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Abstract

The conventional sliced Wasserstein is defined between two probability measures
that have realizations as vectors. When comparing two probability measures
over images, practitioners first need to vectorize images and then project them
to one-dimensional space by using matrix multiplication between the sample
matrix and the projection matrix. After that, the sliced Wasserstein is evaluated by
averaging the two corresponding one-dimensional projected probability measures.
However, this approach has two limitations. The first limitation is that the spatial
structure of images is not captured efficiently by the vectorization step; therefore,
the later slicing process becomes harder to gather the discrepancy information.
The second limitation is memory inefficiency since each slicing direction is a
vector that has the same dimension as the images. To address these limitations,
we propose novel slicing methods for sliced Wasserstein between probability
measures over images that are based on the convolution operators. We derive
convolution sliced Wasserstein (CSW) and its variants via incorporating stride,
dilation, and non-linear activation function into the convolution operators. We
investigate the metricity of CSW as well as its sample complexity, its computational
complexity, and its connection to conventional sliced Wasserstein distances. Finally,
we demonstrate the favorable performance of CSW over the conventional sliced
Wasserstein in comparing probability measures over images and in training deep
generative modeling on images1.

1 Introduction

Optimal transport and Wasserstein distance [59, 51] have become popular tools in machine learning
and data science. For example, optimal transport has been utilized in generative modeling tasks
to generate realistic images [2, 58], in domain adaptation applications to transfer knowledge from
source to target domains [9, 3], in clustering applications to capture the heterogeneity of data [21],
and in other applications [29, 62, 63]. Despite having appealing performance, Wasserstein distance
has been known to suffer from high computational complexity, namely, its computational complexity
is at the order of O(m3 logm) [49] when the probability measures have at most m supports. In
addition, Wasserstein distance also suffers from the curse of dimensionality, namely, its sample
complexity is at the order of O(n�1/d) [15] where n is the sample size. A popular line of work to
improve the speed of computation and the sample complexity of the Wasserstein distance is by adding
an entropic regularization term to the Wasserstein distance [10]. This variant is known as entropic
regularized optimal transport (or equivalently entropic regularized Wasserstein). By using the entropic
version, we can approximate the value of Wasserstein distance with the computational complexities

1Code for the paper is published at https://github.com/UT-Austin-Data-Science-Group/CSW.
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being at the order of O(m2) [1, 35, 36, 34] (up to some polynomial orders of approximation errors).
Furthermore, the sample complexity of the entropic version had also been shown to be at the order of
O(n�1/2) [39], which indicates that it does not suffer from the curse of dimensionality.

Another useful line of work to improve both the computational and sample complexities of the
Wasserstein distance is based on the closed-form solution of optimal transport in one dimension. A
notable distance along this direction is sliced Wasserstein (SW) distance [6]. Due to the fast compu-
tational complexity O(m log2 m) and no curse of dimensionality O(n�1/2), the sliced Wasserstein
has been applied successfully in several applications, such as generative modeling [61, 13, 25, 47],
domain adaptation [31], and clustering [26]. The sliced Wasserstein is defined between two prob-
ability measures that have supports belonging to a vector space, e.g, Rd. As defined in [6], the
sliced Wasserstein is written as the expectation of one-dimensional Wasserstein distance between
two projected measures over the uniform distribution on the unit sphere. Due to the intractability of
the expectation, Monte Carlo samples from the uniform distribution over the unit sphere are used to
approximate the sliced Wasserstein distance. The number of samples is often called the number of
projections and it is denoted as L. On the computational side, the computation of sliced Wasserstein
can be decomposed into two steps. In the first step, L projecting directions are first sampled and
then stacked as a matrix (the projection matrix). After that, the projection matrix is multiplied by the
two data matrices resulting in two matrices that represent L one-dimensional projected probability
measures. In the second step, L one-dimensional Wasserstein distances are computed between the
two corresponding projected measures with the same projecting direction. Finally, the average of
those distances is yielded as the value of the sliced Wasserstein.

Despite being applied widely in tasks that deal with probability measures over images [61, 13],
the conventional formulation of sliced Wasserstein is not well-defined to the nature of images. In
particular, an image is not a vector but is a tensor. Therefore, a probability measure over images
should be defined over the space of tensors instead of vectors. The conventional formulation leads to
an extra step in using the sliced Wasserstein on the domain of images which is vectorization. Namely,
all images (supports of two probability measures) are transformed into vectors by a deterministic
one-one mapping which is the "reshape" operator. This extra step does not keep the spatial structures
of the supports, which are crucial information of images. Furthermore, the vectorization step also
poses certain challenges to design efficient ways of projecting (slicing) samples to one dimension
based on prior knowledge about the domain of samples. Finally, prior empirical investigations
indicate that there are several slices in the conventional Wasserstein collapsing the two probability
measures to the Dirac Delta at zero [13, 12, 24]. Therefore, these slices do not contribute to the
overall discrepancy. These works suggest that the space of projecting directions in the conventional
sliced Wasserstein (the unit hyper-sphere) is potentially not optimal, at least for images.

Contribution. To address these issues of the sliced Wasserstein over images, we propose to replace
the conventional formulation of the sliced Wasserstein with a new formulation that is defined on the
space of probability measures over tensors. Moreover, we also propose a novel slicing process by
changing the conventional matrix multiplication to the convolution operators [16, 18]. In summary,
our main contributions are two-fold:

1. We leverage the benefits of the convolution operators on images, including their efficient
parameter sharing and memory saving as well as their superior performance in several tasks
on images [28, 19], to introduce efficient slicing methods on sliced Wasserstein, named
convolution slicers. With those slicers, we derive a novel variant of sliced Wasserstein,
named convolution sliced Wasserstein (CSW). We investigate the metricity of CSW, its
sample and computational complexities, and its connection to other variants of SW.

2. We illustrate the favorable performance of CSW in comparing probability measures over
images. In particular, we show that CSW provides an almost identical discrepancy between
MNIST’s digits compared to that of the SW while having much less slicing memory.
Furthermore, we compare SW and CSW in training deep generative models on standard
benchmark image datasets, including CIFAR10, CelebA, STL10, and CelebA-HQ. By
considering the quality of the trained models, training speed, and training memory of CSW
and SW, we observe that CSW has more favorable performance than the vanilla SW.

Organization. The remainder of the paper is organized as follows. We first provide background
about Wasserstein distance, the conventional slicing process in the sliced Wasserstein distance, and
the convolution operator in Section 2. In Section 3, we propose the convolution slicing and the
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convolution sliced Wasserstein, and analyze some of its theoretical properties. Section 4 contains
the application of CSW to generative models, qualitative experimental results, and quantitative
experimental results on standard benchmarks. We conclude the paper In Section 5. Finally, we defer
the proofs of key results and extra materials in the Appendices.

Notation. For any d � 2, Sd�1 := {✓ 2 Rd
| ||✓||22 = 1} denotes the d dimensional unit hyper-sphere

in L2 norm, and U(Sd�1) is the uniform measure over Sd�1. Moreover, � denotes the Dirac delta
function. For p � 1, Pp(Rd) is the set of all probability measures on Rd that have finite p-moments.
For µ, ⌫ 2 Pp(Rd), ⇧(µ, ⌫) := {⇡ 2 Pp(Rd

⇥ Rd) |
R
Rd ⇡(x, y)dx = ⌫,

R
Rd ⇡(x, y)dy = µ}

is the set of transportation plans between µ and ⌫. For m � 1, we denotes µ⌦m as the product
measure which has the supports are the joint vector of m random variables that follows µ. For a
vector X 2 Rdm, X := (x1, . . . , xm), PX denotes the empirical measures 1

m

Pm
i=1 �xi . For any

two sequences an and bn, the notation an = O(bn) means that an  Cbn for all n � 1 where C is
some universal constant.

2 Background

In this section, we first review the definitions of the Wasserstein distance, the conventional slicing,
and the sliced Wasserstein distance, and discuss its limitation. We then review the convolution and
the padding operators on images.

Sliced Wasserstein: For any p � 1 and dimension d0 � 1, we first define the Wasserstein-p
distance [59, 50] between two probability measures µ 2 Pp(Rd0

) and ⌫ 2 Pp(Rd0
), which is given

by Wp(µ, ⌫) :=
⇣
inf⇡2⇧(µ,⌫)

R
Rd0⇥Rd0 kx�ykppd⇡(x, y)

⌘ 1
p

. When d0 = 1, the Wasserstein distance

has a closed form which is Wp(µ, ⌫) = (
R 1
0 |F�1

µ (z) � F�1
⌫ (z)|pdz)1/p where Fµ and F⌫ are the

cumulative distribution function (CDF) of µ and ⌫ respectively.

Given this closed-form property of Wasserstein distance in one dimension, the sliced Wasser-
stein distance [6] between µ and ⌫ had been introduced and admitted the following formulation:
SWp

p(µ, ⌫) :=
R
Sd�1 Wp

p(✓]µ, ✓]⌫)d✓, where ✓]µ is the push-forward probability measure of µ

through the function T✓ : Rd0
! R with T✓(x) = ✓>x. For each ✓ 2 Sd0�1, Wp

p(✓]µ, ✓]⌫) can be
computed in linear time O(m log2 m) where m is the number of supports of µ and ⌫. However, the
integration over the unit sphere in the sliced Wasserstein distance is intractable to compute. Therefore,
Monte Carlo scheme is employed to approximate the integration, namely, ✓1, . . . , ✓L ⇠ U(Sd0�1)
are drawn uniformly from the unit sphere and the approximation of the sliced Wasserstein distance is
given by: dSW

p

p(µ, ⌫) ⇡
1
L

PL
i=1 Wp

p(✓i]µ, ✓i]⌫). In practice, L should be chosen to be sufficiently
large compared to the dimension d0, which can be undesirable.

Sliced Wasserstein on Images: Now, we focus on two probability measures over images: µ, ⌫ 2

Pp(Rc⇥d⇥d) for number of channels c � 1 and dimension d � 1. In this case, the sliced Wasserstein
between µ and ⌫ is defined as:

SWp(µ, ⌫) = SWp(R]µ,R]⌫), (1)

where R : Rc⇥d⇥d
! Rcd2

is a deterministic one-to-one "reshape" mapping.

The slicing process: The slicing of sliced Wasserstein distance on probability measures over
images consists of two steps: vectorization and projection. Suppose that the probability measure
µ 2 P(Rc⇥d⇥d) has n supports. Then the supports of µ are transformed into vectors in Rcd2

and are
stacked as a matrix of size n ⇥ cd2. A projection matrix of size L ⇥ cd2 is then sampled and has
each column as a random vector following the uniform measure over the unit hyper-sphere. Finally,
the multiplication of those two matrices returns L projected probability measures of n supports in
one dimension. We illustrate this process in Figure 1.

Limitation of the conventional slicing: First of all, images contain spatial relations across channels
and local information. Therefore, transforming images into vectors makes it challenging to obtain
that information. Second, vectorization leads to the usage of projecting directions from the unit
hyper-sphere, which can have several directions that do not have good discriminative power. Finally,
sampling projecting directions in high-dimension is also time-consuming and memory-consuming.
As a consequence, avoiding the vectorization step can improve the efficiency of the whole process.
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Figure 1: The conventional slicing process of sliced Wasserstein distance. The images X1, . . . , Xn 2 Rc⇥d⇥d

are first flattened into vectors in Rcd2 and then the Radon transform is applied to these vectors to lead to sliced
Wasserstein (1) on images.

Convolution operator: We now define the convolution operator on tensors [16], which will be used
as an alternative way of projecting images to one dimension in the sliced Wasserstein. The definition
of the convolution operator with stride and dilation is as follows.

Definition 1 (Convolution) Given the number of channels c � 1, the dimension d � 1, the
stride size s � 1, the dilation size b � 1, the size of kernel k � 1, the convolution of a

tensor X 2 Rc⇥d⇥d with a kernel size K 2 Rc⇥k⇥k is X
s,b
⇤ K = Y, Y 2 R1⇥d0⇥d0

where d0 = d�b(k�1)�1
s + 1. For i = 1, . . . , d0 and j = 1, . . . , d0, Y1,i,j is defined as:

Y1,i,j =
Pc

h=1

Pk�1
i0=0

Pk�1
j0=0 Xh,s(i�1)+bi0+1,s(j�1)+bj0+1 ·Kh,i0+1,j0+1.

From its definition, we can check that the computational complexity of the convolution operator is

O

✓
c
⇣

d�b(k�1)�1
s + 1

⌘2
k2

◆
.

3 Convolution Sliced Wasserstein
In this section, we will define a convolution slicer that maps a tensor to a scalar by convolution
operators. Moreover, we discuss the convolution slicer and some of its specific forms including
the convolution-base slicer, the convolution-stride slicer, the convolution-dilation slicer, and their
non-linear extensions. After that, we derive the convolution sliced Wasserstein (CSW), a family of
variants of sliced Wasserstein, that utilizes a convolution slicer as the projecting method. Finally, we
discuss some theoretical properties of CSW, namely, its metricity, its computational complexity, its
sample complexity, and its connection to other variants of sliced Wasserstein.

3.1 Convolution Slicer

We first start with the definition of the convolution slicer, which plays an important role in defining
convolution sliced Wasserstein.

Definition 2 (Convolution Slicer) For N � 1, given a sequence of kernels K(1)
2

Rc(1)⇥d(1)⇥d(1)

, . . . , K(N)
2 Rc(N)⇥d(N)⇥d(N)

, a convolution slicer S(·|K(1), . . . ,K(N)) on
Rc⇥d⇥d is a composition of N convolution functions with kernels K(1), . . . ,K(N) (with stride
or dilation if needed) such that S(X|K(1), . . . ,K(N)) 2 R 8X 2 Rc⇥d⇥d.

As indicated in Definition 2, the idea of the convolution slicer is to progressively map a given data
X to a one-dimensional subspace through a sequence of convolution kernels, which capture spatial
relations across channels as well as local information of the data. It is starkly different from the
vectorization step in standard sliced Wasserstein on images (1). The illustration of the convolution
slicer is given in Figure 2.
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The slicing process of the convolution sliced Wasserstein

Figure 2: The convolution slicing process (using the convolution slicer). The images X1, . . . , Xn 2 Rc⇥d⇥d

are directly mapped to a scalar by a sequence of convolution functions which have kernels as random tensors.
This slicing process leads to the convolution sliced Wasserstein on images.

We consider three particular types of convolution slicers based on using linear function on the
convolution operator, named convolution-base, convolution-stride, and convolution-dilation slicers.
We defer the definition of convolution-dilation slicers to Definition 5. We first start with the definition
of the convolution-base slicer.

Definition 3 (Convolution-base Slicer) Given X 2 Rc⇥d⇥d (d � 2),

1. When d is even, N is the biggest integer that satisfies d = 2N�1a with a is also an integer,
sliced kernels are defined as K(1)

2 Rc⇥(2�1d+1)⇥(2�1d+1) and K(h)
2 R1⇥(2�hd+1)⇥(2�hd+1)

for h = 2, . . . , N � 1, and K(N)
2 R1⇥a⇥a where a = d

2N�1 . Then, the convolution-base slicer
CS-b(X|K(1), . . . ,K(N)) is defined as:

CS-b(X|K(1), . . . ,K(N)) = X(N), X(h) =

(
X h = 0

X(h�1) 1,1
⇤ K(h) 1  h  N,

2. When d is odd, the convolution-base slicer CS-b(X|K(1), . . . ,K(N)) takes the form:

CS-b(X|K(1), . . . ,K(N)) = CS-b(X
1,1
⇤ K(1)

|K(2), . . . ,K(N)),

where K(1)
2 Rc⇥2⇥2 and K(2), . . . ,K(N) are the corresponding sliced kernels that are defined on

the dimension d� 1.

The idea of the convolution-base slicer in Definition 3 is to reduce the width and the height of the
image by half after each convolution operator. If the width and the height of the image are odd, the
first convolution operator is to reduce the size of the image by one via convolution with kernels of
size 2⇥ 2, and then the same procedure as that of the even case is applied. We would like to remark
that the conventional slicing of sliced Wasserstein in Section 2 is equivalent to a convolution-base
slicer S(·|K(1)) where K(1)

2 Rc⇥d⇥d that satisfies the constraint
Pc

h=1

Pd
i=1

Pd
j=1 K

(1)2
h,i,j = 1.

We now discuss the second variant of the convolution slicer, named convolution-stride slicer, where
we further incorporate stride into the convolution operators. Its definition is as follows.

Definition 4 (Convolution-stride Slicer) Given X 2 Rc⇥d⇥d (d � 2),

1. When d is even, N is the biggest integer that satisfies d = 2N�1a with a is also an integer,
sliced kernels are defined as K(1)

2 Rc⇥2⇥2 and K(h)
2 R1⇥2⇥2 for h = 2, . . . , N � 1, and

K(N)
2 R1⇥a⇥a where a = d

2N�1 . Then, the convolution-stride slicer CS-s(X|K(1), . . . ,K(N)) is
defined as:

CS-s(X|K(1), . . . ,K(N)) = X(N), X(h) =

8
><

>:

X h = 0

X(h�1) 2,1
⇤ K(h) 1  h  N � 1,

X(h�1) 1,1
⇤ K(h) h = N,
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2. When d is odd, the convolution-stride slicer CS-s(X|K(1), . . . ,K(N)) takes the form:

CS-s(X|K(1), . . . ,K(N)) = CS-s(X
1,1
⇤ K(1)

|K(2), . . . ,K(N)),

where K(1)
2 Rc⇥2⇥2 and K(2), . . . ,K(N) are the corresponding sliced kernels that are defined on

the dimension d� 1.

Similar to the convolution-base slicer in Definition 3, the convolution-stride slicer reduces the width
and the height of the image by half after each convolution operator. We use the same procedure of
reducing the height and the width of the image by one when the height and the width of the image
are odd. The benefit of the convolution-stride slicer is that the size of its kernels does not depend on
the width and the height of images as that of the convolution-base slicer. This difference improves
the computational complexity and time complexity of the convolution-stride slicer over those of the
convolution-base slicer (cf. Proposition 1).

Definition 5 (Convolution-dilation Slicer) Given X 2 Rc⇥d⇥d (d � 2),

1. When d is even, N is the biggest integer that satisfies d = 2N�1a with a is also an
integer, sliced kernels are defined as K(1)

2 Rc⇥2⇥2 and K(h)
2 R1⇥2⇥2 for h =

2, . . . , N � 1, and K(N)
2 R1⇥a⇥a where a = d

2N�1 . Then, the convolution-dilation
slicer CS-d(X|K(1), . . . ,K(N)) is defined as:

CS-d(X|K(1), . . . ,K(N)) = X(N), X(h) =

8
>><

>>:

X h = 0

X(h�1)
1,d/2h

⇤ K(h) 1  h  N � 1,

X(h�1) 1,1
⇤ K(h) h = N,

2. When d is odd, the convolution-dilation slicer CS-d(X|K(1), . . . ,K(N)) takes the form:

CS-d(X|K(1), . . . ,K(N)) = CS-d(X
1,1
⇤ K(1)

|K(2), . . . ,K(N)),

where K(1)
2 Rc⇥2⇥2 and K(2), . . . ,K(N) are the corresponding sliced kernels that are

defined on the dimension d� 1.

As with the previous slicers, the convolution-dilation slicer also reduces the width and the height
of the image by half after each convolution operator and it uses the same procedure for the odd
dimension cases. The design of kernels’ size of the convolution-dilation slicer is the same as that of
the convolution-stride slicer. However, the convolution-dilation slicer has a bigger receptive field in
each convolution operator which might be appealing when the information of the image is presented
by a big block of pixels.

Computational and projection memories complexities of the convolution slicers: We now
establish the computational and projection memory complexities of convolution-base, convolution-
stride, and convolution-dilation slicers in the following proposition. We would like to recall that the
projection memory complexity is the memory that is needed to store a slice (convolution kernels).

Proposition 1 (a) When d is even, N is the biggest integer that satisfies d = 2N�1a with a is also an
integer, and N = [log2 d], the computational and projection memory complexities of convolution-base
slicer are respectively at the order of O(cd4) and O(cd2). When d is odd, these complexities are at
the order of O(cd2 + d4) and O(c+ d2).

(b) The computational and projection memory complexities of convolution-stride slicer are respec-
tively at the order of O(cd2) and O(c+ [log2 d]).

(c) The computational and projection memory complexities of convolution-dilation slicer are respec-
tively at the order of O(cd2) and O(c+ [log2 d]).

Proof of Proposition 1 is in Appendix B.4. We recall that the computational complexity and the
projection memory complexity of the conventional slicing in sliced Wasserstein are O(cd2) and
O(cd2). We can observe that the convolution-base slicer has a worse computational complexity than
the conventional slicing while having the same projection memory complexity. Since the size of
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kernels does not depend on the size of images, the convolution-stride slicer and the convolution-
dilation slicer have the same computational complexity as the conventional slicing O(cd2). However,
their projection memory complexities are cheaper than conventional slicing, namely, O(c+ [log2 d])
compared to O(cd2).

Non-linear convolution-base slicer: The composition of convolution functions in the linear
convolution slicer and its linear variants is still a linear function, which may not be effective when
the data lie in a complex and highly non-linear low-dimensional subspace. A natural generalization
of linear convolution slicers to enhance the ability of the slicers to capture the non-linearity of the
data is to apply a non-linear activation function after convolution operators. This enables us to define
a non-linear slicer in Definition 7 in Appendix C. The non-linear slicer can be seen as a defining
function in generalized Radon Transform [52] which was used in generalized sliced Wasserstein [24].

3.2 Convolution Sliced Wasserstein

Given the definition of convolution slicers, we now state general definition of convolution sliced
Wasserstein. An illustration of the convolution sliced Wasserstein is given in Figure 2.

Definition 6 For any p � 1, the convolution sliced Wasserstein (CSW) of order p > 0 between two
given probability measures µ, ⌫ 2 Pp(Rc⇥d⇥d) is given by:

CSWp(µ, ⌫) :=
⇣
E
h
W p

p

⇣
S(·|K(1), . . . ,K(N))]µ,S(·|K(1), . . . ,K(N))]⌫

⌘i⌘ 1
p
,

where the expectation is taken with respect to K(1)
⇠ U(K(1)), . . . ,K(N)

⇠ U(K(N)). Here,
S(·|K(1), . . . ,K(N)) is a convolution slicer with K(l)

2 Rc(l)⇥k(l)⇥k(l)

for any l 2 [N ] and U(K(l))
is the uniform distribution with the realizations being in the set K(l) which is defined as K

(l) :=n
K(l)

2 Rc(l)⇥k(l)⇥k(l)

|
Pc(l)

h=1

Pk(l)

i0=1

Pk(l)

j0=1 K
(i)2
h,i0,j0 = 1

o
, namely, the set K(l) consists of tensors

K(l) whose squared `2 norm is 1.

The constraint that `2 norms of K(l) is 1 is for guaranteeing the distances between projected supports
are bounded. When we specifically consider the convolution slicer as convolution-base slicer (CS-b),
convolution-stride slicer (CS-s), and convolution-dilation slicer (CS-d), we have the corresponding
notions of convolution-base sliced Wasserstein (CSW-b), convolution-stride sliced Wasserstein
(CSW-s), and convolution-dilation sliced Wasserstein (CSW-d).

Monte Carlo estimation and implementation: Similar to the conventional sliced Wasserstein, the
expectation with respect to kernels K(1), . . . ,K(N) uniformly drawn from the sets K(1), . . . ,K(N) in
the convolution sliced Wasserstein is intractable to compute. Therefore, we also make use of Monte
Carlo method to approximate the expectation, which leads to the following approximation of the
convolution sliced Wasserstein:

CSWp
p(µ, ⌫) ⇡

1

L

LX

i=1

W p
p

⇣
S(·|K(1)

i , . . . ,K(N)
i )]µ,S(·|K(1)

i , . . . ,K(N)
i )]⌫

⌘
, (2)

where K(`)
i are uniform samples from the sets K

(`) (which is equivalent to sample uni-
formly from Sc(l)·k(l)2

then applying the one-to-one reshape mapping) for any ` 2 [N ] and
i 2 [L]. Since each of the convolution slicer S(·|K(1)

i , . . . ,K(N)
i ) is in one dimension, we

can utilize the closed-form expression of Wasserstein metric in one dimension to compute
Wp

⇣
S(·|K(1)

i , . . . ,K(N)
i )]µ,S(·|K(1)

i , . . . ,K(N)
i )]⌫

⌘
with a complexity of O(m log2 m) for each

i 2 [L] where m is the maximum number of supports of µ and ⌫. Therefore, the total computational
complexity of computing the Monte Carlo approximation (2) is O(Lm log2 m) when the probability
measures µ and ⌫ have at most m supports. It is comparable to the computational complexity of sliced
Wasserstein on images (1) where we directly vectorize the images and apply the Radon transform to
these flatten images. Finally, for the implementation, we would like to remark that L convolution
slicers in equation (2) can be computed independently and parallelly using the group convolution
implementation which is supported in almost all libraries.

Properties of convolution sliced Wasserstein: We first have the following result for the metricity of
the convolution sliced Wasserstein.

7



Theorem 1 For any p � 1, the convolution sliced Wasserstein CSWp(., .) is a pseudo-metric on
the space of probability measures on Rc⇥d⇥d, namely, it is symmetric, and satisfies the triangle
inequality.

Proof of Theorem 1 is in Appendix B.1. We would like to mention that CSW can might still be a
metric since the convolution slicer might be injective. Our next result establishes the connection
between the convolution sliced Wasserstein and max-sliced Wasserstein and Wasserstein distances.

Proposition 2 For any p � 1, we find that CSWp(µ, ⌫)  Max-SWp(µ, ⌫)  Wp(µ, ⌫), where
Max-SWp(µ, ⌫) := max✓2Rcd2 :k✓k1 Wp(✓]µ, ✓]⌫) is max-sliced Wasserstein of order p.

Proof of Proposition 2 is in Appendix B.2. Given the bounds in Proposition 2, we demonstrate
that the convolution sliced Wasserstein does not suffer from the curse of dimensionality for the
inference purpose, namely, the sample complexity for the empirical distribution from i.i.d. samples
to approximate their underlying distribution is at the order of O(n�1/2).

Proposition 3 Assume that P is a probability measure supported on compact set of Rc⇥d⇥d. Let
X1, X2, . . . , Xn be i.i.d. samples from P and we denote Pn = 1

n

Pn
i=1 �Xi as the empirical measure

of these data. Then, for any p � 1, there exists a universal constant C > 0 such that

E[CSWp(Pn, P )]  C
p
(cd2 + 1) log n/n,

where the outer expectation is taken with respect to the data X1, X2, . . . , Xn.

Proof of Proposition 3 is in Appendix B.3. The result of Proposition 3 indicates that the sample
complexity of the convolution sliced Wasserstein is comparable to that of the sliced Wasserstein on
images (1), which is at the order of O(n�1/2) [4], and better than that of the Wasserstein metric,
which is at the order of O(n�1/(2cd2)) [15].

Extension to non-linear convolution sliced Wasserstein: In Appendix C, we provide a non-linear
version of the convolution sliced Wasserstein, named non-linear convolution sliced Wasserstein.
The high-level idea of the non-linear version is to incorporate non-linear activation functions to the
convolution-base, convolution-stride, and convolution-dilation slicers. The inclusion of non-linear
activation functions is to enhance the ability of slicers to capture the non-linearity of the data. By
plugging these non-linear convolution slicers into the general definition of the convolution sliced
Wasserstein in Definition 6, we obtain the non-linear variants of convolution sliced Wasserstein.

4 Experiments

In this section, we focus on comparing the sliced Wasserstein (SW) (with the conventional slicing),
the convolution-base sliced Wasserstein (CSW-b), the convolution sliced Wasserstein with stride
(CSW-s), and the convolution sliced Wassersstein with dilation (CSW-d) in training generative models
on standard benchmark image datasets such as CIFAR10 (32x32) [27], STL10 (96x96) [8], CelebA
(64x64), and CelebA-HQ (128x128) [37]. We recall that the number of projections in SW and CSW’s
variants is denoted as L. Finally, we also show the values of the SW and the CSW variants between
probability measures over digits of the MNIST dataset [30] in Appendix D.1. From experiments on
MNIST, we observe that values of CSW variants are similar to values of SW while having better
projection complexities.

In generative modeling, we follow the framework of the sliced Wasserstein generator in [13] with some
modifications of neural network architectures. The details of the training are given in Appendix D.2.
We train the above model on standard benchmarks such as CIFAR10 (32x32) [27], STL10 (96x96) [8],
CelebA (64x64), and CelebAHQ (128x128) [37]. To compare models, we use the FID score [20]
and the Inception score (IS) [55]. The detailed settings about architectures, hyperparameters, and
evaluation of FID and IS are given in Appendix E. We first show the FID scores and IS scores
of generative models trained by SW and CSW’s variants with the number of projections L 2

{1, 100, 1000} in Table 1. In the table, we report the performance of models at the last training epoch.
We do not report the IS scores on CelebA and CelebA-HQ since the IS scores are not suitable for
face images. We then demonstrate the FID scores and IS scores across training epochs in Figure 3
for investigating the convergence of generative models trained by SW and CSW’s variants. After
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Figure 3: FID scores and IS scores over epochs of different training losses on datasets. We observe that CSW’s
variants usually help the generative models converge faster.

Table 1: Summary of FID and IS scores of methods on CIFAR10 (32x32), CelebA (64x64), STL10 (96x96),
and CelebA-HQ (128x128). Some results on CIFAR10 are reported from 5 different runs.

Method CIFAR10 (32x32) CelebA (64x64) STL10 (96x96) CelebA-HQ (128x128)

FID (#) IS (") FID (#) FID (#) IS (") FID (#)

SW (L=1) 87.97 3.59 128.81 170.96 3.68 275.44
CSW-b (L=1) 84.38 4.28 85.83 173.33 3.89 315.91
CSW-s (L=1) 80.10 4.31 66.52 168.93 3.75 303.57
CSW-d (L=1) 63.94 4.89 89.37 212.61 2.48 321.06

SW (L=100) 52.36±0.76 5.79±0.16 20.08 100.35 8.14 51.80
CSW-b (L=100) 49.67±2.00 5.87±0.15 18.96 91.75 8.11 53.05
CSW-s (L=100) 43.73±2.09 6.17±0.06 13.76 97.08 8.20 32.94
CSW-d (L=100) 47.23±1.12 5.97±0.11 14.96 102.58 7.53 41.01

SW (L=1000) 44.25±1.21 6.02±0.03 14.92 84.78 9.06 28.19
CSW-b (L=1000) 42.88±0.98 6.11±0.10 14.75 86.98 9.11 29.69
CSW-s (L=1000) 36.80±1.44 6.55±0.12 12.55 77.24 9.31 22.25
CSW-d (L=1000) 40.44±1.02 6.38±0.14 13.24 83.36 9.42 25.93

that, we report the training time and training memory of SW and CSW variants in Table 5. Finally,
we show randomly generated images from SW’s models and CSW-s’ models on CelebA dataset in
Figure 4. Generated images of all models on all datasets are given in Figures 5-8 in Appendix D.2.

Summary of FID scores and IS scores: According to Table 1, on CIFAR10, CSW-d gives the lowest
values of FID scores and IS scores when L = 1 while CSW-s gives the lowest FID scores when
L = 100 and L = 1000. Compared to CSW-s, CSW-d and CSW-b yield higher FID scores and lower
IS scores. However, CSW-d and CSW-b are still better than SW. On CelebA, CSW-s performs the
best in all settings. On STL10, CSW’s variants are also better than the vanilla SW; however, it is
unclear which is the best variant. On CelebA-HQ, SW gives the lowest FID score when L = 1. In
contrast, when L = 100 and L = 1000, CSW-s is the best choice for training the generative model.
Since the FID scores of L = 1 are very high on CelebA-HQ and STL10, the scores are not very
meaningful for comparing SW and CSW’s variants. For all models, increasing L leads to better
quality. Overall, we observe that CSW’s variants enhance the performance of generative models.

FID scores and IS scores across epochs: From Figure 3, we observe that CSW’s variants help the
generative models converge faster than SW when L = 100 and L = 1000. Increasing the number
of projections from 100 to 1000, the generative models from both SW and CSW’s variants become
better. Overall, CSW-s is the best option for training generative models among CSW’s variants since
its FID curves are the lowest and its IS curves are the highest.

Generated images: We show randomly generated images on CelebA dataset in Figure 4 and Figure 6
(Appendix D), and generated images on CIFAR10, CelebA, STL10, and CelebA-HQ in Figures 5-8 as
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SW (L = 1) SW (L = 100) SW (L = 1000)

CSW-s (L = 1) CSW-s (L = 100) CSW-s (L = 1000)
Figure 4: Random generated images of SW and CSW-s on CelebA.

qualitative comparison between SW and CSW variants. From the figures, we can see that generated
images of CSW-s is more realistic than ones of SW. The difference is visually clear when the number
of projections L is small e.g., L = 1 and L = 100. When L = 1000, we can still figure out that
CSW-s is better than SW by looking at the sharpness of the generated images. Also, we can visually
observe the improvement of SW and CSW-s when increasing the number of projections. In summary,
the qualitative results are consistent with the quantitative results (FID scores and IS scores) in Table 1.
For the generated images of CSW-b and CSW-d, we also observe the improvement compared to the
SW which is consistent with the improvement of FID scores and IS scores.

Non-linear convolution sliced Wasserstein: We also compare non-linear extensions of SW and
CSW variants in training generative models on CIFAR10 in Appendix D. For details of non-linear
extensions, we refer to Appendix C. From experiments, we observe that convolution can also improve
the performance of sliced Wasserstein in non-linear projecting cases. Compared to linear versions,
non-linear versions can enhance the quality of the generative model or yield comparable results.

5 Conclusion
We have addressed the issue of the conventional slicing process of sliced Wasserstein when working
with probability measures over images. In particular, sliced Wasserstein is defined on probability
measures over vectors which leads to the step of vectorization for images. As a result, the conventional
slicing process cannot exploit the spatial structure of data for designing the space of projecting
directions and projecting operators. To address the issue, we propose a new slicing process by
using the convolution operator which has been shown to be efficient on images. Moreover, we
investigate the computational complexity and projection memory complexity of the new slicing
technique. We show that convolution slicing is comparable to conventional slicing in terms of
computational complexity while being better in terms of projection memory complexity. By utilizing
the new slicing technique, we derive a novel family of sliced Wassersein variants, named convolution
sliced Wasserstein. We investigate the properties of the convolution sliced Wasserstein including its
metricity, its computational and sample complexities, and its connection to other variants of sliced
Wasserstein in literature. Finally, we carry out extensive experiments in comparing digits images and
training generative models on standard benchmark datasets to demonstrate the favorable performance
of the convolution sliced Wasserstein.
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