
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOPOLOGY AND GEOMETRY OF THE LEARNING SPACE
OF RELU NETWORKS:
CONNECTIVITY AND SINGULARITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the properties of the parameter space in feed-forward ReLU net-
works is critical for effectively analyzing and guiding training dynamics. After
initialization, training under gradient flow decisively restricts the parameter space
to an algebraic variety that emerges from the homogeneous nature of the ReLU
activation function. In this study, we examine two key challenges associated
with feed-forward ReLU networks built on general directed acyclic graph (DAG)
architectures: the (dis)connectedness of the parameter space and the existence
of singularities within it. We extend previous results by providing a thorough
characterization of connectedness, highlighting the roles of bottleneck nodes and
balance conditions associated with specific subsets of the network. Our findings
clearly demonstrate that singularities are intricately connected to the topology of
the underlying DAG and its induced sub-networks. We discuss the reachability of
these singularities and establish a principled connection with differentiable pruning.
We validate our theory with simple numerical experiments.

1 INTRODUCTION

The success of deep learning has spurred extensive research into the geometry and dynamics of neural
network training. While classical results primarily focus on layered architectures, many modern
networks adopt more flexible structures, such as directed acyclic graphs (DAGs), arising either from
design or from pruning and compression strategies. These architectures challenge existing theory and
necessitate new tools to understand their training behavior, particularly in the presence of non-smooth,
homogeneous activations like ReLU.

In this paper, we study two fundamental training pathologies in DAG-based ReLU networks: the
(dis)connectedness of the training-invariant parameter space, and the presence of singularities within
it. Our analysis is grounded in the observation that training with gradient flow on networks with
homogeneous activations gives rise to symmetry-induced conservation laws. These laws constrain
learning trajectories to an algebraic variety—referred to as the invariant set—defined by a system of
quadratic equations dependent on the network’s topology and initialization.

Our contributions are as follows:

• We derive an elegant formulation for the conservation laws that arise during gradient flow
training of ReLU networks as a result of rescaling symmetries, in the general case of
DAG-based architectures.

• We extend previous results on shallow networks (Nurisso et al., 2024) by studying the
geometry and topology of the invariant set in the general architecture case, providing
necessary and sufficient conditions for its connectedness based on network bottlenecks and
balance constraints.

• We identify and analyze singularities of the invariant set, showing that they correspond to
disconnected sub-networks, and prove that they are unreachable under standard gradient
flow from generic initializations.

• We propose a nuclear norm-based regularizer that promotes convergence to singular config-
urations, thereby enabling differentiable, structure-agnostic pruning. In our experiments, we

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

observe that L1 regularization—despite not explicitly targeting neuron sparsity—empirically
induces similar singular behavior as our dedicated regularizer, and therefore also fosters
effective lossless pruning.

Taken together, our results shed light on the interplay between network topology and optimization
geometry. They also offer a principled pathway for designing pruning mechanisms that exploit the
structure of the optimization space rather than relying solely on heuristic sparsity constraints.

1.1 RELATED WORKS

DAG neural networks. General feedforward architectures can be formalized as directed acyclic
graphs (DAGs) (Gori et al., 2023; Hwang & Tung, 2023; Chirag Agarwal et al., 2021), or more
abstractly as quivers(Armenta & Jodoin, 2021), though this perspective remains relatively under-
explored. DAG structures support variants of topological sorting (Kahn, 1962), which recover the
notion of layers (Boccato et al., 2024a; Chirag Agarwal et al., 2021). Both natural and synthetic
neural systems align well with this broader formalism (Boccato et al., 2024b; Milano et al., 2023).
DAG-like networks can also emerge through unstructured pruning (see below) or via the sampling of
sparse subnetworks, as in the lottery ticket hypothesis (Frankle & Carbin, 2018; Liu et al., 2018; You
et al., 2019).

Pruning. Pruning methods are typically classified as structured or unstructured (Hoefler et al., 2021;
Cheng et al., 2024). Structured pruning targets entire groups of parameters, such as neurons or
channels (Yuan & Lin, 2006; Nonnenmacher et al., 2021), while unstructured pruning removes
individual weights (Han et al., 2015; Frantar & Alistarh, 2023), often at the cost of hardware
inefficiency. Sparsity can be induced iteratively during training (Lin et al., 2020; Jin et al., 2016), or
through differentiable techniques and regularization (Savarese et al., 2020; Pan et al., 2016; Kang
& Han, 2020). Recent efforts like any-structural pruning Fang et al. (2023) aim to unify pruning
strategies into general frameworks. Our work approaches pruning through the geometry of the
optimization landscape: a nuclear norm regularizer naturally promotes sparsity across arbitrary
structures in DAG-based networks, though current computational limitations restrict its practical use.

Singularities and deep learning. Singular Learning Theory (Watanabe, 2009; 2007) blends statisti-
cal learning with algebraic geometry, treating singularities as central to the learning process in the
Bayesian framework, when working with non-identifiable models such as neural networks. Recent
works have applied its tools to describe modern neural network architectures (Wei et al., 2022; Lau
et al., 2023; Furman & Lau, 2024). Singularities are also foundational to neuro-algebraic geome-
try (Marchetti et al., 2025), which examines the space of functions realizable by networks—often
termed the neuro-manifold. The influence of singularities on learning has been recognized for
decades: early work (Amari & Ozeki, 2001; Amari et al., 2001; 2006) analyzed their impact on
gradient descent in simplified settings. Their relation to network topology has also been studied; for
instance, skip connections are known to reduce singularities (Orhan & Pitkow, 2017).

Training dynamics of ReLU networks. A large body of work analyzes the gradient flow and descent
dynamics of networks with homogeneous activations, including convergence guarantees (Sirignano
& Spiliopoulos, 2020; Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2022) and implicit bias prop-
erties (Boursier et al., 2022; Chizat & Bach, 2020; Lyu et al., 2021; Soudry et al., 2018). ReLU’s
non-smoothness poses analytic challenges (Eberle et al., 2021), yet its positive homogeneity enables
rescaling symmetries (Dinh et al., 2017) and conservation laws (Neyshabur et al., 2015; Marcotte
et al., 2023; Kunin et al., 2020; Zhao et al., 2022; Tanaka et al., 2020; Nurisso et al., 2024). The
discrete-time setting of gradient descent has also received attention (Feng et al., 2019; Smith et al.,
2021; Kunin et al., 2020). More broadly, symmetry principles continue to shed light on deep learning
phenomena (Grigsby et al., 2023; Głuch & Urbanke, 2021; Bronstein et al., 2021; Ziyin et al., 2025).

2 SETUP AND NOTATION

In this section, we start by introducing our notation for the neural network topology. We then review
known results on symmetries of ReLU networks and their associated conservation laws, reformulating
them in our compact notation. Next, we introduce the notion of invariant set, whose properties are
further investigated in section 3: first its connectedness, and then its singularities, each part including
numerical experiments. We conclude and discuss limitations in section 4

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: a. Example of a feed-forward DAG architecture G. b. The incidence matrix B̃ of G with
rows associated to input and output neurons removed. c. Visualization of the rescaling symmetry
of ReLU neurons. d. The initialization determines the balance value cv = ⟪θ, θ⟫v of every hidden
neuron, which characterizes the shape of the invariant set (e).

DAG neural networks. Consider a general computational graph G describing a feed-forward
neural network architecture (see the related work section 1.1). G is a directed, acyclic graph (DAG)
on a set of nodes V , called neurons, with edges E. We identify a subset of neurons VI ⊆ V containing
the input neurons, such that no edges are entering the elements of VI , and a subset VO ⊆ V of output
neurons such that no edges are going out of the elements in VO. We assume that VI ∩VO = ∅, i.e., no
neurons have empty neighbors. We write ∂V to denote the set of input and output neurons VI ⊔ VO.
All the other nodes Ṽ ⊆ V are the hidden nodes which are to be the fundamental computational
unit of the neural network V = Ṽ ⊔ ∂V (Figure 1a). For any node v ∈ V , we call Anc(v) the set
of its ancestors, i.e. nodes w ∈ V such that there exists a path in G from w to v, and Desc(v) its
descendants, i.e. the nodes w ∈ V such that there exists a path v → v1 → ⋯→ vn → w in G.

Each edge (i, j) ∈ E has a parameter θ(i,j) ∈ R associated with it and, when data is passed through
the network, hidden nodes v ∈ Ṽ sum the values of their incoming edges, apply the ReLU function
σ and output to each outgoing edge the resulting value multiplied by the edge parameter. As it is
standard in the literature (see e.g. 5.1 in Bishop & Nasrabadi (2006)), one can also consider biases in
this setup by adding a “virtual” input neuron whose input is fixed to 1 and adding edges from it to
every hidden neuron.

We call parameter space Θ the set of all parameters, i.e. the vector space of real functions over the
edges θ ∶ E → R, Θ ≅ R∣E∣ and we write fG(⋅, θ) to indicate the input-output function encoded by G
with parameters θ. Throughout the paper, it will be convenient to formulate the results by describing
the connectivity structure with the incidence matrix B of G (Bondy & Murty, 1979). B ∈ R∣V ∣×∣E∣
is a standard object in graph theory that describes how each edge is connected to its endpoints. Its
elements are defined as follows: Bv,(i,j) = 1 if v = j, Bv,(i,j) = −1 if v = i and 0 otherwise. See, for
example, the DAG in Figure 1a and its associated incidence matrix (with rows associated to nodes in
∂V removed) in Figure 1b.

Symmetries of ReLU networks. In this work, following Du et al. (2018), we study the properties
of neural network where the activation function σ is homogeneous, namely σ(x) = σ′(x) ⋅x for every
x and for every element of the sub-differential σ′(x) if σ is non-differentiable at x. The commonly
used ReLU (σ(z) = max{z,0}) and Leaky ReLU (σ(z) = max{z, γz} with 0 ≤ γ ≤ 1) activation
functions satisfy this property.

It is well known that the geometry of the parameter space Θ is heavily influenced by the properties
of the activation function. Some activation functions and specific neural network modules induce
some symmetries in the parameter space, i.e., transformations g of the parameters which do not
change the function encoded by the network fG(⋅, θ) = fG(⋅, g ○ θ) (Zhao et al., 2025). In the case
of homogeneous activations, the most critical symmetry is given by rescaling (Neyshabur et al.,
2015). In fact, the input weights of any hidden neuron can be rescaled by a positive scalar α > 0,
provided that its output weights are rescaled by the inverse α−1. This result is well-known for single
and multi-layer networks and holds even in general DAG architectures as it is defined at a single
node. We write this as the action of the group R+ of positive real numbers on each local parameter

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

space Θv ∶= {θ(x,y) ∣ (x, y) ∈ E and x = v or y = v} by means of T v
α(θ) = T v

α((θ(i,v))i, (θ(v,j))j) =
((αθ(i,v))i, (1αθ(v,j))j) (Figure 1c).

Local conservation laws under gradient flow. The presence of symmetries in the neural network’s
parameter-function map induces the presence of same-loss sets of the loss landscape. Let indeed
fG(⋅, θ) ∶ Rd → Re, D = {(xi, yi) ∈ Rd ×Re}N

i=1 be a training dataset and L ∶ Θ → R be a loss
function which depends on the parameters only through the output of the neural network1, that is

L(θ) = 1

N

N

∑
i=1

ℓ(fG(xi; θ), yi) (1)

where ℓ ∶ R∣VO ∣ ×R∣VO ∣ → R is differentiable.

Let us now assume that we train the network using the continuous-time analog of gradient descent i.e.
gradient flow (GF), θ̇(t) ∈ −∇θL(θ(t)) ∶= −g(θ(t)), where ∇θL(θ(t)) is the Clarke sub-differential
(Clarke et al., 2008). Given that the loss function L depends on the parameters only through f , its
value at θ must be constant over the orbit of rescaling. This, together with the fact that the gradient of
a differentiable function at a point is orthogonal to the level set at that point, means that the gradient is
orthogonal to the orbit under the action of rescaling, at any parameter θ where L(θ) is differentiable.
This orthogonality condition constrains the possible values of the gradient and, by extension, the
possible gradient flow trajectories.

This orthogonality condition can be shown to be

⟪θ, g(θ)⟫v ∶= ∑
i∶i→v

θ(i,v)g(i, v) − ∑
j∶v→j

θ(v,j)g(v, j) = 0

for every hidden neuron v ∈ Ṽ (see Appendix A.2 for details): the gradient modulated by the
parameter values is a network flow, as the quantity g(θ) ⊙ θ is conserved when passing through each
hidden neuron, where ⊙ denotes the element-wise Hadamard product between vectors. This result is
well known and is obtained, with a different approach, in e.g. Tanaka et al. (2020).

We propose to conveniently re-write the gradient conditions at all hidden nodes using a variation of
the incidence matrix B of G.
Proposition 1. Let B̃ ∈ R∣Ṽ ∣×∣E∣ be the incidence matrix of G with the rows associated with input
and output nodes removed; then ⟪θ, g(θ)⟫v = 0 ∀v ∈ Ṽ is equivalent to

B̃(θ ⊙ g(θ)) = 0. (2)

Proof. The proof follows directly from the definition of the incidence matrix. At any hidden node
v ∈ Ṽ , if we denote by θe the weight of any e ∈ E, and by ge the e − th component of g(θ), then it
holds

B̃(θ ⊙ g(θ))v = ∑
e∈E

Bv,eθege = ∑
i∶i→v

θ(i,v)g(i,v) − ∑
j∶v→j

θ(v,j)g(v,j) = ⟪θ, g(θ)⟫v = 0.

Invariant sets. Equation (2), implies that some quantities are conserved under gradient flow
optimization or, equivalently, that the learning trajectories are constrained to a lower-dimensional
subset of the parameter space.

Proposition 2. Let G be initialized with θ(0) such that B̃θ(0)2 = c ∈ R∣Ṽ ∣, with θ(0)2 the element-
wise square of the vector θ(0), then, for every t ≥ 0, it holds that B̃θ(t)2 = c.

Proof.
d

dt
B̃θ(t)2 = B̃ d

dt
θ(t)2 = 2B̃(θ(t) ⊙ θ̇(t)) = −2B̃(θ(t) ⊙ g(θ(t)) = 0.

1This means that we do not include regularization terms which depend explicitly on the parameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This result (visualized in Figure 1d), note, is a general, elegant re-writing of the well-known neuron-
wise conservation law (Proposition 2) (Du et al., 2018; Liang et al., 2019; Kunin et al., 2020; Saxe
et al., 2013). As we will see, this is not a mere notational feature, as this formulation reveals precious
insights into the relationship between the training dynamics and the neural network’s graph structure.
We now define the invariant set as the set the training trajectories are constrained to due to the
conservation laws: if the network is initialized in the invariant set, it will remain in it until the end of
training.
Definition 1 (Invariant set, generalization of Nurisso et al. (2024)). Given c = (cv)v∈Ṽ , we call
invariant set the setHG(c) ⊆ Θ of the solutions of the system of polynomial equations B̃θ2 = c.

If we look at the single equation associated with hidden neuron v ∈ Ṽ , we see that B̃θ2 = c can be
written as

∑
i→v

θ2(i,v) − ∑
j←v

θ2(v,j) = cv (3)

which corresponds to a hyperbolic quadric hypersurface in the local parameter space of v, Θv

(Figure 1e). From the graph’s point of view, we can interpret this as stating that the vector of squared
parameters θ2 is akin to a fluid flowing through the edges of G, with input/output nodes acting as
unconstrained sources/sinks and hidden nodes supplying or demanding some flow according to the
value and sign of c (Ford & Fulkerson, 1962).

In Nurisso et al. (2024), it is shown that for shallow networks, the geometrical structure ofHG(c)
is simple, as the total invariant set factorizes into the cartesian product of the neurons’ quadric
hypersurfaces. In the general case (MLP or DAG), the situation is much more complex because
the equations ofHG(c) are coupled: parameters associated with internal edges appear in multiple
equations.

The invariant setHG(c), which is an algebraic variety (albeit we do not know whether it is reduced
or not), is an interesting object because it lies in between the redundant but more “concrete” parameter
space and the abstract function space (or neuromanifold (Calin, 2020; Kohn, 2024)) the model’s
implemented function lives in. In fact, fixed any c, no two parameters inHG(c) are observationally
equivalent w.r.t. rescalings, that is fG(⋅, θ) = fG(⋅, (T v

α(θv))v) for no rescaling, thus making the
invariant set a good proxy for the function space FG ∶= {fG(⋅, θ) ∣ θ ∈ Θ}. Nevertheless, as discussed
in Nurisso et al. (2024), different values of c correspond to different topologies ofHG(c), meaning
that FG does not provide the full picture to understand the learning process. HG(c) also has its
limits: it might not be identifiable with the functions it contains. Indeed, for two isomorphic nodes
i, j ∈ G with i ≠ j, permuting their input and output weights will yield an observationally equivalent
parametrization. And if i and j are such that ci = cj , then both parameterizations will be inHG(c),
and so the map θ ↦ fG(⋅; θ) will not be injective into FG.

3 GEOMETRY AND TOPOLOGY OF THE INVARIANT SET

The study of the geometric and topological properties ofHG(c) (Definition 1) can give us interesting
loss and data-independent insights into the training processes.

HG(c) is the set of solutions of a system of degree-two polynomial equations, each one corresponding
to a quadric. Despite the apparent simplicity, studying general intersections of quadrics is not easy
(de Medrano, 2023) but, in our case, the specific structure ofHG(c) greatly simplifies the process. In
fact, the equations B̃θ2 = c correspond to a system of coaxial quadric hypersurfaces, meaning that
they contain only squares and no mixed terms of the form θeθe′ . This fact allows us to employ some
powerful recent results in topology (de Medrano, 2023).

3.1 NON-EMPTINESS

The first result concerns the non-emptiness ofHG(c) for a given c or, from the other point of view,
what the possible balance values c that can appear from an initialization are.

Proposition 3 (Feasible balance). For all c ∈ R∣Ṽ ∣, one hasHG(c) ≠ ∅.

This result (proven in Appendix A.3) means that any balance configuration on the hidden neurons
c is achievable through a parameter initialization, provided that no neurons are excluded from the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Overview of connectedness. a. In- and out-bottlenecks in G. b. The non-emptiness of
HG(c) is guaranteed if every hidden neuron has input and output edges. c. Different connectedness
conditions and intuitive visualizations of the associated algebraic varieties for an out-bottleneck d.
Numerical experiment showcasing training dynamics in a connected and disconnected scenario for a
DAG network with 3 hidden nodes (d.1).

computations. From the point of view of network flows, this tells us that it is possible to build a flow
θ2 that satisfies any supply and demand on the hidden nodes.

3.2 CONNECTEDNESS

Nurisso et al. (2024) showed that, for some values of c, the invariant set of a shallow ReLU neural
network is disconnected. This means that a network initialized in one connected component cannot
reach an optimum located in another through gradient flow. Here, we show that the conditions for
connectedness in the general DAG case resemble the ones for the shallow case, with additional
pathological cases resulting from particular graph topologies.

To find out whetherHG(c) is connected or not, we will use the following proposition, adapted to our
case from de Medrano (2023).

Proposition 4 (de Medrano (2023) Proposition 4.7). HG(c) is connected if and only if, for every
e ∈ E,HG−e(c) ≠ ∅, where G−e = (V,E ∖ {e}).

In other words,HG(c) is connected if it is “robust enough” so that the deletion of single edges does
not change the possibility of satisfying the supply and demand conditions of c. From this observation,
together with Proposition 3, we see that the cases in which there is disconnection must necessarily
come from the presence of neurons with only one input or output connection.

Definition 2 (Bottleneck neurons). A hidden neuron v ∈ Ṽ is an in-bottleneck if deg−(v) = 1 and
an out-bottleneck if deg+(v) = 1. We denote with V −B , V +B the sets of in and out-bottleneck nodes,
respectively. For any out-bottleneck neuron v ∈ V +B , we call Anc(v) the set of its pure ancestors,
i.e. ancestors w ∈ Anc(v) such that any path from w to VO passes through v. Analogously, any
in-bottleneck defines a set of pure descendants Desc(v) containing neurons w ∈ Desc(v) such that
any path from VI to w passes through v. Among the pure ancestors of an out-bottleneck v, we say
a set T ⊂ Anc(v) is stable by forward edges if the inclusion ⋃u∈T∖{v}N +(u) ⊂ T holds, where
N +(u) denotes the out-neighbors of u. The analogous notion of stability by backward edges is
obtained by considering descendants and in-neighbors instead.

The removal of the single connection of a bottleneck neuron (Figure 2a,b) will disconnect it and
the set of its pure ancestors/descendants will be effectively cut out from the network’s computation:
either because they receive no inputs from VI or because they produce no output to VO.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

It turns out that it is possible to derive a complete characterization of connectedness and disconnect-
edness, leveraging tools from network flow theory.

Theorem 1. HG(c) is connected if and only if ∀v ∈ V +B ,∀T ⊂ Anc(v) s.t. T stable by forward
edges ∑u∈T cu ≥ 0 and ∀v ∈ V −B ,∀T ⊂ Desc(v) s.t. T stable by backward edges ∑u∈T cu ≤ 0.

Proof. The proof is fairly technical and can be found in Appendix A.4.

Intuitively, disconnectedness is caused by bottleneck nodes such that cutting their single edge makes
the balances (supplies/demands) of their pure ancestors/descendants unfeasible. For instance, let’s
look at the out-bottleneck v in Figure 2c: (i) cv < 0 means that v requires more flow coming out
than in. This is not feasible because there are no other output connections. (ii) cv > 0 means that v
requires more flow coming in than out, which is always feasible for the small shallow network (ii).
More generally, this is feasible in bigger networks unless (iii) there is forward stable set T for which
∑k∈T ck < 0, as predicted by Theorem 1. Intuitively, there is too much flow coming in T than can be
absorbed before v. Mechanistically, there is a disconnection whenever the output/input weight of a
bottleneck neuron cannot change sign through gradient flow.

Two immediate corollaries follow, clarifying the problem of connectedness in most practical cases.

Corollary 1. If G has no bottleneck neurons, thenHG(c) is connected.

Note that bottleneck neurons are rare in MLPs because their existence implies the presence of a layer
with only one node. The exceptions are given by neural networks built to solve binary classification
or scalar regression problems, where there is a single output neuron, and the neurons in the last layer
are all out-bottlenecks. In that case, we adapt Theorem 1, finding that the results of Nurisso et al.
(2024) nicely carry over to the multi-layer case.

Corollary 2. If G is a fully-connected MLP such that all hidden layers contain more than one neuron,
thenHG(c) is connected if and only if cv ≥ 0 ∀v ∈ V +B and cv ≤ 0 ∀v ∈ V −B .

Proof. The result follows from Theorem 1 by noticing that in a fully connected architecture, the only
pure ancestor/pure descendant of a node is the node itself.

A practical implication of this section is that the expressivity of ReLU networks can be reduced
at initialization to the extent that they lose their universal approximation capability. That is, some
functions become immediately unreachable, regardless of the chosen loss function or dataset.

Numerical experiments We illustrate Theorem 1 on the toy DAG neural network shown on
Figure 2d.1, implemented using dedicated software (Boccato et al., 2024a) and in discrete settings.
Neuron 4 will be the out-bottleneck of interest. All hidden neurons (in black) have ReLU activation.
With the initialization given by the values in the figure, we have c = (c2, c3, c4) = (θ2e −6,1,3). There
are 3 forward stable sets of nodes, the largest being T = {2,3,4} with ∑k∈T ck = ∑k ck = θ2e − 4.
Therefore, if at initialization θe(0) <

√
2, then∑k∈T ck < 0 and the optimization space will disconnect

at neuron 4. Concretely, it means that the balance condition at neuron 4 will forbid sign switches of
θ(4,5). Let us try to make the model learn the function f ∶ (x1, x2) → −(x1 + x2) for positive inputs.
The only way to output negative values is if θ(4,5) < 0, and so the optimum will not be reachable
for θe(0) = 1 <

√
2 as shown on the right plot of Figure 2d.2, while the optimum is reachable (and

reached) for θe(0) =
√
3 >
√
2, as depicted on the left plot. Additional experiments can be found in

Appendix A.9.1.

3.3 SINGULARITIES

While singularities in the neuromanifold—i.e., the function space—have been extensively studied
(Amari & Ozeki, 2001; Amari et al., 2001; 2006; Henry et al., 2024), in this part we propose a
complementary perspective by analyzing singularities of the invariant setHG(c), which sits in the
optimization (parameter) space.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: a. A singularity of the invariant set corresponds to a configuration where a set of neurons is
cut out from input and outputs. b. Visualization of the training dynamics on an invariant set with
singularities. c. Proportion of null singular values along training for shallow network with 20 hidden
neurons with and without regularization. d. Test losses as a function of the number of neurons pruned.
Shaded regions in c. and d. denote confidence intervals over 50 independent trainings that have
converged to a low loss solution.

Singularities are sub-networks. In algebraic geometry, a singularity refers to a point in a variety
where the tangent space is not well-defined. Mathematically, if a variety is given by the system
of n equations g(x) = 0 ∈ Rn, singularities correspond to the points x where the Jacobian matrix
J(x) = Dg(x) has its rank reduced from the maximal possible. When the rank of the Jacobian is
maximal, the point is instead said to be regular.

In the case of the invariant set, the Jacobian matrix is computed by taking the derivative of B̃θ2 − c
w.r.t. θ, resulting in

JG(θ) = 2B̃diag(θ). (4)

From Equation (4), we see how the Jacobian matrix has the same structure of the graph incidence
matrix B̃, with each of the edges (the columns) weighted by its associated parameter θ. Therefore, it
follows that the only way in which the matrix can have a lower rank is when some of the values of θ
are 0, i.e., when some of the edges are cut from the graph.

Theorem 2 (Singularities disconnect neurons). If G′ is the undirected graph obtained from G by
gluing together input and output nodes and neglecting edge direction, and E(θ) ⊆ E is the set of
edges with zero weight θe = 0 ⇐⇒ e ∈ E , then

rankJG(θ) = ∣Ṽ ∣ + 1 −CC(G′−E(θ)),

where CC(G) is the number of connected components of G.

Proof. The proof uses tools from discrete topology and works by relating the rank of JG(θ) to a
weighted graph Laplacian. The derivation can be found in Appendix A.5

Therefore, it follows that rankJG(θ) = ∣Ṽ ∣ for regular parameters, and its rank decreases for
parameters whose zero edges disconnect some hidden neurons from both input and output. If a group
of neurons is such that it is not connected by any path to both input and output neurons, it means
that it is a useless component of the network as it takes no part in any computation, both in the
feed-forward and in the back-propagation phases. Singularities, therefore, correspond to effective
sub-networks of the original neural network, as shown on Figure 3 a. This observation echoes similar
results connecting sub-networks to the singular points of the neuromanifold (Trager et al., 2019;
Shahverdi, 2024; Arjevani et al., 2025).

This observation can be leveraged to prove the following result.

Proposition 5 (Singularities are invariant under GF). Let θ(t0) ∈ HG(c) and W ⊆ Ṽ be a discon-
nected set of nodes, at time t0, that is, θ(u,v)(t0) = 0 for (u, v) ∈ E with u ∈W and v ∉W or vice
versa. Then, at a later time t > t0, θ(u,v)(t) = 0 still holds and W is still disconnected.

Proof. Intuitively, the result is proved by noticing that, in a singular θ, the activation of the neurons
in W will be 0, meaning that backpropagation will assign zero gradients to all the edges (u, v), v ∈
W ∧ u ∈W . The full proof can be found in Appendix A.6

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Proposition 5 means that if the parameter reaches a singularity, then it cannot escape from it: once a
network module has been killed, it cannot be revived.

Singularities are rare. One would be tempted to think that the presence and invariance of singular-
ities could provide the explanation for the neural network performing an automatic model selection
through the progressive movement from one singularity to another, a smaller one. We show here,
however, that this picture does not hold for the singularities of the invariant set for two reasons: 1.
Given a random initialization, the probability of HG(c) having singularities is 0. 2. If HG(c) has
singularities, then the parameter curve cannot reach them in finite time.

Proposition 6. Let c ∈ R∣Ṽ ∣. If HG(c) admits singularities then there exists a subset of hidden
neurons W ⊆ Ṽ such that ∑v∈W cv = 0.

Proof. By definition, a singularity identifies a disconnected set of nodes W ⊆ Ṽ . If we denote the
edges inside W by EW = {e = (u, v) ∈ E ∣ u, v ∈W}, we have that ∑v∈W cv = ∑e∈EW

θ2e − θ2e = 0.
This is because each edge in EW is shared by exactly 2 nodes of W and all other edges in or out of
W have weight 0.

To have a singularity, therefore, an exact equality condition on c must hold. (fig. 3). If we sample the
initial parameter with any initialization scheme where each parameter is independently sampled from
the real numbers R, we see that the probability that a set of neurons will have sum exactly zero must
be zero. Moreover, a stronger statement than the one of Proposition 5 can be derived.

Proposition 7. Under GF optimization, we have that rankJ(θ(0)) = rankJ(θ(t)) ∀0 ≤ t < ∞.

This result (Appendix A.7) tells us that a gradient flow trajectory cannot fall into a singularity in finite
time. Together, Propositions 6 and 7 implies that singularities generally don’t exist in the optimization
space when using common initializations and, even with a specifically chosen initialization (c = 0),
they are effectively unreachable under gradient flow.

Inducing singularities. As shown above, singularities can allow the model to perform “self-pruning”
but they are in general hard to reach. To actively drive the training dynamics towards them, we explore
the use of regularization. An underlying motivation is the application of differentiable pruning in a
very general way, entirely agnostic to the DAG topology. The idea illustrated by Figure 3 b.
A natural approach to target singularities given by Theorem 2 is to directly penalize the number
of neurons which are connected through paths to the input or output. To formalize this, we can
leverage the Jacobian of HG(c): θ, JG(θ) = 2B̃diag(θ). Promoting singularities corresponds to
maximizing the dimension of the tangent space of the invariant set, which translates to minimizing
the rank of JG(θ). Since the rank is a non-differentiable function, we instead penalize the nuclear
norm ∥JG(θ)∥∗—the sum of its singular values—as a smooth surrogate (Zhao, 2012).

Numerical experiments As an illustrative example, we test our approach on the Breast Cancer
dataset (Wolberg et al., 1993) using a range of MLP architectures—shallow and deep, with or without
biases and skip connections. To approximate continuous gradient flow, we train with SGD using
a small step size (0.001), comparing nuclear norm regularization against L1 and L2. Tracking the
Jacobian rank during training confirms that the nuclear norm consistently drives the model toward
singularities (fig. 3c). For instance, a shallow network can disconnects around 18 of its 20 hidden
units, whereas L2 and unregularized training leave all neurons active. Surprisingly, L1 regularization
performs similarly to the nuclear norm, despite being traditionally associated with parameter (not
neuron) sparsity. This suggests L1 may implicitly promote singularities and while a precise theoretical
understanding is outside the scope of this paper, we provide an empirical analysis in Appendix A.10.
Finally, reaching singular configurations guarantees the ability to do lossless pruning, and while
L2 is already quite robust to pruning, disconnecting active neurons introduces modifications to the
implemented function (fig. 3d). All experimental details can be found in Appendix A.8, additional
experiments in Appendix A.9.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 CONCLUSION

In this work, we investigated two underexplored pathologies in the training of ReLU neural networks
defined over directed acyclic graphs (DAGs): the (dis)connectedness of the invariant parameter space
and the emergence of singularities within it. By leveraging the symmetry properties of homogeneous
activations and analyzing the associated conservation laws under gradient flow, we provided a
complete characterization of the invariant set as an algebraic variety constrained by quadratic balance
conditions.

Our topological analysis revealed that disconnections in the optimization space are dictated by the
presence of bottleneck neurons and an imbalance in flow conditions. We further demonstrated that
singularities correspond to effective subnetworks, and although gradient flow trajectories cannot
reach them in finite time, their role can be leveraged to improve structured pruning. We introduced
a nuclear norm regularizer that promotes convergence toward such configurations. Surprisingly,
we observed that L1 regularization can induce comparable effects, hinting at a deeper connection
between sparsity and singularity-driven pruning.

Limitations. The limitations of our work mainly lie in the fact that the theoretical analysis is fully
based on the assumption of using neural networks with homogeneous activation functions trained
with gradient flow on an unregularized loss. Other training algorithms (like Adam) and regularizers
are not subject to the same conservation laws described here. Likewise, in discrete settings the
conservation laws only hold approximately with bigger stepsizes, incurring in bigger violations of the
laws.

REFERENCES

Shun-ichi Amari and Tomoko Ozeki. Differential and algebraic geometry of multilayer perceptrons.
IEICE transactions on fundamentals of electronics, communications and computer sciences, 84(1):
31–38, 2001.

Shun-ichi Amari, Hyeyoung Park, and Tomoko Ozeki. Geometrical singularities in the neuromanifold
of multilayer perceptrons. Advances in neural information processing systems, 14, 2001.

Shun-ichi Amari, Hyeyoung Park, and Tomoko Ozeki. Singularities affect dynamics of learning in
neuromanifolds. Neural computation, 18(5):1007–1065, 2006.

Yossi Arjevani, Joan Bruna, Joe Kileel, Elzbieta Polak, and Matthew Trager. Geometry and optimiza-
tion of shallow polynomial networks. arXiv preprint arXiv:2501.06074, 2025.

Marco Armenta and Pierre-Marc Jodoin. The representation theory of neural networks. Mathematics,
9(24):3216, 2021.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Tommaso Boccato, Matteo Ferrante, Andrea Duggento, and Nicola Toschi. 4ward: A relayering
strategy for efficient training of arbitrarily complex directed acyclic graphs. Neurocomputing, 568:
127058, 2024a.

Tommaso Boccato, Matteo Ferrante, Andrea Duggento, and Nicola Toschi. Beyond multilayer
perceptrons: Investigating complex topologies in neural networks. Neural Networks, 171:215–228,
2024b.

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with applications. north-
Holland, 1979.

Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of
shallow relu networks for square loss and orthogonal inputs. Advances in Neural Information
Processing Systems, 35:20105–20118, 2022.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ovidiu Calin. Neuromanifolds. In Deep Learning Architectures: A Mathematical Approach, pp.
465–504. Springer, 2020.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Chirag Agarwal Chirag Agarwal, Joe Klobusicky Joe Klobusicky, and Dan Schonfeld Dan Schon-
feld. Convergence of backpropagation with momentum for network architectures with skip
connections. Journal of Computational Mathematics, 39(1):147–158, January 2021. ISSN 0254-
9409. doi: 10.4208/jcm.1912-m2018-0279. URL http://dx.doi.org/10.4208/jcm.
1912-m2018-0279.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Francis H Clarke, Yuri S Ledyaev, Ronald J Stern, and Peter R Wolenski. Nonsmooth analysis and
control theory, volume 178. Springer Science & Business Media, 2008.

Santiago López de Medrano. Topology and Geometry of Intersections of Ellipsoids in Rˆ n, volume
361. Springer Nature, 2023.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in neural information processing systems,
31, 2018.

Simon Eberle, Arnulf Jentzen, Adrian Riekert, and Georg S Weiss. Existence, uniqueness, and
convergence rates for gradient flows in the training of artificial neural networks with relu activation.
arXiv preprint arXiv:2108.08106, 2021.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16091–16101, 2023.

Yuanyuan Feng, Tingran Gao, Lei Li, Jian-Guo Liu, and Yulong Lu. Uniform-in-time weak error
analysis for stochastic gradient descent algorithms via diffusion approximation. arXiv preprint
arXiv:1902.00635, 2019.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962. ISBN
9780691625393.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Zach Furman and Edmund Lau. Estimating the local learning coefficient at scale. arXiv preprint
arXiv:2402.03698, 2024.

Grzegorz Głuch and Rüdiger Urbanke. Noether: The more things change, the more stay the same.
arXiv preprint arXiv:2104.05508, 2021.

Marco Gori, Alessandro Betti, and Stefano Melacci. Machine Learning: A constraint-based approach.
Elsevier, 2023.

Elisenda Grigsby, Kathryn Lindsey, and David Rolnick. Hidden symmetries of relu networks. In
International Conference on Machine Learning, pp. 11734–11760. PMLR, 2023.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

11

http://dx.doi.org/10.4208/jcm.1912-m2018-0279
http://dx.doi.org/10.4208/jcm.1912-m2018-0279

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nathan W Henry, Giovanni Luca Marchetti, and Kathlén Kohn. Geometry of lightning self-attention:
Identifiability and dimension. arXiv preprint arXiv:2408.17221, 2024.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Wen-Liang Hwang and Shih-Shuo Tung. Analysis of function approximation and stability of general
dnns in directed acyclic graphs using un-rectifying analysis. Electronics, 12(18):3858, 2023.

Xiaojie Jin, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Training skinny deep neural networks
with iterative hard thresholding methods. arXiv preprint arXiv:1607.05423, 2016.

A B Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, November 1962.

Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable masks.
In International conference on machine learning, pp. 5122–5131. PMLR, 2020.

Kathlén Kohn. The geometry of the neuromanifold. Collections, 57(06), 2024.

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. arXiv
preprint arXiv:2012.04728, 2020.

Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The local learning
coefficient: A singularity-aware complexity measure. arXiv preprint arXiv:2308.12108, 2023.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks. In The 22nd international conference on artificial intelligence
and statistics, pp. 888–896. PMLR, 2019.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. arXiv preprint arXiv:2006.07253, 2020.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. Advances in Neural Information Processing Systems,
34:12978–12991, 2021.

Giovanni Luca Marchetti, Vahid Shahverdi, Stefano Mereta, Matthew Trager, and Kathlén Kohn. An
invitation to neuroalgebraic geometry. arXiv preprint arXiv:2501.18915, 2025.

Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Abide by the law and follow the flow:
Conservation laws for gradient flows. Advances in neural information processing systems, 36:
63210–63221, 2023.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Gianluca Milano, Alessandro Cultrera, Luca Boarino, Luca Callegaro, and Carlo Ricciardi. Tomogra-
phy of memory engrams in self-organizing nanowire connectomes. Nature Communications, 14
(1):5723, 2023.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimization
in deep neural networks. Advances in neural information processing systems, 28, 2015.

Manuel Nonnenmacher, Thomas Pfeil, Ingo Steinwart, and David Reeb. Sosp: Efficiently capturing
global correlations by second-order structured pruning. arXiv preprint arXiv:2110.11395, 2021.

Marco Nurisso, Pierrick Leroy, and Francesco Vaccarino. Topological obstruction to the training of
shallow relu neural networks. Advances in Neural Information Processing Systems, 37:35358–
35387, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities. arXiv preprint
arXiv:1701.09175, 2017.

Wei Pan, Hao Dong, and Yike Guo. Dropneuron: Simplifying the structure of deep neural networks.
arXiv preprint arXiv:1606.07326, 2016.

Grant Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural networks: An
interacting particle system approach. Communications on Pure and Applied Mathematics, 75(9):
1889–1935, 2022.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification.
Advances in neural information processing systems, 33:11380–11390, 2020.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Vahid Shahverdi. Algebraic complexity and neurovariety of linear convolutional networks. arXiv
preprint arXiv:2401.16613, 2024.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law of
large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176, 2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,
2018.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information processing
systems, 33:6377–6389, 2020.

Matthew Trager, Kathlén Kohn, and Joan Bruna. Pure and spurious critical points: a geometric study
of linear networks. arXiv preprint arXiv:1910.01671, 2019.

Sumio Watanabe. Almost all learning machines are singular. In 2007 IEEE Symposium on Foundations
of Computational Intelligence, pp. 383–388. IEEE, 2007.

Sumio Watanabe. Algebraic geometry and statistical learning theory, volume 25. Cambridge
university press, 2009.

Susan Wei, Daniel Murfet, Mingming Gong, Hui Li, Jesse Gell-Redman, and Thomas Quella. Deep
learning is singular, and that’s good. IEEE Transactions on Neural Networks and Learning Systems,
34(12):10473–10486, 2022.

William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast cancer wisconsin (diagnostic).
UCI Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5DW2B.

Haoran You, Chaojian Li, Pengfei Xu, Y. Fu, Yue Wang, Xiaohan Chen, Yingyan Lin, Zhangyang
Wang, and Richard Baraniuk. Drawing early-bird tickets: Towards more efficient training of deep
networks. ArXiv, abs/1909.11957, 2019. URL https://api.semanticscholar.org/
CorpusID:202888885.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.

Bo Zhao, Iordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. Symmetries, flat minima, and
the conserved quantities of gradient flow. arXiv preprint arXiv:2210.17216, 2022.

Bo Zhao, Robin Walters, and Rose Yu. Symmetry in neural network parameter spaces. arXiv preprint
arXiv:2506.13018, 2025.

Yun-Bin Zhao. An approximation theory of matrix rank minimization and its application to quadratic
equations. Linear Algebra and its Applications, 437(1):77–93, 2012.

13

https://doi.org/10.24432/C5DW2B
https://api.semanticscholar.org/CorpusID:202888885
https://api.semanticscholar.org/CorpusID:202888885

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Liu Ziyin, Yizhou Xu, Tomaso Poggio, and Isaac Chuang. Parameter symmetry breaking and
restoration determines the hierarchical learning in ai systems. arXiv preprint arXiv:2502.05300,
2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 LLM USAGE

LLMs (ChatGPT) were used to aid in polishing the paper after writing.

A.2 GEOMETRIC DERIVATION OF THE NETWORK FLOW EQUATION

Let θ ∈ R∣E∣ be a parameter configuration. Let us focus on a single hidden neuron v, to which we
associate the neuron-wise rescaling action T v

α(θ) that, for any α > 0 acts as T v
α(θ)(i,v) = αθ(i,v),

T v
α(θ)(v,j) = 1

α
θ(v,j) on the parameters associated to the edges coming in and out of v, respectively,

and leaves the other elements of θ unchanged. T vθ = {T v
α(θ) ∶ α ∈ R+} is the orbit of θ under

rescaling of the neuron v. It follows from the fact that we are dealing with ReLU networks that the
loss function L is constant over T vθ, L(T v

αθ) = L(θ) ∀α > 0.

If θ is not zero on all the edges coming in and out of v, we have that the action T v is free, meaning
that T v

αθ = θ ⇐⇒ α = 1, implying that the orbit T vθ is diffeomorphic to R+. Therefore, the orbit
T vθ is a smooth manifold admitting a tangent space at θ.

The fact that L is constant over T vθ means that T vθ is contained into the level set of L at θ. The
gradient of a function at a point is always orthogonal to the level set it is contained in, meaning that,
in particular, the gradient g(θ) will be orthogonal to the tangent space of T vθ at θ.

To derive a vector generating this 1-dimensional tangent space, it is enough to consider the equation
describing T vθ, differentiate w.r.t. α and evaluate at α = 1.

(d

dα
∣
α=1

T v
α(θ))

(i,v)
= d

dα
∣
α=1

αθ(i,v) = θ(i,v) (1)

(d

dα
∣
α=1

T v
α(θ))

(v,j)
= d

dα
∣
α=1

1

α
θ(i,v) = −θ(i,v) (2)

(d

dα
∣
α=1

T v
α(θ))

(i,j)
= 0 if v ∉ {i, j} . (3)

(4)

Orthogonality of the gradient w.r.t. this vector can be written as

(d

dα
∣
α=1

T v
α(θ))

⊺

g(θ) = 0 (5)

∑
i∶i→v

θ(i,v)g(θ)(i,v) − ∑
j∶v→j

θ(v,j)g(θ)(v,j) + ∑
(i,j)∈E∶v∉{i,j}

0 ⋅ g(θ)(i,j)

´¹¹¹¸¹¹¶
=0

= 0 (6)

⟪θ, g(θ)⟫v = 0. (7)

A.3 PROOF OF PROPOSITION 3

We start from the following result from de Medrano (2023).

Proposition 8 ((de Medrano, 2023) Proposition 4.1). The following are equivalent:

1. H(c) is non-empty.

2. c lies in the convex cone generated by the columns of B̃, c ∈ Co(B̃).

The non-emptiness of the invariant set is then completely described by the following proposition.

Proposition 9. Co(B̃) = R∣Ṽ ∣

1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Visualization of the induced network flow problem (FF +v) at a bottleneck node v ∈ V +B . In
the right panel, we depict the internal arcs in gray, the incoming arcs in orange, the source arcs in
blue, the sink arcs in red and the circulation arc in black.

Proof. To show that, for any c ∈ R∣Ṽ ∣, the system B̃x = c admits a non-negative solution x, we take a
constructive approach and build x explicitly.

Let us initialize x0 = 1 by assigning the value 1 to every edge (x0)e = 1 ∀e ∈ E. Let us define the
balance vector at initialization, c0 = B̃1 which, in general, will be different from c, c0 ≠ c. For each
hidden neuron v ∈ Ṽ , we make an adjustment to x0 that corrects the balance value at v.

If (c0)v < cv, define δv = cv − (c0)v. Let us consider a path pv going from the input neurons VI

to v (which exists by definition of G) and the vector 1pv
∈ R∣E∣ supported on it, that is such that it

assigns value 1 to each edge in pv and 0 to all other edges. Consider now x′ = x0 + δv1pv , which
is non-negative because δv ≥ 0. The balance c′w ∶= (B̃x′)w will remain unchanged in all nodes w
different from v, c′w = (c0)w because, in such nodes, the same quantity is added to one edge coming
in and one edge going out. In v, the new balance value will be

c′v = (B̃x′)v = (B̃x0)v + (B̃1pv)v = (c0)v + δv = (c0)v + cv − (c0)v = cv.

If instead (c0)v > cv, we define δv = (c0)v − cv and add the vector 1pv supported on a path pv
that connects v to the output neurons VO. Once again, in all nodes except for v the balance is left
unchanged, while in v

c′v = (B̃x′)v = (B̃x0)v + (B̃1pv)v = (c0)v − δv = c′v − ((c0)v − cv) = cv.

Repeating this process for any node v ∈ Ṽ allows us to correct the balance c′v = cv at all nodes, giving
us a non-negative solution x′ to the system B̃x′ = c.

A.4 PROOF OF THEOREM 1

The problems associated with network flow have been extensively studied in the literature (Ford and
Fulkerson, 1962). The idea of the proof is to map the statement to a network flow feasibility problem
and then apply well-known results in the field.

We first report here the more general version of the result from de Medrano (2023) that we reported
in Proposition 4.
Proposition 10 ((de Medrano, 2023) Proposition 4.7). The following are equivalent:

1. HG(c) is connected.

2. c ∈ Co(B̃−i) for all i, where B̃−i denotes the matrix B̃ with the i-th column removed and
Co(A) is the convex cone generated by the columns of A.

A.4.1 INDUCED NETWORK FLOW PROBLEM

Let us consider a general feed-forward network as in Section 2 and an out-bottleneck node v ∈ V +B .
We will prove that connectedness is equivalent to the existence of solutions to a network flow problem
associated with each bottleneck node. We now build a flow feasibility problem on a subgraph of G in
“circulation form”, using the notation of Fathabadi and Ghiyasvand (2007).

2

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Let v ∈ V +B , we construct a directed multi-graph Gv = (Nv,Av) in the following way.

The node set is Nv = Anc(v) ⊔ {s, t}, where s and t are two extra nodes not from G. The set of arcs
Av contains the following sets of edges:

• the internal arcs Ao = {e = (v1, v2) ∈ E ∣ v1, v2 ∈ Anc(v)};

• the incoming arcs Ai = {(s, v2) ∣ ∃(v1, v2) ∈ E with v1 ∉ Anc(v), v2 ∈ Anc(v)};

• the source arcs As = {(s,w) ∣ w ∈ Anc(v), cw < 0};

• the sink arcs At = {(w, t) ∣ w ∈ Anc(v), cw > 0};

• the circulation arc (t, s), to adopt the problem’s “circulation form” (Fathabadi and Ghiyas-
vand, 2007).

Therefore Av = Ao ⊔Ai ⊔As ⊔At ⊔ {(t, s)}.
In the general network flow problem, each arc e = (u,w) is assigned a lower bound le = luw
and a possibly infinite upper bound me = muw on the possible values of the flow on them. In
our case, we fix lower and upper bounds as follows. The flow on the internal and incoming arcs
and the (t, s) arc are required to be non-negative: le = 0 and me = ∞ for e ∈ Ao ∪ {(t, s)}. The
source arcs are constrained to carry a flow equal to the negative of the c value of their endpoints:
le =me = −cw ∀e = (s,w) ∈ As. The sink arcs are constrained by the c value of their starting point:
le =me = cw ∀e = (w, t) ∈ At.

The network (Nv,Av) is said feasible if there exists a real function on the edges, called flow and
denoted f ∶ A→ R such that

1. at each node the flow is conserved ∑u∶(u,w)∈Av
f(u,w) −∑z∶(w,z)∈A f(w,z) = 0 ∀w ∈ N ;

2. for each edge the bounds are respected le ≤ fe ≤me ∀e ∈ Av .

Remembering that all this construction is built around an out-bottleneck v, we call this problem
(FF +v) for “flow feasibility at v ∈ V +B” and we visualize the construction in Figure 4. The analogous
problem for an in-bottleneck w ∈ V −B is converted to the same formulation by reversing arrows in the
DAG and changing the sign of the c vector, we call it (FF −w).

A.4.2 TRANSLATION OF THE CHARACTERIZATION BY NETWORK FLOW PROBLEMS

Having defined the induced problems (FF +v) and (FF −w), we have a first equivalence lemma:

Lemma 1.

HG(c) connected ⇐⇒ ∀v ∈ V +B , (FF +v) has a solution and,∀w ∈ V −B , (FF −w) has a solution.
(8)

Proof. (Ô⇒)We start with the forward implication, assuming that the invariant set is connected
and building a solution for every flow feasibility problem associated to bottleneck neurons.

Assume thatHG(c) is connected. Then, by the characterization of connectedness in Proposition 10
we know that c ∈ Co(B̃−i) ∀i. This tells us that removing any column i from B̃, there still exists an
x ∈ R∣E∣−1+ , such that B̃−ix = c.
We let v ∈ V +B and ask whether (FF +v) has a solution. Recall that there is a one-to-one correspondence
between columns of B̃ and edges of the DAG.

We choose the column i to remove to be the one corresponding to the unique out-edge e∗ of v and
get a solution vector x∗ ∈ R∣E∣−1+ to B̃−ix

∗ = c.

3

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

x∗ can be seen as a function: x∗ ∶ E ∖ {e∗} → R+. Using x∗, we explicitly build a solution T the
problem (FF +v) with node and arc sets (N,A) as described above.

f ∶A→ R+

e↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x∗(e) if e ∈ Ao ⊔Ai

−cu if e = (s, u) ∈ As

cu if e = (u, t) ∈ At

∑e∈At
fe(e) if e = (t, s)

(9)

Note that we used the fact that incoming edges in Gv = (Nv,Av) can be mapped one-to-one with
edges from V ∖Anc(v) to Anc(v). To check that this flow is feasible, we have to check the two
conditions of conservation and boundedness. For u ∈ N ∖ {s, t}, the conservation of flow is assured
by the fact that

√
x∗ is a member ofHG(c) and therefore respects the balance conditions with balance

cu. This value cu, depending on its sign, is accounted for in Gv by the arcs going to s or t. For
t, conservation is assured by the definition of f and for s it is assured by summing conservation
equations for all nodes in N ∖ {s, t}.
Checking the boundedness condition is immediate for e ∈ Ao ⊔Ai, since x∗ has only non-negative
values. For source and sink arcs, by definition of f they are set with the only possible value, and
f(t,s) is non-negative as a sum of non-negative terms.

The same reasoning can be applied for any in-bottleneck v ∈ V −B .

(⇐Ô) We now prove the reverse implication and assume ∀v ∈ V +B , (FF +v) has a solution and
analogously for (FF −v). By Proposition 3, we know that HG(c) is non-empty. To show that it is
connected, we need to show that c ∈ Co(B̃−i) ∀i.

Stated differently, we need to show that when removing an edge, we can still find a solution θ∗ ∈ R∣E∣−1
that satisfies every node’s balance condition in the DAG.

Let us pick an edge e∗ = (v, v′) ∈ E, remove it, and distinguish 3 cases.

1. If v ∉ V +B and v′ ∉ V −B , the new DAG still has the property that each hidden node is contained in
one path from input VI to output VO, so we can apply the non-emptiness property on this new DAG
and get a solution.

2. If v ∈ V +B or v′ ∈ V −B but not both, we focus on v ∈ V +B . We will construct a function x ∶ E∖{e∗} →
R+, such that θ∗ =

√
x respects all balance conditions in the new DAG G−e∗ .

We start by splitting the edge set in 3 parts: E ∖ {e∗} = Eo ⊔Ef ⊔Eo→f , where the edge subsets
are defined as follows. For a generic edge e = (u,w) ∈ E ∖ {e∗}, we let e ∈ Eo if u,w ∉ Anc(v) i.e.
e is an edge whose nodes are not involved in the network flow problem (FF +v). We let e ∈ Ef if
u,w ∈ Anc(v), that is if both nodes are involved in (FF +v). Lastly, e ∈ Eo→f if u ∉ Anc(v) and w ∈
Anc(v) i.e. if the edge is a hybrid edge connecting a node not involved in (FF +v) to a node involved
in it. Notice that the case u ∈ Anc(v) and w ∉ Anc(v) does not exist by definition of the pure
ancestor set.

The next step consists in crafting 3 functions on the edges and then gluing them together to obtain a
solution. By non-emptiness, again, we know that if Eo ≠ ∅, we can find a solution θ∗o on the DAG
restricted to V ∖ Anc(v) i.e. an independent solution for the DAG where we have removed the
bottleneck and its pure ancestors. We define:

xo(e) = {
0 if e ∉ Ee

(θ∗o)2(e) if e ∈ Ee
(10)

Then, by denoting with f∗ a solution of (FF +v), we define:

xf(e) = {
0 if e ∉ Ef

f∗(e) if e ∈ Ef
(11)

4

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Finally, for the hybrid edges in Eo→f , we leverage the fact that they can be mapped one-to-one to
the incoming edges in (FF +v). Just like we did for Ef , we thus assign to each one of them the
value of the solution of the network flow problem. Let us denote xo→f the function which does this
assignment for edges in Eo→f and is zero elsewhere.

At this point, the function θ∶ e↦
√
xo(e) + xf(e) + xo→f(e) respects balance conditions for nodes

in Anc(v), this is assured by the xf + xo→f part being a solution to (FF +v). It also respects the
balance for nodes which are not pure ancestors and are not connected to pure ancestors, by the
definition of xo(e).

For the other nodes u ∈ Ṽ ∖Anc(v) such that ∃(u,w) ∈ E with w ∈ Anc(v), the balance might not
be immediately respected. Indeed, the values assigned to the edges in Eo→f will disrupt the balance
given by the xo part of the function.

Luckily, each of these disruptions may be resolved locally, without influencing the balance of
the other nodes. Given any u ∉ Anc(v), we compute its balance c′u = ∑v∶(v,u)∈E∖{e∗} θ

2
(v,u) −

∑w∶(u,w)∈E∖{e∗} θ
2
(u,w).

If c′u > cu, we pick any path p in G−e∗ from u to the output nodes p = (p1, . . . , pn), p1 = u, pn ∈ VO.
Let 1p be the indicator function which assigns 1 to the edges in p and 0 to the other edges. Note that
this path exists because u is not a pure ancestor of v and thus removing e∗ does not disconnect u
from the output nodes. If we define θ′ =

√
θ2 + (c′u − cu)1p, we see that the balance of θ′ at u is

∑
v∶(v,u)∈E∖{e∗}

θ′2(v,u) − ∑
w∶(u,w)∈E∖{e∗}

θ′2(u,w) = c
′
u − c′u + cu = cu,

while it is left unchanged at any other node in the path because the quantity added to its inputs is the
same as the one added to the outputs.

If c′u < cu instead, we can pick any path p in G−e∗ from input nodes to u, p = (p1, . . . , pn), p1 ∈
VI , pn = u and define θ′ =

√
θ2 + (cu − c′u)1p to fix the balance at u.

Repeating this process for every hidden node, we are able to find a function θ∗ on the edges of G−e∗
which satisfies the balance equation at every node, meaning that B̃−e∗(θ∗)2 = c.

3. If v ∈ V −B ∩ V +B , we have that Anc(v) ∩Desc(v) = {v} and so no edge is shared between the two
sets of nodes and we can deal with v being an in- and out-bottleneck independently.

Now that we have a characterization of connectedness in terms of flow feasibility we move on to
study this feasibility with the positive cut method. To avoid cluttering, we refer to (FFv) to denote
either (FF +v) or (FF −v) as these are the same problem, differing only in their origin.

We now resort to the following classic result:
Proposition 11 (Hoffman’s theorem (Hoffman, 1958), reported in Fathabadi and Ghiyasvand (2007)).
A network with conservation and boundedness constraints with non-negative lower bounds is feasible
if and only if for every non-trivial partition (S,T) S ⊔ U = N , called a cut, we have V (S,T) ≤ 0,
where:

V (S,T) = ∑
i∈S
j∈T

lij − ∑
i∈T
j∈S

mij (12)

Equivalently, we have that (FFv) does not have a solution if and only if there exists a strictly positive
cut:

(FFv) does not have a solution⇔∃S,T ⊂ N,S,T ≠ ∅, S ∩ T = ∅, S ∪ T = N, V (S,T) > 0
(13)

Lemma 2. Let (S,T) be a strictly positive cut i.e. V (S,T) > 0. Then

{s, t} ⊂ S OR {s, t} ⊂ T

Proof. If s ∈ S, then t ∈ S otherwise the arc (t, s) goes from T to S and it has infinite upper bound.
If s ∈ T , then t ∈ T otherwise there is no arc with strictly positive lower bound entering T and
V (S,T) ≤ 0.

5

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma 3. Let v be the bottleneck of the problem (FFv) and Gv = (N,A) the induced network flow
problem. Let u,w ∈ N ∖ {s, t}. Then

V (S,T) > 0⇒ {u ∈ T ⇒ w ∈ T
w ∈ S ⇒ u ∈ S (14)

We say that T is forward stable and S is backward stable.

Proof. We have that N ∖ {s, t} = Anc(v). This means that (u,w) is an internal arc so muw = ∞.
Both statements are proved by observing that there cannot be an internal arc starting in T and ending
in S, otherwise V (S,T) = −∞. In other words an arc starting in T must end in T , and an arc ending
in S must start in S.

Lemma 4. Let (S,T) be a strictly positive cut. Then

{s, t} ⊂ S (15)

Proof. From Lemma 2, we know {s, t} ⊂ S OR {s, t} ⊂ T .
Let v be the bottleneck of the problem (FFv) and Gv = (N,A) the induced network flow problem.
We proceed by contradiction and suppose that {s, t} ⊂ T . Let’s pick an arbitrary node w ∈ N∖{s, t} =
Anc(v). In the DAG, any path going backward from w will necessarily pass through an incoming
edge as the path leave Anc(v), otherwise w would be disconnected from the input. Formally,

∀w ∈ N ∖ {s, t} ,∃z ∈ N ∖ {s, t} ∩Anc(w), (s, z) ∈ Ai

So z must be in T otherwise (s, z) would go from T to S with msz = ∞. By the forward closure
property of T from Lemma 3, w ∈ T .

Since w ∈ N ∖ {s, t} was picked arbitrarily, it follows that N ∖ {s, t} ⊂ T . By hypothesis {s, t} ⊂ T
and so T = N which is impossible since the partition (S,T) must be non-trivial.

Finally, we prove the main theorem.

Proposition 12.

HG(c) is connected ⇔{∀v ∈ V
+
B ,∀T ⊂ Anc(v) s.t. T stable by forward edges, ∑u∈T cu ≥ 0

∀v ∈ V −B ,∀T ⊂ Desc(v) s.t. T stable by backward edges, ∑u∈T cu ≤ 0
(16)

Proof. Let v ∈ V +B .

(FF +v) has no solution⇔∃(S,T), V (S,T) > 0
⇔∃(S,T), T forward stable, V (S,T) > 0 (Lemma 3)
⇔ ∃T ⊂ Anc(v) forward stable, V (N ∖ T,T) > 0 (Lemmas 4)
⇔ ∃T ⊂ Anc(v) forward stable, ∑

i∉T
j∈T

lij − ∑
i∈T
j∉T

mij > 0 (Equation 12)

(17)
In the third row, we used the fact that S = N ∖ T . Now, notice that we can rewrite the first sum as
∑i∉T

j∈T
lij = ∑u∈T

cu<0
cu, because the only non-null lower bounds leaving S are those of source arcs and

these belong to nodes having cu < 0. The second sum can be rewritten as ∑i∈T
j∉T

mij = ∑u∈T
cu>0

cu as a

consequence of the forward stability of T : the only edges leaving T are sink arcs from T i.e. from
nodes having cu > 0.
This allows us to rewrite the equivalence obtained above as

(FF +v) has no solution⇔∃T ⊂ Anc(v) forward stable, ∑
u∈T
cu<0

−cu − ∑
u∈T
cu>0

cu > 0

⇔∃T ⊂ Anc(v) forward stable, ∑
u∈T

cu < 0
(18)

6

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Therefore by negating both statements:

(FF +v) has a solution⇔∀T ⊂ Anc(v) forward stable, ∑
u∈T

cu ≥ 0 (19)

The complementary statement for in-bottlenecks is obtained by reversing the arrows and following
similar steps, and we conclude by using Lemma 1:

HG(c) is connected ⇔{∀v ∈ V
+
B , (FF +v) has a solution

∀v ∈ V −B , (FF −v) has a solution

⇔{∀v ∈ V
+
B ,∀T ⊂ Anc(v) forward stable, ∑u∈T cu ≥ 0

∀v ∈ V −B ,∀T ⊂ Desc(v) backward stable, ∑u∈T cu ≤ 0

(20)

7

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.5 PROOF OF THEOREM 2

Let us compute rankJG(θ).

First, observe that if θe ≠ 0 ∀e ∈ E, then rankJG(θ) = rank(B̃) as diag(θ) is invertible. Therefore,
the rank of the Jacobian can decrease if and only if some parameters are 0, i.e. when some edges are
effectively removed from the computational graph.

Define now diag(θ)†ee = 1/θe if θe ≠ 0 else 0 and E(θ) = {e ∈ E ∶ θe = 0} the set of zero-weight
edges. Observe that

rankJ(θ) = rank(B̃diag(θ)) = rank(B̃diag(θ)diag(θ)†) = rank(B̃−E(θ)),

where B̃−E is B̃ with the columns corresponding to edges in E put to 0. Now, it holds that

rank(B̃−E(θ)) = rank(B̃⊺−E(θ)) = ∣Ṽ ∣ − dimker(B̃⊺−E(θ)), (21)

where the last equality follows from the rank nullity theorem.

To relate dimker(B̃⊺−E(θ)) to the topological properties of G, we briefly introduce some concepts
stemming from relative homology (Hatcher, 2002).

Let C0(G) be the vector space of real functions on the nodes of G (all neurons) x ∈ C0(G) Ô⇒
x∶V → R. These functions are customarily called the 0-chains (of G). Let C1(G) be the vector space
of real functions on the edges of G, y ∈ C1(G) Ô⇒ y∶E → R; these are called the 1-chains (on
G). We can see the incidence matrix B (with the rows associated with all nodes included) as the
matrix representation of the linear operator from 1-chains to 0-chains B∶C1(G) → C0(G). If 1v is
the indicator function on node v ∈ V and y = ∑e∈E ye1e

By = ∑
v∈V

⎛
⎝ ∑
e=(w,v),w∈V

ye − ∑
e=(v,u),u∈V

ye
⎞
⎠
1v.

In this setting, kerB is called the 0-th homology group of G and denoted by H0(G); and dimkerB
is proven to be equal to the number CC(G) of connected components of G.

Let us now pick the subset of input and output nodes ∂V ⊆ V and define the space of relative
0-chains C0(G,∂V) = C0(G)

C0(∂V) i.e. the quotient space of the functions on the nodes modulo the space
of functions on the input and output nodes. This means that we identify two 0-chains c and c′ iff
c(v) = c′(v) for all internal nodes v ∈ Ṽ ∶= V ∖ ∂V . An element in C0(G,∂V) will thus be an
equivalence class

[x] ∈ C0(G,∂V) Ô⇒ [x] = [∑
v∈V

xv1v] =
⎡⎢⎢⎢⎢⎣
∑
v∈Ṽ

xv1v

⎤⎥⎥⎥⎥⎦
,

as, by definition of quotient vector space, we have that [1v] = [0] ⇐⇒ v ∈ ∂V .

The incidence matrix B, therefore, induces a relative incidence matrix B̃∶C1(G) → C0(G)
C0(∂V) as

B̃y = [By]. From this, we see that

B̃y = [By] =
⎡⎢⎢⎢⎢⎣
∑
v∈V

⎛
⎝ ∑
e=(w,v),w∈V

ye − ∑
e=(v,u),u∈V

ye
⎞
⎠
1v

⎤⎥⎥⎥⎥⎦
(22)

=
⎡⎢⎢⎢⎢⎣
∑

v∈V ∖∂V =Ṽ

⎛
⎝ ∑
e=(w,v),w∈V

ye − ∑
e=(v,u),u∈V

ye
⎞
⎠
1v

⎤⎥⎥⎥⎥⎦
, (23)

meaning that the relative incidence matrix can be represented with the incidence matrix with the rows
associated with nodes in ∂V removed, i.e., the B̃ we used in the text.

In this setup ker B̃ is known as the 0-th relative homology group H0(G,∂V) of the pair (G,∂V)
and, given this characterization, we can resort to Proposition 2.22 in Hatcher (2002), and deduce that

dimH0(G−E(θ), ∂V) = dim H̃0(G−E(θ)/∂V) − 1,

8

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where G/∂G is the graph G with nodes in ∂V all glued together, and G−E(θ) is the graph G with the
edges in E(θ) removed. We can therefore go back to Equation (21) and state that

rankJ(θ) = ∣Ṽ ∣ − dimH0(G−E(θ)/∂V) + 1 = ∣Ṽ ∣ −CC(G−E(θ)/∂V) + 1,

meaning that the rank of the Jacobian is less than its maximum value of ∣Ṽ ∣ only when the number of
connected components of the quotient graph G−E(θ)/∂V is greater than 1. This happens if and only
if removing edges in E(θ) disconnects a set of nodes from both input and output.

A.6 PROOF OF PROPOSITION 5

To prove the result, we will prove that, if θe = θe(t0) = 0 for every edge e = (u, v) with u ∈W,v ∉W
or u ∉W,v ∈W , the same holds for the gradients: ge(t0) = 0 for every edge e = (u, v) as above.

Let us denote by Pv,VO
the set of all paths from node v to a node in VO i.e. p ∈ Pv,VO

⇐⇒ p =
(u1, . . . , unp) with u1 = v, unp ∈ VO and (ui, ui+1) ∈ E, for all i.

Let av, zv be the activation and pre-activation of neuron v, respectively

zv = ∑
(u,v)∈E

θ(u,v)au, av = σ(zv).

The chain rule allows us to decompose the gradient of the loss flowing through neuron v in the
contributions of all path from v to an output neuron as follows:

∂L

∂av
= ∑

p=(u1,...,unp)∈Pv,VO

∂L

∂aunp

np

∏
i=2

∂aui

∂zui

∂zui

∂aui−1

(24)

For any neuron in the disconnected set v ∈W , it holds that any path to the output p ∈ Pv,VO
contains

an edge ep such that θep = 0. If we notice that ∂zui

∂aui−1
= θ(ui−1,ui), we have that, for any path p, the

product in Equation (24) will contain ep and therefore its value will be 0 ∂L
∂av
= 0 ∀v ∈W .

Let us now prove that this implies that the edges that disconnect W have gradient null.

First, let e = (u,w) ∈ E with u ∈ V ∖W and w ∈W .

ge ∶=
∂L

∂θe
= ∂L

∂aw

∂aw
∂θe
= 0,

because w ∈W .

Let e = (w, v) ∈ E with w ∈W and v ∈ V ∖W .

ge =
∂L

∂θe
= ∂L

∂av

∂av
∂θe
= ∂L

∂av

∂av
∂zv

∂zv
∂θe

,

where
∂zv
∂θe
= aw. Given that W is also disconnected from the input nodes VI , any node inside must

have 0 activations. Therefore w ∈W Ô⇒ aw = 0 and ge = 0.

A.7 PROOF OF PROPOSITION 7

Let θ̇(t) = −g(θ(t)) be the evolution of the parameter configuration under gradient flow.

Let JG(θ) = 2B̃diag(θ) and let us derive the evolution equation for JG.

d

dt
JG(t) =

d

dt
2B̃diag(θ(t)) = 2B̃θ̇(t) = −2B̃diag(g(θ(t))). (25)

It turns out that we can simplify this equation by leveraging the connections between rescaling
symmetries and GF dynamics. In fact, Equation 8 of Kunin et al. (2020) states that rescaling
symmetries induce a relation between the gradient and the Hessian H of the loss function. If bv is the
transpose of the row of B̃ associated with v ∈ Ṽ , we have that

H(θ)(θ ⊙ bv) + g ⊙ bv = 0 ∀v ∈ Ṽ . (26)

9

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

This follows because bv has a value of -1 on the edges incoming in v and +1 on the edges outgoing
from v. Gathering the identities of Equation (26) associated to all hidden neurons, we get the
following matrix equation:

B̃diag(θ)H(θ) + B̃diag(g(θ)) = 0. (27)

Plugging Equation (27) in Equation (25), we finally get

d

dt
JG(t) = 2B̃diag(θ)H(θ) = JG(θ)H(θ), (28)

i.e. the Jacobian evolution is dictated by the Hessian matrix.

It is known (e.g. Blanes et al. (2009) page 15) that the solution of Equation (28) can be written in the
following way

JG(t) = JG(0)T exp(∫
t

0
H(s)ds),

where T exp(∫
t
0 H(s)ds) is the time-ordered matrix exponential

T exp(∫
t

0
H(s)ds) =

∞
∑
n=0
∫

t

0
dt′1 ∫

t′1

0
dt′2⋯∫

t′n−1

0
dt′nH(t′1)⋯H(t′n)

which ensures that the terms of the exponential series are in the right order, as the matrices H(t1)
H(t2) may not commute.

Finally, in Theorem 4 of Blanes et al. (2009), it is shown that the time-ordered matrix exponential
can be written as a standard matrix exponential and is therefore invertible for any finite t. This means
that rank(JG(t)) = rank(JG(0)), thus concluding the proof.

10

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.8 EXPERIMENTAL DETAILS

Here we provide additional details regarding experiments described in the main paper.

A.8.1 DISCONNECTED NEURONS AND PRUNING

Figures 3c–d show, respectively, the proportion of null singular values during training and the
evolution of test loss under neuron pruning for a shallow, bias-free architecture. We report on Figure 5
results for a broader range of architectures discussed in the main text. Both nuclear norm and L1
regularization promoted neuron sparsity (fig. 5, left column). Note that skip connections made neuron
pruning more challenging as illustrated in previous literature (Fang et al., 2023). Below, we describe
our two pruning strategies; however in both cases, nuclear norm and L1 remain the most robust,
vanilla the most fragile, and L2 intermediate (fig. 5, center and right columns).

Architectural details. We evaluate six architectures: a shallow network with 20 hidden units,
with and without bias; and four multilayer perceptrons (MLPs) with three layers of 10 hidden
units—varying by the presence of bias and whether a skip connection links the first and second
hidden layers.

Details on methodology. All architectures were trained from scratch for 5000 epochs using SGD
with a learning rate of 10−3. Regularization strengths were empirically tuned to balance low task loss
and singular value minimization:αnuc = 0.05 (nuclear norm), αL1 = 10, and αL2 = 20. The total loss
is defined as L = Ltask + αregLreg. For each architecture, we sampled 30 runs that converged to
low train loss models to analyze training dynamics and pruning robustness. Singular values below
10−3 were considered null. The dataset was not preprocessed. All experiments ran on CPU over
approximately 50 hours.

Pruning. We iteratively remove entire neurons (i.e., groups of parameters) from trained models
and measure the degradation in performance, as measured by the test loss. For each hidden neuron k,
we compute a principled pruning score

sk = (∑
(i,k)∈E

θ2ik)(∑
(k,j)∈E

θ2kj) (29)

which is the product of the L2 norms of its input and output weights. This score is low for (nearly)
disconnected neurons and invariant under neuron rescaling, making it robust to reparameterization.
However, a max-based score,

s′k =Max(∑
(i,k)∈E

θ2ik, ∑
(k,j)∈E

θ2kj) (30)

produced slightly different results and is reported as well for comparison.

11

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000 50000
Training step

0

5

10

15

20

Di
sc

on
ne

ct
ed

 n
eu

ro
ns

0 singular values along training

nuclear norm
vanilla
L1
L2

0 2 4 6 8 10 12 14 16 18 20
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along mul. pruning

0 2 4 6 8 10 12 14 16 18 20
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along max pruning

Architecture: shallow_nobias

0 10000 20000 30000 40000 50000
Training step

0

5

10

15

20

Di
sc

on
ne

ct
ed

 n
eu

ro
ns

0 singular values along training

nuclear norm
vanilla
L1
L2

0 2 4 6 8 10 12 14 16 18 20
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along mul. pruning

0 2 4 6 8 10 12 14 16 18 20
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along max pruning

Architecture: shallow_bias

0 10000 20000 30000 40000 50000
Training step

0
5

10
15
20
25
30

Di
sc

on
ne

ct
ed

 n
eu

ro
ns

0 singular values along training

nuclear norm
vanilla
L1
L2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along mul. pruning

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along max pruning

Architecture: mlp_nobias_noskip

0 10000 20000 30000 40000 50000
Training step

0
5

10
15
20
25
30

Di
sc

on
ne

ct
ed

 n
eu

ro
ns

0 singular values along training

nuclear norm
vanilla
L1
L2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along mul. pruning

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along max pruning

Architecture: mlp_bias_noskip

0 10000 20000 30000 40000 50000
Training step

0
5

10
15
20
25
30

Di
sc

on
ne

ct
ed

 n
eu

ro
ns

0 singular values along training

nuclear norm
vanilla
L1
L2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along mul. pruning

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along max pruning

Architecture: mlp_nobias_skip

0 10000 20000 30000 40000 50000
Training step

0
5

10
15
20
25
30

Di
sc

on
ne

ct
ed

 n
eu

ro
ns

0 singular values along training

nuclear norm
vanilla
L1
L2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along mul. pruning

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Pruned Neurons

0.0

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Test loss along max pruning

Architecture: mlp_bias_skip

Figure 5: (Rows) architectures (Left column) number of almost 0 singular values (threshold: 10−3)
along training. (Center column) pruning neurons on trained networks using sk (multiplicative) and
(Right column) s′k (maximum) scores

12

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.8.2 TRAINING DYNAMICS

For one training of shallow bias-free network, we present the evolution of key quantities during
training to highlight how different regularizations affect their behavior.

As shown in Figure 6, both nuclear norm and L1 regularization drive many neurons’ balance numbers
ck to zero—consistent with the fact that disconnecting a neuron in a fully connected layer requires its
input and output weights to vanish, making ck null by definition (Equation (3)). Without regularization,
ck values, which should be fixed under continuous gradient flow, can increase due to the effect of
discrete optimization steps. These steps cause a gradual drift out of HG(c), as the update vector
deviates from the ideal optimization path. Notably, in this unregularized case, ck values remain more
stable. Figure 7 present the complementary view of singular values.

100 101 102 103 104

Training step

0.0

0.5

1.0

c k

nuclear norm

100 101 102 103 104

Training step

c k
vanilla

100 101 102 103 104

Training step

c k

L1

100 101 102 103 104

Training step

c k

L2

ck values along a training run

Figure 6: ck values during training of a shallow, bias-free network. k ∈ [0,20] is the neuron index.

100 101 102 103 104

Training step

0.00

0.25

0.50

0.75

1.00

k

nuclear norm

100 101 102 103 104

Training step

k

vanilla

100 101 102 103 104

Training step

k

L1

100 101 102 103 104

Training step

k

L2

Singular values along a training run

Figure 7: Singular values of the Jacobian B̃ diag(θ) during training of a shallow, bias-free network.
k ∈ [0,20] is the neuron index.

13

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A.9 ADDITIONAL EXPERIMENTS

In this part, we present additional experiments that replicate our findings in different contexts for
completeness.

A.9.1 CONNECTIVITY

Besides the toy model presented in the paper which studies a DAG structure, we replicated connect-
edness results for MLPs on synthetic and real data.

Synthetic data. The synthetic setup consisted of a MLP trying to learn to sum the components of a
2-dimensional input vector where each component is drawn randomly from [0,1]. To solve the task,
at least one of the neurons in the last layer must have a positive output weight. When the parameter
space is disconnected, as stated by Corollary 2, initializing on a wrong connected component creates
a pathology in which the network may be blocked from reaching the optimum, as shown on Figure 2,
preventing the loss to decrease below a threshold even on the training set. For the synthetic summing
task, this happens because a negative ck prevents any sign flip for a neuron. Training losses for a 10
layers, 0.5 million parameters MLP are shown on Figure 8.

0 100 200 300 400 500
Epochs

100

101

Tr
ai

ni
ng

 L
os

s

Training Loss
ck: Negative, Signs: Negative
ck: Default, Signs: Negative
ck: Negative, Signs: Default
ck: Default, Signs: Default

Figure 8: Training loss for 4 possible initializations of a MLP withb 10 layers. Initializations only
differ in the last layer output weights. ck and signs refer to the last layer. Blue curve: when the
training space is disconnected (negative ck) and initialization is on a bad component (negative output
sign for last layer neurons), the model is unable to learn correctly.

Real data. We also replicate the learning obstruction on real data, both for MNIST and for the ViT
features obtained from a pretrained vision transformer model (without any finetuning) on a classical
high resolution dataset (Elson et al., 2007) of cats and dogs images treated as 224 by 224 pixels and
projected to 20 dimensions with UMAP. Both these tasks are set up as binary classification: the cats
and dogs is already a binary dataset, while for MNIST we modify the labels to predict whether or not
the digit is equal or above 5. For both datasets, it is easy for a standard MLP to achieve a low train
loss as reported on Figure 9, except when the optimization space is disconnected (ck < 0) and the
initialization is done on a component which does not contain parameters able to predict both classes
(e.g. negative output weights on last layer).

14

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

MNIST
ck: Negative, Signs: Negative
ck: Default, Signs: Negative
ck: Negative, Signs: Default
ck: Default, Signs: Default

(a)

0 1000 2000 3000 4000 5000 6000
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
ai

ni
ng

 L
os

s

ViT features - Cats vs Dogs
ck: Negative, Signs: Negative
ck: Default, Signs: Negative
ck: Negative, Signs: Default
ck: Default, Signs: Default

(b)

Figure 9: Training losses for 4 types of initializations differing only in the last layer output weights.
(a) Training loss on MNIST. The model is an MLP with 3 hidden layers containing 100, 50 and 10
neurons. (b) Training loss on ViT features extracted from a dataset of cats and dogs images. The
model is an MLP with 3 hidden layers containing 20, 50 and 20 neurons.

A.9.2 SINGULARITIES

In addition to the experiment conducted on the Brest Cancer dataset in the main paper and further
described Appendix A.8, we obtained similar results in two others contexts: the classification of cats
and dogs from ViT features discussed in Appendix A.9.1 and a more challenging facial attributes
prediction task from face recognition model features, for which we used the CelebA dataset (Liu
et al., 2015).

The ViT feature task is easily solved with almost perfect test accuracy by a three layer MLP having
2500 parameters and 90 total neurons. Adding in L1 regularization achieved 80% pruned neurons,
while adding in the Jacobian regularizer around 90%, both without a significative loss of accuracy
compared to the vanilla training as shown on Figure 10.

0 1000 2000
Training step

0.0

0.2

0.4

0.6

Train Task Loss
Nuclear
Vanilla
L1
L2

0 1000 2000
Training step

101

Singular Loss

0 1000 2000
Training step

10 2

10 1
L1 Loss

0 1000 2000
Training step

0.0

0.2

0.4

0.6

0.8

1.0
Proportion of pruned neurons

0 1000 2000
Training step

0.0

0.2

0.4

0.6

Test Task Loss

0 1000 2000
Training step

0.96

0.98

1.00
Test Accuracy

Nuclear
Vanilla
L1
L2

Figure 10: Key metrics along training for a binary classification task taking as input ViT features.
Colored curved denote different regularizers.

For the more difficult task of predicting facial attributes like “lipstick” or “gender” from features
of pretrained face recognition models, test accuracy varied depending on the attribute. However
both L1 and the Jacobian regularization performed on par with the vanilla i.e. unregularized model.

15

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Depending on the attribute, L1 achieved [80-90]% neuron sparsity, while the Jacobian regularizer
achieved [85-95]% neuron sparsity. Again, no significative impact on test accuracy was observed, as
reported on Figure 11.

0 1000 2000

2

4

Tr
ai

n
ta

sk
 lo

ss
Arched_Eyebrows

nuclear
vanilla
L1
L2

0 1000 2000

2

4

Heavy_Makeup

0 1000 2000
0

2

4

Wearing_Lipstick

0 1000 2000
0

2

4

Male

0 1000 2000
0.00

0.25

0.50

0.75

1.00

Pr
un

ed
 n

eu
ro

ns
 (%

)

0 1000 2000
0.00

0.25

0.50

0.75

1.00

0 1000 2000
0.00

0.25

0.50

0.75

1.00

0 1000 2000
0.00

0.25

0.50

0.75

1.00

0 1000 2000
0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

0 1000 2000

0.5

0.6

0.7

0.8

0 1000 2000
0.4

0.6

0.8

0 1000 2000

0.4

0.6

0.8

1.0

0 1000 2000
0

20

40

60

Si
ng

ul
ar

 lo
ss

0 1000 2000

20

40

60

0 1000 2000

20

40

60

0 1000 2000

20

40

60

0 1000 2000
Steps

0.00

0.05

0.10

L1
 lo

ss

0 1000 2000
Steps

0.00

0.05

0.10

0 1000 2000
Steps

0.00

0.05

0.10

0 1000 2000
Steps

0.00

0.05

0.10

Figure 11: Key metrics along training for a prediction task aiming at predicting whether or not a
facial attribute was present on a picture from features extracted with a face recognition model (here:
FaceNet). Colored curves correspond to different regularizers. Dynamic pruning on row 2.

16

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

A.10 EMPIRICAL COMPARISON BETWEEN L1 AND NUCLEAR REGULARIZATION

In the main text we observe that both the nuclear norm and L1 regularizers prune a similar number of
neurons (see also Figure 3c, Figure 5, Figure 10 and Figure 11). Here, we give empirical evidence on
key distinctions between these regularizers. We first show that both regularizers cannot be explained
by a null model and then illustrate that the nuclear norm preserves edges on active neurons, achieving
strong group regularization while L1 is more aggressive, also pruning edges belonging to active
neurons.

A.10.1 NULL MODEL

In this part we use a simple null model to rule out the explanation that L1 regularization achieves
neuron sparsity solely due to its known edge sparsity mechanism. The null model works as follow:
we estimate the probability pL1 for a generic edge to be dropped after training. Intuitively, we choose
an edge before training and observe after training under L1 regularization if it was dropped or not. To
decide if the edge was dropped or not, we use a threshold of 10−3 which corresponds to a clear peak
in the parameters values distribution, stable over multiple orders of magnitude. Then, starting from
the initial computational graph (i.e. before training, with all edges), we can compute analytically the
expected number of disconnected neurons if every edge is dropped with probability pL1. Results are
reported on Figure 12 left. We repeat the same analysis for the nuclear norm regularization, using the
same threshold we obtain another null model with probability of dropping a random edge of pnuc
and report the expected number of disconnected neurons on Figure 12 right. In summary, both null
models cannot explain the number of pruned neurons by the number of pruned edges, meaning that in
both cases there must be other underlying mechanisms. The underlying mechanism is explicit in the
case of the nuclear norm regularization, since neurons are directly targeted, but remains veiled in the
case of L1. Note also that the null model is an even worse explanation in the singular regularization
case, indicating a stronger alternative mechanism.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

L1

Null model
95% CI
Observed = 16.89 (CI: 16.68, 17.10)
95% CI

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

singular
Null model
95% CI
Observed = 17.67 (CI: 17.31, 18.02)
95% CI

(b)

Figure 12: Probability of having at least k pruned neurons under the null model for (a) nuclear norm
regularizer (b) L1 regularizer. The red dotted vertical line is the observed number of pruned neurons,
the blue curve is the analytic probability of pruning at least k neurons under the null model.

A.10.2 ACTIVE WEIGHTS AND PRUNED NEURONS

To further investigate the difference between L1 and nuclear norm, we turn our attention to the
distribution of parameters magnitude, which is plotted on Figure 13 left for 4 representative trainings.
For the singular regularization we observe a clear separation in the magnitude of parameters belonging
to pruned and active neurons, and this is not the case for L1 regularization. This means that the
nuclear norm either drops completely a neuron (i.e. all its edges at the same time) or keeps the neuron
active. In contrast, the separation is less clear for L1: there are many inactive weights on active
neurons. Figure 13 right shows the aggregated results for 30 models of each type, where we observe
an overlap of the distribution for L1 only.

17

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

vanilla singular L1 L2
Model

14

12

10

8

6

4

2

0

Pa
ra

m
e
te

r
v
a
lu

e
 (

lo
g

 s
ca

le
)

Input Parameter values for each model and pruned neuron status

Pruned neuron

False

True

a b

singular L1
Model

14

12

10

8

6

4

2

0

Pa
ra

m
e
te

r
v
a
lu

e
 (

lo
g

 s
ca

le
)

Parameter value distributions by model and neuron status

Pruned neuron

False

True

Figure 13: a. Absolute value of input parameters for the hidden layer of a shallow network with bias.
b. Absolute value of parameters (including bias) for the same network architecture on 30 independent
runs.

REFERENCES

Sergio Blanes, Fernando Casas, Jose-Angel Oteo, and José Ros. The magnus expansion and some of
its applications. Physics reports, 470(5-6):151–238, 2009.

Santiago López de Medrano. Topology and Geometry of Intersections of Ellipsoids in Rˆ n, volume
361. Springer Nature, 2023.

Jeremy Elson, John (JD) Douceur, Jon Howell, and Jared Saul. Asirra: A captcha that exploits
interest-aligned manual image categorization. In Proceedings of 14th ACM Conference on
Computer and Communications Security (CCS). Association for Computing Machinery, Inc., Octo-
ber 2007. URL https://www.microsoft.com/en-us/research/publication/
asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16091–16101, 2023.

Hassan Salehi Fathabadi and Mehdi Ghiyasvand. A new algorithm for solving the feasibility problem
of a network flow. Applied Mathematics and Computation, 192(2):429–438, 2007.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962. ISBN
9780691625393.

Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002. ISBN 0-521-
79160-X; 0-521-79540-0.

Alan J Hoffman. Some recent applications of the theory of linear inequalities to extremal combinato-
rial analysis. New York, NY, pages 113–117, 1958.

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. arXiv
preprint arXiv:2012.04728, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

18

https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/
https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/

	Introduction
	Related Works

	Setup and notation
	Geometry and topology of the invariant set
	Non-emptiness
	Connectedness
	Singularities

	Conclusion
	Appendix / supplemental material
	LLM Usage
	Geometric derivation of the network flow equation
	Proof of Proposition 3
	Proof of Theorem 1
	Induced network flow problem
	Translation of the characterization by network flow problems

	Proof of Theorem 2
	Proof of Proposition 5
	Proof of Proposition 7
	Experimental details
	Disconnected neurons and pruning
	Training dynamics

	Additional experiments
	Connectivity
	Singularities

	Empirical comparison between L1 and nuclear regularization
	Null model
	Active weights and pruned neurons

