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ABSTRACT

Understanding the properties of the parameter space in feed-forward ReL.U net-
works is critical for effectively analyzing and guiding training dynamics. After
initialization, training under gradient flow decisively restricts the parameter space
to an algebraic variety that emerges from the homogeneous nature of the ReLU
activation function. In this study, we examine two key challenges associated
with feed-forward ReLLU networks built on general directed acyclic graph (DAG)
architectures: the (dis)connectedness of the parameter space and the existence
of singularities within it. We extend previous results by providing a thorough
characterization of connectedness, highlighting the roles of bottleneck nodes and
balance conditions associated with specific subsets of the network. Our findings
clearly demonstrate that singularities are intricately connected to the topology of
the underlying DAG and its induced sub-networks. We discuss the reachability of
these singularities and establish a principled connection with differentiable pruning.
We validate our theory with simple numerical experiments.

1 INTRODUCTION

The success of deep learning has spurred extensive research into the geometry and dynamics of neural
network training. While classical results primarily focus on layered architectures, many modern
networks adopt more flexible structures, such as directed acyclic graphs (DAGs), arising either from
design or from pruning and compression strategies. These architectures challenge existing theory and
necessitate new tools to understand their training behavior, particularly in the presence of non-smooth,
homogeneous activations like ReLU.

In this paper, we study two fundamental training pathologies in DAG-based ReLLU networks: the
(dis)connectedness of the training-invariant parameter space, and the presence of singularities within
it. Our analysis is grounded in the observation that training with gradient flow on networks with
homogeneous activations gives rise to symmetry-induced conservation laws. These laws constrain
learning trajectories to an algebraic variety—referred to as the invariant set—defined by a system of
quadratic equations dependent on the network’s topology and initialization.

Our contributions are as follows:

* We derive an elegant formulation for the conservation laws that arise during gradient flow
training of ReLU networks as a result of rescaling symmetries, in the general case of
DAG-based architectures.

* We extend previous results on shallow networks (Nurisso et al., | 2024) by studying the
geometry and topology of the invariant set in the general architecture case, providing
necessary and sufficient conditions for its connectedness based on network bottlenecks and
balance constraints.

* We identify and analyze singularities of the invariant set, showing that they correspond to
disconnected sub-networks, and prove that they are unreachable under standard gradient
flow from generic initializations.

* We propose a nuclear norm-based regularizer that promotes convergence to singular config-
urations, thereby enabling differentiable, structure-agnostic pruning. In our experiments, we
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observe that L1 regularization—despite not explicitly targeting neuron sparsity—empirically
induces similar singular behavior as our dedicated regularizer, and therefore also fosters
effective lossless pruning.

Taken together, our results shed light on the interplay between network topology and optimization
geometry. They also offer a principled pathway for designing pruning mechanisms that exploit the
structure of the optimization space rather than relying solely on heuristic sparsity constraints.

1.1 RELATED WORKS

DAG neural networks. General feedforward architectures can be formalized as directed acyclic
graphs (DAGs) (Gort et al.l 2023; Hwang & Tung, 2023} |Chirag Agarwal et al., [2021), or more
abstractly as quivers(Armenta & Jodoin, |2021)), though this perspective remains relatively under-
explored. DAG structures support variants of topological sorting (Kahnl [1962)), which recover the
notion of layers (Boccato et al., [2024aj; (Chirag Agarwal et al.,2021). Both natural and synthetic
neural systems align well with this broader formalism (Boccato et al.,|2024b; Milano et al., 2023).
DAG-like networks can also emerge through unstructured pruning (see below) or via the sampling of
sparse subnetworks, as in the lottery ticket hypothesis (Frankle & Carbin, 2018} |Liu et al., 2018} |You
et al.,[2019).

Pruning. Pruning methods are typically classified as structured or unstructured (Hoefler et al., 2021}
Cheng et al., [2024)). Structured pruning targets entire groups of parameters, such as neurons or
channels (Yuan & Linl 2006; Nonnenmacher et al.l 2021)), while unstructured pruning removes
individual weights (Han et al., 2015} [Frantar & Alistarhl [2023)), often at the cost of hardware
inefficiency. Sparsity can be induced iteratively during training (Lin et al.| [2020; Jin et al., [2016), or
through differentiable techniques and regularization (Savarese et al.,[2020; |[Pan et al.| 2016; Kang
& Han| [2020). Recent efforts like any-structural pruning Fang et al.|(2023) aim to unify pruning
strategies into general frameworks. Our work approaches pruning through the geometry of the
optimization landscape: a nuclear norm regularizer naturally promotes sparsity across arbitrary
structures in DAG-based networks, though current computational limitations restrict its practical use.

Singularities and deep learning. Singular Learning Theory (Watanabe} 2009} 2007) blends statisti-
cal learning with algebraic geometry, treating singularities as central to the learning process in the
Bayesian framework, when working with non-identifiable models such as neural networks. Recent
works have applied its tools to describe modern neural network architectures (Wei et al.,[2022} Lau
et al., 2023 [Furman & Lau, [2024). Singularities are also foundational to neuro-algebraic geome-
try (Marchetti et al., 2025)), which examines the space of functions realizable by networks—often
termed the neuro-manifold. The influence of singularities on learning has been recognized for
decades: early work (Amari & Ozekil, 2001} |/Amari et al., [2001; [2006) analyzed their impact on
gradient descent in simplified settings. Their relation to network topology has also been studied; for
instance, skip connections are known to reduce singularities (Orhan & Pitkow! [2017).

Training dynamics of ReLLU networks. A large body of work analyzes the gradient flow and descent
dynamics of networks with homogeneous activations, including convergence guarantees (Sirignano
& Spiliopoulos| [2020; [Mei et al., 2018}, Rotskoft & Vanden-Eijnden, [2022) and implicit bias prop-
erties (Boursier et al.| 2022} |Chizat & Bachl 2020} |Lyu et al.| 2021} |Soudry et al.| 2018)). ReLU’s
non-smoothness poses analytic challenges (Eberle et al., [2021), yet its positive homogeneity enables
rescaling symmetries (Dinh et al.| 2017 and conservation laws (Neyshabur et al.,[2015; Marcotte
et al.| 2023 |Kunin et al., [2020; [Zhao et al.l 2022; Tanaka et al., |2020; Nurisso et al., [2024). The
discrete-time setting of gradient descent has also received attention (Feng et al.,[2019; Smith et al.|
2021} Kunin et al., [2020). More broadly, symmetry principles continue to shed light on deep learning
phenomena (Grigsby et al.,|2023}; |Gluch & Urbankel |2021} |Bronstein et al., [2021} Ziyin et al., [2025).

2 SETUP AND NOTATION

In this section, we start by introducing our notation for the neural network topology. We then review
known results on symmetries of ReLU networks and their associated conservation laws, reformulating
them in our compact notation. Next, we introduce the notion of invariant set, whose properties are
further investigated in section 3} first its connectedness, and then its singularities, each part including
numerical experiments. We conclude and discuss limitations in section 4]
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Figure 1: a. Example of a feed-forward DAG architecture GG. b. The incidence matrix B of G with
rows associated to input and output neurons removed. ¢. Visualization of the rescaling symmetry
of ReLU neurons. d. The initialization determines the balance value ¢, = {0, 6)),, of every hidden
neuron, which characterizes the shape of the invariant set (e).

DAG neural networks. Consider a general computational graph G describing a feed-forward
neural network architecture (see the related work section[I.T)). G is a directed, acyclic graph (DAG)
on a set of nodes V/, called neurons, with edges E. We identify a subset of neurons V; € V' containing
the input neurons, such that no edges are entering the elements of V7, and a subset Vo € V' of output
neurons such that no edges are going out of the elements in V. We assume that V; nVp = @, i.e., no
neurons have empty neighbors. We write 0V to denote the set of input and output neurons V; u V.
All the other nodes V' € V are the hidden nodes which are to be the fundamental computational
unit of the neural network V = V UV (Figure ). For any node v € V, we call Anc(v) the set
of its ancestors, i.e. nodes w € V such that there exists a path in G from w to v, and Desc(v) its
descendants, i.e. the nodes w € V' such that there exists a pathv - v1 - -+ > v, > win G.

Each edge (i,7) € E has a parameter 0, ;) € R associated with it and, when data is passed through

the network, hidden nodes v € V' sum the values of their incoming edges, apply the ReL.U function
o and output to each outgoing edge the resulting value multiplied by the edge parameter. As it is
standard in the literature (see e.g. 5.1 in|Bishop & Nasrabadi| (2006)), one can also consider biases in
this setup by adding a “virtual” input neuron whose input is fixed to 1 and adding edges from it to
every hidden neuron.

We call parameter space O the set of all parameters, i.e. the vector space of real functions over the
edges 0: E — R, © = RIFl and we write fa (-, 0) to indicate the input-output function encoded by G
with parameters 6. Throughout the paper, it will be convenient to formulate the results by describing
the connectivity structure with the incidence matrix B of G (Bondy & Murtyl, [1979). B € RIVIxIE]
is a standard object in graph theory that describes how each edge is connected to its endpoints. Its
elements are defined as follows: B, (; jy = 1ifv =73, B, (; j) = —1 if v = 7 and 0 otherwise. See, for
example, the DAG in Figure[Th and its associated incidence matrix (with rows associated to nodes in
9V removed) in Figure [Tp.

Symmetries of ReLU networks. In this work, following Du et al.|(2018)), we study the properties
of neural network where the activation function o is homogeneous, namely o(z) = o’(x) - x for every
2 and for every element of the sub-differential o’ () if o is non-differentiable at z. The commonly
used ReLU (0(z) = max {z,0}) and Leaky ReLU (c(z) = max {z,vyz} with 0 <~ < 1) activation
functions satisfy this property.

It is well known that the geometry of the parameter space O is heavily influenced by the properties
of the activation function. Some activation functions and specific neural network modules induce
some symmetries in the parameter space, i.e., transformations g of the parameters which do not
change the function encoded by the network f; (-, 6) = fa(+, g 0 0) (Zhao et al., [2025). In the case
of homogeneous activations, the most critical symmetry is given by rescaling (Neyshabur et al.|
2015). In fact, the input weights of any hidden neuron can be rescaled by a positive scalar a > 0,
provided that its output weights are rescaled by the inverse o~!. This result is well-known for single
and multi-layer networks and holds even in general DAG architectures as it is defined at a single
node. We write this as the action of the group R, of positive real numbers on each local parameter
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space O, = {0, ,) | (x,y) € Eand x = v or y = v} by means of T (8) = T ((0(;,0))is (0(v,5))5) =
((a(i,0))ir (£00.5);) (Figurellk).

Local conservation laws under gradient flow. The presence of symmetries in the neural network’s
parameter-function map induces the presence of same-loss sets of the loss landscape. Let indeed

fa(-,0) : R > R®, D = {(2,y;) e RY x Re}j\il be a training dataset and L : © — R be a loss

i

function which depends on the parameters only through the output of the neural networkﬂ that is
1 N
L(0) = 57 2 U fa(wi0), 1) (1)
i=1

where ¢ : RIVol x RIVol s R is differentiable.

Let us now assume that we train the network using the continuous-time analog of gradient descent i.e.
gradient flow (GF), 0(t) € =V L(0(t)) := —g(0(t)), where Vo L(6(t)) is the Clarke sub-differential
(Clarke et al.,[2008)). Given that the loss function L depends on the parameters only through f, its
value at # must be constant over the orbit of rescaling. This, together with the fact that the gradient of
a differentiable function at a point is orthogonal to the level set at that point, means that the gradient is
orthogonal to the orbit under the action of rescaling, at any parameter § where L(0) is differentiable.
This orthogonality condition constrains the possible values of the gradient and, by extension, the
possible gradient flow trajectories.

This orthogonality condition can be shown to be

«959(9)»11 = Z H(i,v)g(i7v) - Z 'H(U,j)g(luhj) =0

11— Jiw—j

for every hidden neuron v € V (see Appendix for details): the gradient modulated by the
parameter values is a network flow, as the quantity g(0) ® 6 is conserved when passing through each
hidden neuron, where ® denotes the element-wise Hadamard product between vectors. This result is
well known and is obtained, with a different approach, in e.g. Tanaka et al.| (2020).

We propose to conveniently re-write the gradient conditions at all hidden nodes using a variation of
the incidence matrix B of G.

Proposition 1. Let B e RV pe the incidence matrix of G with the rows associated with input
and output nodes removed; then {(0,g(0) ), = 0 Vv € V is equivalent to

B(8og(6)) =0. @)

Proof. The proof follows directly from the definition of the incidence matrix. At any hidden node

v € V, if we denote by 0. the weight of any e € F, and by g, the e — th component of g(6), then it
holds

B(0©g(9))u =), Buebege = 3 060)96G0) = 2 0.9 = (6:9(8))0 = 0.

el 21—V Ju—j

O

Invariant sets. Equation (2), implies that some quantities are conserved under gradient flow
optimization or, equivalently, that the learning trajectories are constrained to a lower-dimensional
subset of the parameter space.

Proposition 2. Let G be initialized with 6(0) such that BO(0)? =ce RIVI with 0(0)? the element-
wise square of the vector 0(0), then, for every t > 0, it holds that BO(t)? = c.

Proof.

dBoay-B

= 0(t)% = 2B(0(t) © 6(¢)) = ~2B(0(t) © g(O(t)) = 0.

4
dt

'This means that we do not include regularization terms which depend explicitly on the parameters.
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This result (visualized in Figure[I|d), note, is a general, elegant re-writing of the well-known neuron-
wise conservation law (Proposition@ (Du et al., 2018 [Liang et al., [2019; |Kunin et al.,[2020; |Saxe
et al.l 2013). As we will see, this is not a mere notational feature, as this formulation reveals precious
insights into the relationship between the training dynamics and the neural network’s graph structure.
We now define the invariant set as the set the training trajectories are constrained to due to the
conservation laws: if the network is initialized in the invariant set, it will remain in it until the end of
training.

Definition 1 (Invariant set, generalization of Nurisso et al.[(2024)). Given ¢ = (c,),y» we call
invariant set the set Hq(c) € © of the solutions of the system of polynomial equations B6* = c.

If we look at the single equation associated with hidden neuron v € V, we see that B6? = ¢ can be

written as ) )
D iy = 2 0wy = o &)
1=V J<v
which corresponds to a hyperbolic quadric hypersurface in the local parameter space of v, ©,
(Figure[Tp). From the graph’s point of view, we can interpret this as stating that the vector of squared
parameters 62 is akin to a fluid flowing through the edges of G, with input/output nodes acting as
unconstrained sources/sinks and hidden nodes supplying or demanding some flow according to the

value and sign of ¢ (Ford & Fulkerson, |{1962).

In |Nurisso et al.|(2024), it is shown that for shallow networks, the geometrical structure of H¢(c)
is simple, as the total invariant set factorizes into the cartesian product of the neurons’ quadric
hypersurfaces. In the general case (MLP or DAG), the situation is much more complex because
the equations of H¢ (c) are coupled: parameters associated with internal edges appear in multiple
equations.

The invariant set % (c), which is an algebraic variety (albeit we do not know whether it is reduced
or not), is an interesting object because it lies in between the redundant but more “concrete” parameter
space and the abstract function space (or neuromanifold (Calinl |2020; [Kohn [2024)) the model’s
implemented function lives in. In fact, fixed any ¢, no two parameters in ¢ (c) are observationally
equivalent w.r.t. rescalings, that is fo(-,0) = fa (-, (T2 (6,)),) for no rescaling, thus making the
invariant set a good proxy for the function space Fg := { fa(+,0) |6 € ©}. Nevertheless, as discussed
in|Nurisso et al.| (2024), different values of ¢ correspond to different topologies of H ¢ (c¢), meaning
that F¢ does not provide the full picture to understand the learning process. Hg(c) also has its
limits: it might not be identifiable with the functions it contains. Indeed, for two isomorphic nodes
1,7 € G with ¢ # j, permuting their input and output weights will yield an observationally equivalent
parametrization. And if ¢ and j are such that ¢; = ¢;, then both parameterizations will be in H¢(c),
and so the map 0 — fq(-;0) will not be injective into F¢.

3 GEOMETRY AND TOPOLOGY OF THE INVARIANT SET

The study of the geometric and topological properties of H(c) (Deﬁnition can give us interesting
loss and data-independent insights into the training processes.

He(c) is the set of solutions of a system of degree-two polynomial equations, each one corresponding
to a quadric. Despite the apparent simplicity, studying general intersections of quadrics is not easy
(de Medrano, 2023) but, in our case, the specific structure of H¢ (c) greatly simplifies the process. In
fact, the equations BH? = ¢ correspond to a system of coaxial quadric hypersurfaces, meaning that
they contain only squares and no mixed terms of the form 6.6... This fact allows us to employ some
powerful recent results in topology (de Medrano, [2023).

3.1 NON-EMPTINESS

The first result concerns the non-emptiness of H¢(c¢) for a given ¢ or, from the other point of view,
what the possible balance values c that can appear from an initialization are.
Proposition 3 (Feasible balance). Forall c € R'V‘, one has Heg(c) + @.

This result (proven in Appendix [A.3])) means that any balance configuration on the hidden neurons
c is achievable through a parameter initialization, provided that no neurons are excluded from the
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Figure 2: Overview of connectedness. a. In- and out-bottlenecks in G. b. The non-emptiness of
He(c) is guaranteed if every hidden neuron has input and output edges. ¢. Different connectedness
conditions and intuitive visualizations of the associated algebraic varieties for an out-bottleneck d.
Numerical experiment showcasing training dynamics in a connected and disconnected scenario for a
DAG network with 3 hidden nodes (d.1).

computations. From the point of view of network flows, this tells us that it is possible to build a flow
62 that satisfies any supply and demand on the hidden nodes.

3.2 CONNECTEDNESS

Nurisso et al.| (2024) showed that, for some values of c, the invariant set of a shallow ReLU neural
network is disconnected. This means that a network initialized in one connected component cannot
reach an optimum located in another through gradient flow. Here, we show that the conditions for
connectedness in the general DAG case resemble the ones for the shallow case, with additional
pathological cases resulting from particular graph topologies.

To find out whether H.(¢) is connected or not, we will use the following proposition, adapted to our

case from|de Medrano| (2023).

Proposition 4 (de Medrano| (2023) Proposition 4.7). Hg(c) is connected if and only if, for every
ec B, Ha_ (c) + 2, where G_. = (V,E~ {e}).

In other words, H¢ (c) is connected if it is “robust enough” so that the deletion of single edges does
not change the possibility of satisfying the supply and demand conditions of c. From this observation,
together with Proposition 3] we see that the cases in which there is disconnection must necessarily
come from the presence of neurons with only one input or output connection.

Definition 2 (Bottleneck neurons). A hidden neuron v € V is an in-bottleneck if deg™ (v) = 1 and
an out-bottleneck if deg® (v) = 1. We denote with Vi,V the sets of in and out-bottleneck nodes,
respectively. For any out-bottleneck neuron v € V3, we call m(v) the set of its pure ancestors,
i.e. ancestors w € Anc(v) such that any path from w to Vo passes through v. Analogously, any
in-bottleneck defines a set of pure descendants Desc(v) containing neurons w € Desc(v) such that
any path from Vi to w passes through v. Among the pure ancestors of an out-bottleneck v, we say
a set T ¢ Anc(v) is stable by forward edges if the inclusion Uyer vy N*(u) ¢ T holds, where
N*(u) denotes the out-neighbors of u. The analogous notion of stability by backward edges is
obtained by considering descendants and in-neighbors instead.

The removal of the single connection of a bottleneck neuron (Figure [Za,b) will disconnect it and
the set of its pure ancestors/descendants will be effectively cut out from the network’s computation:
either because they receive no inputs from V7 or because they produce no output to V.
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It turns out that it is possible to derive a complete characterization of connectedness and disconnect-
edness, leveraging tools from network flow theory.

Theorem 1. H¢(c) is connected if and only if Vv € V5, VT c Anc(v) s.t. T stable by forward
edges Y yer €y 2 0 and Vv € Vg, VT c Desc(v) s.t. T stable by backward edges Y. ,c ¢y, < 0.

Proof. The proof is fairly technical and can be found in Appendix[A.4] O

Intuitively, disconnectedness is caused by bottleneck nodes such that cutting their single edge makes
the balances (supplies/demands) of their pure ancestors/descendants unfeasible. For instance, let’s
look at the out-bottleneck v in Figure 2k: (i) ¢, < 0 means that v requires more flow coming out
than in. This is not feasible because there are no other output connections. (ii) ¢, > 0 means that v
requires more flow coming in than out, which is always feasible for the small shallow network (ii).
More generally, this is feasible in bigger networks unless (iii) there is forward stable set 7" for which
ket Ck < 0, as predicted by Theorem ] Intuitively, there is too much flow coming in 7 than can be
absorbed before v. Mechanistically, there is a disconnection whenever the output/input weight of a
bottleneck neuron cannot change sign through gradient flow.

Two immediate corollaries follow, clarifying the problem of connectedness in most practical cases.

Corollary 1. If G has no bottleneck neurons, then He(c) is connected.

Note that bottleneck neurons are rare in MLPs because their existence implies the presence of a layer
with only one node. The exceptions are given by neural networks built to solve binary classification
or scalar regression problems, where there is a single output neuron, and the neurons in the last layer
are all out-bottlenecks. In that case, we adapt Theorem (1] finding that the results of |Nurisso et al.
(2024) nicely carry over to the multi-layer case.

Corollary 2. If G is a fully-connected MLP such that all hidden layers contain more than one neuron,
then He(c) is connected if and only if ¢, > 0 Vv € V5 and ¢, <0 Vv € V.

Proof. The result follows from Theorem[I]by noticing that in a fully connected architecture, the only
pure ancestor/pure descendant of a node is the node itself. [

A practical implication of this section is that the expressivity of ReLU networks can be reduced
at initialization to the extent that they lose their universal approximation capability. That is, some
functions become immediately unreachable, regardless of the chosen loss function or dataset.

Numerical experiments We illustrate Theorem [1| on the toy DAG neural network shown on
Figure 2.1, implemented using dedicated software (Boccato et al.l 2024a) and in discrete settings.
Neuron 4 will be the out-bottleneck of interest. All hidden neurons (in black) have ReLLU activation.
With the initialization given by the values in the figure, we have ¢ = (ca, c3,c4) = (02 -6,1,3). There
are 3 forward stable sets of nodes, the largest being T' = {2,3,4} with ¥, crcr = Xy cr = 02 - 4.
Therefore, if at initialization 6, (0) < \/2, then Y47 ¢ < 0 and the optimization space will disconnect
at neuron 4. Concretely, it means that the balance condition at neuron 4 will forbid sign switches of
0(4,5)- Let us try to make the model learn the function f : (z1,22) - —(21 + 22) for positive inputs.
The only way to output negative values is if 64 5) < 0, and so the optimum will not be reachable

for 6.(0) = 1 < \/2 as shown on the right plot of Figure .2, while the optimum is reachable (and
reached) for 6, (0) = /3 > \/2, as depicted on the left plot. Additional experiments can be found in
Appendix

3.3 SINGULARITIES

While singularities in the neuromanifold—i.e., the function space—have been extensively studied
(Amari & Ozeki, 2001; Amari et al., 20015 2006; [Henry et al., [2024)), in this part we propose a
complementary perspective by analyzing singularities of the invariant set H.(c), which sits in the
optimization (parameter) space.
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Figure 3: a. A singularity of the invariant set corresponds to a configuration where a set of neurons is
cut out from input and outputs. b. Visualization of the training dynamics on an invariant set with
singularities. ¢. Proportion of null singular values along training for shallow network with 20 hidden
neurons with and without regularization. d. Test losses as a function of the number of neurons pruned.
Shaded regions in ¢. and d. denote confidence intervals over 50 independent trainings that have
converged to a low loss solution.

Singularities are sub-networks. In algebraic geometry, a singularity refers to a point in a variety
where the tangent space is not well-defined. Mathematically, if a variety is given by the system
of n equations g(x) = 0 € R™, singularities correspond to the points = where the Jacobian matrix
J(z) = Dg(z) has its rank reduced from the maximal possible. When the rank of the Jacobian is
maximal, the point is instead said to be regular.

In the case of the invariant set, the Jacobian matrix is computed by taking the derivative of BO? ¢
w.r.t. 6, resulting in

Ja(0) = 2Bdiag(). “

From Equation (@), we see how the Jacobian matrix has the same structure of the graph incidence
matrix B, with each of the edges (the columns) weighted by its associated parameter 6. Therefore, it
follows that the only way in which the matrix can have a lower rank is when some of the values of ¢
are 0, i.e., when some of the edges are cut from the graph.

Theorem 2 (Singularities disconnect neurons). If G’ is the undirected graph obtained from G by
gluing rogether input and output nodes and neglecting edge direction, and £(0) ¢ E is the set of
edges with zero weight 8, =0 <= e €&, then

rank Jg(0) = |V|+1 - CC’(G,—E(@))7

where CC(QG) is the number of connected components of G.

Proof. The proof uses tools from discrete topology and works by relating the rank of J;(0) to a
weighted graph Laplacian. The derivation can be found in Appendix [A.3]

Therefore, it follows that rank J; () = |V| for regular parameters, and its rank decreases for
parameters whose zero edges disconnect some hidden neurons from both input and output. If a group
of neurons is such that it is not connected by any path to both input and output neurons, it means
that it is a useless component of the network as it takes no part in any computation, both in the
feed-forward and in the back-propagation phases. Singularities, therefore, correspond to effective
sub-networks of the original neural network, as shown on Figure[3|a. This observation echoes similar
results connecting sub-networks to the singular points of the neuromanifold (Trager et al., |2019;
Shahverdi, 2024; |Arjevanti et al., 2025)).

This observation can be leveraged to prove the following result.

Proposition 5 (Singularities are invariant under GF). Let 0(to) € Hg(c) and W € V be a discon-
nected set of nodes, at time to, that is, 0, (to) = 0 for (u,v) € E withu e W and v ¢ W or vice
versa. Then, at a later time t > to, 0, .,)(t) = 0 still holds and W is still disconnected.

Proof. Intuitively, the result is proved by noticing that, in a singular 6, the activation of the neurons
in W will be 0, meaning that backpropagation will assign zero gradients to all the edges (u,v),v €
W Awe W. The full proof can be found in Appendix [A.6]
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Proposition [5| means that if the parameter reaches a singularity, then it cannot escape from it: once a
network module has been killed, it cannot be revived.

Singularities are rare. One would be tempted to think that the presence and invariance of singular-
ities could provide the explanation for the neural network performing an automatic model selection
through the progressive movement from one singularity to another, a smaller one. We show here,
however, that this picture does not hold for the singularities of the invariant set for two reasons: 1.
Given a random initialization, the probability of ¢ (c) having singularities is 0. 2. If H (c) has
singularities, then the parameter curve cannot reach them in finite time.

Proposition 6. Let c € RIVI, If Ha(c¢) admits singularities then there exists a subset of hidden
neurons W C 'V such that Y.y ¢y = 0.

Proof. By definition, a singularity identifies a disconnected set of nodes W ¢ V. If we denote the
edges inside W by Ew = {e = (u,v) € E | u,v € W}, we have that ¥,y ¢y = Yoy, 02 — 02 = 0.
This is because each edge in Eyy is shared by exactly 2 nodes of W and all other edges in or out of
W have weight 0. O

To have a singularity, therefore, an exact equality condition on ¢ must hold. (fig.[3). If we sample the
initial parameter with any initialization scheme where each parameter is independently sampled from
the real numbers R, we see that the probability that a set of neurons will have sum exactly zero must
be zero. Moreover, a stronger statement than the one of Proposition [5|can be derived.

Proposition 7. Under GF optimization, we have that rank J(6(0)) = rank J(6(t)) VO < ¢ < oo.

This result (Appendix [A.7) tells us that a gradient flow trajectory cannot fall into a singularity in finite
time. Together, Propositions|[6|and|[7)implies that singularities generally don’t exist in the optimization
space when using common initializations and, even with a specifically chosen initialization (c = 0),
they are effectively unreachable under gradient flow.

’

Inducing singularities. As shown above, singularities can allow the model to perform “self-pruning’
but they are in general hard to reach. To actively drive the training dynamics towards them, we explore
the use of regularization. An underlying motivation is the application of differentiable pruning in a
very general way, entirely agnostic to the DAG topology. The idea illustrated by Figure[3]b.

A natural approach to target singularities given by Theorem [2]is to directly penalize the number
of neurons which are connected through paths to the input or output. To formalize this, we can
leverage the Jacobian of Hg(c): 6, Jg(6) = 2Bdiag(6). Promoting singularities corresponds to
maximizing the dimension of the tangent space of the invariant set, which translates to minimizing
the rank of Ji(#). Since the rank is a non-differentiable function, we instead penalize the nuclear
norm || Jg(0)|,—the sum of its singular values—as a smooth surrogate (Zhaol [2012).

Numerical experiments As an illustrative example, we test our approach on the Breast Cancer
dataset (Wolberg et al., {1993) using a range of MLP architectures—shallow and deep, with or without
biases and skip connections. To approximate continuous gradient flow, we train with SGD using
a small step size (0.001), comparing nuclear norm regularization against L1 and L2. Tracking the
Jacobian rank during training confirms that the nuclear norm consistently drives the model toward
singularities (fig.[3f). For instance, a shallow network can disconnects around 18 of its 20 hidden
units, whereas L2 and unregularized training leave all neurons active. Surprisingly, L1 regularization
performs similarly to the nuclear norm, despite being traditionally associated with parameter (not
neuron) sparsity. This suggests L1 may implicitly promote singularities and while a precise theoretical
understanding is outside the scope of this paper, we provide an empirical analysis in Appendix [A.10]
Finally, reaching singular configurations guarantees the ability to do lossless pruning, and while
L2 is already quite robust to pruning, disconnecting active neurons introduces modifications to the
implemented function (fig.[3d). All experimental details can be found in Appendix[A.8] additional
experiments in Appendix[A.9.2]



Under review as a conference paper at ICLR 2026

4 CONCLUSION

In this work, we investigated two underexplored pathologies in the training of ReLU neural networks
defined over directed acyclic graphs (DAGs): the (dis)connectedness of the invariant parameter space
and the emergence of singularities within it. By leveraging the symmetry properties of homogeneous
activations and analyzing the associated conservation laws under gradient flow, we provided a
complete characterization of the invariant set as an algebraic variety constrained by quadratic balance
conditions.

Our topological analysis revealed that disconnections in the optimization space are dictated by the
presence of bottleneck neurons and an imbalance in flow conditions. We further demonstrated that
singularities correspond to effective subnetworks, and although gradient flow trajectories cannot
reach them in finite time, their role can be leveraged to improve structured pruning. We introduced
a nuclear norm regularizer that promotes convergence toward such configurations. Surprisingly,
we observed that L1 regularization can induce comparable effects, hinting at a deeper connection
between sparsity and singularity-driven pruning.

Limitations. The limitations of our work mainly lie in the fact that the theoretical analysis is fully
based on the assumption of using neural networks with homogeneous activation functions trained
with gradient flow on an unregularized loss. Other training algorithms (like Adam) and regularizers
are not subject to the same conservation laws described here. Likewise, in discrete settings the
conservation laws only hold approximately with bigger stepsizes, incurring in bigger violations of the
laws.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 LLM USAGE

LLMs (ChatGPT) were used to aid in polishing the paper after writing.

A.2 GEOMETRIC DERIVATION OF THE NETWORK FLOW EQUATION

Let 6 € RIZ! be a parameter configuration. Let us focus on a single hidden neuron v, to which we
associate the neuron-wise rescaling action T, (6) that, for any o > 0 acts as T3 (0) (;,») = @0 ),
T3(0) (v, = ée(m ;) on the parameters associated to the edges coming in and out of v, respectively,
and leaves the other elements of # unchanged. TV0 = {T?(0): «a € R,} is the orbit of 6 under
rescaling of the neuron v. It follows from the fact that we are dealing with ReL.U networks that the
loss function L is constant over 770, L(T26) = L(6) Va > 0.

If 6 is not zero on all the edges coming in and out of v, we have that the action T is free, meaning
that 720 = § <= « =1, implying that the orbit 76 is diffeomorphic to R, . Therefore, the orbit
T70 is a smooth manifold admitting a tangent space at 6.

The fact that L is constant over 7V# means that 76 is contained into the level set of L at §. The
gradient of a function at a point is always orthogonal to the level set it is contained in, meaning that,
in particular, the gradient g(6) will be orthogonal to the tangent space of 70 at 6.

To derive a vector generating this 1-dimensional tangent space, it is enough to consider the equation
describing 70, differentiate w.r.t. « and evaluate at a = 1.

d d
-— T&)(Q)) =—| i) =0 )]
(dOé a=1 (i,v) da a=1
d d 1
o ng(e)) =5 79(2‘,1}) = _9(2',1)) ()
(do‘ a=1 (i) Blaa @
d . ..
(d Té:(@)) = 0if v ¢ {i,} ©)
a=1 (4,9)
4

Orthogonality of the gradient w.r.t. this vector can be written as

d T
(] m@)sm-0
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A.3 PROOF OF PROPOSITION[3]

We start from the following result from|de Medrano| (2023)).
Proposition 8 ((de Medrano| [2023)) Proposition 4.1). The following are equivalent:

1. H(c) is non-empty.
2. clies in the convex cone generated by the columns of B, ce CO(B ).

The non-emptiness of the invariant set is then completely described by the following proposition.

Proposition 9. Co(B) = RIVI
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Induced network flow (FF))
[0, ]
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Figure 4: Visualization of the induced network flow problem (F'F;}) at a bottleneck node v € V. In
the right panel, we depict the internal arcs in gray, the incoming arcs in orange, the source arcs in
blue, the sink arcs in red and the circulation arc in black.

Proof. To show that, for any c € R‘V‘, the system Bz = ¢ admits a non-negative solution x, we take a
constructive approach and build x explicitly.

Let us initialize z¢ = 1 by assigning the value 1 to every edge (z). = 1 Ve € E. Let us define the
balance vector at initialization, ¢y = B1 which, in general, will be different from ¢, ¢y # c. For each
hidden neuron v € V', we make an adjustment to x that corrects the balance value at v.

If (co)v < ¢y, define 0, = ¢, — (¢g),. Let us consider a path p, going from the input neurons V7

to v (which exists by definition of G) and the vector 1, € RIZI supported on it, that is such that it
assigns value 1 to each edge in p,, and 0 to all other edges. Consider now z’ = zq + 0y1,,, which

is non-negative because d, > 0. The balance ¢/, := (Bz'),, will remain unchanged in all nodes w
different from v, ¢}, = (co)., because, in such nodes, the same quantity is added to one edge coming
in and one edge going out. In v, the new balance value will be

C:) = (Bx,)v = (BIO)U + (B]]-pv)v = (CO)U + 61} = (CO)'U +Cy — (CO)v =Cyp.

If instead (co)y > ¢y, we define 0, = (co)y — ¢, and add the vector 1, supported on a path p,
that connects v to the output neurons V. Once again, in all nodes except for v the balance is left
unchanged, while in v

c; = (Bx’)v = (BxO)v + (B]lpv)v = (CO)U =0y = C:J - ((CO)U - Cv) =Cy-

Repeating this process for any node v € V allows us to correct the balance ¢!, = ¢, at all nodes, giving
us a non-negative solution z’ to the system Bz’ = c. O

A.4 PROOF OF THEOREMIII

The problems associated with network flow have been extensively studied in the literature (Ford and
Fulkerson, [1962). The idea of the proof is to map the statement to a network flow feasibility problem
and then apply well-known results in the field.

We first report here the more general version of the result from de Medrano| (2023) that we reported
in Proposition

Proposition 10 ((de Medrano, [2023) Proposition 4.7). The following are equivalent:
1. He(c) is connected.
2. ce CO(B_Z') for all i, where B_; denotes the matrix B with the i-th column removed and
Co(A) is the convex cone generated by the columns of A.
A.4.1 INDUCED NETWORK FLOW PROBLEM

Let us consider a general feed-forward network as in Section [2|and an out-bottleneck node v € V3.
We will prove that connectedness is equivalent to the existence of solutions to a network flow problem
associated with each bottleneck node. We now build a flow feasibility problem on a subgraph of G in
“circulation form”, using the notation of |[Fathabadi and Ghiyasvand! (2007).



Under review as a conference paper at ICLR 2026

Let v € V3, we construct a directed multi-graph G, = (N, A,) in the following way.

The node set is N,, = Anc(v) U {s,t}, where s and ¢ are two extra nodes not from G. The set of arcs
A, contains the following sets of edges:

* the internal arcs A, = {e = (v1,v2) € B |v1,v9 € Anc(v)};

o the incoming arcs A; = {(s, va) | I(v1,v2) € E with vy ¢ Anc(v), vy € Anc(v)};
o the source arcs Ag = {(s,w) | we Anc(v), ¢y < 0};

o the sink arcs Ay = {(w,t) | we Anc(v), ¢y > 0};

* the circulation arc (t, s), to adopt the problem’s “circulation form” (Fathabadi and Ghiyas+
vand, 2007)).

Therefore A, = A, W A; UA;u A L {(¢,5)}.

In the general network flow problem, each arc e = (u,w) is assigned a lower bound I, = I,
and a possibly infinite upper bound m, = my,, on the possible values of the flow on them. In
our case, we fix lower and upper bounds as follows. The flow on the internal and incoming arcs
and the (t, s) arc are required to be non-negative: I, = 0 and m, = oo fore € A, U {(¢,s)}. The
source arcs are constrained to carry a flow equal to the negative of the c value of their endpoints:
le =me = —¢y Ve = (s,w) € Ag. The sink arcs are constrained by the ¢ value of their starting point:
le =me =cy Ve = (w,t) € Ay

The network (N, A,) is said feasible if there exists a real function on the edges, called flow and
denoted f : A - R such that

1. at each node the flow is conserved ¥ .(u, wyea, f(u,w) = Lz:(w,2)ea f(w,z) =0 Vw € N3

2. for each edge the bounds are respected [, < fo < m, Ve € A,.

Remembering that all this construction is built around an out-bottleneck v, we call this problem
(FF;) for “flow feasibility at v € V” and we visualize the construction in FigureE} The analogous
problem for an in-bottleneck w € V5 is converted to the same formulation by reversing arrows in the
DAG and changing the sign of the ¢ vector, we call it (F'F,).

A.4.2 TRANSLATION OF THE CHARACTERIZATION BY NETWORK FLOW PROBLEMS

Having defined the induced problems (F'F") and (F'F,,), we have a first equivalence lemma:

Lemma 1.

He(c) connected <= Vv e V5, (FF)) has a solution and,Yw € Vi, (FF,,) has a solution.

®)

Proof. ( = ) We start with the forward implication, assuming that the invariant set is connected
and building a solution for every flow feasibility problem associated to bottleneck neurons.

Assume that H¢ (c) is connected. Then, by the characterization of connectedness in Proposition

we know that ¢ € Co(B_;) Vi. This tells us that removing any column ¢ from B, there still exists an
|E|-1 B .

xeR," 7, such that B_;x = c.

We let v € V4 and ask whether (F'F;/) has a solution. Recall that there is a one-to-one correspondence

between columns of B and edges of the DAG.

We choose the column 7 to remove to be the one corresponding to the unique out-edge e* of v and
get a solution vector x* € RLEl*l to B_;z* =c.
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x* can be seen as a function: z* : E \ {e*} - R,. Using *, we explicitly build a solution T the
problem (F'F;) with node and arc sets (IV, A) as described above.

ffA-R,
x*(e) ifee A, U A;
o ] Cu ife=(s,u) e A 9
Cu ife=(u,t)e A

Yeea, fe(e) ife=(t,s)

Note that we used the fact that incoming edges in G, = (IV,, A,,) can be mapped one-to-one with

edges from V' \ Anc(v) to Anc(v). To check that this flow is feasible, we have to check the two
conditions of conservation and boundedness. For u € N \ {s,t}, the conservation of flow is assured
by the fact that \/z* is a member of ¢ (c) and therefore respects the balance conditions with balance
¢y This value ¢, depending on its sign, is accounted for in G, by the arcs going to s or t. For
t, conservation is assured by the definition of f and for s it is assured by summing conservation
equations for all nodes in NV \ {s,t}.

Checking the boundedness condition is immediate for e € A, U A;, since * has only non-negative
values. For source and sink arcs, by definition of f they are set with the only possible value, and
f(#,s) is non-negative as a sum of non-negative terms.

The same reasoning can be applied for any in-bottleneck v € V.

( <= ) We now prove the reverse implication and assume Yv € Vj, (F'F,’) has a solution and
analogously for (F'F, ). By Proposition we know that Hq(c¢) is non-empty. To show that it is

connected, we need to show that ¢ € Co(B_;) Vi.

Stated differently, we need to show that when removing an edge, we can still find a solution §* € RIEI-1
that satisfies every node’s balance condition in the DAG.

Let us pick an edge ¢* = (v,v") € E, remove it, and distinguish 3 cases.

1. If v ¢ V4 and v’ ¢ V5, the new DAG still has the property that each hidden node is contained in
one path from input V; to output V, so we can apply the non-emptiness property on this new DAG
and get a solution.

2. If v € V or o' € V5 but not both, we focus on v € V. We will construct a function 2 : E~ {e*} —
R,, such that 6* = \/x respects all balance conditions in the new DAG G _.+.

We start by splitting the edge set in 3 parts: E'\ {e*} = E, u Ey u E,_, s, where the edge subsets

are defined as follows. For a generic edge € = (u,w) € E~ {e*}, welete € E, if u,w ¢ Anc(v) i.e.
e is an edge whose nodes are not involved in the network flow problem (FF;). We let e € E if

u,w € Anc(v), that is if both nodes are involved in (F'F}"). Lastly, e € E,_ 7 if u ¢ Anc(v) and w €
Anc(v) i.e. if the edge is a hybrid edge connecting a node not involved in (F'F") to a node involved

in it. Notice that the case u € Anc(v) and w ¢ Anc(v) does not exist by definition of the pure
ancestor set.

The next step consists in crafting 3 functions on the edges and then gluing them together to obtain a
solution. By non-emptiness, again, we know that if £, # @&, we can find a solution 8 on the DAG
restricted to V' \ Anc(v) i.e. an independent solution for the DAG where we have removed the
bottleneck and its pure ancestors. We define:

0 ife¢ E,
(e) = : 10
zo(e) {(e;)?(e) ifeek, (10)
Then, by denoting with f* a solution of (F'F}}), we define:
[0 ife¢ Ey
zs(€) ‘{f*(e) ifeel, (n
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Finally, for the hybrid edges in E,_, ¢, we leverage the fact that they can be mapped one-to-one to
the incoming edges in (F'F,). Just like we did for E;, we thus assign to each one of them the
value of the solution of the network flow problem. Let us denote x,_, y the function which does this
assignment for edges in F,_, y and is zero elsewhere.

At this point, the function 6: e = \/x,(e) + z7(€) + z,(e) respects balance conditions for nodes

in Anc(v), this is assured by the x; + x,_; part being a solution to (F'F). It also respects the
balance for nodes which are not pure ancestors and are not connected to pure ancestors, by the
definition of z,(e).

For the other nodes u € V \ Anc(v) such that 3(u,w) € E with w € Anc(v), the balance might not
be immediately respected. Indeed, the values assigned to the edges in F,_, y will disrupt the balance
given by the x,, part of the function.

Luckily, each of these disruptions may be resolved locally, without influencing the balance of
the other nodes. Given any u ¢ Anc(v), we compute its balance ¢;, = ¥ ,.(v.u)eE~{e*} 9%1) W~

Zw:(u,w)eE\{e*} G%U,w).

If ¢}, > ¢, we pick any path p in G_.+ from u to the output nodes p = (p1,...,pn),p1 = U, P € Vo.
Let 1,, be the indicator function which assigns 1 to the edges in p and O to the other edges. Note that
this path exists because u is not a pure ancestor of v and thus removing e* does not disconnect u

from the output nodes. If we define 6’ = /62 + (¢!, — ¢,,)1,,, we see that the balance of 6" at u is
2 2
> GZWJ) - > qu’w) =cl, —cl +cy =cy,
vi(v,u)eEx{e*} w:(u,w)eEx{e*}
while it is left unchanged at any other node in the path because the quantity added to its inputs is the
same as the one added to the outputs.

If ¢/, < ¢, instead, we can pick any path p in G_.+ from input nodes to u, p = (p1,...,Pn),P1 €

Vr1,pn = wand define ¢’ = /62 + (¢, — ¢/,)1,, to fix the balance at w.

Repeating this process for every hidden node, we are able to find a function 6* on the edges of G_«
which satisfies the balance equation at every node, meaning that B_.+ (6*)? = c.

3. Ifve V5 n V3, we have that Anc(v) n Desc(v) = {v} and so no edge is shared between the two
sets of nodes and we can deal with v being an in- and out-bottleneck independently. O

Now that we have a characterization of connectedness in terms of flow feasibility we move on to
study this feasibility with the positive cut method. To avoid cluttering, we refer to (F'F),) to denote
either (F'F,') or (F'F,) as these are the same problem, differing only in their origin.

We now resort to the following classic result:

Proposition 11 (Hoffman’s theorem (Hoffmanl [1958), reported in [Fathabadi and Ghiyasvand|(2007)).
A network with conservation and boundedness constraints with non-negative lower bounds is feasible
if and only if for every non-trivial partition (S,T) SuU = N, called a cut, we have V(S,T) <0,

where:
V(S, T) = Z lij - Z msj (12)
€S i€l
geT jes

Equivalently, we have that (F'F,) does not have a solution if and only if there exists a strictly positive
cut:

(F'F,) does not have a solution < 35, T c N, S\ T+ 2, SnT =@,SuT =N, V(5T)>0
(13)
Lemma 2. Let (S,T) be a strictly positive cut i.e. V(S,T) > 0. Then
{s,t} cSOR {s,t} cT

Proof. If s € S, then t € S otherwise the arc (¢, s) goes from 7" to .S and it has infinite upper bound.
If s € T, then t € T otherwise there is no arc with strictly positive lower bound entering 7" and
V(S,T)<0. O
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Lemma 3. Let v be the bottleneck of the problem (FF,) and G, = (N, A) the induced network flow
problem. Let u,w € N \ {s,t}. Then

uel =>weT

weS=>uecs 14

V(S,T)>0= {
We say that T is forward stable and S is backward stable.

Proof. We have that N \ {s,t} = Anc(v). This means that (u,w) is an internal arc o 1., = co.
Both statements are proved by observing that there cannot be an internal arc starting in 7" and ending
in S, otherwise V' (S, T) = —oc. In other words an arc starting in 7" must end in 7', and an arc ending
in S must start in S. O

Lemma 4. Let (S,T') be a strictly positive cut. Then
{s,t} c S (15)

Proof. From Lemma[2} we know {s,¢} ¢ S OR {s,t} c T.

Let v be the bottleneck of the problem (F'F,) and G, = (N, A) the induced network flow problem.
We proceed by contradiction and suppose that {s,¢} c T Let’s pick an arbitrary node w € N\{s,t} =
Anc(v). In the DAG, any path going backward from w will necessarily pass through an incoming
edge as the path leave Anc(v), otherwise w would be disconnected from the input. Formally,

Vwe N~ {s,t},3ze N\ {s,t} n Anc(w), (s,z) € A;

So z must be in T otherwise (s, z) would go from T to S with m,, = co. By the forward closure
property of 7" from Lemma(3] w e T'.

Since w € N \ {s,t} was picked arbitrarily, it follows that N \ {s,¢} c T.. By hypothesis {s,t} c T
and so T'= N which is impossible since the partition (.5, 7") must be non-trivial. O

Finally, we prove the main theorem.
Proposition 12.

Vv e VE, VT c Anc(v) s.t. T stable by forward edges, Y. e ¢y >0

i ted E——
He(e) is connected < {Vv € V5, VT c Desc(v) s.t. T stable by backward edges, Y. e ¢y <0

(16)
Proof. Letv eV},
(FFE]) has no solution < 3(S,T),V(S,T) >0
< 3(S,T),T forward stable, V(S,7) >0 (Lemmal[3))
< 3T c Anc(v) forward stable, V(N ~T,T) >0 (Lemmas )
< 3T c Anc(v) forward stable, Y l;; = > m;; >0 (Equation [12])
g i
a7

In the third row, we used the fact that S = N \ T'. Now, notice that we can rewrite the first sum as
Yi¢T lij = 2 ueT Cu, because the only non-null lower bounds leaving S are those of source arcs and
ieT cy <0

J
these belong to nodes having ¢,, < 0. The second sum can be rewritten as ) ;e M = ) ueT Cy a@s a
je¢T cy>0

J
consequence of the forward stability of T": the only edges leaving 7" are sink arcs from 7" i.e. from
nodes having ¢,, > 0.

This allows us to rewrite the equivalence obtained above as

(FF;) has no solution <> 3T ¢ Anc(v) forward stable, > —c,— Y. ¢, >0

ueT ueT

¢ <0 >0 (1 8)
< 3T c Anc(v) forward stable, » ¢, <0

ueT
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Therefore by negating both statements:

(FF;) has a solution <> VT c Anc(v) forward stable, Y ¢, >0 (19)
ueT

The complementary statement for in-bottlenecks is obtained by reversing the arrows and following
similar steps, and we conclude by using Lemmal|I}

Yv e Vi, (FF;) has a solution
Yv e Vg, (FF;) has a solution

Yv e Vi, VT c Anc(v) forward stable, Y ,cr ¢y 20
Yv e V3, VT c Desc(v) backward stable, Y., 7 ¢, <0

He(c) is connected < {
(20)
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A.5 PROOF OF THEOREM[2]

Let us compute rank Jg (6).

First, observe that if 6, # 0 Ve € E, then rank J () = rank(B) as diag(0) is invertible. Therefore,
the rank of the Jacobian can decrease if and only if some parameters are 0, i.e. when some edges are
effectively removed from the computational graph.

Define now diag(6)!, = 1/6. if 6. # 0 else 0 and £() = {e € E: 0, = 0} the set of zero-weight
edges. Observe that

rank J(0) = rank(Bdiag(G)) = rank(Bdiag(G)diag(@)*) = rank(B,g(g)),
where B_g is B with the columns corresponding to edges in &£ put to 0. Now, it holds that
rank(B,g(e)) = rank(ng(g)) = V|- dimker(BIE(e)), 2D
where the last equality follows from the rank nullity theorem.

To relate dim ker(Bf £( 9)) to the topological properties of GG, we briefly introduce some concepts
stemming from relative homology (Hatcher, 2002).

Let Cy(G) be the vector space of real functions on the nodes of G (all neurons) z € Co(G) —
2:V — R. These functions are customarily called the 0-chains (of G). Let C;(G) be the vector space
of real functions on the edges of G, y € C1(G) = y: E — R; these are called the I-chains (on
(). We can see the incidence matrix B (with the rows associated with all nodes included) as the
matrix representation of the linear operator from 1-chains to O-chains B: C1(G) — Co(G). If 1, is
the indicator functiononnode v e Vandy = Y. .cg Ye le

By=2( > Yem D, ye)]]-v-

veV \e=(w,v),weV e=(v,u),ucV

In this setting, ker B is called the 0-th homology group of G and denoted by H(G); and dim ker B
is proven to be equal to the number C'C(G) of connected components of G.

Let us now pick the subset of input and output nodes 0V ¢ V and define the space of relative

0-chains Co(G,0V) = C(’; 0((66";)) i.e. the quotient space of the functions on the nodes modulo the space

of functions on the input and output nodes. This means that we identify two 0-chains ¢ and c iff
c(v) = ¢/(v) for all internal nodes v € V := V \ V. An element in Co(G,0V') will thus be an
equivalence class

)

[2] € Co(G,0V) = [x] = [Z a:v]lv] = lZ Ty,

veV veV

as, by definition of quotient vector space, we have that [1,] = [0] <= v e dV.

The incidence matrix B, therefore, induces a relative incidence matrix B: C(G) - C?; "(Eg/)) as

By = [By]. From this, we see that

By=[3y]=l2( > Y- % y)nl (22)

veV \e=(w,v),weV e=(v,u),ueV

veV OV =V \e=(w,v),weV e=(v,u),ueV’

:l > ( > owe- X y)]ll (23)

meaning that the relative incidence matrix can be represented with the incidence matrix with the rows
associated with nodes in 0V removed, i.e., the B we used in the text.

In this setup ker B is known as the 0-th relative homology group Ho(G,dV') of the pair (G, V)
and, given this characterization, we can resort to Proposition 2.22 in|{Hatcher| (2002)), and deduce that

dim Ho(G_g(y, V) = dim Ho(G_g(9)/OV) - 1,
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where G/OG is the graph G with nodes in OV all glued together, and G'_¢ ) is the graph G with the
edges in £(0) removed. We can therefore go back to Equation and state that

rankJ(0) = |V| - dim Ho(G_g()/0V) + 1 = [V| - CC(G_g(4y/OV) + 1,

meaning that the rank of the Jacobian is less than its maximum value of |V| only when the number of
connected components of the quotient graph G'_g(¢y/0V is greater than 1. This happens if and only
if removing edges in £(0) disconnects a set of nodes from both input and output.

A.6 PROOF OF PROPOSITION [3]
To prove the result, we will prove that, if 8, = 6.(to) = 0 for every edge e = (u,v) withu e W,v ¢ W
oru ¢ W,v € W, the same holds for the gradients: g.(tg) = 0 for every edge e = (u,v) as above.

Let us denote by P, v,, the set of all paths from node v to anode in Vp i.e. pe P, v, <= p =
(ur,. .., upn,) Withug = v, uy,, € Vo and (u;,us11) € E, for all 4.

Let a,, 2, be the activation and pre-activation of neuron v, respectively

Zy = Z 6(u,v)a'uv Ay = U(ZU)'
(u,v)eE

The chain rule allows us to decompose the gradient of the loss flowing through neuron v in the
contributions of all path from v to an output neuron as follows:

oL OL & Oay, 0z,
da,

(24)
p:(ulvnvunp)epv,Vo 8au"l’ =2 azu7 aaui_l

For any neuron in the disconnected set v € W, it holds that any path to the output p € P, y;, contains

Ozy

an edge e;, such that 6., = 0. If we notice that 3

— = 0(u,_, u;)» We have that, for any path p, the

ui-1

product in Equation will contain e, and therefore its value will be 0 (,?TL =0VveW.
Let us now prove that this implies that the edges that disconnect W have gradient null.
First, lete = (u,w) € E withu e VN W and w e W.

_8L_8L8aw_0
T 00, Oay 00,

ge:
because w e W.

Lete=(w,v) e Ewithwe WandveV \W.
0L 0L Oa, 0L Oa, 0z,

90, 0Oa, 89, 0Oa, 0z, 96,

Ge

oz . . . . .
where 8791) = a,,. Given that W is also disconnected from the input nodes V7, any node inside must

have 0 acteivations. Therefore we W =— a,, =0 and g, = 0.

A.7 PROOF OF PROPOSITION[]|

Let 0(t) = —g(0(t)) be the evolution of the parameter configuration under gradient flow.

Let Jo () = 2Bdiag(f) and let us derive the evolution equation for .Jg.

d d_ - ~ ~

&Jg(t) = &2Bdiag(9(t)) =2B0(t) = —2Bdiag(g(6(t))). (25)
It turns out that we can simplify this equation by leveraging the connections between rescaling
symmetries and GF dynamics. In fact, Equation 8 of [Kunin et al.|(2020) states that rescaling
symmetries induce a relation between the gradient and the Hessian H of the loss function. If b, is the

transpose of the row of B associated with v € V, we have that

H()(0ob,)+g0b,=0VveV. (26)
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This follows because b, has a value of -1 on the edges incoming in v and +1 on the edges outgoing
from v. Gathering the identities of Equation (26) associated to all hidden neurons, we get the
following matrix equation:

Bdiag(#)H (0) + Bdiag(g(#)) = 0. 27
Plugging Equation in Equation (25), we finally get
< Ja (1) = 2Bdiag(0) H(9) = Jo(0) H(0). (28)

i.e. the Jacobian evolution is dictated by the Hessian matrix.

It is known (e.g. [Blanes et al.| (2009) page 15) that the solution of Equation (28) can be written in the
following way

Ja(t) = Jg(O)TeXp(fOtH(s)ds),

where Texp( fot H (s)ds) is the time-ordered matrix exponential

t oo t t] t_
Texp([ H(s)ds) -y f at! f " dt- [ At H () H(E)
0 =0 J0 0 0
which ensures that the terms of the exponential series are in the right order, as the matrices H (¢1)

H (t2) may not commute.

Finally, in Theorem 4 of [Blanes et al.| (2009), it is shown that the time-ordered matrix exponential
can be written as a standard matrix exponential and is therefore invertible for any finite ¢. This means
that rank(Jg(¢)) = rank(Jz(0)), thus concluding the proof.

10
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A.8 EXPERIMENTAL DETAILS

Here we provide additional details regarding experiments described in the main paper.

A.8.1 DISCONNECTED NEURONS AND PRUNING

Figures [3t—d show, respectively, the proportion of null singular values during training and the
evolution of test loss under neuron pruning for a shallow, bias-free architecture. We report on Figure 3]
results for a broader range of architectures discussed in the main text. Both nuclear norm and L1
regularization promoted neuron sparsity (fig.[5] left column). Note that skip connections made neuron
pruning more challenging as illustrated in previous literature (Fang et al.||2023). Below, we describe
our two pruning strategies; however in both cases, nuclear norm and L1 remain the most robust,
vanilla the most fragile, and L2 intermediate (fig.[5] center and right columns).

Architectural details. We evaluate six architectures: a shallow network with 20 hidden units,
with and without bias; and four multilayer perceptrons (MLPs) with three layers of 10 hidden
units—varying by the presence of bias and whether a skip connection links the first and second
hidden layers.

Details on methodology. All architectures were trained from scratch for 5000 epochs using SGD
with a learning rate of 10~2. Regularization strengths were empirically tuned to balance low task loss
and singular value minimization: . = 0.05 (nuclear norm), ar,; = 10, and a2 = 20. The total loss
is defined as L = Liqs + Qreglireg. For each architecture, we sampled 30 runs that converged to
low train loss models to analyze training dynamics and pruning robustness. Singular values below
103 were considered null. The dataset was not preprocessed. All experiments ran on CPU over
approximately 50 hours.

Pruning. We iteratively remove entire neurons (i.e., groups of parameters) from trained models
and measure the degradation in performance, as measured by the test loss. For each hidden neuron £,
we compute a principled pruning score

A 29)

(i,k)eE (k,j)eE

which is the product of the L2 norms of its input and output weights. This score is low for (nearly)
disconnected neurons and invariant under neuron rescaling, making it robust to reparameterization.
However, a max-based score,

sp=Max( Y. 605, > 7)) (30)
(i,k)eE (k,j)eE

produced slightly different results and is reported as well for comparison.

11
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A.8.2 TRAINING DYNAMICS

For one training of shallow bias-free network, we present the evolution of key quantities during
training to highlight how different regularizations affect their behavior.

As shown in Figure[6] both nuclear norm and L regularization drive many neurons’ balance numbers
¢y, to zero—consistent with the fact that disconnecting a neuron in a fully connected layer requires its
input and output weights to vanish, making ¢, null by definition (Equation (3)). Without regularization,
¢y, values, which should be fixed under continuous gradient flow, can increase due to the effect of
discrete optimization steps. These steps cause a gradual drift out of Hg(c), as the update vector
deviates from the ideal optimization path. Notably, in this unregularized case, cj values remain more
stable. Figure[7]present the complementary view of singular values.

ck values along a training run

nuclear norm vanilla L1 L2

Ck
ck
Ck

—

10° 10! 102 10 10° 10° 10! 102 10° 10% 10° 10! 102 10 10% 10° 10! 102 10° 10%
Training step Training step Training step Training step

Figure 6: ¢, values during training of a shallow, bias-free network. k € [0, 20] is the neuron index.

Singular values along a training run
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\
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Figure 7: Singular values of the Jacobian B diag(#) during training of a shallow, bias-free network.
k € [0,20] is the neuron index.
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A.9 ADDITIONAL EXPERIMENTS

In this part, we present additional experiments that replicate our findings in different contexts for
completeness.

A.9.1 CONNECTIVITY

Besides the toy model presented in the paper which studies a DAG structure, we replicated connect-
edness results for MLPs on synthetic and real data.

Synthetic data. The synthetic setup consisted of a MLP trying to learn to sum the components of a
2-dimensional input vector where each component is drawn randomly from [0, 1]. To solve the task,
at least one of the neurons in the last layer must have a positive output weight. When the parameter
space is disconnected, as stated by Corollary P2} initializing on a wrong connected component creates
a pathology in which the network may be blocked from reaching the optimum, as shown on Figure 2]
preventing the loss to decrease below a threshold even on the training set. For the synthetic summing
task, this happens because a negative ¢ prevents any sign flip for a neuron. Training losses for a 10
layers, 0.5 million parameters MLP are shown on Figure 8]

Training Loss

—— cx: Negative, Signs: Negative
ck: Default, Signs: Negative
—— Ck: Negative, Signs: Default
101 4 —— c: Default, Signs: Default
7
[e]
—
(o)}
=
=
©
= |~
100 u
0 100 200 300 400 500
Epochs

Figure 8: Training loss for 4 possible initializations of a MLP withb 10 layers. Initializations only
differ in the last layer output weights. ¢ and signs refer to the last layer. Blue curve: when the
training space is disconnected (negative c) and initialization is on a bad component (negative output
sign for last layer neurons), the model is unable to learn correctly.

Real data. We also replicate the learning obstruction on real data, both for MNIST and for the ViT
features obtained from a pretrained vision transformer model (without any finetuning) on a classical
high resolution dataset (Elson et al.,[2007) of cats and dogs images treated as 224 by 224 pixels and
projected to 20 dimensions with UMAP. Both these tasks are set up as binary classification: the cats
and dogs is already a binary dataset, while for MNIST we modify the labels to predict whether or not
the digit is equal or above 5. For both datasets, it is easy for a standard MLP to achieve a low train
loss as reported on Figure 0] except when the optimization space is disconnected (¢, < 0) and the
initialization is done on a component which does not contain parameters able to predict both classes
(e.g. negative output weights on last layer).
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Figure 9: Training losses for 4 types of initializations differing only in the last layer output weights.
(a) Training loss on MNIST. The model is an MLP with 3 hidden layers containing 100, 50 and 10
neurons. (b) Training loss on ViT features extracted from a dataset of cats and dogs images. The
model is an MLP with 3 hidden layers containing 20, 50 and 20 neurons.

A.9.2 SINGULARITIES

In addition to the experiment conducted on the Brest Cancer dataset in the main paper and further
described Appendix[A.8] we obtained similar results in two others contexts: the classification of cats
and dogs from ViT features discussed in Appendix [A.9.1and a more challenging facial attributes
prediction task from face recognition model features, for which we used the CelebA dataset

2015).

The ViT feature task is easily solved with almost perfect test accuracy by a three layer MLP having
2500 parameters and 90 total neurons. Adding in L1 regularization achieved 80% pruned neurons,
while adding in the Jacobian regularizer around 90%, both without a significative loss of accuracy
compared to the vanilla training as shown on Figure[T0]

Train Task Loss Singular Loss L1 Loss

—— Nuclear 107
061 Vanilla

— L1
0.4 —
0.2 102 4

101 4
00 L T T T T T T T T T
0 1000 2000 0 1000 2000 0 1000 2000
Training step Training step Training step
1 (F;roportion of pruned neurons Test Task Loss 100 Test Accuracy
0.8 0.6 1
0.6 0.98 1
0.4 4 —— Nuclear
0.4+ Vanilla
021 0-21 0.96 1 L1
— L2
0.0 -+ T T 0.0 T T T T T
0 1000 2000 0 1000 2000 0 1000 2000
Training step Training step Training step

Figure 10: Key metrics along training for a binary classification task taking as input ViT features.
Colored curved denote different regularizers.

For the more difficult task of predicting facial attributes like “lipstick” or “gender” from features
of pretrained face recognition models, test accuracy varied depending on the attribute. However
both L1 and the Jacobian regularization performed on par with the vanilla i.e. unregularized model.
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Depending on the attribute, L1 achieved [80-90]% neuron sparsity, while the Jacobian regularizer
achieved [85-95]% neuron sparsity. Again, no significative impact on test accuracy was observed, as
reported on Figure [T}
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Figure 11: Key metrics along training for a prediction task aiming at predicting whether or not a
facial attribute was present on a picture from features extracted with a face recognition model (here:
FaceNet). Colored curves correspond to different regularizers. Dynamic pruning on row 2.
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A.10 EMPIRICAL COMPARISON BETWEEN L1 AND NUCLEAR REGULARIZATION

In the main text we observe that both the nuclear norm and L1 regularizers prune a similar number of
neurons (see also Figure 3k, Figure 5] Figure[I0|and Figure[TT). Here, we give empirical evidence on
key distinctions between these regularizers. We first show that both regularizers cannot be explained
by a null model and then illustrate that the nuclear norm preserves edges on active neurons, achieving
strong group regularization while L1 is more aggressive, also pruning edges belonging to active
neurons.

A.10.1 NULL MODEL

In this part we use a simple null model to rule out the explanation that L1 regularization achieves
neuron sparsity solely due to its known edge sparsity mechanism. The null model works as follow:
we estimate the probability py,; for a generic edge to be dropped after training. Intuitively, we choose
an edge before training and observe after training under L1 regularization if it was dropped or not. To
decide if the edge was dropped or not, we use a threshold of 10~ which corresponds to a clear peak
in the parameters values distribution, stable over multiple orders of magnitude. Then, starting from
the initial computational graph (i.e. before training, with all edges), we can compute analytically the
expected number of disconnected neurons if every edge is dropped with probability py,;. Results are
reported on Figure[T2]left. We repeat the same analysis for the nuclear norm regularization, using the
same threshold we obtain another null model with probability of dropping a random edge of p,y.
and report the expected number of disconnected neurons on Figure[T2]right. In summary, both null
models cannot explain the number of pruned neurons by the number of pruned edges, meaning that in
both cases there must be other underlying mechanisms. The underlying mechanism is explicit in the
case of the nuclear norm regularization, since neurons are directly targeted, but remains veiled in the
case of L1. Note also that the null model is an even worse explanation in the singular regularization
case, indicating a stronger alternative mechanism.

L1 singular

1.0 —— Null model
95% CI

-=- Observed = 17.67 (Cl: 17.31, 18.02)
95% Cl

Probability
Probability

—— Null model

95% CI
~-- Observed = 16.89 (Cl: 16.68, 17.10)
0.0 95% CI

(a) (b)

Figure 12: Probability of having at least k£ pruned neurons under the null model for (a) nuclear norm
regularizer (b) L1 regularizer. The red dotted vertical line is the observed number of pruned neurons,
the blue curve is the analytic probability of pruning at least £ neurons under the null model.

A.10.2 ACTIVE WEIGHTS AND PRUNED NEURONS

To further investigate the difference between L1 and nuclear norm, we turn our attention to the
distribution of parameters magnitude, which is plotted on Figure|13|left for 4 representative trainings.
For the singular regularization we observe a clear separation in the magnitude of parameters belonging
to pruned and active neurons, and this is not the case for L1 regularization. This means that the
nuclear norm either drops completely a neuron (i.e. all its edges at the same time) or keeps the neuron
active. In contrast, the separation is less clear for L1: there are many inactive weights on active
neurons. Figure[T3|right shows the aggregated results for 30 models of each type, where we observe
an overlap of the distribution for L1 only.
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Input Parameter values for each model and pruned neuron status Parameter value distributions by model and neuron status

lue (log scale)
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Figure 13: a. Absolute value of input parameters for the hidden layer of a shallow network with bias.
b. Absolute value of parameters (including bias) for the same network architecture on 30 independent
runs.
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