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Abstract

Custom diffusion models (CDMs) have attracted widespread attention due to their
astonishing generative ability for personalized concepts. However, most existing
CDMs unreasonably assume that personalized concepts are fixed and cannot change
over time. Moreover, they heavily suffer from catastrophic forgetting and concept
neglect on old personalized concepts when continually learning a series of new
concepts. To address these challenges, we propose a novel Concept-Incremental
text-to-image Diffusion Model (CIDM), which can resolve catastrophic forgetting
and concept neglect to learn new customization tasks in a concept-incremental
manner. Specifically, to surmount the catastrophic forgetting of old concepts, we
develop a concept consolidation loss and an elastic weight aggregation module.
They can explore task-specific and task-shared knowledge during training, and
aggregate all low-rank weights of old concepts based on their contributions during
inference. Moreover, in order to address concept neglect, we devise a context-
controllable synthesis strategy that leverages expressive region features and noise
estimation to control the contexts of generated images according to user conditions.
Experiments validate that our CIDM surpasses existing custom diffusion models.
The source codes are available at https://github.com/JiahuaDong/CIFC.

1 Introduction

Latent diffusion models (LDMs) [38, 33, 66, 19] have demonstrated unprecedented capabilities
in generating high-fidelity images by incorporating large-scale collections of image-text pairs in
the latent feature space. Until now, LDMs [4, 30] have achieved remarkable progress in various
application fields, including image editing [29, 26], art creation [8, 54], and reconstruction of fMRI
brain scans [48]. In order to synthesize some personalized concepts according to user preferences,
custom diffusion models (CDMs) [40, 60, 11] rely on low-rank adaptation (LoRA) [14] to finetune the
large-scale LDMs for multi-concept customization [22]. They extend the vision-language dictionary
of pretrained LDMs to bind personalized concepts with specific subjects users need to synthesize.

Generally, most existing CDMs [60, 68, 3] assume that users’ personalized concepts are fixed and
cannot incrementally increase over time. However, this assumption is unrealistic in real-world
applications, where users want to continually synthesize a series of new personalized concepts from
their own lives. To address this setting, CDMs [3, 57, 2] typically require storing all image-text
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training pairs of old concepts to finetune the pretrained LDMs via LoRA [14, 59]. Nevertheless, the
high computation costs and privacy concerns [52] may render CDMs impractical as the number of
old personalized concepts consecutively increases. If the above CDMs retain all low-rank weights
associated with old concepts that are obtained in previous customization tasks and then merge them
to learn new personalized concepts continually [59, 65], they may experience significant loss of
individual attributes on old personalized concepts (i.e., catastrophic forgetting [36, 6]) for versatile
customization. Moreover, in real-world scenarios, users may wish to control the contexts and objects
associated with multiple old concepts in synthesized images according to the conditions they provide
(e.g., scribble or bounding box [24, 44]). It forces CDMs [60] to heavily suffer from the challenge of
concept neglect [1] (i.e., some old concepts are missing during multi-concept composition).

To handle the above real-world scenarios, in this paper, we propose a new practical problem named
Concept-Incremental Flexible Customization (CIFC). In the CIFC setting, as shown in Fig. 1(a),
CDMs can consecutively synthesize a sequence of new personalized concepts in a concept-incremental
manner for versatile customization (e.g., multi-concept generation [21], style transfer [56] and image
editing [29]). Additionally, users can control the context and objects of the generated images based on
the specific conditions they provide. As aforementioned, the CIFC problem faces two main challenges
for versatile concept customization in this paper: catastrophic forgetting of old personalized concepts
when learning new concepts consecutively under a concept-incremental manner, and concept neglect
when performing multi-concept composition according to users-provided conditions.

To resolve the challenges in CIFC, we develop a novel Concept-Incremental text-to-image Diffusion
Model (CIDM), which can effectively address catastrophic forgetting and concept neglect. On one
hand, to mitigate the catastrophic forgetting of old personalized concepts, we propose a novel concept
consolidation loss for training and devise an elastic weight aggregation (EWA) module for inference.
This loss employs learnable layer-wise concept tokens and an orthogonal subspace regularizer to
explore task-specific knowledge (i.e., unique attributes of personalized concepts), while learning
layer-wise common subspaces across different tasks to capture task-shared knowledge. Additionally,
the EWA module utilizes learnable layer-wise concept tokens to merge all low-rank weights of old
personalized concepts, based on their contributions to versatile concept customization. On the other
hand, we develop a context-controllable synthesis strategy to tackle concept neglect for multi-concept
composition. It leverages layer-wise textual embeddings to enhance the expressive ability of region
features and relies on region noise estimation to control the contexts of generated image, conforming
to users-provided conditions. Comprehensive experiments illustrate the effectiveness of our proposed
CIDM in addressing the CIFC problem. The main contributions of this paper are listed below:

• We propose a new practical problem named Concept-Incremental Flexible Customization (CIFC),
where the main challenges are catastrophic forgetting and concept neglect. To address the challenges
in the CIFC problem, we develop a novel Concept-Incremental text-to-image Diffusion Model
(CIDM), which can learn new personalized concepts continuously for versatile concept customization.

• We devise a concept consolidation loss and an elastic weight aggregation module to mitigate the
catastrophic forgetting of old personalized concepts, by exploring task-specific/task-shared knowledge
and aggregating all low-rank weights of old concepts based on their contributions in the CIFC.

• We develop a context-controllable synthesis strategy to tackle concept neglect. This strategy controls
the contexts of synthesized images according to user conditions by enhancing the expressive ability
of region features with layer-wise textual embeddings and incorporating region noise estimation.

2 Related Work

Incremental Learning [25, 49, 20] accumulates previous experience to incrementally learn new
tasks without the need for retraining from scratch. To prevent catastrophic forgetting of old tasks,
most incremental or continual learning models mainly employ knowledge distillation between old and
new tasks [63, 36, 5], replay some images from old tasks [16, 43], or dynamically expand network
architecture to encode new knowledge [61, 15, 7]. Nevertheless, these methods [16, 61, 49, 36] are
primarily designed for classifying new object categories consecutively, which cannot be directly
applied to tackle continual concept customization tasks without catastrophic forgetting.

Concept Customization [11, 40, 22] focuses on extending large-scale diffusion model [31, 46, 64] to
synthesize personalized concepts for users. After [40] proposes to tackle the subject-driven generation
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Figure 1: Diagram of the proposed CIDM to address the CIFC problem. It consists of (a) a concept
consolidation loss, (b) an elastic weight aggregation module to resolve catastrophic forgetting, and
(c) a context-controllable synthesis strategy to address the challenge of concept neglect.

by finetuning all network parameters of the pretrained diffusion model [48] on personalized concepts,
some works use textual inversion [9, 53] to learn word embeddings of personalized concepts [50]. For
multi-concept customization, [22] can jointly train multiple concepts or combine different diffusion
models by optimizing a few parameters in the cross-attention layers, while [27] aims to capture
different clusters of concept neurons. Motivated by [22], Han et al. [12] finetune the singular values
of latent encoding weights, thereby improving the efficiency for concept customization. [42, 57, 18]
perform efficient test-time customization by training concept-specific encoders. Besides, [59, 11]
fuse multiple low-rank weights to resolve multi-concept customization. In order to tackle continual
text-to-image synthesis tasks, Sun et al. [47] devise a lifelong diffusion model to accumulate concept
information. Unfortunately, it cannot control the contexts of synthesized images and suffers from
concept neglect in multi-concept composition [62, 58]. To address the issue of missing concepts,
[66, 30] utilize spatial conditions (e.g., sketch and pose) for composition. However, these custom
diffusion models [59, 47, 51, 58] cannot consecutively learn a sequence of new concepts to tackle the
CIFC problem, as they face challenges related to catastrophic forgetting and concept neglect.

3 Preliminary and Problem Definition

Preliminary: Latent diffusion models (LDMs) [41, 10] rely on some conditional inputs (e.g., text
prompt [33, 37] or image [17, 32]) to control the contexts of synthesized images. They use an encoder
E(·) and a decoder D(·) to perform image synthesis in the latent space [33]. Custom diffusion models
(CDMs) [12, 9, 28] utilize low-rank adaptation (LoRA) [14, 55] to learn new personalized concepts
by finetuning the pretrained LDMs [1, 38]. Given a pair of personalized image x and its text prompt
p, the encoder E(·) maps x to a latent feature z, and zt denotes the noisy latent feature at the t-th
(t = 1, · · · , T ) timestep. After the text encoder Γ(·) (e.g., pretrained CLIP [35]) maps p to the textual
embedding c = Γ(p), the objective to learn personalized concept {x,p} at the t-th timestep is:

LCDMs = Ez∼E(x),c,ϵ∼N (0,I),t[∥ϵ− ϵθ′(zt|c, t)∥22], (1)

where ϵθ′(·) denotes the denoising UNet proposed in [38, 33], and it can gradually denoise zt by
predicting the noisy estimation ϵθ′(zt|c, t) as Gaussian noise ϵ ∼ N (0, I). In the paper, θ′ = θ0+△θ
consists of the pretrained parameter θ0 = {Wl

0}Ll=1 in LDMs [39, 33] and low-rank parameter
△θ = {△Wl}Ll=1 updated by LoRA [22, 11]. Wl

0,△Wl ∈ Ra×b denote the pretrained weight
and low-rank weight in the l-th (l = 1, · · · , L) transfromer layer of θ′, respectively. a and b are the
row and column of matrices. As introduced in [40, 68], △Wl = AlBl can be decomposed as two
low-rank factors Al ∈ Ra×r and Bl ∈ Rr×b, where r ≪ min(a, b) denotes the rank.

However, most CDMs [11, 12, 9, 28] assume that the number of users’ personalized concepts remains
constant over time. This assumption is unrealistic in real-world applications, where users wish to
consecutively generate a series of new personalized concepts based on their preferences. More
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importantly, they significantly suffer from catastrophic forgetting [36] of old personalized concepts
and concept neglect when performing versatile customization in a concept-incremental manner.

Problem Definition: To address the above challenges, we propose a new practical problem named
Concept-Incremental Flexible Customization (CIFC). In the CIFC, there is a series of consecutive text-
guided concept customization tasks T = {Tg}Gg=1, where G denotes the task quantity. According to
users’ personal preferences, the g-th task Tg = {xk

g ,p
k
g ,y

k
g}

ng

k=1, which includes ng triplets of image
xk
g , text prompt pk

g , and its concept tokens yk
g ∈ Yg, belongs to one of the versatile customization

categories: multi-concept generation [69], style transfer [67] and image editing [3]. Here, pk
g indicates

the textual description of xk
g (e.g., photo of a [V∗] [Vdog]), whereas yk

g denotes the concept tokens
(e.g., [V∗] [Vdog]) in pk

g . Yg is concept space of the g-th task, and it comprises Cg new personalized
concepts yg = ∪ng

k=1y
k
g in the g-th task. Particularly, the concept spaces between any two tasks

have no overlap: Yg ∩ (∪g−1
i=1Yi) = ∅. It implies that Cg new concepts in the g-th task are different

from
∑g−1

i=1 Ci old personalized concepts from g−1 old tasks under the CIFC setting. Considering
the practicality of the CIFC setting, we don’t allocate any memory storage to store or replay the
training data of all tasks {Tg}Gg=1, ensuring that all concept customization tasks are learned in a
concept-incremental manner. The CIFC setting can continually learn new personalized concepts in a
concept-incremental manner for versatile customization while tackling the forgetting on old concepts.

4 The Proposed Model

Fig. 1 shows the diagram of our concept-incremental diffusion model (CIDM) to tackle the CIFC
problem. It includes (a) a concept consolidation loss in Sec. 4.1 and (b) an elastic weight aggregation
module in Sec. 4.2 to resolve catastrophic forgetting during training and inference. Additionally, it
encompasses (c) a context-controllable synthesis strategy in Sec. 4.3 to address concept neglect.

4.1 Concept Consolidation Loss

In order to learn the g-th text-guided concept customization task Tg, we use the LoRA [14, 38] to
finetune the pretrained denoising UNet ϵθ0(·) on personalized data {xk

g ,p
k
g ,y

k
g}

ng

k=1 by optimizing
Eq. (1), and then obtain an updated model ϵθ′

g
(·), where θ′g = θ0 + △θg, △θg = {△Wl

g}Ll=1,
and △Wl

g = Al
gB

l
g ∈ Ra×b is the updated low-rank weight in the l-th layer. Al

g ∈ Ra×r and
Bl

g ∈ Rr×b are low-rank factors. As introduced in [14, 60], △θg can encode most of Cg personalized
concept identity within the g-th task. To address the CIFC problem, a trivial solution for learning
the g-th task is to store the updated low-rank weights of all tasks {Ti}gi=1 learned so far, and then
linearly merge them by evaluating their contributions [59, 65] during training. However, it may result
in substantial loss of individual characteristics within some personalized concepts, when learning new
concepts continually in the CIFC setting. This phenomenon is referred to as catastrophic forgetting
on old personalized concepts. To mitigate catastrophic forgetting during training, as show in Fig. 1(a),
we develop a concept consolidation loss LCCL to explore task-specific and task-shared knowledge.

Task-Specific Knowledge indicates distinctive characteristics of personalized concepts within each
concept customization task. To explore this knowledge, we introduce learnable layer-wise concept
tokens to better preserve unique attributes of personalized concepts in the synthesized images. It is
significantly different from existing textual inversion methods [9, 67, 53] that inject a unified text
prompt into all transformer layers of ϵθ′

g
(·). For a triplet {xk

g ,p
k
g ,y

k
g} in the g-th task, we define L

layer-wise text prompts as {pk,l
g }Ll=1, where pk,l

g has its own learnable layer-wise concept tokens yk,l
g

in the l-th transformer layer. For example, given a textual description pk
g (photo of a [V∗] [Vdog]) of

image xk
g , its text prompt of the l-th layer is defined as pk,l

g (photo of a [V l
∗ ] [V l

dog]), and [V l
∗ ] [V l

dog]
indicates learnable concept tokens yk,l

g in the l-th layer. After using pk
g to initialize {pk,l

g }Ll=1, we
inject the textual embedding ck,lg = Γ(pk,l

g ) encoded via the text encoder Γ(·) into the l-th layer of
ϵθ′

g
(·). When we train ϵθ′

g
(·) via Eq. (1), the learnable layer-wise concept tokens can capture unique

characteristics of old personalized concepts from different layers to surmount catastrophic forgetting.

However, the discriminative ability of task-specific knowledge to distinguish different personalized
concepts can significantly deteriorate as the number of concept customization tasks gradually increases
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under the CIFC settings. To tackle this issue, we devise an orthogonal subspace regularizer to constrain
the low-rank weights of different customization tasks. It can enhance the discriminative ability of
task-specific knowledge by ensuring the orthogonality of concept subspaces across different tasks.
Given the low-rank weight △θg = {△Wl

g}Ll=1 in the g-th task, △Wl
g = Al

gB
l
g can be regarded as

consisting of the low-rank concept subspace Al
g = [al,1g , · · · ,al,rg ] ∈ Ra×r and its linear weighting

matrix Bl
g = [bl,1

g , · · · ,bl,r
g ]⊤ ∈ Rr×b, where bl,i

g ∈ Rb denotes the linear weighting coefficients of
al,ig ∈ Ra (i = 1, · · · , r). In the g-th task, we perform the orthogonal subspace regularizer on the
low-rank concept subspaces of different tasks:

∑g−1
i=1

∑L
l=1 A

l
i(A

l
g)

⊤ = 0. Since the orthogonal
constraint is not differentiable, we propose an alternative optimization strategy that minimizes the
absolute value of the inner product between different subspaces: R1 =

∑g−1
i=1

∑L
l=1 A

l
i(A

l
g)

⊤.

Task-Shared Knowledge represents the shared semantic information across different tasks with se-
mantically similar concepts, which is beneficial to address catastrophic forgetting on old personalized
concepts. To capture task-shared knowledge, we propose to learn a layer-wise common subspace
Wl

∗ ∈ Ra×b shared across different tasks in the l-th layer. Given the low-rank weights {△θi}gi=1

learned so far, the learnable projection matrix Hl
i ∈ Ra×a can encode common semantic information

of {△θi}gi=1 into Wl
∗ via R2 =

∑g
i

∑L
l ∥△Wl

i − Hl
iW

l
∗∥2F . Therefore, in the g-th task, the

concept consolidation loss LCCL to learn both task-specific and task-shared knowledge is defined as:

LCCL = Ez∼E(xk
g),c

k
g ,ϵ∼N (0,I),t[∥ϵ− ϵθ′

g
(zt|ckg , t)∥22 + γ1R1 + γ2R2], (2)

where ckg = {ck,lg }Ll=1 indicates L layer-wise textual embeddings, γ1 and γ2 are balance parameters.

Two-Step Optimization: To train the proposed CIDM via Eq. (2) in the g-th task, we devise a
two-step optimization strategy in each training batch. Firstly, to capture task-specific information,
we utilize Eq. (2) to update the learnable layer-wise concept tokens and low-rank weight △θg =
{△Wl

g}Ll=1, when fixing Hl
i and Wl

∗. Secondly, to explore task-shared knowledge, we fix △θg
and the learnable layer-wise concept tokens, and then only use R2 in Eq. (2) to update Hl

i and
Wl

∗ respectively. Notably, the detailed optimization procedure is shown in the appendix section
(Sec. A.1). After utilizing the two-step optimization strategy to learn the g-th concept customization
task, we can obtain the task learner Zg = {△Wl

g, ŷ
l
g}Ll=1, where ŷl

g = {ŷl,i
g }Cg

i=1, and ŷl,i
g is the i-th

(i = 1, · · · , Cg) concept token learned at the l-th transformer layer through Eq. (2).

4.2 Elastic Weight Aggregation

To tackle catastrophic forgetting on old personalized concepts during inference, as shown in Fig. 1(b),
we store g task learners {Zi}gi=1 learned so far (g ≥ 2), and develop an elastic weight aggregation
(EWA) module to adaptively merge them for versatile concept customization. Note that the memory
storage of storing Zi (i = 1, · · · , g) only accounts for 0.25% of the pretrained model θ0, making it
negligible in practical applications. Specifically, given a text prompt p̂ for inference, we use it to
initialize layer-wise text prompts {p̂l}Ll=1 and extract their textual embeddings ĉ = {ĉl ∈ Rne×d}Ll=1
via text encoder Γ(·), where ne and d denote the token number and feature dimension, respectively.
Given the stored task learners {Zi}gi=1, we can collect all concept tokens {Φl}Ll=1 learned so far,
where Φl = ∪g

i=1ŷ
l
i ∈ Rnc consists of nc =

∑g
i=1 Ci concept tokens learned in the l-th layer. After

Γ(·) encodes {Φl}Ll=1 to latent embeddings {el ∈ Rnc×d}Ll=1, we average those latent embeddings
belonging to the same task to obtain new embeddings {êl ∈ Rg×d}Ll=1 (g is number of tasks learned
so far). Subsequently, we compute semantic relations M ∈ Rg between ĉl and êl, and use M to
adaptively merge low-rank weights {△Wl

i}
g
i=1 of all learned tasks in the l-th layer. Therefore, the

merged low-rank weight △Ŵl in the l-th transformer layer can be formulated as follows:

M = max
(
ĉl · (êl)⊤

)
, △Ŵl =

∑g

i=1
△Wl

i · ψ(M)i, (3)

where max(·) denotes the maximization function along the row axis. ψ(M) = M2/∥M2∥F ∈ Rg

is used to normalize the semantic relations M, and ψ(M)i is the i-th element of ψ(M).

Inference: After employing Eq. (3) to merge all low-rank weights learned so far, we obtain a new
denoising UNet ϵθ′

∗
(·) for inference, where θ′∗ = θ0 +△θ∗, and △θ∗ = {△Ŵl}Ll=1. Notably, θ′∗

has encoded substantial distinctive attributes of all personalized concepts learned so far, which can
effectively mitigate the catastrophic forgetting of old concepts during inference.
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Task 1: V1 Task 2: V2 Task 3: V3 Task 4: V4 Task 5: V5 Task 6: V6 Task 7: V7 Task 8: V8 Task 9: V9 Task 10: V10

L2DM

V2 duck toy in time square

Sun rises among the mountains in the V6 style 

V5 teddy bear on a skateboard

A wooden house in the V10 style

A child playing with a V4 backpack

Figure 2: Some qualitative comparisons of single-concept customization generated by SD-1.5 [38].

4.3 Context-Controllable Synthesis

When we directly use ϵθ′
∗
(·) obtained via Sec. 4.2 to perform multi-concept customization under the

CIFC setting, it cannot generate high-fidelity images according to users-provided conditions (e.g.,
scribble or bounding box [24]), and heavily suffers from the challenge of concept neglect [1] (i.e.,
some concepts are missing in the synthesized images). Thus, as shown in Fig. 1(c), we devise a
context-controllable synthesis strategy to address the conditional generation and concept neglect.

Conditional Generation: Besides the initial text prompt p̂ defined in Sec. 4.2, users can provide
U pairs of region conditions {p̂u, ŝu}Uu=1, where ŝu is the bounding box to synthesize concepts
related to the u-th region text prompt p̂u. Then we use Γ(·) to extract layer-wise textual embeddings
ĉu = {ĉlu ∈ Rne×d}Ll=1 for p̂u. Given the initial text prompt p̂, we can use the new denoising UNet
ϵθ′

∗
(·) in Sec. 4.2 to obtain its feature map f l ∈ Rhl×wl×d in the l-th transformer layer encoded by

textual embedding ĉl, where hl and wl are height and width of f l. Different from [22], we perform
layer-wise regional cross-attention between textual embedding ĉlu and f l to obtain the u-th region
feature f lu ∈ Rhl

u×wl
u×d in the l-th layer, where hlu and wl

u are height and width of bounding box ŝu.
Specifically, f lu = σ(Ql(Kl

u)
⊤/

√
d) ·Vl

u, where σ(·) is sigmoid function, Ql = Ω(f lwq ⊙ m̂l
u) ∈

Rhl
u×wl

u×d,Kl
u = ĉluwk ∈ Rne×d and Vl

u = ĉluwv ∈ Rne×d. m̂l
u ∈ Rhl×wl

is the binary region
mask in the l-th layer, where the values inside the bounding box ŝu are set to 1. Ω(·) can retain only
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Task 1: V1 Task 2: V2 Task 3: V3 Task 4: V4 Task 5: V5 Task 6: V6 Task 7: V7 Task 8: V8 Task 9: V9 Task 10: V10

OursLoRA-CLoRA-ML2DMCLoRAEWCRegion Boxes

ITP: anime artwork of a magic castle.  RTP: V1 dog | V3 cat wearing wizard hat and wizard cloak, anime style. 

V1 
dog V3 

cat

ITP: a bedroom.  RTP: V1 dog sitting on a bed | V9 dog | V3 cat | V7 cat. 

V1 
dog

V7 
dog

V3 
cat

V9 
cat

ITP: a resplendent palace.  RTP: V1 dog wearing a suit, sitting on a throne | V5 teddy bear | V3 cat.

V1 
dogV5 

teddy
bear

V3 
cat

ITP: the surface of moon in fiction style.  RTP: V3 cat | V1 dog | V9 dog walking on the surface of moon.

V1 
dog

V9 
dog

V3 
cat

V5 

teddy
bear

V7 
dog

V9 
cat

ITP: a football field with audience background.  RTP: V7 dog | V5 teddy bear | V9 cat wearing a medal.

Figure 3: Some qualitative comparisons of multi-concept customization generated by SDXL [33],
where ITP indicates the initial text prompt, and RTP denotes the region text prompt.

the features inside ŝu, and ⊙ is the Hardmard product. wq,wk,wv ∈ Rd×d are mapping matrices
in the new denoising UNet ϵθ′

∗
(·). Then, the values of f l inside the bounding boxes {ŝu}Uu=1 are

respectively replaced with the corresponding region features {f lu}Uu=1 to obtain a new feature map f̂ l.
We apply the layer-wise regional cross-attention to all layers of ϵθ′

∗
(·) for conditional generation.

Multi-Concept Composition: After integrating the above conditional generation into the new
denoising UNet ϵθ′

∗
(·), inspired by [13], we can obtain the noise estimation Et = ϵθ′

∗
(zt|t) + s ·

(ϵθ′
∗
(zt|ĉ, t)− ϵθ′

∗
(zt|t)) ∈ RhL×wL×dL for the initial text prompt p̂, where Et is the output of the

L-th transformer layer in ϵθ′
∗
(·) at the t-th timestep. hL, wL, dL are the height, width and channel of

Et, respectively. ϵθ′
∗
(zt|t) is the unconditional noise estimation, ϵθ′

∗
(zt|ĉ, t) is the conditional noise

estimation based on the textual embeddings ĉ, and s = 7.5 denotes the scale. Therefore, the noise
estimation Et

u ∈ RhL×wL×dL for the u-th region condition {p̂u, ŝu} can be formulated as follows:

Et
u = ϵθ′

∗
(zt|t) + s · (ϵθ′

∗
(zt|[ĉu, ŝu], t)− ϵθ′

∗
(zt|t)), (4)

where ϵθ′
∗
(zt|[ĉu, ŝu], t) is the conditional noise estimation based on [ĉu, ŝu]. For multi-concept

customization in the CIFC, we aggregate U region noise estimations to address concept neglect:

Et
∗ = αEt +

∑U

u=1
(1− α)Et

u ⊙ m̂L
u , (5)
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where m̂L
u ∈ RhL×wL is the binary region mask of the bounding box ŝu in the L-th layer. α is the

balance weight. Following [38, 33], we forward Et
∗ to the denoising process for image synthesis.

5 Experiments

5.1 Experimental Setups
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Figure 4: Comparisons of custom image editing.

Benchmark Dataset: Motivated by [47,
11, 45], in this paper, we construct a new
challenging concept-incremental learning
(CIL) dataset including ten continuous text-
guided concept customization tasks to il-
lustrate the effectiveness of our model un-
der the CIFC setting. In the CIL dataset,
seven customization tasks have different
object concepts (i.e., V1 dog, V2 duck toy,
V3 cat, V4 backpack, V5 teddy bear, V7
dog and V9 cat) from [40, 22], and the
remaining three tasks have different style
concepts (i.e., V6, V8 and V10 styles) col-
lected from website. Considering the prac-
ticality of the CIFC setting, we set about
3 ∼ 5 text-image pairs for each task. Par-
ticularly, we introduce some semantically
similar concepts (e.g., V1 and V7 dogs,
V3 and V9 cats), making the CIL dataset
more challenging under the CIFC setting.

CLoRA OursL2DMInput
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Figure 5: Comparisons of custom style transfer.

Implementation Details: We utilize two
popular diffusion models: Stable Diffusion
(SD-1.5) [38] and SDXL [33] as the pre-
trained models to conduct comparison ex-
periments. For fair comparisons, we train
all SOTA comparison methods and our
model using the same backbone and Adam
optimizer, where the initial learning rate is
1.0× 10−3 to update textual embeddings,
and 1.0× 10−4 to optimize the denoising
UNet. For the low-rank matrices, we fol-
low [11] to set r = 4. We empirically set
γ1 = 0.1, γ2 = 1.0 in Eq. (2), α = 0.1 in
Eq. (5), and the training steps are 800.

Evaluation Metrics: After learning the fi-
nal concept customization task under the
CIFC setting, we conduct both the qualita-
tive and quantitative evaluations on versa-
tile generation tasks: single/multi-concept
customization, custom image editing, and
custom style transfer. For the quantita-
tive evaluation, we follow [22] to use text-
alignment (TA) and image-alignment (IA) as metrics. Specifically, for image-alignment (IA), we use
the image encoder of CLIP [34] to evaluate the feature similarity between the synthesized image and
original sample. For text-alignment (TA), we utilize the text encoder of CLIP [34] to compute the
text-image similarity between the synthesized image and its corresponding prompt.

5.2 Qualitative Comparisons

To verify the superiority of our model under the CIFC setting, we introduce extensive qualitative
comparisons, including single/multi-concept customization (see Figs. 2–3), custom image editing
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Table 1: Comparisons (IA) of single-concept customization synthesized by SD-1.5 and SDXL.

Methods SD-1.5 [38] SDXL [33]
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Avg. V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Avg.

Finetuning 77.6 82.2 79.0 77.6 79.6 62.9 71.5 53.7 81.4 72.1 73.7 62.0 70.8 79.1 73.4 76.4 67.5 76.8 57.4 77.1 74.8 71.5
EWC [20] 78.7 83.8 80.4 80.3 80.7 64.0 76.5 57.1 84.4 73.1 75.9 83.6 80.5 84.6 80.8 79.2 70.1 80.5 61.2 79.5 75.8 77.6
LWF [25] 80.4 79.7 80.9 77.4 80.9 61.8 73.2 53.5 78.1 74.7 74.1 84.0 81.2 84.2 81.7 79.7 68.1 77.1 60.1 76.3 72.7 76.5
LoRA-M [69] 80.0 84.2 79.1 76.5 82.7 65.7 70.1 54.7 79.5 74.1 74.6 82.6 79.9 84.5 80.1 80.9 57.8 77.0 54.0 71.8 74.0 74.3
LoRA-C [69] 80.1 84.1 79.8 76.6 82.9 65.9 70.8 54.9 79.9 74.4 74.9 82.8 80.4 84.8 80.0 81.0 58.2 76.8 54.5 72.2 73.9 74.5
CLoRA [45] 83.2 83.4 81.1 80.6 84.9 66.3 76.2 58.1 83.0 72.1 76.9 83.4 81.3 85.8 80.1 79.0 70.4 81.2 61.7 78.5 76.7 77.8
L2DM [47] 78.7 86.3 76.6 80.7 86.8 70.8 70.0 59.3 77.7 74.1 76.1 84.6 79.5 81.9 75.5 82.1 69.2 80.9 63.8 77.0 76.4 77.1

CIDM (Ours) 83.6 86.4 82.9 80.8 86.5 69.5 73.7 56.9 82.4 75.9 78.0 87.1 82.1 88.5 84.9 85.8 68.3 82.0 62.4 76.9 76.6 79.5

Table 2: Comparisons (TA) of single-concept customization synthesized by SD-1.5 and SDXL.

Methods SD-1.5 [38] SDXL [33]
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Avg. V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Avg.

Finetuning 64.4 74.6 69.4 68.6 75.0 70.0 76.7 69.2 65.4 67.2 70.0 54.8 77.5 72.2 85.0 80.5 76.2 79.7 73.6 77.6 76.3 75.3
EWC [20] 67.1 77.5 72.7 77.9 76.7 72.3 74.2 72.0 66.0 70.4 72.7 71.4 79.8 72.8 84.4 79.5 73.9 76.7 77.0 78.3 77.6 77.1
LWF [25] 70.8 75.2 71.0 77.4 76.0 71.7 76.3 72.9 72.5 70.0 73.4 75.8 76.9 76.0 83.6 82.9 75.1 76.7 74.3 79.1 76.8 77.7
RPY [25] 68.1 76.2 70.1 78.4 75.7 69.3 74.8 70.5 65.8 68.6 71.8 69.3 81.0 71.9 87.3 78.8 71.5 76.4 75.9 79.7 76.2 76.8
CLoRA [45] 69.4 78.0 74.1 78.8 76.4 69.6 76.7 73.9 69.0 71.8 73.6 71.8 80.1 71.1 87.7 81.2 74.6 77.8 77.7 80.1 75.9 77.8
L2DM [47] 68.6 79.5 70.1 73.0 76.7 67.7 75.9 74.1 71.8 69.4 72.7 72.6 78.4 78.5 85.0 81.5 73.5 78.6 79.1 81.9 77.8 78.7

CIDM (Ours) 75.3 78.1 74.0 81.1 78.2 70.1 74.7 74.3 73.5 70.2 74.8 74.9 79.6 74.5 86.7 83.5 79.8 78.2 83.1 81.4 78.5 80.0

(see Fig. 4), and custom style transfer (see Fig. 5). 1) As presented in Fig. 2, the proposed model
achieves the best performance for single-concept customization by addressing catastrophic forgetting
of old personalized concepts and preserving superior attributes of each learned concept. 2) For
multi-concept customization, we incorporate the regionally controllable sampling module proposed
in [11] into existing comparison methods to fairly compare them with our model. As shown in
Fig. 3, all comparison methods significantly suffer from the challenge of concept neglect, and they
are difficult to generate multiple object concepts. In contrast, our proposed model can effectively
tackle the challenge of concept neglect via the proposed context-controllable synthesis strategy. 3) To
perform custom image editing, we introduce Anydoor [3] as a plug-in for all comparison methods
in Fig. 4. The qualitative comparisons in Fig. 4 reflect the effectiveness of our model in custom
image editing. Such substantial improvement benefits from the superior performance of our concept
consolidation loss to preserve unique identity of each learned concept under the CIFC setting. 4)
Fig. 5 shows qualitative comparisons of custom style transfer. Our proposed model presents the best
performance for image-to-image style transfer, since the elastic weight aggregation can preserve style
integrity in the CIFC setting. The above qualitative comparisons in Figs. 2–5 verify that the proposed
model can significantly surpass existing latent diffusion models to tackle the CIFC problem.

5.3 Quantitative Comparisons Table 3: Ablation studies of single-concept customization.

Variants TSP TSH EWA V1–V5 V6–V10 Avg.

Baseline 80.4 68.8 74.6
Baseline w/ EWA ✓ 83.7 70.8 77.3
Ours w/o TSP ✓ ✓ 83.7 71.0 77.4
Ours w/o TSH ✓ ✓ 83.9 71.4 77.7

CIDM (Ours) ✓ ✓ ✓ 84.0 71.7 77.9

To analyze quantitative comparisons
between our model and SOTA meth-
ods, we follow [11, 22, 45, 47] to
introduce 20 evaluation prompts for
each concept and generate 50 images
for each evaluation prompt, resulting
in a total of 1,000 synthesized images.
Then quantitative evaluation is con-
ducted on these 1,000 images. As shown in Tabs. 1–2, we can observe that our CIDM outperforms
all comparison methods by 1.1% ∼ 8.0% in terms of image-alignment (IA) and 1.2% ∼ 4.8% in
terms of text-alignment (TA). It illustrates that our model can effectively preserve unique identity of
each learned concept to tackle the CIFC problem. Compared to other SOTA methods, our proposed
model achieves better performance in mitigating catastrophic forgetting, as the introduced concept
consolidation loss captures task-specific information and task-shared knowledge through two-step
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Figure 6: Ablation analysis of CSS in multi-concept customization.

optimization during training. Moreover, the elastic weight aggregation module proposed in this paper
effectively merges previous personalized concepts for customization during inference.

5.4 Ablation Studies

Baseline Baseline 

w/ TSI

Baseline 

w/ TSI & TSK

Input

V9 cat sit on 

the chair

V7 dog

in the forest

V5 teddy bear in 

rainbow colors

Figure 7: Ablation studies of the TSP and TSH.

This subsection analyzes the effective-
ness of each module in our model: elas-
tic weight aggregation (EWA), context-
controllable synthesis (CCS), task-specific
knowledge (TSP) and task-shared knowl-
edge (TSH) in the concept consolidation
loss (CCL). Tab. 3 presents the ablation
studies of single-concept customization in
terms of IA. When compared with Baseline,
the performance of our model improves
by 0.2% ∼ 3.3% in terms of IA, after we
add the proposed TSP, TSH and EWA mod-
ules. It demonstrates the effectiveness of
our model in resolving the CIFC problem
by addressing the catastrophic forgetting
and concept neglect. As shown in Fig. 6,
we analyze the effectiveness of CCS in
multi-concept customization, where CCS
includes the layer-wise regional cross-attention (RCA) and the region noise estimation (RNE) mod-
ules. In Fig. 6, the performance of our model decreases substantially when removing the RCA and
RNE modules. It verifies the effectiveness of our CCS startegy in addressing conditional generation
and concept neglect. Moreover, Fig. 7 shows ablation analysis about TSP and TSH. It illustrates
that our model can capture task-specific information within each customization task and explore
task-shared knowledge across different tasks to tackle the CIFC problem via optimizing Eq. (2).

6 Conclusion

In this paper, we propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM) to
address a practical Concept-Incremental Flexible Customization (CIFC) problem, where the CIFC
problem has two major challenges: catastrophic forgetting and concept neglect. Specifically, we
devise a concept consolidation loss and an elastic weight aggregation module to respectively resolve
catastrophic forgetting during training and inference. They can capture task-specific/task-shared
knowledge and aggregate all low-rank weights of old concepts according to their contributions in the
CIFC. To address concept neglect, we propose a new context-controllable synthesis strategy, which
can control the contexts of synthesized images according to users-provided conditions. Extensive
experiments on versatile customization tasks (single/multi-concept customization, custom image
editing and style transfer) show the superior performance of our CIDM in tackling the CIFC problem
compared to SOTA methods. In the future, we will leverage multi-modal large language models to
address the CIFC problem and apply the proposed model to personalized video generation.
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A Appendix

A.1 Optimization pipeline

As shown in Algorithm 1, we introduce the detailed algorithm pipeline of our proposed CIDM
to tackle the CIFC problem. For the first text-guided concept customization task (g = 1) in the
training process, we only utilize Eq. (1) to optimize the textual embeddings of layer-wise concept
tokens and low-rank weight △θg = {△Wl

g}Ll=1. When g ≥ 2, we devise a two-step optimization
strategy in each training batch to efficiently train our CIDM via Eq. (2). It can continually learn
new personalized concepts under the CIFC setting, while overcoming catastrophic forgetting of old
personalized concepts by exploring both task-specific and task-shared knowledge during training.

1) In the first step, we fix Hl
i and Wl

∗ to update learnable layer-wise concept tokens and low-rank
weight △θg = {△Wl

g}Ll=1 via minimizing the loss LCCL in Eq. (2). Particularly, the loss LCCL can
capture task-specific knowledge (i.e. unique concept attributes within each customization task).

2) In the second step, in order to explore task-shared knowledge across different tasks, we fix the
learnable layer-wise concept tokens and low-rank weight △θg to update Hl

i and Wl
∗ via minimizing

the regulaizer R2 =
∑g

i=1

∑L
l=1 ∥△Wl

i −Hl
iW

l
∗∥2F . As a result, the gradients of R2 with respect

to Hl
i and Wl

∗ are formulated as follows:

∂R2

∂Hl
i

= −2(△Wl
i −Hl

iW
l
∗)(W

l
∗)

⊤,
∂R2

∂Wl
∗
= −2(Hl
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⊤(△Wl

i −Hl
iW

l
∗). (6)

Given the gradients ∂R2/∂H
l
i and ∂R2/∂W

l
∗ in Eq. (6), we can iteratively update Hl

i and Wl
∗ via

the following objective:

Hl
i := Hl

i + η
∂R2

∂Hl
i

, Wl
∗ := Wl

∗ + η
∂R2

∂Wl
∗
, (7)

where η denotes the learning rate to update Hl
i and Wl

∗. In this paper, we set the value of η to be the
same as the learning rate of the Adam optimizer.

A.2 Experiment Setups

This subsection introduces more details about dataset, comparison methods and evaluation metrics.

Dataset: Inspired by [47, 11, 45], we construct a new challenging concept-incremental learning (CIL)
dataset including ten continuous text-guided concept customization tasks to verify the effectiveness
of our model under the CIFC setting. In the CIL dataset, as shown in Fig. 8, seven tasks have different
object concepts (i.e., V1 dog, V2 duck toy, V3 cat, V4 backpack, V5 teddy bear, V7 dog and V9
cat) from [40, 22], and the remaining three tasks have different style concepts (i.e., V6, V8 and
V10 styles) collected from website. Considering the practicality of the CIFC setting, we set about
3 ∼ 5 text-image pairs for each task, where the text prompts are extracted by BLIP [23]. Particularly,
different from L2DM [47] and Mix-of-Show [11], we introduce some semantically similar concepts
(e.g., V1 and V7 dogs, V3 and V9 cats), making the CIL dataset more challenging in the CIFC setting.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

Task 1: V1 Task 2: V2 Task 3: V3 Task 4: V4 Task 5: V5

Task 6: V6 Task 7: V7 Task 8: V8 Task 9: V9 Task 10: V10

3

1.   A [V*] in the swimming pool

2.   A [V*] in front of Eiffel tower

3.   A [V*] near the mount fuji

4.   A [V*] in the forest

5.   A [V*] walking on the street

6.   A [V*] cyberpunk 2077, 4K, 

    3d render in unreal engine

7.   A watercolor painting of a [V*] 

8.   A painting of a [V*] in the style 

      of Vincent Van Gogh

9.   A painting of a [V*] in the style 

     of Claude Monet

10. A [V*] in the style of Pixel Art

11. A [V*] sit on the chair

12. A [V*] on the boat

13. A [V*] wearing a headphone

14. A [V*] wearing a sunglass

15. A [V*] playing with a ball

16. A sad [V*] 

17. An angry [V*] 

18. A running [V*] 

19. A jumping [V*] 

20. A [V*] is lying down

3

1.   A [V*] in the ocean

2.   A [V*] near the Eiffel tower

3.   A [V*] near the mount fuji

4.   A [V*] in the forest

5.   A [V*] in times square

6.   A [V*] cyberpunk 2077, 4K, 3d    

   render in unreal engine

7.   A watercolor painting of a [V*] 

8.   A painting of a [V*] in the style 

      of Vincent Van Gogh

9.   A painting of a [V*] in the style 

      of Claude Monet

10. A [V*] in the style of Pixel Art

11. A [V*] on a table

12. A [V*] on a chair

13. A [V*] on a skateboard

14. A child is playing a [V*] 

15. A [V*] on a carpet

17. A close view of [V*] 

16. A top view of [V*] 

18. A [V*] in rainbow colors

19. A fallen [V*] 

20. A broken [V*] 

1.   A [V*] of a tree, mountain and moon

2.   A [V*] of a wooden house

3.   A [V*] of a bridge over the river with 

      mountain background

4.   A [V*] of a waterfalls appearing among 

      mountains

5.   A [V*] of sun rises among mountains

6.   A [V*] of flowers, grass and river

7.   A [V*] of a boat on a lake

8.   A [V*] of a dragon with the cloud 

      background

9.   A [V*] of a cliff with a sky and moon 

      background

10. A [V*] of mountains, moon and clouds

11. A [V*] of a smile girl

12. A [V*] of a dog

13. A [V*] > of a cat

14. A [V*] of a snow, tree and clouds

15. A [V*] of a panda

16. A [V*] in the style of Vincent Van Gogh

17. A [V*] in the style of Claude Monet

18. A watercolor painting of a [V*] 

19. A [V*] in the style of Pixel Art

20. A [V*] cyberpunk 2077, 4K, 

Prompts for pet Prompts for object Prompts for style
Figure 8: Visualization of some examples in ten consecutive concept customization tasks.
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Figure 9: Descriptions of text prompts used in this paper.

Algorithm 1: Algorithm Pipeline of The Proposed CIDM.
Initialize: The pretrained denoising UNet ϵθ(·), a sequence of text-guided concept customization tasks
T = {Tg}Gg=1 and the pretrained CLIP text encoder Γ(·);

▷ Training for The g-th Task:
Initialize: Low-rank weight △θg = {△Wl

g}Ll=1;
for (xk

g ,p
k
g ,y

k
g ) in Tg do

Initialize the layer-wise text prompts {pk,l
g }Ll=1;

Obtain the layer-wise textual embeddings ck,lg via Γ(pk,l
g );

if g ≥ 2 then
Update the learnable layer-wise concept tokens and △θg via Eq. (2) when fixing Hl

i and Wl
∗;

Update Hl
i and Wl

∗ via Eq. (7) when fixing the learnable layer-wise concept tokens and △θg;
else

Update the learnable layer-wise concept tokens and △θg via Eq. (1);

Return: Task learner Zg = {△Wl
g, ŷ

l
g}Ll=1 of the g-th concept customization task Tg .

▷ Inference:
Initialize: All learned task learners {Zi}Gi=1; initial text prompt p̂ and region conditions {p̂u, ŝu}Uu=1;
for l in {1, 2 . . . , L} do

Update the low-rank weights △Ŵl via Eq. (3) to obtain a new denoising UNet ϵθ′∗(·);
for t in {T, T − 1, · · · , 1} do

for {p̂u, ŝu} in {p̂u, ŝu}Uu=1 do
for l in {1, 2 . . . , L} do

Obtain the u-th region feature f lu; Replace the values of f l inside the bounding box ŝu with f lu;
Obtain the u-th region noise estimation Et

u via Eq. (4);
Use Et

∗ in Eq. (5) to update the noisy latent feature from zt to zt−1;
Return: The generated image x̂ = D(z1).

Comparison Methods: To comprehensively demonstrate the superior performance of our model,
we introduce eight SOTA comparison methods, including four continual learning-based methods
(i.e., Finetuning, EWC [20], LWF [25] and RPY [25]), two continual diffusion models (i.e., CLoRA
[45] and L2DM [47]), and two multi-LoRA composition methods (LoRA-M [69] and LoRA-C [69]).
Specifically, Finetuning aims to optimize LoRA layers to learn multiple personalized concepts in
a concept-incremental manner. To address catastrophic forgetting, EWC [20] applies an elastic
regularizer to penalize the network parameters. Besides, LWF [25] stores the old training data to
perform knowledge distillation on the current task, while RPY [25] replays the old concepts [20] to
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V5 teddy bear in rainbow colors

OursLoRA-CLoRA-ML2DMCLoRALWFEWC

A watercolor painting of a V9 cat

A V7 dog wearing a sunglass

A V2 duck toy in the forest

A V1 dog in the style of Pixel Art

Task 1: V1 Task 2: V2 Task 3: V3 Task 4: V4 Task 5: V5 Task 6: V6 Task 7: V7 Task 8: V8 Task 9: V9 Task 10: V10

V1 dog walking on the street

V3 cat, cyberpunk 2077, 4K, 3d render in unreal engine

Figure 10: Some qualitative comparisons of single-concept customization generated by SD-1.5 [38].

tackle the CIFC setting. CLoRA [45] proposes a self-regularized low-rank adaption to continually
learn new personalized concepts. L2DM [47] builds a long-term memory bank to reconstruct old
personalized concepts, and performs knowledge distillation to mitigate catastrophic forgetting. LoRA-
M [69] equally amalgamates all LoRA layers to retrain the latent diffusion model. LoRA-C [69]
focuses on exploring contributions of different LoRA layers for multi-concept composition.

Evaluation Metrics: After learning the final concept customization task under the CIFC setting, we
conduct both the qualitative and quantitative evaluations on versatile generation tasks: single/multi-
concept customization, custom image editing, and custom style transfer. For the quantitative evalua-
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EWC LWF CLoRA L2DM LoRA-M Ours

V1 dog riding a bike, wearing a wizard hat

V4 backpack, cyberpunk 2077, 4K, 3d render in unreal engine

V9 cat walking on sea, anime style

V8 style of a panda is climbing a tree

V6 style of a wooden house with the mountain background

Task 1: V1 Task 2: V2 Task 3: V3 Task 4: V4 Task 5: V5 Task 6: V6 Task 7: V7 Task 8: V8 Task 9: V9 Task 10: V10

Figure 11: Some qualitative comparisons of single-concept customization generated by SDXL [33].

tion, we follow [22] to use text-alignment (TA) and image-alignment (IA) as metrics. Specifically,
for image-alignment (IA), we use the image encoder of CLIP [34] to evaluate the feature similarity
between the synthesized image and original sample. For text-alignment (TA), we utilize the text
encoder of CLIP [34] to compute the text-image similarity between the synthesized image and its
corresponding prompt. As shown in Fig. 9, we roughly categorize prompts into three categories
according to the learned concepts. To analyze quantitative comparisons between our model and SOTA
methods, inspired by [11, 22, 45, 47], we input an evaluation prompt and a unify negative prompt
to sample 50 images. Therefore, given 20 evaluation prompts in this paper, we can generate 1,000
images for each concept to evaluate performance in terms of TA and IA.

A.3 Implementation Details

In this paper, we use two popular diffusion models: Stable Diffusion (SD-1.5) [38] and SDXL [33] as
the pretrained models to conduct comparison experiments. For fair comparisons, we train all SOTA
comparison methods and our model using the same diffusion model and Adam optimizer, where
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OursLoRA-CLoRA-ML2DMCLoRAEWCRegion Boxes

V3 
cat

V1
dog

V7
dog

V1 
dog

V7 
dog

V3 
cat

V9 
cat

ITP: a bedroom.  RTP: V1 dog sitting on a bed | V7 dog | V3 cat | V9 cat. 

ITP: a street, Japanese comic style.  RTP: V1 dog | V7 dog | V3 cat walking on the street.

V1 
dog V7 

dog

ITP: a bar,  neon, sleek, ultramodern.  RTP: V1 dog | V7 dog drinking a cup of beer.

V1 
dog

V5 

teddy
bear

ITP: a street, anime style.  RTP: V1 dog | V5 teddy bear riding a bike on the street.

V1 
dog V3 

cat

ITP: anime artwork of a magic castle.  RTP: V1 dog | V3 cat wearing wizard hat, anime style.   

Task 1: V1 Task 2: V2 Task 3: V3 Task 4: V4 Task 5: V5 Task 6: V6 Task 7: V7 Task 8: V8 Task 9: V9 Task 10: V10

ITP: grass land with mountain and cloud background.  RTP: V4 backpack | V5 teddy bear sitting| V2 duck toy

V5 

teddy
bear

V4

back-
pack

V2

duck
toy

Figure 12: Some qualitative comparisons of multi-concept customization generated by SDXL [33],
where ITP indicates the initial text prompt, and RTP denotes the region text prompt.

the initial learning rate is 1.0× 10−3 to update textual embeddings, and 1.0× 10−4 to optimize the
denoising UNet. For the low-rank matrices, we follow [11] to set r = 4. Moreover, we empirically
set γ1 = 0.1, γ2 = 1.0 in Eq. (2), α = 0.1 in Eq. (5), and the training steps are 800. In this paper, we
train our model on two NVIDIA RTX 4090 GPUs. In each text-guided concept customization task,
we finetune both the textual embeddings of layer-wise concept tokens and low-rank weights via the
proposed two-step optimization strategy in Sec. A.1. For example, given a textual description pk

g

(photo of a [V∗] [Vdog]) of image xk
g in the g-th task, its text prompt of the l-th layer is defined as

pk,l
g (photo of a [V l

∗ ] [V l
dog]). After using [V∗] [Vdog] to initialize [V l

∗ ] [V l
dog] in the l-th transformer

layer, we only update the layer-wise concept tokens (e.g., [V l
∗ ] [V l

dog]). For fair comparisons in the
CIFC setting, all comparison methods and our model use the same prompt augmentation and image
augmentation during the training phase. Additionally, we set the random seed as 0 for all comparison
experiments. More importantly, we have no prior knowledge about task order, task quantity and data
distributions in the CIFC problem.
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Figure 13: Some qualitative comparisons of custom style transfer under the CIFC setting.

A.4 More Qualitative Comparisons

Single-Concept Customization: As presented in Figs. 10–11, we conduct extensive qualitative
comparisons of single-concept customization, when using Stable-Diffusion (SD-1.5) [38] and SDXL
[33] as the pretrained denoising UNet. In Fig. 11, given a text prompt (e.g., “V1 dog riding a
bike, wearing a wizard hat”) for inference, we observe that our model can effectively follow the
prompt instruction to synthesize images that preserve the superior identity of the personalized concept
“V1 dog”. In contrast, existing comparison methods suffer from significant catastrophic forgetting,
generating unpleasant images with distorted objects and unmatched identity.

Multi-Concept Customization: Fig. 12 presents comprehensive comparison experiments of multi-
concept customization. For fair comparisons with existing methods, we apply the region-aware
cross-attention module proposed in Mix-of-Show [11] into all comparison methods. The quanlitative
comparisons in Fig. 12 demonstrate the superior performance of our model in multi-concept cus-
tomization, when continually learning new personalized concepts under the CIFC setting. Particularly,
given an initial text prompt (ITP) and some region text prompts (RTP) with users-provided bounding
boxes, all comparison methods exhibit significant concept neglect and they are difficult to perform
multi-concept customization. On the one hand, it is evident that all comparison methods fail to
preserve the identity of learned concepts due to catastrophic forgetting. On the other hand, these
methods neglect some important object concepts during the synthesis process. For example, users
may want to generate an image of a V1 dog and a V7 dog drinking a cup of beer, but none of the
comparison methods can generate the V1 and V7 dogs, as shown in Fig. 12.

Custom Style Transfer: As shown in Fig. 13, we introduce some comparisons of custom style
transfer to evaluate the effectiveness of our proposed CIDM in addressing the CIFC problem. From
Fig. 13, we conclude that our model achieves the best generation performance according to user-
provided style concepts, compared to other existing methods. It verifies that the designed elastic
weight aggregation module plays a crucial role in preserving distinctive style attributes in the CIFC
setting. In contrast, existing comparison methods struggle to explore the identity of different style
concepts, due to the catastrophic forgetting and concept neglect in the CIFC setting.
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Table 4: Ablation studies (IA) of single-concept customization generated by SD-1.5 [38].
Variants TSP TSH EWA V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Avg.

Baseline 80.0 84.2 79.1 76.5 82.7 65.7 70.1 54.7 79.5 74.1 74.6
Baseline w EWA ✓ 82.7 85.8 81.9 81.4 86.5 68.2 72.8 56.1 81.8 75.2 77.3
Ours w/o TSP ✓ ✓ 82.9 85.9 81.8 81.5 86.3 68.5 72.6 56.7 82.2 75.2 77.4
Ours w/o TSH ✓ ✓ 83.3 86.3 82.9 80.6 86.6 69.4 73.2 56.7 82.3 75.6 77.7

CIDM (Ours) ✓ ✓ ✓ 83.6 86.4 82.9 80.8 86.5 69.6 73.7 57.0 82.5 75.9 77.9

A.5 More Ablation Studies

This subsection analyzes the effectiveness of each module in our model: elastic weight aggregation
(EWA), task-specific knowledge (TSP) and task-shared knowledge (TSH) in the concept consolidation
loss (CCL). As shown in Tab. 4, we introduce some quantitative ablation studies (IA) of the single-
concept customization generated by SD-1.5 [38]. As can be seen from Tab. 4, our model significantly
outperforms other variants by 0.2% ∼ 3.3% in terms of image-alignment (IA). These ablation
experiments validate that our model can effectively explore task-shared knowledge across different
customization tasks to tackle the CIFC problem during training. Moreover, it also verifies that the
proposed elastic weight aggregation module is effective to address catastrophic forgetting during
inference by aggregating different low-rank weighs according to their contributions.

A.6 Societal Impact and Limitations

Societal Impact: To tackle the practical concept-incremental flexible customization (CIFC) prob-
lem, our proposed concept-incremental text-to-image diffusion model (CIDM) aims to continually
learn new personalized concepts in a concept-incremental manner for versatile customization (e.g.,
single/multi-concept customization, custom image editing and custom style transfer), while tackling
catastrophic forgetting and concept neglect on old concepts. In particular, it allows users to continu-
ally generate a sequence of images using their new personalized concepts. Additionally, users can
control the contexts of synthesized images according to their own preferences.

Generally, the proposed CIFC setting can enable the creation of highly personalized content for
various applications such as marketing, entertainment, and education. This can lead to more engaging
and relevant experiences for users. More importantly, artists, designers, and content creators can
benefit from tools that adapt to their unique styles and preferences over time. This can foster
innovation and creativity by providing customized suggestions and automating repetitive tasks.
Additionally, it can be tailored to meet the needs of different user groups, including those with
disabilities. For example, generating personalized educational materials can cater to diverse learning
styles and needs. Consequently, the CIFC problem proposed In this paper is worth being studied.
More importantly, our proposed CIDM can achieve state-of-the-art performance in addressing the
CIFC problem, highlighting the importance of this work in promoting the development of text-to-
image diffusion models. In the CIFC, the use of personalized data to train our model may raise
privacy issues. However, this is a common concern for all latent diffusion models (LDMs). Ensuring
that user data is handled securely and ethically is paramount to prevent misuse or unauthorized access,
safeguarding both privacy and trust.

Limitations: Although we construct a concept-incremental dataset containing four semantically
similar concepts to verify the effectiveness of our model, it will still suffer from catastrophic forgetting
and concept neglect as the number of semantically similar concepts increases. The main limitation of
this work is that our model struggle to continually learn large-scale semantically similar concepts
provided by users. Thus, we will explore how to increase the scalability of our model in the future.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately claim our contributions in the abstract and introduction (see the
main paper).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Sec. A.6 for the limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide more implementation details in Sec. A.3 to reproduce the main
experimental results of this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please check the source codes at https://github.com/JiahuaDong/CIFC
to reproduce the main results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Sec. 5 and Sec. A.3, we introduce experimental setups and implementation
details about all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Sec. 5, we introduce extensive experiments to support the main claims of
the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information about the computer resources in Sec. A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please check Sec. A.6 for both potential positive societal impacts and negative
societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Please check the source codes at https://github.com/JiahuaDong/CIFC
for the descriptions of safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to Sec. 5 for the licenses of existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please check the source codes at https://github.com/JiahuaDong/CIFC.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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