H(x)←2 +
IB(x)− IR(x)

Imax(x)− Imin(x)
;

else

H(x)←4 +
IR(x)− IG(x)

Imax(x)− Imin(x)
;

Ck(x)←k
√

sin
(πImax(x)

2

)
+ ε; Ĥ(x)←Ck(x)S(x) cos

(πH(x)
3

)
;

V̂ (x)←Ck(x)S(x) sin
(πH(x)

3

)
;

Obtain HVI representation (Imax, Ĥ, V̂ );
Apply Channel Adaptive Adjustment (Variance-aware filtering + Triplet Channel Enhancement) and

Color Distribution Alignment (CDA) on (Imax, Ĥ, V̂ ) to obtain (I ′max, Ĥ
′, V̂ ′);

foreach pixel x do

ĥ(x)← Ĥ ′(x)

Ck(x) + ε
; v̂(x)← V̂ ′(x)

Ck(x) + ε
;

H(x)← 1

2π
arctan

(
v̂(x)/ĥ(x)

)
mod 1;

S(x)←αS

√
ĥ2(x) + v̂2(x); V (x)←αII

′
max(x);

(ĨR(x), ĨG(x), ĨB(x))←HSV2sRGB(H(x), S(x), V (x));

return Ĩ;
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inherent color noise, which is composed of three channels: Imax, Ĥ , and V̂ , designed to mitigate
the artifacts introduced by the HSV representation. Here, Ck(x) denotes a learnable intensity col-
lapse function that remaps the maximum intensity Imax(x) for stabilizing low-light responses. The
parameter k, termed density-k, controls the density of black-plane points in HVT/PHVIT, thereby
balancing noise suppression and detail preservation (shown in Algorithm 1 and detailed in Appendix
A.2).

3.2 CHANNEL ADAPTIVE ADJUSTMENT MODULE

Since different feature channels attend to different regions, we aim to focus on areas with high
consistency in intensity and color distribution. Thus, we design a Channel Adaptive Adjustment
(CAA) module that filters and enhances channel-wise attention to regions with high luminance and
chrominance distributions, thereby recalibrating feature representations and improving inter-channel
distributional consistency. Specifically, CAA sequentially applies two modules at the channel level:
Variance-aware Channel Filtering (VCF) for selective suppression, followed by Triplet Channel
Enhancement (TCE) for targeted amplification.

3.2.1 VARIANCE-AWARE CHANNEL FILTERING STAGE.

As introduced in the previous section, after converting an sRGB image into the HVI space (through
HVT), the intensity map is obtained using Equation (1), and the HV chromaticity maps are derived
via Equation (4). By applying a concatenation operation, we obtain the intensity feature FI ∈
RH×W×C and the chromaticity feature Fhv ∈ RH×W×C .

Most low-light enhancement networks adopt batch normalization (BN) by default, which relies on
training set statistics and is sensitive to distribution shifts. To enhance consistency in intensity and
color distribution, we replace BN with instance normalization (IN), which normalizes each sam-
ple independently by subtracting its own mean and dividing by its standard deviation. We further
consider the information embedded in feature covariance, which is not addressed by instance nor-
malization (IN). Our goal is to suppress covariance components that are sensitive to intensity and
color variation through channel-wise modulation, thereby focusing on regions with high-value in-
tensity and color distributions.

To this end, we compute the covariance matrices of intensity and chromaticity features, denoted as
Dx

I ∈ RC×C and Dx
hv ∈ RC×C , respectively. These covariance matrices are calculated as follows:

Dx
I =

1

HW

(
Fx⊤

I · Fx
I

)
, Dx

hv =
1

HW

(
Fx⊤

hv · Fx
hv

)
, (1)

where x denotes the iteration index of the CAA module. We then compute the cross-covariance matrix Covx
between Dx

I and Dx
hv:

µx =
1

2
(Dx

I +Dx
hv), (2)

Covx =
1

2
((Dx

I − µx)
2 + (Dx

hv − µx)
2). (3)

The element Covx(i, j) in the covariance matrix measures how sensitive the i-th and j-th channels are across
intensity and chromaticity. More specifically, a higher Covx(i, j) indicates that the feature correspondence
between the i-th intensity channel and the j-th chromaticity channel is more likely to exhibit low distributional
consistency, and vice versa. Feature channels with significantly large variance values may tend to focus on
regions that are not characterized by strong intensity or chromaticity distributions, which is unfavorable for the
low-light image enhancement task. These components should be suppressed through constraints; therefore, we
design LVCF to filter out parts with excessively high variance values:

LVCF =
1

X

X∑
x=1

(
∥Dx

I ⊙Mx∥1 + ∥D
x
hv ⊙Mx∥1

)
, (4)

where x represents the layer processed by CAA. The covariance matrix Covx is divided into three groups based
on the width of variance. We select the one with the highest variance value for masking. Then, we multiply the
selected Mx by a strict upper triangular matrix Us, update Mx, and then apply it to Dx

I and Dx
hv . Since the

covariance matrix is symmetric, as training progresses, it may cause the network to overfit the statistical char-
acteristics of a specific modality, making it difficult to generalize to other low-light scenarios. By optimizing
only the upper triangular part, we can prevent the model from overly relying on the statistical information of a
particular modality, reduce redundant information and enhance feature independence. Furthermore, to ensure
feature completeness and prevent important information from being masked out, we also integrate the filtered
features with the original features, obtaining the updated intensity feature FI ∈ RH×W×C and chromaticity
feature Fhv ∈ RH×W×C .
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Figure 3: Visual results of various methods on the LOL dataset. Regions highlighted by green and
yellow boxes indicate differences in local details.
3.2.2 TRIPLET CHANNEL ENHANCEMENT STAGE.

Subsequently, the Triplet Channel Enhancement (TCE) stage refines the recalibrated features by capturing
complementary channel and spatial correlations. We first adjust the feature channel order to Ft ∈ RC×H×W ,
where t ∈ {I, hv}. Three parallel branches are designed for the intensity–chromaticity features: two capture
cross-dimensional interactions between the channel dimension C and the spatial dimensions H or W , and the
third establishes spatial attention. The final output is obtained by averaging the outputs of all three branches.
This design optimizes attention computation by effectively capturing the relationships between spatial and
channel dimensions.

In TCE, we model the dependencies between the dimensions (H,W ), (C,H), and (C,W ) to better exploit
the input features, thereby enhancing feature representation, improving consistency in intensity–chromaticity
distribution, and increasing robustness in the low-light image enhancement task. Given an input feature Ft ∈
RC×H×W , three rotated views are constructed:

Ft1 = Permute(Ft;H,C,W ),

Ft2 = Permute(Ft;W,C,H),

Ft3 = Ft.

(5)

The Global-Best Pooling layer (GB-Pool) combines max pooling (Murray & Perronnin, 2014) and average
pooling (Sun et al., 2017) to reduce the first dimension of the tensor to two, preserving feature richness while
improving computational efficiency. Specifically, the GB-Pool operation is defined as:

GB-Pool(Fty) = [MaxPool0d(Fty), AvgPool0d(Fty) ], (6)

where Fty represents the image features of the t-th feature channel and y-th branch, and 0d denotes pooling
along the first dimension. y ∈ {1, 2, 3} represents the different branches.

Taking Ft2 as an example, we establish an interaction between the height and channel dimensions. We rotate
Ft counterclockwise by 90◦ along the W -axis. The rotated tensor Ft2 is passed through the GB-Pool layer,
reducing it to shape 2×C×W . A convolution layer with kernel size k×k, followed by a batch normalization
(BN) layer, normalizes the output to shape 1×C ×W . The tensor is then passed through a sigmoid activation
layer σ to obtain attention weights, which are applied to Ft2. Finally, the output is rotated 90◦ clockwise along
the W -axis to match the original shape of Ft. Similarly, Ft3 is obtained by rotating Ft counterclockwise along
the H-axis, and Ft1 is not rotated.

This process is expressed as:

F ′
t =

1

3

3∑
y=1

(
Fty · σ

(
Conv(GB-Pool(Fty))

))
, (7)

where σ is the sigmoid function, and Conv is a 2D convolution layer with kernel size k. To preserve feature
independence, the original features are fused with the enhanced ones via residual connections.

3.3 COLOR DISTRIBUTION ALIGNMENT MODULE

Enhancing images often leads to color shifts, which are closely tied to the distribution of chromatic features. To
address this issue, we decouple intensity and color through a carefully designed pipeline and impose explicit
constraints on the chrominance distribution, significantly improving color fidelity and mitigating color shift
artifacts.

To further reduce residual color distortion and enforce realistic chrominance statistics, we introduce a Color
Distribution Alignment (CDA) module that aligns the enhanced HV features with ground truth references in a
distributional sense. After the CAA stage, a dual-branch network separately enhances luminance and denoises

6
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Figure 4: Qualitative comparison of enhancement results on the unpaired dataset in difficult condi-
tion, generated by various methods.

chrominance, and uses cross-attention to fuse complementary information, leading to improved low-light image
enhancement.

After this sequence of operations, we denote the enhanced HV feature map and the corresponding ground truth
as F ′

hv ∈ R2C×H×W and F gt
hv ∈ R2C×H×W , respectively. We compute channel-wise probability distributions

using a temperature-scaled softmax function:
pc,a =

exp (F ′
hv(c, a)/τ)∑N

b=1 exp (F
′
hv(c, b)/τ)

,

qc,a =
exp

(
F gt
hv(c, a)/τ

)∑N
b=1 exp

(
F gt
hv(c, b)/τ

) , (8)

where c = 1, . . . , 2C is the channel index, a = 1, . . . , N is the spatial location index, and N = H · W .
The Color Distribution Alignment (CDA) loss is defined as the sum of Kullback–Leibler (Johnson et al., 2001)
divergences across all channels:

LCDA =

2C∑
c=1

N∑
a=1

pc,a log
pc,a
qc,a

. (9)

Minimizing LCDA encourages the model to produce chrominance features that closely follow the distribution
of well-exposed reference images. By enforcing alignment in the probability space rather than raw values,
CDA captures subtle color statistics and structure more effectively. This helps reduce chrominance drift and
improves the visual realism and perceptual quality of enhanced images, particularly in challenging low-light
conditions.

Finally, to reconstruct the final image, the HVI representation is converted back to the HSV color space via the
Perceptual-inverse HVI Transformation (PHVIT), as formulated in Equations (6) and (7). The resulting HSV
image is then transformed into the sRGB domain to obtain the enhanced output.

3.4 LOSS FUNCTION

To constrain the training of the proposed framework, we employ a comprehensive loss that integrates the pri-
mary reconstruction loss in both RGB and HVI spaces with the VCF loss and CDA loss. Concretely, let Iout
and Igt denote the enhanced and ground-truth images in the RGB domain, and let IHVI

out and IHVI
gt denote their

counterparts in the HVI color space. We define the reconstruction loss as:

Table 1: Quantitative results of PSNR↑/SSIM↑ and LPIPS↓ on the LOL (v1 and v2) datasets. The
best performance is in red, and the second best is in blue.

Methods Complexity LOLv1 LOLv2-Real LOLv2-Synthetic

Params/M FLOPs/G PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
RetinexNet (Wei et al., 2018) 0.84 584.47 18.915 0.427 0.470 16.097 0.401 0.543 17.137 0.762 0.255
KinD (Zhang et al., 2019) 8.02 34.99 23.018 0.843 0.156 17.544 0.669 0.375 18.320 0.796 0.252
ZeroDCE (Guo et al., 2020) 0.075 4.83 21.880 0.640 0.335 16.059 0.580 0.313 17.712 0.815 0.169
RUAS (Liu et al., 2021) 0.003 0.83 18.654 0.518 0.270 15.326 0.488 0.176 13.765 0.638 0.305
LLFlow (Wang et al., 2022) 17.42 358.4 24.998 0.871 0.117 17.433 0.831 0.315 24.870 0.919 0.067
EnlightenGAN (Jiang et al., 2021) 114.35 61.01 20.003 0.691 0.317 18.230 0.617 0.309 16.570 0.734 0.220
SNR-Aware (Xu et al., 2022) 4.01 26.35 26.716 0.851 0.152 21.480 0.849 0.163 24.140 0.928 0.056
Bread (Guo & Hu, 2023) 2.02 19.85 25.299 0.847 0.155 20.830 0.847 0.174 17.630 0.919 0.091
PairLIE (Fu et al., 2023) 0.33 20.81 23.526 0.755 0.248 19.855 0.778 0.317 19.074 0.794 0.230
LLFormer (Wang et al., 2023) 24.55 22.52 25.758 0.823 0.167 20.056 0.792 0.211 24.038 0.909 0.066
RetinexFormer (Cai et al., 2023) 1.53 15.85 27.140 0.850 0.129 22.794 0.840 0.171 25.670 0.930 0.059
GSAD (Hou et al., 2023) 17.36 442.02 27.605 0.876 0.092 20.153 0.846 0.113 24.472 0.929 0.051
QuadPrior (Wang et al., 2024) 1252.75 1103.20 22.849 0.800 0.201 20.592 0.811 0.202 16.108 0.758 0.114
CIDNet (Yan et al., 2025) 1.88 7.57 28.201 0.889 0.079 24.111 0.871 0.108 25.705 0.942 0.045
Ours 1.96 8.32 28.972 0.891 0.083 24.758 0.893 0.105 26.273 0.944 0.042
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（a）

（b）（c）

Figure 5: (a) Qualitative comparison of TCE module. (b) Ablation visualization results of different
space. (c)Visual comparison between prior methods and ours. The top row presents the RGB images,
while the bottom row shows the corresponding discrete color histograms.

Lrec = ∥Iout − Igt∥1 + λHVI

∥∥∥IHVI
out − IHVI

gt

∥∥∥
1
, (10)

where ∥ · ∥1 denotes the ℓ1 norm and λHVI is a weighting coefficient, set to 1 in our experiments. The overall
loss function is then formulated as:

Ltotal = Lrec + λVCF LVCF + λCDA LCDA, (11)
where λVCF and λCDA balance the contributions of the λVCF and λCDA, respectively. It is worth noting that,
during the initial training phase, we optimize exclusively with the reconstruction loss by setting λVCF = 0 and
λCDA = 0. The weights of VCF and CDA losses set as λVCF = 0.5 and λCDA = 0.5, respectively.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS
Datasets. To validate the effectiveness of the proposed method, we conduct experiments on ten LLIE bench-
mark datasets, including five paired datasets: LOLv1 (Wei et al., 2018), LOLv2 (Yang et al., 2021)(includ-
ing two subsets), SICE (Cai et al., 2018), and SID (Chen et al., 2018), and five unpaired datasets, including
DICM (Lv et al., 2018), LIME (Guo et al., 2016), MEF (Ma et al., 2015), NPE (Wang et al., 2013), and
VV (Vonikakis et al., 2018). LOLv1 dataset contains 485 paired images for training and 15 for testing. LOLv2
comprises two subsets: LOLv2-Real and LOLv2-Synthetic, containing 689 and 900 paired training images
respectively, with each subset having 100 testing images. The SICE dataset contains 589 pairs of low-light
and well-exposed images. In our experiments, we randomly selected 100 image pairs for testing, while the
remaining 489 pairs were used for training and validation.
Experiment Settings. We implement the proposed method using PyTorch and train all models on a single
NVIDIA RTX 3090 GPU. The optimizer is Adam (Kingma & Ba, 2014) with parameters β1 = 0.9 and
β2 = 0.999. The initial learning rate is set to 1 × 10−4 and is gradually reduced to 1 × 10−7 using a cosine
annealing schedule (Loshchilov & Hutter, 2016). During training, the batch size is consistently set to 8 and
input images are cropped into 400× 400 patches for all datasets except the LOLv2-Synthetic subset, for which
full-resolution images are used without cropping.
Evaluation Metrics. Following our baseline (Yan et al., 2025), for paired datasets, we adopt Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) (Wang et al., 2004) as distortion-based metrics
to evaluate reconstruction fidelity. To further assess the perceptual quality of the enhanced results, we report
the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), computed using a pretrained
AlexNet (Krizhevsky et al., 2012a). For unpaired datasets, we employ two no-reference image quality as-
sessment metrics, BRISQUE (Krizhevsky et al., 2012b) and NIQE (Mittal et al., 2012), to evaluate perceptual
realism. Moreover, to provide a comprehensive comparison, our method is benchmarked against 11 state-
of-the-art supervised learning methods, including RetinexNet (Wei et al., 2018), KinD (Zhang et al., 2019),
LLFlow (Wang et al., 2022), EnlightenGAN (Jiang et al., 2021), SNR-Aware (Xu et al., 2022), Bread (Guo
& Hu, 2023), PairLIE (Fu et al., 2023), LLFormer (Wang et al., 2023), RetinexFormer (Cai et al., 2023),
GSAD (Hou et al., 2023) and CIDNet (Yan et al., 2025), as well as 3 unsupervised learning methods, such as
ZeroDCE (Guo et al., 2020), RUAS (Liu et al., 2021) and QuadPrior (Wang et al., 2024) across all datasets.

Table 2: Quantitative result on SID, SICE and the five unpaired datasets (DICM, LIME, MEF, NPE,
and VV). The top-ranking score is in red.

Methods SICE SID Unpaired
PSNR↑ SSIM↑ PSNR↑ SSIM↑ BRISQUE↓ NIQE↓

RetinexNet 12.424 0.613 15.695 0.395 23.286 4.558
ZeroDCE 12.452 0.639 14.087 0.090 26.343 4.763
RUAS 8.656 0.494 12.622 0.081 26.372 4.800
LLFlow 12.737 0.617 16.226 0.367 26.087 4.221
CIDNet 13.435 0.642 22.904 0.676 23.521 3.523
Ours 15.732 0.714 23.012 0.712 21.683 3.149
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Figure 6: (a) shows ablation results for varying quantities of CAA modules, while (b) presents
results from experiments using different module types on the LOLv2-REAL dataset.
4.2 RESULTS ON PAIRED DATASETS

We evaluate the proposed method on five widely-used paired low-light image enhancement benchmarks:
LOLv1, LOLv2(inculding two subsets), SID, and SICE. As shown in Figure 3, our method achieves supe-
rior visual quality compared to state-of-the-art approaches. Specifically, RUAS tends to produce over-exposed
results that lead to washed-out details, while LLFlow, PairLIE, GSAD, and CIDNet frequently suffer from
color distortions, such as hue shifts or unnatural tone mapping. In Figure 5(c), we provide a visual comparison
between prior methods and ours. The top row displays the RGB images, while the bottom row shows the corre-
sponding discrete color histograms, offering a more intuitive illustration of the improvements achieved by our
approach.

In contrast, our method employs variance-aware channel filtering to selectively suppress noisy or inconsistent
features, allowing the model to focus on regions of joint distributional saliency of luminance and color while
preserving feature independence to suppress artifacts. This strategy achieving more balanced illumination and
faithful color rendition, particularly in challenging low-light regions.

Quantitatively, Table 1 reports the PSNR and SSIM scores across the paired datasets. our method achieves a
PSNR of 28.972 on LOLv1, surpassing the best existing method by 0.771 dB. On LOLv2-Real, we obtain a
PSNR improvement of 0.647 dB over the previous SOTA, along with an SSIM gain of 0.022. These results
demonstrate the effectiveness of our design in producing high-fidelity reconstructions with consistent structure
and color. Furthermore, compared with CIDNet, the proposed method introduces only a marginal increase in
parameters (+0.08M) and FLOPs (+0.75G), yet consistently outperforms it across multiple benchmark metrics,
which validates the efficiency of our design and demonstrates its favorable trade-off between complexity and
performance.

4.3 RESULTS ON UNPAIRED DATASETS

We assess the generalization ability of models trained on LOLv1 and LOLv2-Synthetic by evaluating them on
unpaired low-light datasets using BRISQUE and NIQE, as shown in Table 2. Our method delivers clear perfor-
mance gains over prior approaches, especially in BRISQUE (a reduction of 1.838). As illustrated in Figure 4
and Figure 8, although RetinexNet achieves competitive BRISQUE scores, our results are visually more realis-
tic and perceptually more natural across diverse scenes. This benefit stems from the color distribution alignment
module, which explicitly constrains the chrominance statistics of enhanced images to better match real-world
references, improving color fidelity and reducing artifacts common in unpaired enhancement. Figure 8 further
shows that our method produces noticeable improvements in challenging cases, particularly in sky regions and
in maintaining consistent illumination across the road surface.

4.4 ABLATION STUDY

To validate the effectiveness of each component in our VCR framework, we conduct ablations on the LOLv2-
real dataset. Table 3 reports results in terms of PSNR, SSIM, and LPIPS. Removing the entire module sig-

Figure 7: Qualitative comparison of VCF module.
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RetinexFormer LLFormerInput OursKinD GSAD

Figure 8: Qualitative comparison of enhancement results on the unpaired dataset in one difficult
condition.

nificantly reduces performance (23.972 dB PSNR and 0.817 SSIM), confirming the necessity of channel-level
recalibration. Excluding the Triplet Channel Enhancement (TCE) stage causes even greater degradation, high-
lighting the importance of inter-channel and spatial attention. Omitting either Variance-aware Channel Filtering
(VCF, λVCF = 0) or Color Distribution Alignment (CDA, λCDA = 0) also hurts performance, showing their
complementary roles in distribution consistency and color fidelity. We further study the effect of stacking multi-
ple CAA modules. As shown in Figure 6(a), increasing the number from x = 1 to x = 2 consistently improves
PSNR and SSIM, while x = 3 yields stable but smaller gains. Adding more (x = 4, 5) provides negligible
improvement but higher cost. Thus, we adopt x = 3 in all final experiments for a balance of accuracy and ef-
ficiency. Finally, Figure 6(b) shows that removing CDA degrades color fidelity due to the lack of distributional
constraints, while eliminating CAA severely impairs both luminance and chrominance quality, underscoring
the role of adaptive channel filtering in maintaining illumination balance and accurate color restoration.

Table 3: Ablation studies of modules.
Exp. CAA TCE Stage VCF (λV CF ) CDA (λCDA) PSNR↑ SSIM↑ LPIPS↓

1 23.972 0.817 0.135
2 ✓ 24.158 0.825 0.129
3 ✓ ✓ 24.364 0.839 0.116
4 ✓ ✓ ✓ 24.519 0.873 0.112
5 ✓ ✓ ✓ ✓ 24.758 0.893 0.105

In addition, several supplementary analyses are also necessary. We also conduct an ablation study on the
LOLv2-real dataset to evaluate the contribution of the proposed TCE module (shown in Figure 5(a)). When
removing TCE, the model achieves a PSNR of 24.683 and an SSIM of 0.874. Replacing TCE with a vanilla
convolution layer of identical parameter size (TCE-Vanilla Conv) yields a PSNR of 24.702 and an SSIM of
0.889. In contrast, our full model equipped with TCE reaches a PSNR of 24.758 and an SSIM of 0.893. These
results demonstrate that TCE brings a clear performance gain beyond what can be obtained by simply increasing
convolutional capacity, verifying its effectiveness in enhancing feature modeling.

To further validate the effectiveness and distinction of our method compared with CIDnet, we conduct an
additional experiment on the LOLv2-real dataset by replacing the HVI space with the HSV space (shown in
Figure 5(b)). The results show that in the HVI space, CIDnet achieves a PSNR of 24.111 and an SSIM of
0.871, while our method improves these metrics to 24.758 and 0.893. In the HSV space, CIDnet obtains a
PSNR of 21.349 and an SSIM of 0.801, whereas our method increases them to 22.104 and 0.853. These
results demonstrate that our approach consistently enhances image quality across both HVI and HSV spaces,
indicating strong reliability and generalization capability.

To further verify whether the channels selected by VCF based on covariance variance can effectively reflect
feature representation quality, we design a combined qualitative and quantitative evaluation (shown in Figure
7). Four types of inputs are compared against the ground truth by computing feature similarity. CIDnet achieves
a similarity of 0.8788 using intensity–color features in the HVI space. In our method, the VCF module separates
two subsets of channels: channels with small covariance variance differences (denoted as C1), which achieve
a similarity of 0.8965, and channels with large covariance variance differences (denoted as C2), which yield
a similarity of 0.8549. Moreover, the overall intensity–color representation produced by our method reaches
a similarity of 0.9009. These comparisons clearly indicate that the channels with smaller covariance variance
selected by VCF lead to higher-quality feature representations. Visualization results are provided in Fig. 6.
In this experiment, we first concatenate the intensity and color-space features, and then apply global average
pooling to obtain an HW×1 vector for similarity computation and visual analysis.

5 CONCLUSION

We introduce VCR, a novel low-light image enhancement framework designed to improve feature representa-
tion in the channel dimension through variance-aware filtering and distribution-level alignment. By enhanc-
ing intra-channel consistency between luminance and chrominance via variance-aware filtering and aligning
chrominance distributions, our method reduces artifacts and color shifts, resulting in visually natural enhance-
ments. Moreover, VCR achieves state-of-the-art performance on ten public benchmarks, demonstrating supe-
rior visual quality and strong generalization across diverse lighting conditions.
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A APPENDIX

This supplementary document provides additional details on the objective evaluation metrics, extended subjec-
tive experiments, and further failure cases. We also include implementation and training details to facilitate
reproducibility.

A.1 OBJECTIVE EVALUATION METRICS

In our work, we employ a range of full-reference and no-reference image quality assessment metrics to com-
prehensively evaluate the performance of low-light image enhancement algorithms. Below, we describe each
metric, its underlying principle, and its relevance to our task.

A.1.1 PEAK SIGNAL-TO-NOISE RATIO (PSNR)

PSNR is one of the most widely used full-reference metrics in image processing. It measures the ratio between
the maximum possible pixel intensity value and the mean squared error (MSE) between an enhanced image
and its ground-truth reference. Formally, given a ground-truth image Igt and an enhanced image Iout of size
H ×W , the MSE is defined as:

MSE =
1

HW

H∑
i=1

W∑
j=1

(
Iout(i, j)− Igt(i, j)

)2
.
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PSNR is then computed in decibels (dB) as:

PSNR = 10 log10

(
L2

MSE

)
,

where L is the dynamic range of pixel values (e.g., 255 for 8-bit images). A higher PSNR indicates closer
agreement with the reference, corresponding to lower reconstruction error. Although PSNR is simple to com-
pute and provides a quantitative measure of fidelity, it does not always correlate well with perceived visual
quality, especially in the presence of structural distortions or color shifts.

A.1.2 STRUCTURAL SIMILARITY INDEX (SSIM)

SSIM (Wang et al., 2004) was proposed to address the limitations of pixel-wise metrics like PSNR by incor-
porating human visual system characteristics. SSIM evaluates similarity between two images based on three
components: luminance, contrast, and structure. Given two image patches x and y, SSIM is defined as

SSIM(x, y) =
[
l(x, y)

]α · [c(x, y)]β · [s(x, y)]γ ,
where 

l(x, y) =
2µxµy+C1

µ2
x+µ2

y+C1
,

c(x, y) =
2σxσy+C2

σ2
x+σ2

y+C2
,

s(x, y) =
σxy+C3

σxσy+C3
.

Here, µx, µy are the mean intensities of x, y; σx, σy are their standard deviations; σxy is the covariance; and
C1, C2, C3 are small stabilizing constants. Typically, α = β = γ = 1 and C3 = C2/2. SSIM values range
from −1 to 1, with higher values indicating greater structural similarity. In practice, SSIM better captures
perceptual quality—preserving edges and textures—compared to PSNR.

A.1.3 LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY (LPIPS)

LPIPS (Zhang et al., 2018) is a learned perceptual metric that quantifies the perceptual distance between two
images by comparing deep features extracted from a pretrained convolutional neural network (e.g., AlexNet,
VGG, or SqueezeNet). Given a pair of images, LPIPS computes feature maps at multiple layers {Fl(·)} and
measures the (normalized) ℓ2 distance between these features:

LPIPS(Igt, Iout) =
∑
l

wl
1

HlWl

∑
i,j

∥∥Fl(Igt)i,j − Fl(Iout)i,j
∥∥
2
,

where Hl,Wl are the spatial dimensions of the l-th feature map, and wl are learned weights that balance the
contribution of each layer. LPIPS correlates well with human judgments of perceptual similarity and is sensitive
to semantic-level differences that PSNR and SSIM may overlook.

A.1.4 BLIND/REFERENCELESS IMAGE SPATIAL QUALITY EVALUATOR (BRISQUE)

BRISQUE (Krizhevsky et al., 2012b) is a no-reference (blind) image quality assessment metric that models
natural scene statistics (NSS) in the spatial domain. BRISQUE computes locally normalized luminance coeffi-
cients, fits these coefficients to an asymmetric generalized Gaussian distribution (AGGD), and extracts statisti-
cal features (e.g., shape and variance parameters). A support vector regressor, trained on human-rated quality
scores, maps these features to a quality score. Lower BRISQUE values indicate better perceptual quality. Be-
cause it does not require ground-truth references, BRISQUE is particularly useful for evaluating unpaired or
real-world images.

A.1.5 NATURALNESS IMAGE QUALITY EVALUATOR (NIQE)

NIQE (Mittal et al., 2012) is another blind quality metric that evaluates deviations from statistical regularities
of natural images. NIQE builds a multivariate Gaussian model over a set of NSS features (mean subtracted
contrast normalized coefficients, neighbor pixel products, etc.) extracted from pristine natural images. For a
test image, NIQE computes the same features and measures the Mahalanobis distance to the learned Gaussian
model:

NIQE(I) =
√

(f − µ)⊤Σ−1(f − µ),

where f is the feature vector of the test image, and µ,Σ are the mean and covariance of features from natural
images. Lower NIQE scores reflect closer adherence to natural image statistics.
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A.2 HVI SPACE

According to the Max-RGB, for each individual pixel x, the intensity map of image I can be estimated:

Imax(x) = max
c∈{R,G,B}

Ic(x). (12)

Meanwhile, according to the sRGB-HSV transformation, the saturation s of the image can be obtained:

s =

0, Imax = 0
Imax −min(Ic)

Imax
, Imax ̸= 0

(13)

and the hue h of the image is formulated as follows:

h =



0, if s = 0(
IG − IB

Imax −min(Ic)

)
mod 6, if Imax = IR

2 +
IB − IR

Imax −min(Ic)
, if Imax = IG

4 +
IR − IG

Imax −min(Ic)
, if Imax = IB

(14)

where s and h correspond to any pixel in the saturation map S(x) and hue map H(x), respectively. Moreover,
corresponding to HVT in Figure 2, the horizontal chromaticity component Ĥ(x) and the vertical component
V̂ (x) are constructed by polarizing the hue angle from HSV into Cartesian space, defined as:

Ĥ(x) = Ck(x) · S(x) · cos
(
πH(x)

3

)
,

V̂ (x) = Ck(x) · S(x) · sin
(
πH(x)

3

)
,

(15)

where Ck(x) is a learnable intensity collapse function defined as:

Ck(x) = k ·

√
sin

(
πImax(x)

2

)
+ ε, (16)

with k as a trainable parameter and ε as a small constant (set to 10−8) for training stability. Moreover, as shown
in Fig. 2, the Perceptual-inverse HVI Transformation (PHVIT) is performed to convert the HVI space back to
HSV. The hue H(x), saturation S(x), and value V (x) are estimated as:

H(x) =
1

2π
· arctan

(
v̂(x)

ĥ(x)

)
mod 1,

S(x) = αS ·
√

ĥ2(x) + v̂2(x),

V (x) = αI · Imax(x),

(17)

where αS and αI are linear scaling parameters that control the output image’s saturation and brightness, re-
spectively. The normalized intermediate chromaticity coordinates are computed as:

ĥ(x) =
Ĥ(x)

Ck(x) + ε
,

v̂(x) =
V̂ (x)

Ck(x) + ε
.

(18)

Table 4: Ablation on the masking ratio of Variance-aware Channel Filtering (VCF) module.

Metrics PSNR↑ SSIM↑ LPIPS↓

Masking Ratio

Ratio=1/5 23.997 0.853 0.141
Ratio=1/4 24.516 0.872 0.126
Ratio=1/3 24.758 0.893 0.105
Ratio=1/2 22.963 0.804 0.207
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（a） （b）

Figure 9: (a) Failure cases of the proposed method under extreme nighttime scenarios. (b) Compar-
ison visualization of SID dataset.

A.3 VISUAL COMPARISONS

Figure 10, Figure 11 and Figure 12 provides additional visual examples on seven LLIE benchmark datasets,
including three paired datasets: LOLv1 (Wei et al., 2018), LOLv2 (Yang et al., 2021), and SICE (Cai et al.,
2018), and four unpaired datasets, including DICM (Lv et al., 2018), LIME (Guo et al., 2016), MEF (Ma et al.,
2015), NPE (Wang et al., 2013), and VV (Vonikakis et al., 2018). Our method is benchmarked against 11 state-
of-the-art supervised learning methods, including RetinexNet (Wei et al., 2018), KinD (Zhang et al., 2019),
LLFlow (Wang et al., 2022), EnlightenGAN (Jiang et al., 2021), SNR-Aware (Xu et al., 2022), Bread (Guo
& Hu, 2023), PairLIE (Fu et al., 2023), LLFormer (Wang et al., 2023), RetinexFormer (Cai et al., 2023),
GSAD (Hou et al., 2023) and CIDNet (Yan et al., 2025), as well as 3 unsupervised learning methods, such as
ZeroDCE (Guo et al., 2020), RUAS (Liu et al., 2021) and QuadPrior (Wang et al., 2024) across all datasets.
Our method consistently restores both global illumination and local color fidelity, whereas competing methods
exhibit over-saturation (e.g., ZeroDCE), residual noise (e.g., LLFlow), or hue shifts (e.g., RetinexNet).

While our VCR framework performs robustly under most conditions, we identify several additional failure
scenarios:

High ISO Noise: Images captured with very high ISO exhibit strong sensor noise patterns that our current
VCF stage sometimes misinterprets as salient chrominance variation, leading to amplified graininess. Mixed
Lighting Sources: Scenes lit by mixed temperature light sources (e.g., tungsten and daylight) can cause uneven
color casts. Our CDA module aligns average chrominance distributions but may not fully account for spatially
varying color biases.

In future work, we will explore the integration of explicit noise models and adaptive regularization priors into
the HVI transform to better handle such extreme conditions.

Figure 9(a) illustrates these failure cases, which we plan to address in future work by incorporating explicit
noise priors, enforcing temporal consistency for video data, and adapting color temperature locally. From the
visualization in Figure 9(b), we can observe that our method performs significantly better on the SID dataset
compared with our baseline (which is trained using the publicly available CIDnet weights).

A.4 IMPLEMENTATION AND TRAINING DETAILS

A.4.1 HYPERPARAMETER SETTINGS

The loss weights are set to λHVI = 1, λVCF = 0.2, and λCDA = 0.5. Temperature for CDA softmax is
τ = 0.01. Threshold for VCF masking is τVCF = 0.1.

A.4.2 TRAINING PROTOCOL

All networks are trained using the Adam optimizer (Kingma & Ba, 2014) (β1 = 0.9, β2 = 0.999) on a single
NVIDIA RTX 3090 GPU. The initial learning rate is 1 × 10−4, decayed to 1 × 10−7 via cosine annealing
over 600 epochs. Batch size is set to 8, and input patches of size 400 × 400 are used for all datasets except
LOLv2-Synthetic (full resolution). Data augmentation includes random horizontal flips and rotations.

Mask Ratio in Variance-aware Channel Filtering We further analyze the impact of the masking ratio
in the Variance-aware Channel Filtering (VCF) stage, which determines the proportion of channel covariance
entries suppressed by the binary mask M . We evaluate four candidate ratios, 1/5, 1/4, 1/3, and 1/2, and report
the resulting PSNR and SSIM on the LOLv1 validation set in Table 4. When the ratio is too high, excessive
masking removes informative channels and degrades reconstruction fidelity; conversely, a very low ratio fails
to adequately suppress distributional inconsistencies. The 1/3 mask ratio strikes the best balance, yielding the
highest PSNR of 24.758 dB—an improvement of approximately 0.18 dB over the 1

5
setting—and the highest

SSIM of 0.893. Consequently, we adopt 33% masking as the default configuration for the VCF stage.
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Figure 10: More visual results of various methods on the LOLv1 dataset.

A.5 USE OF LARGE MODELS

In this work, large language models are employed solely for language polishing and improving the readability
of the manuscript. They are not involved in problem formulation, algorithm design, model implementation, or
experimental analysis. All technical contributions and experimental results are independently developed and
verified by the authors.
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Figure 11: More visual results of various methods on the LOLv2 and SICE dataset.
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Figure 12: More visual results of various methods on the unpaired dataset.
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