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ABSTRACT

Driven by the wave of Large Language Models (LLMs), Video-Language Models
(VLMs) have become a significant yet challenging technology to bridge the gap
between video and text. Although previous VLM works have made significant
progress, almost all of them implicitly assume that all the texts are predefined by
the specific template. In real-world applications, such an assumption is impossible
to satisfy, since predefining all the texts is extremely time-consuming and labor-
intensive. Besides, these predefined text inputs are too strict and user-unfriendly,
limiting their applications. It is observed that given a video input, texts with simi-
lar semantics lead to various performances. To this end, in this paper, we propose
a novel text-augmented VLM method to improve video-text fusion by text rewrit-
ing. Specifically, we first generate various text samples from the original ones
based on the pre-trained LLM to target specific text components. A multi-level
contrastive learning module is designed to mine the coarse-grained language in-
formation. Moreover, we also propose an attribute-based text reasoning strategy
to learn fine-grained textual semantics. Extensive experiments on many video-
language tasks show that the proposed method can serve as the plug-and-play
module to effectively improve the performance of state-of-the-art VLM works.

1 INTRODUCTION

Due to remarkable success, Large Vision-Language Models (LVLMs) have attracted more and more
attention (Tian et al., 2024; Fan et al., 2024; Kim et al., 2024). LVLMs require cooperation from both
computer vision and natural language processing for precise semantic alignment and have a wide
range of applications such as video summarization and video question answering. Benefiting from
the strong knowledge integration ability in large language models (LLMs), LVLMs show superior
performances in solving complex image-language tasks by utilizing appropriate human-instructed
prompts (Hakim et al., 2023; Duan et al., 2024; Jung et al., 2024). Since the real-world videos
contain much temporal information, LVLMs still have difficulty to handle the real-world videos.
Besides, the sentence text is the most important input that accompanies the video due to its human-
friendly and descriptive nature.

Current video-language models contain three main popular yet challenging tasks: video question
answering (VideoQA) (Gao et al., 2023; Yu et al., 2024), video sentence grounding (VSG) (Zhang
et al., 2023b; Qi et al., 2024) and video-text retrieval (VTR) (Zhu et al., 2023; Zhang et al., 2023a).
Video QA is a significant multi-modal task where a model is given a video along with a natural
language question about the video content, and it must generate or select the correct answer. The task
requires the model to understand the visual cues in the video, as well as the language of the question,
to provide relevant and accurate responses. Given a language text and an untrimmed video, VSG
aims at retrieving the start and end timestamps of the target video moment, semantically according
to a sentence text. Given a language text, VTR targets to retrieve relevant videos from a large video
database, which can be either text-based (text-to-video retrieval) or video-based (video-to-video
retrieval). The significant goal of VTR is to find videos that best match the given input by analyzing
visual content, actions, and sometimes audio cues. Their performance in these downstream tasks
depends on their capability to extract video features and align them with text features. Some methods
only perform data augmentations on the video input to improve the model robustness during training
in every epoch. In contrast, existing methods only utilize predefined texts without any augmentation.
In real-world applications, these sentence texts with similar textual semantics might be inputted
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(d) Our proposed method.
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Figure 1: (a-c) Example of the VLM tasks (VSG, VideoQA and VTR), where our method can serve as a plug-
and-play module for previous VLM models to enhance their efficiency. (d) Pipeline of our proposed method.

with different structure/vocabulary variations from various users. As shown in Figure 1(b), the text
(“Person pours water into a glass”) shares the same semantics as the text (“Water is poured into
a glass by person”). However, previous methods yield dissimilar grounding results in Figure 1.
The main reason is that these methods cannot utilize their weak text encoder to learn discriminative
textual representations, which illustrates the significance of handling the text variations. Therefore, it
is important to ensure that the designed VLM-based model is robust enough to deal with various texts
with different templates. However, existing language augmentation approaches are not sufficiently
effective to integrate the multi-modal inputs. Some methods target to replace or mask some words
in a sentence, which only brings limited influence in diversifying the text structure/vocabulary. It
is comparatively weaker than video augmentations. The target language augmentation approach
should effectively rewrite sentence texts while reserving the core textual semantics. The approach is
urgently required for model training to achieve the best results.

In this paper, we propose a simple yet highly effective framework to improve the robustness and
performance of VLMs. Specifically, we leverage the large language models (LLM) to generate
multiple variants of each text in the video-text pairs. To obtain different text types, we generate a
small set of variation-origin by two strategies: LLM-based datasets and existing original datasets.
After obtaining the variation-origin pairs, we utilize them as examples to prompt LLM model for
diversifying all the texts in the VSG datasets. Different from previous sentence augmentation works
that only change some words to preserve sentence structures, LLM has a strong language processing
ability to generate rich variations for diverse text inputs due to their extensive training datasets and
emergent properties. Based on the above sentence augmentation, each video corresponds to diverse
texts. Moreover, we introduce GPT (Radford, 2018) to generate various hard negative texts from the
original (anchor) texts by changing different sentence parts. In particular, we utilize precise prompt
engineering to modify specific parts of the sentence with the rest parts unchanged. Also, we generate
positive samples that lie relatively far from the anchor in the embedding space. To further understand
the latent textual semantics, we design an attribute-based text reasoning strategy for fine-grained text
mining. To analyze the relative significance of each sentence part, we incorporate these generated
samples by a weighted contrastive loss function. With these diverse texts, we target to train VLM
models with augmentation from the text perspective. For convenience, we randomly choose a text
augmentation from multiple diverse texts.

Our main contributions are summarized as follows: 1) We make the first attempt to explore the
effect of the template-free text for the robust VLM task, where we localize the target activity by a
user-friendly text with any form instead of a predefined text. Also, we propose a novel framework
that utilizes the LLMs to generate positive and negative texts, where each negative text is used to
highlight a sentence component. 2) To obtain diverse positive and negative texts, we augment the
text by both word-level and structure-level for rewriting texts. To selectively integrate these gen-
erated texts, we design two modules (generating multi-level texts module and attribute-based text
reasoning module) to understand the text input from different granularities. Besides, a weighted
contrastive loss is introduced to integrate these sentence components by assigning adaptive weights
to these components. 3) For three downstream tasks (video sentence grounding, video question an-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Person unlock 

the door

Positive

Person open 

the door.

Positive query generation 

Person unlock 

the door.

...

Person close 

the door.

...

Negative query generation 

Person open 

the door.

LLM

The door is 

unlocked by 

person.

...

The door is 

closed by person.

...

Word-level Sentence-level

Word-level Sentence-level

Query 

encoder

Query 

encoder

Query 

encoder

Shared

Shared

V
id

eo

Video 

encoder

o
p

en

Person open 

the closet.

Cat open the 

door

P
er

so
n

 c
lo

se
 

th
e 

d
o
o

r.

Negative

People open 

the door

P
erso

n
 o

p
en

 

d
o

o
r.

“person”“door” “open”

S
ig

n
if

ic
an

ce
 s

co
reQuery

A
ttrib

u
te-b

ased
 

tex
t reaso

n
in

g
W

eig
h
ted

 co
n
trastiv

e 

learn
in

g
 

V
L

M
 m

o
d

el

R
ew

rite

Figure 2: Illustration of our proposed framework. Best viewed in color.

swering and video-text retrieval), we conduct experiments on many popular yet challenging datasets.
Extensive results show that our proposed model outperforms existing approaches by a large margin.
Moreover, our method can serve as a plug-and-play module for state-of-the-art VLM methods.

2 RELATED WORKS

Large vision-language models. The breakthrough of LLMs in language-oriented tasks (Ma et al.,
2024; Du et al., 2024) and the emergence of GPT-4 have prompted researchers to explore the poten-
tial of LLMs in assisting with a range of tasks across multi-modal scenarios (Carolan et al., 2024;
Yin et al., 2024). This has led to the development of a new field, namely large vision-language
models (LVLMs). A variety of strategies and models have been proposed to address the discrepancy
between text and other modalities. Some works employ learnable texts to extract visual information
and generate language using LLMs conditioned on the visual features. Models including GPT-4o,
MiniGPT-4 and LLaVA learn simple projection layers to align the visual features from visual en-
coders with text embeddings for LLMs. Additionally, parameter-efficient fine-tuning is adopted
by introducing lightweight trainable adapters into models. Several benchmarks have verified that
LVLMs demonstrate satisfactory performance on visual perception and comprehension.

Although these methods have achieved promising results, all of them heavily rely on correctly
aligned multi-modal datasets. Therefore, it is highly expected to develop a VLM model that is
robust to different texts with similar semantics, which has not been studied as far as we know. Thus,
we make the first attempt to reveal the text understanding problem in VLM task and propose to
eliminate the negative impact of the different texts with any template. More details in Section A.2.

3 METHODOLOGY

We elaborate on the proposed method, which strengthens the text encoder to obtain consistent repre-
sentations for various semantically similar texts in real-world multi-modal datasets (e.g., Charades-
STA (Sigurdsson et al., 2016)), multiple semantics-similar texts often share a video moment with
the target activity. For example, “Person opens the door” and “The door is opened by person” have
similar semantics. Since the text template is fixed, it is still challenging to diversify the text input.
Thus, we design a text augmentation module to generate semantically similar texts. The overall
framework is shown in Figure 2.

Problem statement. Due to the strong language processing ability of of LLMs, we utilize LLM to
generate various texts by replacing different components for simulating the practical labeling pro-
cess in the format-free setting. We denote {Q1, . . . , QM} as the textual input set in the VLM task,
where M denotes the total number of sentences. Previous VLM methods (Yu et al., 2023; Wang
et al., 2022b; 2024) cannot well handle these texts with similar semantics since they do not fully
understand the textual information in the sentence. To address the existing models’ limitations in
correlating major sentence parts with suitable video representations, we present a novel plug-and-

3
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play method for generating negative and positive samples targeting specific sentence parts. These
samples facilitate improved perception of specific parts of the sentence, eventually enhancing the
understanding of video-language correlation. We use the generated samples as auxiliary samples
alongside the original training samples by employing a novel weighted contrastive loss. The pro-
posed approach is application-agnostic and can be adopted successfully in the multi-modal task.

3.1 GENERATING MULTI-LEVEL TEXTS FOR COARSE-GRAINED LANGUAGE ALIGNMENT

By treating original texts as anchors, we target to leverage LLMs for generating positive and negative
texts to fully understand the texts, where we regard the generated text sharing similar semantics as
a positive text; otherwise, the generated text is negative. For the m-th text, we denote the generated
positive text as Pm and the negative text as Nm . To obtain diverse generated texts, we adopt
three text rewriting approaches: human-based rewriting, chat robot-based rewriting and open-source
LLM-based rewriting in Section A.1. For convenience, we term the pair of generated text and
original text as variation-origin text pairs.

Real-world multi-modal datasets include multiple video-text pairs (V,Q), where V denotes the
video and Q denotes one of corresponding texts. These texts differ in two levels: word level and
sentence structure level. Therefore, we have two types of text rewriting by a two-step rewriting pro-
cess: word-level rewriting and structure-level rewriting. For convenience, we take the positive text
augmentation as an example.

Word-level augmentation. In the first step, we directly rewrite the original text by changing some
words. With pre-trained LLMs, we can rewrite all the texts by the following prompt: P ′

i,m ←
LLM(Qm, “Rewrite the text ‘text’ concisely by changing the i-th word while keeping the meaning”),
where text is substituted with the given text, and we utilize the underlined text to prompt our model
for producing morphologically diverse text expressions.

To evaluate the significance of qi on the semantics of Qm, we can evaluate the semantic change
before and after removing this word:

S1(qi, Qm, c) = 1− cos(c ∪Qm, c ∪Qm \ {qi}), (1)

where c denotes the prompt and cos(·, ·) is the cosine similarity function. In real-world applications,
larger S1(qi, Qm, c) denotes that removing qi will lead to significant semantic changing, indicating
that qi is more relevant.

Structure-level augmentation. Since different users tend to utilize various text structures for video
grounding, we need to augment the text structure for more diverse texts. Similarly, we utilize the
following prompt for structure-level rewriting: Pi,m←LLM(P ′

i,m, “Rewrite the text ‘text’ concisely
by changing the text structure while keeping the meaning”).

Given a sentence Qm, we define the sentence-level relevance of Qi
m as the probability-weighted

semantic similarity with other sentences:

S2(Q
i
m, Qj

m, c) =
∑

j=1,j ̸=i
cos(Qi

m, Qj
m)p(Qj

m|c), (2)

where p(Qj
m, c) denotes the generative probability that provides more confidence to Qj

m, and higher
p(Qj

m, c) makes Qj
m more acceptable. An intuitive observation is that if a sentence is semantically

consistent with other sentences, the sentence is more convincing and more representative.

Similar to positive text augmentation in equation 1 and equation 2, we generate negative texts by
changing their words and sentence structure. Thus, based on the multi-level language rewriting, we
can conduct coarse-grained language alignment.

3.2 ATTRIBUTE-BASED TEXT REASONING FOR FINE-GRAINED LANGUAGE ALIGNMENT

In fact, Section 3.1 only considers the semantics of the sentence itself, ignoring the latent information
of the sentence. For example, “a person is driving a car” contains two significant objects: “person”
and “car”. “person” corresponds to the following attributes: a head, two eyes, two arms, etc, while
the attributes of “car” include: four wheels, a steering wheel, etc. There attributes will assist VLMs
to understand videos and texts for bridging the visual and textual gap.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Attribute generation. For some semantically similar sentences, they always have similar attributes.
Therefore, we generate the attributes for all positive and negative texts. Although embedding at-
tributes can help us to understand the sentence, current VLM models cannot fully understand the
latent semantics. For example, “a person is driving a car” and “a car is running on the road” have
similar semantics. Therefore, rather than directly using the original sentence, we design a model
with high confidence in visual attributes. Two intuitions are considered in this model: 1) different
from the original sentence, aligning explicitly with visual attributes can push the deigned model to
mine the inherent semantics in the given sentence. 2) visual attributes contain more fine-grained
features, which can provide more details for cross-modal reasoning.

Firstly, we utilize video and text encoders to extract the video and text features. Since our framework
is plug-and-play, it does not depend on specific feature encoders. For the fair comparison, we
adopt the same video and text encoders with compared methods. For the text Q with J words,
we denote word-level text feature as fW = {fw

j }Jj=1 ∈ RJ×d and the sentence-level text feature
as fq ∈ Rd, where d is feature dimension. Similarly, we denote the extracted video features as
fV = {fv

i }
Nv
i=1 ∈ RNv×d, where Nv is the frame number.
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Figure 3: Our attribute selection module.

Attribute sampling. We
find that some generated at-
tributes have a stronger se-
mantic correlation with vi-
sual features than others, and
some attributes have less sig-
nificance, which will lead
to high computational cost.
Therefore, removing some
low significance can not only decrease the computational cost but also improve the model gener-
alization. As shown in Figure 3, we address the problem by selecting effective attributes from an
attribute pool. Two main criteria are utilized during the attribute selection: Firstly, we prioritize at-
tributes that are both representative and non-redundant. Secondly, we seek attributes with the highest
semantic relevance to the images when compared to other attributes. Finally, we use the following
steps for attributes: 1) For the attributes am associated with sentence Q, we partition them into Nc

clusters based on their feature similarity. This clustering strategy aims to ensure that each cluster
represents a distinct aspect, e.g., color or shape, in the descriptions. 2) In each cluster, we rank the
attributes by assessing their similarity to visual features, and select the one with the highest rele-
vance. By the above strategy, the following attributes will be filtered out: non-visual attributes and
incorrect visual attributes that are semantics-unrelated to the videos. To obtain the optimal attributes,
we introduce the following attribute selection strategies:

Semantic-based selection. Firstly, we want to make the sentence text has the similar semantics
with its generated attributes. Since the NLI model can mine the relationship between texts and the
attributes by inferring the logical entailment, we introduce an NLI-based binary filter (fnli) as a
critic, and discard the pairs which do not achieve the entailment score over the threshold γ1:

O1(x, y) = 1{fnli(x ⇒ y) ≥ γ1},

where x denotes the input, and y means the output.

Format-based selection. When we rewrite the given sentence, we need to make the format of
the given sentence various, and preserve its original meaning. Thus, we want to filter the origin-
variance pair to learn the format-free dissimilarity. Especially, two metrics are used to evaluate
the dissimilarity: 1) the token overlap between different sentences and 2) their syntactic difference.
For the first, we filter the pairs with a higher Rouge-L (Lin, 2004) than a threshold γ3. As for the
syntactic difference, we first parse the constituency tree of the origin and variety, and then filter the
pairs based on their tree edit distance:

O2(x, y) = 1{Dt(x, y) ≥ γ2 ∧ frou(x, y) ≤ γ3 },

where Dt(·, ·) denotes the tree edit distance. In equation 3.2, the two dimensions of dissimilarity
complement each other. On the one hand, frou(·, ·) promotes lexical divergence in each pair. On the
other hand, Dt(·, ·) can be used to preempt “hacking” the word-overlap metric by simply switching
a few words in the source sentence with corresponding synonyms.
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Diversity-based selection. For sentence rewriting, we need a diverse range of generated sentences
since the diversity of attributes can directly affect the robustness of the trained model. Therefore,
we introduce a critic O3 for the diversity. We define two pairs (x1, y1) and (x2, y2) to be duplicates
when one pair entails another, either on the input side (x1 ⇒ x2) or on the output side (y1 ⇒ y2).
In the diversity filter, we first cluster all entailing pairs, and then discard all but one with the largest
entailment score. Thus, we can utilize the graph traversal for the diversity filter.

Based on the above critics, we can filter the attribute candidate pool A into an updated pool U :

U = {(x, y)|(x, y) ∈ A, O1 ∧O2 ∧O3(x, y) = 1}.

3.3 WEIGHTED SENTENCE INCORPORATION FOR CROSS-MODAL FUSION

In fact, different words (e.g., noun, verb, and adjective) have distinct significance in text understand-
ing. For instance, some adjectives are more important for video grounding in some cases, while
some verbs are more significant for distinguishing different target moments. Previous VLM meth-
ods treat all sentence components equally, which might limit these methods to fully understand the
entire sentence. For example, if there is no adjective in the anchor text, the negative text with adjec-
tives cannot contribute to our model since the adjective is not discriminative for the text. Thus, we
aim to analyze the relative significance of each word to adaptively integrate different words, where
we adaptively predict the salience of sentence components for each anchor text. Without any super-
vision, we can obtain the significance score which means which word is more significant for text
understanding. By the module, we can find an optimal integration strategy of sentence components,
which makes VLM selectively understand different sentence components for a given text.

Incorporating generated sentences. Based on these positive and hard negative samples, we can
encourage the designed VLM models to distinguish the difference between different words in each
sentence part. For supervising the VLM model to understand the text input, we introduce a con-
trastive loss based on three types of text input:

Li
cl=−log

β · exp[1/τ · cos (fV ,gni )]

(1− β) · exp[1/τ · cos (fV ,gpii )]+β · exp[1/τ · cos (fV ,gni )]
, (3)

where β ∈ (0, 1) is a parameter; gi denotes the i-th text; gni,j

i and gpi

i denote the the negative text
and the positive text, respectively; τ denotes the temperature parameter. By equation 3, we can
enhance the effectiveness of the designed model by these generated auxiliary texts.

Weighted contrastive loss. Since the visual features have higher computational complexity, we
generate the positive and negative texts only by the original text (i.e., anchor text) without consider-
ing the video input. Since different words contribute variously to sentence understanding, we target
to find the most discriminative word for better text understanding by the following loss:

Li
CL = max(Li,1

cl ,L
i,2
cl , . . . ,L

i,C
cl ). (4)

For C contrastive losses (Li,1
cl , . . . ,L

i,C
cl ), each contrastive loss computed by equation 3 corresponds

to a specific negative text, where the corresponding sentence component is changed. In equa-
tion 4, the maximum of these decomposed losses corresponds to the sentence component that is
most clearly identified. Considering the significance score in equation 1 and equation 2, we can
obtain the finally weighted contrastive loss as follows:

Lweighted =
∑

i,j,m,c
S1(qi, Qm, c) · S2(Q

i
m, Qj

m, c) · Li
CL. (5)

Since our method is plug-and-play, we borrow the cross-modal fusion module from an open-source
works into our framework, which is the base version of our method.

4 EXERIMENTS

Datasets. For a fair comparison, we utilize the following datasets for evaluation. 1) For the task,
we utilize three datasets: ActivityNet Captions (Caba Heilbron et al., 2015), and Charades-STA
(Sigurdsson et al., 2016) and TACoS (Regneri et al., 2013). 2) For the VTR task, we adopt two
datasets: MSRVTT (Xu et al., 2016) and LSMDC. 3) For the VideoQA task, we use two datasets:
NExT-QA (Xiao et al., 2021) and STAR (Wu et al., 2021). More details are placed in Section B.1.
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Table 1: Text-to-video and video-to-text retrieval comparisons on MSR-VTT (Xu et al., 2016).
Method Without text augmentation With text augmentation

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
Text-to-video retrieval

CLIP-ViT-B/32
X-Pool (Gorti et al., 2022) 46.9 72.8 82.2 2.0 14.3 40.1 68.2 76.5 4.0 18.9

+Ours 47.8 74.9 83.5 1.0 12.3 45.9 72.3 81.4 2.0 13.6
CLIP-ViP (Xue et al., 2023) 50.1 74.8 84.6 1.0 – 42.3 69.4 77.8 3.0 16.5

+Ours 51.7 75.3 85.9 1.0 11.8 50.4 73.6 84.5 1.0 12.4
T-MASS (Wang et al., 2024) 50.2 75.3 85.1 1.0 11.9 42.1 68.9 79.2 2.0 15.8

+Ours 52.3 77.9 87.6 1.0 10.9 51.4 70.2 81.3 1.0 11.7
CLIP-ViT-B/16

X-Pool (Gorti et al., 2022) 48.2 73.7 82.6 2.0 12.7 39.7 68.5 78.4 4.0 16.5
+Ours 50.7 76.2 85.2 1.0 12.4 48.9 75.3 84.0 1.0 13.8

CLIP-ViP (Xue et al., 2023) 54.2 77.2 84.8 1.0 – 51.2 73.9 80.4 2.0 14.8
+Ours 56.8 79.4 85.9 1.0 11.3 53.6 77.8 84.2 1.0 12.5

T-MASS (Wang et al., 2024) 52.7 77.1 85.6 1.0 10.5 49.2 70.5 83.9 2.0 16.7
+Ours 54.9 82.6 86.8 1.0 10.2 53.4 81.0 86.2 1.0 11.5

Video-to-text retrieval
CLIP-ViT-B/32

X-Pool (Gorti et al., 2022) 44.4 73.3 84.0 2.0 9.0 41.2 68.5 80.4 3.0 13.8
+Ours 45.8 76.4 87.3 1.0 7.5 42.7 74.5 86.0 2.0 8.3

UATVR (Fang et al., 2023) 46.9 73.8 83.8 2.0 8.6 43.0 67.9 78.3 3.0 11.7
+Ours 49.7 75.6 86.4 1.0 7.3 47.8 74.0 83.9 2.0 7.8

T-MASS (Wang et al., 2024) 47.7 78.0 86.3 2.0 8.0 42.9 73.5 82.6 3.0 13.9
+Ours 51.5 79.9 89.8 1.0 6.4 49.5 78.1 87.5 1.0 8.2

CLIP-ViT-B/16
X-Pool (Gorti et al., 2022) 46.4 73.9 84.1 2.0 8.4 42.8 72.0 81.6 3.0 10.5

+Ours 50.2 77.4 86.3 2.0 6.1 48.7 76.0 84.2 2.0 7.5
UATVR (Fang et al., 2023) 48.1 76.3 85.4 2.0 8.0 41.6 73.0 81.9 3.0 10.6

+Ours 50.9 77.4 90.5 2.0 6.8 48.9 76.3 87.9 2.0 7.6
T-MASS (Wang et al., 2024) 50.9 80.2 88.0 1.0 7.4 48.3 75.6 84.9 2.0 8.9

+Ours 53.7 84.2 91.5 1.0 3.4 50.8 82.7 90.4 1.0 4.9
Table 2: VideoQA performance comparison on NExT-QA dataset, where the value means the accuracy of
providing the right answer.

Method # Frames Without text augmentation With text augmentation
Temporal Causal Description Temporal Causal Description

All-in-One (Wang et al., 2023) 32 48.6 48.0 63.2 40.2 37.9 53.8
+Ours 32 50.1 51.9 64.7 48.6 50.2 61.3

Just Ask (Yang et al., 2021a) 20 51.4 49.6 63.1 42.7 40.1 54.0
+Ours 20 54.3 52.9 67.8 50.9 49.3 62.7

MIST (Gao et al., 2023) 32 56.6 54.6 66.9 51.9 48.2 55.3
+Ours 32 60.3 56.9 69.8 57.2 55.4 67.9

HiTeA (Ye et al., 2022) 16 58.3 62.4 75.6 52.2 57.6 59.3
+Ours 16 62.8 65.7 77.3 60.4 63.9 74.9

InternVideo (Wang et al., 2022a) 8 58.5 62.5 75.8 52.9 57.4 70.3
+Ours 8 62.5 66.3 76.4 61.8 59.7 74.5

BLIP-2 (Li et al., 2023b) 4 67.2 70.3 79.8 64.0 61.9 72.3
+Ours 4 70.1 72.9 80.4 69.2 70.1 78.4

SeViLA (Yu et al., 2023) 4 67.7 72.1 82.2 64.0 66.8 76.9
+Ours 4 72.4 74.9 85.3 70.5 72.7 83.9

Table 3: Comparison Results on STAR VideoQA benchmark.
Method (Frames Number) Without text augmentation With text augmentation

Interaction Sequence Prediction Feasibility Interaction Sequence Prediction Feasibility
All-in-One (Wang et al., 2023) (32) 47.5 50.8 47.7 44.0 42.9 48.5 44.0 40.2

+Ours (32) 48.3 51.9 49.6 45.7 47.9 51.3 48.7 44.3
MIST (Gao et al., 2023) (32) 55.5 54.2 54.2 44.4 50.7 51.4 50.2 38.4

+Ours (32) 58.6 59.5 58.4 47.0 57.0 56.3 57.2 45.8
InternVideo (Wang et al., 2022a) (8) 62.7 65.6 54.9 51.9 55.6 61.0 50.3 47.2

+Ours (8) 63.8 67.7 58.9 55.2 61.8 64.9 57.4 54.3
SeViLA (Yu et al., 2023) (4) 63.7 70.4 63.1 62.4 58.7 62.2 57.9 57.8

+Ours (4) 66.7 72.9 66.4 65.3 65.3 68.9 64.2 63.4
BLIP-2 (Li et al., 2023b) (4) 65.4 69.0 59.7 54.2 60.9 66.3 54.3 50.1

+Ours (4) 67.8 72.5 61.4 56.8 66.2 71.6 58.7 55.3

Evaluation metrics. For the VTR task, we utilize Recall at rank {1, 5, 10} (R@1, R@5, and
R@10), Median Rank (MdR), and Mean Rank (MnR) for evaluating the retrieval performance.
For the VSG task, we evaluate the grounding performance by “R@n, IoU=m”, which means the
percentage of queries having at least one result whose Intersection over Union (IoU) with ground
truth is larger than m. In our experiments, we use n ∈ {1, 5} for all datasets, m ∈ {0.5, 0.7} for
ActivityNet Captions and Charades-STA, m ∈ {0.3, 0.5} for TACoS. As for the VideoQA task,
we introduce the following metrics: temporal, causal, description, interaction, sequence, prediction
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Table 4: VSG performance comparison under official train/test splits, where “FS” denotes “fully-supervised”
and “WS” means “weakly-supervised”.

Method Type
Without text augmentation With text augmentation

R@1, R@1, R@5, R@5, R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

ActivityNet Captions
2D-TAN FS 59.45 44.51 85.53 77.13 48.32 29.38 71.36 62.30
+Ours FS 60.46 45.29 87.94 77.43 51.86 32.64 72.98 63.75
MMN FS 65.05 48.59 87.25 79.50 55.30 31.76 74.88 71.52
+Ours FS 66.05 49.31 89.75 81.27 58.76 33.08 75.33 73.59
G2L FS - 51.68 - 81.32 55.75 33.01 75.25 70.89

+Ours FS 66.34 54.26 91.77 84.29 60.90 46.86 84.39 80.62
VCA WS 50.45 31.00 71.79 53.83 31.74 25.37 46.98 42.76

+Ours WS 51.72 33.19 72.85 55.11 32.99 28.56 48.31 44.07
WSTAN WS 52.45 30.01 79.38 63.42 33.72 25.74 49.30 45.88
+Ours WS 53.10 31.56 80.24 65.77 35.20 27.99 51.84 48.69
CNM WS 55.68 33.33 - - 35.72 28.95 50.06 48.72
+Ours WS 56.11 34.08 81.09 67.34 39.56 31.77 52.88 51.99

Charades-STA
2D-TAN FS 39.81 23.25 79.33 52.15 20.18 11.35 47.05 33.82
+Ours FS 40.27 24.95 82.96 53.28 23.99 14.75 49.22 34.18
MMN FS 47.31 27.28 83.74 58.41 25.33 18.80 45.97 35.08
+Ours FS 49.07 29.32 85.06 60.13 26.87 22.48 46.03 37.85
G2L FS 47.91 28.42 84.80 59.33 26.54 19.85 48.06 36.70

+Ours FS 55.77 32.97 91.38 60.39 34.85 27.96 74.28 46.70
VCA WS 38.13 19.57 78.75 37.75 17.87 12.39 45.70 22.13

+Ours WS 40.95 20.31 80.42 39.26 18.63 15.72 46.17 23.88
WSTAN WS 29.35 12.28 76.13 41.53 8.15 5.43 35.27 11.86
+Ours WS 30.24 14.06 77.35 42.99 10.77 6.92 37.40 13.88
CNM WS 35.15 14.95 - - 14.34 9.65 43.88 18.79
+Ours WS 35.72 16.33 76.52 43.18 16.83 12.05 45.60 21.64
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Method Run-time Model Size R@1, IoU=0.5 Aug time
ACRN 6.88s 128M 14.62 -
CTRL 1.24s 22M 13.30 -
TGN 1.95s 166M 18.90 -

2DTAN 1.72s 232M 25.32 -
DRN 1.31s 214M 23.17 -

MomentDiff 2.40s 248M 33.68 -
G2L+Ours 0.95s 113M 40.31 0.20s

Table 5: Figure: Performance comparison with state-of-the-art methods on the TACoS for the VSG task,
where left figure compares the effectiveness (R@5, IoU=0.5) and the efficiency (QPS), right figure shows that
our method can serve as a plug-and-play module to enhance their efficiency. Table: Efficiency comparison for
VSG on TACoS without text augmentation. “Aug time” denotes the time of generating multi-level texts.

Table 6: Main ablation study on the VSG task with G2L as the base model, where we remove each key
individual component to investigate its effectiveness.

Model
ActivityNet Captions Charades-STA

R@1 R@1 R@5 R@5 R@1 R@1 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Ours(a) 53.77 40.28 76.94 72.25 28.51 20.34 67.85 38.71
Ours(b) 55.35 42.03 79.50 74.91 30.88 23.92 70.66 41.58
Ours(c) 57.63 43.86 81.34 77.99 32.50 24.03 71.76 42.92

Ours(full) 60.90 46.86 84.39 80.62 34.85 27.96 74.28 46.70

and feasibility. In these metrics, lower MdR and MnR denotes better performance. For the metrics,
higher value means better performance. Bold denotes the best performance.

Implementation details. For video encoding, we utilize the 112× 112 pixels shape of every frame
of videos. As for the text encoder, we feed the texts to a pre-trained txt encoder to embed word-level
features. The dimensions d of video and text tokens are 512. We set γ1 = 0.8, γ2 = 0.6, γ3 = 0.7
and µ = 0.6 in our experiments to achieve the best performance. We train our model for 100 epochs
with an Adam optimizer with the learning rate 3× 10−4.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80 90 10
0

Epoch

30
32
34
36
38
40
42
44
46
48
50

m
Io

U

Ours(full)
Ours(c)
Ours(b)
Ours(a)

0 10 20 30 40 50 60 70 80 90 10
0

Epoch

60
62
64
66
68
70
72
74

T
em

po
ra

l v
al

ue

Ours(full)
Ours(c)
Ours(b)
Ours(a)

0 10 20 30 40 50 60 70 80 90 10
0

Epoch

34
36
38
40
42
44
46
48
50
52
54

R
@

1

Ours(full)
Ours(c)
Ours(b)
Ours(a)

Figure 4: Training performance of each ablation module with text augmentation on the ActivityNet Captions
dataset (left, VSG), the NexT-QA dataset (middle, VideoQA) and the MSR-VTT dataset (right, VTR).

4.1 PERFORMANCE COMPARISON

Following previous open-source methods, we directly cite the corresponding results from compared
methods. In this paper, we treat our as the plug-and-play module for state-of-the-art VLM models
to improve their performance.

Performance comparison on the VTR task. VTR is a challenging multi-modal task, which re-
quires the designed model can effectively bridge the gap between videos and texts. In this paper,
we consider two subtask: text-to-video retrieval and video-to-text retrieval. Table 1 illustrates the
effectiveness of our model as the plug-and-play module for previous VTR methods. We can find
that when using augmented text, all the compared methods suffer performance degradation. The
core reason is that previous VTR methods pay less attention to the language input, and ignore much
language information in the sentence query. By using our model as the plug-and-play module, pre-
vious method can obtain significant performance improvement since our proposed model can fully
mine latent language semantics.

Performance comparison on the VideoQA task. Similar to the VTR task, we conduct performance
comparison VideoQA performance comparison. The experimental results are summarized in Table
2 and Table 3, where the performance of previous methods was unsatisfactory. The key reason is
that previous methods have difficulty in understanding the rewritten question. Different from them,
we can explore more deep and fine-grained language information by attribute-based text reasoning.

Performance comparison on the VSG task. We conduct VSG performance comparison on all three
datasets with official train/test splits under both fully-supervised (Gao et al., 2017; Li et al., 2023a;
Liu et al., 2018; Li et al., 2023c; Yuan et al., 2019a; Zhang et al., 2019b; 2020b; Zeng et al., 2020;
Gao & Xu, 2021; Zhang et al., 2021; Gao et al., 2021; Wang et al., 2022b) and weakly-supervised
setting (Chen et al., 2022; Yang et al., 2021b; Zhang et al., 2020c; Wang et al., 2021b;a; Zheng et al.,
2022). Table 4 and 5 reports the quantitative comparison results. Obviously, our proposed model can
help state-of-the-art VSG methods for performance improvement over all metrics on three datasets,
which demonstrates the superiority of our proposed model. It is mainly because our model can fully
understand the query knowledge by the text augmentation process.

Efficiency comparison. We evaluate the efficiency of our proposed model, by fairly comparing its
running time and model size in the inference phase with existing open-source methods for the VSG
task on TACoS. As shown in Table 5, it can be observed that we achieve much faster processing
speeds with relatively fewer learnable parameters.

4.2 ABLATION STUDY AND ANALYSIS

Main ablation studies. To demonstrate the effectiveness of each component in our model, we
conduct ablation studies regarding the components (i.e., Augmenting texts by Pre-trained LLMs,
Generating Positive and Negative texts, Significance Estimation for Sentence Component Integra-
tion and Cross-modal Fusion) in Table 6. In particular, we remove each key individual module to
investigate its contribution. For convenience, we design four ablation models: 1) Ours(a). We re-
move the “Augmenting texts by Pre-trained LLMs” module while keeping the other three modules.
2) Ours(b). We remove the “Generating Positive and Negative texts” module while keeping the
other three modules. 3) Ours(c). We remove the “Significance Estimation for Sentence Component
Integration” module while keeping the other three modules. Besides, we use our full model as the
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Table 7: Ablation study on different word types for the text-to-video task on DiDeMo (Anne Hendricks et al.,
2017) and VATEX (Wang et al., 2019), where T-MASS (Wang et al., 2024) is the base model with CLIP-ViT-
B/32 as backbone.

Method DiDeMo VATEX
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓

w/o Verb 46.0 74.1 82.7 2.0 14.3 61.2 93.2 94.0 2.0 2.7
w/o Noun 43.1 71.8 82.3 2.0 15.1 61.3 91.0 95.6 2.0 3.3

w/o Subject 48.6 77.1 84.4 2.0 13.4 65.2 92.7 95.9 1.0 3.0
Full model 52.7 79.3 88.6 1.0 10.4 64.9 93.7 98.2 1.0 1.4

baseline: Ours(full). As shown in Table 6, all four modules contribute a lot to the final performances
on all three datasets, demonstrating their effectiveness under the VSG task.

   

   Q1: Person pours water into a glass.

Q2: Water is poured into a glass.

Ground truth (GT) 7.3s 17.3s

MMN(Q1) 6.8s 18.1s

+Ours(Q1) 7.2s 17.3s

MMN(Q2) 10.4s 13.9s

+Ours(Q2) 7.3s 17.1s

Ground truth (GT)

T-MASS(Q1) 1
st
 video (√)

+Ours(Q1)

T-MASS(Q2)

+Ours(Q2)

1
st
 video (√)

1
st
 video (√)

2
nd

 video  (×)

1
st
 video (√)

Ground truth (GT)

MIST(Q1)

+Ours(Q1)

MIST(Q2)

+Ours(Q2)

Hold baby up. 

Hold baby up. (√)

Pull his finger. (×) 

Hold him up. (√)

Q1: How did the woman in yellow support the boy in blue at the start?  

Q2: How did the woman in yellow assist the boy in blue at the beginning?

Q1: Kids are in a classroom finger painting.  

Q2: Children are painting in room.

Hold baby up. (√)

(a) Visualization for the VSG task on Charades-STA.

(b) Visualization for the VTR task on MSR-VTT. 

(c) Visualization for the VideoQA task on NexT-QA.

Figure 5: Visualization results.

Training process of different ablation
models. Following (Lin et al., 2020b), we
analyze the training process and retrieval
performance of different ablation models
in Figure 4. We can obtain the follow-
ing representative observations: (i) Dur-
ing training, Our(full) outperforms other
ablation models, which further demon-
strates the effectiveness of each module.
(ii) Our(full) converges faster than abla-
tion models, showing that our full model
is more efficient. For instance, Our(full)
converges within 70 epochs, while Our(c)
converges after 80 epochs. Thus, our
full model can process these challenging
datasets more efficiently.

Analysis on different word types. Dur-
ing generating negative texts, we change
a part of the sentence to help us under-
stand the whole sentence. As shown in
Table 4.2, we analyze the effect of dif-
ferent word types. Among three word
types (noun, verb, and subject), the noun
is the most significant. It is because the
noun can help our model localize the ob-
ject in the given video for text-to-video
task. Besides, the noun can be used to
generate more semantic-rich attributes for
fine-grained language alignment. On the
contrary, the subject brings minimal per-
formance improvement.

Visualization Figure 5 depicts the
grounding visualizations. Our model can
significantly improve the state-of-the-art
VLM methods for different tasks. This is because our model can fully understand the textual input
by attribute-based text reasoning.

5 CONCLUSION

In this paper, we rethink the LLM task from the user-friendly language input. We observe that
many VLMs cannot fully understand the language texts. Given some texts with similar semantics
and a video, these VLMs output various results. Thus, we design a plug-and-play framework to
improve the generation ability of previous methods on various text templates. Extensive experiments
on many challenging datasets show that our framework can serve as the plug-and-play module for
state-of-the-art VLM works to improve their performance on various video-language tasks. In our
future work, we will extend our model into more multi-modal tasks.
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A APPENDIX

A.1 AUGMENTING TEXTS BY PRE-TRAINED LLMS

Considering the strong natural language processing of pre-trained LLMs, we will generate various
text augmentations by pre-trained LLMs. Inspired by the effectiveness of LLMs, we rewrite the
texts in VLM datasets to generate variation-origin pairs based on the following approaches.

A.1.1 AUGMENTATION BY HUMAN.

To make our model more user-friendly, we randomly invite ten persons from different countries to
rewrite some texts. For convenience, we randomly choose some video-text pairs from these VLM
datasets. For obtaining diverse text variations, we encourage rewriters to rewrite these texts based
on the target video segments. The human-based rewriting approach will enhance the creation of text
augmentation. Finally, we can obtain the variation-origin text pairs that include the original texts
and the corresponding human-rewritten version.

Augmentation by chat robots. Recently, LLMs-based chat robots (e.g., ChatGPT or Bard) have
achieved impressive performance in natural language processing. Thus, we target to rewrite the texts
by chat robots. Firstly, we randomly choose some texts from the VSG datasets. Then, we utilize
the web portals of chat robots to generate target texts by providing prompts. Some examples of the
chat robot rewriting is shown in our supplementary material. With the powerful language processing
ability of these chat robots, we can rewrite texts by utilizing different templates and vocabularies.
The rewriting approach can preserve most textual semantics corresponding to the target segment.

Augmentation by open-source LLMs. Since it will lead to significant financial and time costs if
we generate all the augmented texts by these closed-source chat robots (e.g., ChatGPT and Bard),
we utilize an open-source LLMs, LLaMA, to generate the positive texts. Due to the strong gener-
alization ability, LLaMA can be directly used to rewrite all the texts in the video-text datasets. For
better generation ability, we leverage the LLaMA-7B model for text generation to guarantee that the
generated texts are diverse and semantically relevant to the original texts.
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Based on the above approaches, we can obtain three types of variation-origin text pairs: Bard-based,
ChatGPT-based, and LLaMA-based. Then, we treat them as inputs for the In-Context Learning
strategy (Zhang et al., 2024). In each approach, we randomly choose some texts from the video-text
datasets for target text generation, which will generate some variation-origin text pairs. These pairs
contain comprehensive and diverse training samples as the input of our framework.

A.2 MORE DETAILS FOR RELATED WORKS

Fully-supervised VSG. VSG is a new task introduced recently (Gao et al., 2017; Anne Hendricks
et al., 2017). Most previous algorithms (Anne Hendricks et al., 2017; Gao et al., 2017; Chen et al.,
2018; Zhang et al., 2019b; Yuan et al., 2019a; Zhang et al., 2020b; Liu et al., 2021) have been
proposed within the propose-and-rank framework, which first generates moment candidates and
then utilizes multimodal matching to retrieve the most relevant candidate for a text. Some of them
(Anne Hendricks et al., 2017; Gao et al., 2017) take multiple sliding windows as candidates. To
improve the quality of the candidates, (Zhang et al., 2019b; Yuan et al., 2019a) pre-cut the video
on each frame by multiple pre-defined temporal scales, and directly integrate sentence information
with fine-grained video clips for scoring. For instance, Xu et al. (Xu et al., 2019) introduce a
multi-level model to integrate visual and textual features earlier and further re-generate texts as
an auxiliary task. Zhang et al. (Zhang et al., 2019a) model relations among candidate moments
produced from a convolutional neural network with the guidance of the text information. Although
these methods achieve great performance, they are severely limited by the heavy computation on
proposal matching/ranking, and sensitive to the quality of pre-defined proposals. Recently, many
methods (Chen et al., 2020; Yuan et al., 2019b; Zeng et al., 2020; Zhang et al., 2020a; Nan et al.,
2021) propose to utilize the boundary-regression framework. Specifically, they directly predict two
probabilities at each frame by leveraging cross-modal interactions between video and text, which
indicate whether this frame is a start/end frame of the ground truth video moment.

Weakly-supervised VSG. Despite the decent progress on the grounding performance, fully-
supervised methods severely rely on the numerous annotations, which are significantly labor-
intensive and time-consuming to obtain. To alleviate this dense reliance to a certain extent, some
weakly-supervised VSG methods are proposed (Mithun et al., 2019; Chen et al., 2019; Lin et al.,
2020a). For a weakly supervised VSG task, (Duan et al., 2018) decomposes it into two sub-tasks:
event captioning and text localization. (Duan et al., 2018) first assumes that each caption describes
only one temporal moment, and then designs a cycle network to train the model. As the pioneering
work for weakly-supervised VSG, (Mithun et al., 2019) learns a joint representation between the
video and the text by proposing Text-Guided-Attention network and utilizing an attention weight.
To improve the exploration and exploitation, (Lin et al., 2020a) chooses the top-K proposals and
measures the semantic similarity between the video and the text for localization. By proposing a
Semantic Completion Network, (Lin et al., 2020a) treats the masked text as input and predicts the
masked words from the video features.

B MORE EXPERIMENTS

B.1 MORE DATASET DETAILS

For convenience, we only utilize three datasets on the VSG task as example. We can utilize similar
process for the other tasks.

1) ActivityNet Captions contains 19,209 videos from ActivityNet (Heilbron et al., 2015) with
71,953 textual descriptions. The videos are of diverse and open contents with an average length
of 2 minutes, and the annotated segments are significantly various in length, ranging from several
seconds to over 3 minutes. Following the public experimental setting (Zhang et al., 2019b), we use
37,417, 17,505, and 17,031 segment-text pairs for training, validation, and testing. For each dataset
split (training, validation, and testing), we generate 10,000 positive texts by each rewriting approach
(ChatGPT, Bard, and LLaMA) for each split.

2) Charades-STA (Gao et al., 2017) is an extension of the Charades dataset (Sigurdsson et al., 2016)
with temporal annotations. It contains 9,848 videos with an average length of 30 seconds and mainly
focuses on daily indoor activities. There are 12,408 and 3,720 segment-text pairs in the training and
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Table 8: Performance comparison on TACoS dataset (with text augmentation) under official
train/test splits.

Method Type R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL FS 10.25 8.92 27.85 16.96
ACRN FS 11.70 10.38 28.04 18.30
CMIN FS 12.87 9.96 27.99 17.43
SCDM FS 14.35 10.96 28.33 18.82
DRN FS 16.39 11.77 30.85 20.99

2D-TAN FS 16.98 13.79 33.02 21.13
MMN FS 19.90 15.32 34.77 23.85
FVSG FS 22.30 17.85 35.23 23.07
RaNet FS 22.95 18.86 37.44 22.91
G2L FS 23.48 19.87 37.52 24.88

MomentDiff FS 26.76 18.73 38.49 25.84
G2L+Ours - 37.92 27.48 46.73 35.95

Table 9: Effectiveness comparison on ActivityNet Captions dataset (without text augmentation)
under official train/test splits.

Method Type R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL FS - 29.01 - 59.17
2D-TAN FS 59.45 44.51 85.53 77.13

DRN FS - 45.45 - 77.97
RaNet FS - 45.59 - 75.93

MIGCN FS - 48.02 - 78.02
MMN FS 65.05 48.59 87.25 79.50
G2L FS - 51.68 - 81.32

ICVC WS 46.62 29.52 80.92 66.61
LCNet WS 48.49 26.33 82.51 62.66
VCA WS 50.45 31.00 71.79 53.83

WSTAN WS 52.45 30.01 79.38 63.42
CNM WS 55.68 33.33 - -

G2L+Ours - 66.34 54.26 91.77 84.29

testing sets, respectively. Similar to the ActivityNet Captions dataset, we generate 2,000 positive
texts by each rewriting approach (ChatGPT, Bard, and LLaMA) for each dataset split.

3) TACoS (Regneri et al., 2013) consists of 127 videos with an average length of 7 minutes. These
videos are selected from the MPII Cooking Composite Activities video corpus, which contains ac-
tivities of cooking scenarios, thus lacking diversity. Following the standard split of (Gao et al.,
2017), we use 10,146, 4,589, and 4,083 segment-text pairs for training, validation, and testing, re-
spectively. Similar to the ActivityNet Captions dataset, we generate 4,000 positive texts by each
rewriting approach (ChatGPT, Bard, and LLaMA) for each dataset split.

Similarly, we conduct the similar augmentation operation in other datasets.

Effect of negative samples. To evaluate the effect of the generated negative samples, we conduct
the ablation study for the VideoQA task on the NExT-QA dataset. Table 19 shows the results.
Obviously, we can utilize the generated negative samples for performance improvement in terms of
all the metrics.

Effect of attribute. Similarly, we analyze the significance of the attributes in our proposed frame-
work by performing the ablation study in Table 20. In this table, with the attributes, our model
achieves the significant performance improvement. It is because the attributes can help our model
fully understand the language input by mining latent fine-grained language semantics.
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Table 10: Text-to-video comparisons on DiDeMo (Anne Hendricks et al., 2017) and VATEX (Wang
et al., 2019). Bold denotes the best performance. “–”: result is unavailable.

Method DiDeMo Retrieval VATEX Retrieval
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓

CLIP-ViT-B/32
X-Pool (Gorti et al., 2022) 44.6 73.2 82.0 2.0 15.4 60.0 90.0 95.0 1.0 3.8

+Ours 47.8 75.5 84.6 1.0 14.1 61.2 93.4 98.9 1.0 2.7
UATVR (Fang et al., 2023) 43.1 71.8 82.3 2.0 15.1 61.3 91.0 95.6 1.0 3.3

+Ours 45.5 72.9 84.8 1.0 13.4 65.2 92.7 98.9 1.0 3.0
T-MASS (Wang et al., 2024) 50.9 77.2 85.3 1.0 12.1 63.0 92.3 96.4 1.0 3.2

+Ours 52.7 79.3 88.6 1.0 10.4 64.9 93.7 98.2 1.0 1.4

Table 11: Performance comparison on TACoS dataset (without text augmentation) under official
train/test splits.

Method Type R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL FS 18.32 13.30 36.69 25.42
ACRN FS 19.52 14.62 34.97 24.88
CMIN FS 24.64 18.05 38.46 27.02
SCDM FS 26.11 21.17 40.16 32.18
DRN FS - 23.17 - 33.36

2D-TAN FS 37.29 25.32 57.81 45.04
MMN FS 39.24 26.17 62.03 47.39
FVSG FS 41.48 29.12 64.53 50.00
G2L FS 42.74 30.95 65.83 49.86

RaNet FS 43.34 33.54 67.33 55.09
MomentDiff FS 44.78 33.68 - -
G2L+Ours - 53.56 40.31 71.62 62.06

Influence of corse-grained language alignment. To show the importance of our corse-grained
language alignment strategy, we conduct the ablation study for the VideoQA task on the NExT-QA
dataset in Table 21. Table 21 illustrates the effectiveness of the corse-grained language alignment
strategy.

Influence of fine-grained language alignment. To evaluate the effectiveness of the fine-grained
language alignment module, we conduct the ablation study for the VideoQA task on the NExT-QA
dataset in Table 22. Obviously, our fine-grained language alignment module can effectively improve
the performance over all metrics.

Analysis on the hyper-parameters. Moreover, we investigate the robustness of the proposed model
to different hyper-parameters in Figure 6. We find that we can obtain the best performance when
γ1 = 0.4, γ2 = 0.85, γ3 = 0.25, β = 0.6, τ = 0.3.

Feature visualization. To investigate the feature distributions of the sentences during language
alignment, we randomly choose some origin-variation pairs, and show the t-SNE Van der Maaten
& Hinton (2008) visualizations of “before language alignment” and “after language alignment” in
Figure 7. We can find that there is a large distribution gap between the origin and the variation of
“before language alignment”.
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Table 12: Text-to-video comparisons on MSRVTT (Xu et al., 2016) and LSMDC (Rohrbach et al.,
2015). Bold denotes the best performance.

Method MSRVTT LSMDC
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓

CLIP-ViT-B/32
X-Pool (Gorti et al., 2022) 46.9 72.8 82.2 2.0 14.3 25.2 43.7 53.5 8.0 53.2

+Ours 47.8 74.9 83.5 1.0 12.3 26.7 45.8 55.5 7.0 50.9
DiffusionRet (Jin et al., 2023) 49.0 75.2 82.7 2.0 12.1 24.4 43.1 54.3 8.0 40.7

+Ours 51.7 77.9 84.5 1.0 11.8 25.7 45.2 55.8 7.0 38.5
TEFAL (Ibrahimi et al., 2023) 49.4 75.9 83.9 2.0 12.0 26.8 46.1 56.5 7.0 44.4

+Ours 51.9 77.4 83.5 1.0 11.8 28.4 46.9 58.2 6.0 42.1
CLIP-ViP (Xue et al., 2023) 50.1 74.8 84.6 1.0 – 25.6 45.3 54.4 8.0 –

+Ours 51.7 75.3 85.9 1.0 11.8 26.8 47.6 58.5 6.0 42.3
T-MASS (Wang et al., 2024) 50.2 75.3 85.1 1.0 11.9 28.9 48.2 57.6 6.0 43.3

+Ours 52.3 77.9 87.6 1.0 10.9 30.8 50.4 59.1 5.0 40.8
CLIP-ViT-B/16

X-Pool (Gorti et al., 2022) 48.2 73.7 82.6 2.0 12.7 26.1 46.8 56.7 7.0 47.3
+Ours 50.7 76.2 85.2 1.0 12.4 26.9 49.5 57.4 6.0 45.0

CLIP-ViP (Xue et al., 2023) 54.2 77.2 84.8 1.0 – 29.4 50.6 59.0 5.0 –
+Ours 56.8 79.4 85.9 82.8 1.0 32.6 51.8 60.9 3.0 38.7

T-MASS (Wang et al., 2024) 52.7 77.1 85.6 1.0 10.5 30.3 52.2 61.3 5.0 40.1
+Ours 54.9 82.6 86.8 1.0 10.2 35.1 55.7 64.8 3.0 38.9

Table 13: Example of LLM-based text generation, where “Origin” denotes the given original text
and “Variation” denotes the generated texts. Although the only difference in the sentence structure
between original text and negative text is “door” and “closet”, they have different semantics. In
contrast, positive text that are more distinct from the original text has similar semantics with original
text.

Origin Variation Type Semantically
similar?

Person opens
the door.

Person opens
the closet. Negative %

Door is opened
by person. Positive "
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Figure 6: Parameter analysis on the MSR-TT dataset for the text-to-video retrieval task with X-Pool
as the base model.
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Table 14: Performance comparison on Charades-STA dataset (without text augmentation) under
official train/test splits.

Method Type R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

VSA-RNN FS 10.50 4.32 48.43 20.21
VSA-STV FS 16.91 5.81 53.89 23.58

CTRL FS 23.62 8.89 58.92 29.52
2D-TAN FS 39.81 23.25 79.33 52.15
RaNet FS 43.87 26.83 86.67 54.22
DRN FS 45.40 26.40 88.01 55.38
MMN FS 47.31 27.28 83.74 58.41
G2L FS 47.91 28.42 84.80 59.33

MomentDiff FS 53.79 30.18 - -
IVG-DCL FS 50.24 32.88 - -

SCN WS 23.58 9.97 71.80 38.87
CTF WS 27.30 12.90 - -

WSTAN WS 29.35 12.28 76.13 41.53
ICVC WS 31.02 16.53 77.53 41.91

MARN WS 31.94 14.18 70.00 37.40
CCL WS 33.21 15.68 73.50 41.87
CRM WS 34.76 16.37 - -
CNM WS 35.15 14.95 - -
VCA WS 38.13 19.57 78.75 37.75

LCNet WS 39.19 18.17 80.56 45.24
G2L+Ours - 55.77 32.97 91.38 60.39

Table 15: Video-to-text comparisons on MSRVTT without text augmentation.

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CLIP-ViT-B/32

CLIP4Clip (Luo et al., 2022) 42.7 70.9 80.6 2.0 11.6
+Ours 44.2 73.8 84.3 2.0 10.4

CenterCLIP (Zhao et al., 2022) 42.8 71.7 82.2 2.0 10.9
+Ours 44.5 73.0 84.1 1.0 9.7

X-Pool (Gorti et al., 2022) 44.4 73.3 84.0 2.0 9.0
+Ours 45.8 76.4 87.3 1.0 7.5

TS2-Net (Liu et al., 2022) 45.3 74.1 83.7 2.0 9.2
+Ours 48.6 77.5 85.7 2.0 7.9

DiffusionRet (Jin et al., 2023) 47.7 73.8 84.5 2.0 8.8
+Ours 51.0 75.9 87.4 2.0 6.9

UATVR (Fang et al., 2023) 46.9 73.8 83.8 2.0 8.6
+Ours 49.7 75.6 86.4 1.0 7.3

T-MASS (Wang et al., 2024) 47.7 78.0 86.3 2.0 8.0
+Ours 51.5 79.9 89.8 1.0 6.4

CLIP-ViT-B/16
X-Pool (Gorti et al., 2022) 46.4 73.9 84.1 2.0 8.4

+Ours 50.2 77.4 86.3 2.0 6.1
TS2-Net (Liu et al., 2022) 46.6 75.9 84.9 2.0 8.9

+Ours 48.8 78.3 86.1 1.0 7.6
CenterCLIP (Zhao et al., 2022) 47.7 75.0 83.3 2.0 10.2

+Ours 49.8 78.0 86.4 2.0 6.5
UATVR (Fang et al., 2023) 48.1 76.3 85.4 2.0 8.0

+Ours 50.9 77.4 90.5 2.0 6.8
T-MASS (Wang et al., 2024) 50.9 80.2 88.0 1.0 7.4

+Ours 53.7 84.2 91.5 1.0 3.4
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Table 16: Ablation study on different word types on the VSG task.

Model
ActivityNet Captions

R@1 R@1 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

w/o Noun 58.87 44.23 83.90 78.04
w/o Verb 59.15 44.92 83.71 78.95

w/o Subject 59.36 45.78 84.02 79.88
Full 60.90 46.86 84.39 80.62

Charades-STA

Model R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

w/o Noun 31.14 25.88 74.29 45.28
w/o Verb 31.70 26.25 73.98 45.33

w/o Subject 33.64 27.61 74.13 46.45
Full 34.85 27.96 74.28 46.70

Table 17: Effectiveness comparison with text augmentation under official train/test splits, where
“FS” denotes “fully-supervised” and “WS” means “weakly-supervised”.

Method Type
ActivityNet Captions Charades-STA

R@1, R@1, R@5, R@5, R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL FS 20.27 19.40 47.82 40.78 10.32 3.54 36.98 13.40
+Ours FS 22.85 21.73 48.66 43.12 12.88 4.19 37.46 16.72

2D-TAN FS 48.32 29.38 71.36 62.30 20.18 11.35 47.05 33.82
+Ours FS 51.86 32.64 72.98 63.75 23.99 14.75 49.22 34.18
DRN FS 48.94 30.26 69.34 64.79 23.51 13.76 47.35 34.10

+Ours FS 50.75 32.92 73.86 67.48 26.44 15.83 49.07 36.52
RaNet FS 52.93 31.42 73.80 65.73 22.86 15.73 46.21 30.49
+Ours FS 53.88 33.74 75.96 68.31 23.11 16.97 48.05 33.21
MMN FS 55.30 31.76 74.88 71.52 25.33 18.80 45.97 35.08
+Ours FS 58.76 33.08 75.33 73.59 26.87 22.48 46.03 37.85
G2L FS 55.75 33.01 75.25 70.89 26.54 19.85 48.06 36.70

+Ours FS 60.90 46.86 84.39 80.62 34.85 27.96 74.28 46.70
ICVC WS 21.88 18.59 42.76 36.82 9.27 6.89 37.55 13.98
+Ours WS 22.36 20.17 44.19 38.77 8.64 6.89 39.57 16.63
LCNet WS 30.15 22.08 45.80 39.25 20.48 16.61 42.32 20.89
+Ours WS 33.94 21.73 46.35 40.57 23.72 17.59 43.80 23.77
VCA WS 31.74 25.37 46.98 42.76 17.87 12.39 45.70 22.13

+Ours WS 32.99 28.56 48.31 44.07 18.63 15.72 46.17 23.88
WSTAN WS 33.72 25.74 49.30 45.88 8.15 5.43 35.27 11.86
+Ours WS 35.20 27.99 51.84 48.69 10.77 6.92 37.40 13.88
CNM WS 35.72 28.95 50.06 48.72 14.34 9.65 43.88 18.79
+Ours WS 39.56 31.77 52.88 51.99 16.83 12.05 45.60 21.64
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Table 18: Ablation study on different augmentation approaches.
ActivityNet Captions

Model R@1 R@1 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

w/o ChatGPT 58.73 44.20 82.19 78.55
w/o Bard 59.67 44.95 83.03 79.36

w/o LLaMA 59.88 45.40 83.25 79.57
Full 60.90 46.86 84.39 80.62

Charades-STA

Model R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

w/o ChatGPT 33.04 26.93 73.50 45.27
w/o Bard 33.92 27.40 73.83 45.62

w/o LLaMA 34.08 27.46 73.55 45.39
Full 34.85 27.96 74.28 46.70

Table 19: Ablation study on for the negative samples on the NExT-QA VideoQA dataset with BLIP-
2 as our base model.

Model Temporal↑ Causal↑ Description↑
w/o negative samples 61.3 63.4 71.5
w/ negative samples 69.2 70.1 78.4

Table 20: Ablation study on for the negative samples on the NExT-QA VideoQA dataset with BLIP-
2 as our base model.

Model Temporal↑ Causal↑ Description↑
w/o attribute 60.9 62.5 67.0
w/ attribute 69.2 70.1 78.4

Table 21: Ablation study on for the negative samples on the NExT-QA VideoQA dataset with BLIP-
2 as our base model.

Model Temporal↑ Causal↑ Description↑
w/o corse-grained language alignment 64.3 67.5 72.3
w/ corse-grained language alignment 69.2 70.1 78.4

Table 22: Ablation study on for the negative samples on the NExT-QA VideoQA dataset with BLIP-
2 as our base model.

Model Temporal↑ Causal↑ Description↑
w/o fine-grained language alignment 65.7 66.2 68.8
w/ fine-grained language alignment 69.2 70.1 78.4
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A young woman is seen standing in a 

room and leads into her dancing. The 

girl dances around the room while the 

camera captures her movements. She 

continues dancing around the room 

and ends by laying on the floor.

A young woman stands in a room, 

which transitions into her dancing. As 

she moves gracefully around the 

space, the camera follows her every 

motion. She dances throughout the 

room until she eventually finishes by 

lying down on the floor.

Before language alignment After language alignment

Origin Variation

Figure 7: The t-SNE visualizations of “before language alignment” and “after language alignment”.
Green circles denote the original sentences, while purple triangles denote denote the augmented
sentences.
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