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Abstract

Extracting cause and effect phrases from a sen-001
tence is an important NLP task, with numer-002
ous applications in various domains, includ-003
ing legal, medical, education, and scientific004
research. There are many unsupervised and005
supervised methods proposed for solving this006
task. Among these, unsupervised methods uti-007
lize various linguistic tools, including syntac-008
tic patterns, dependency tree, dependency re-009
lations, etc. among different sentential units010
for extracting the cause and effect phrases. On011
the other hand, the contemporary supervised012
methods use various deep learning based mask013
language models equipped with a token clas-014
sification layer for extracting cause and effect015
phrases. Linguistic tools, specifically, depen-016
dency tree, which organizes a sentence into017
different semantic units have been shown to018
be very effective for extracting semantic pairs019
from a sentence, but existing supervised meth-020
ods do not have any provision for utilizing such021
tools within their model framework. In this022
work, we propose DEPBERT, which extends a023
transformer-based model by incorporating de-024
pendency tree of a sentence within the model025
framework. Extensive experiments over three026
datasets show that DEPBERT is better than027
various state-of-the art supervised causality ex-028
traction methods.029

1 Introduction030

Automatic extraction of cause and effect phrases031

from natural language text is an important task with032

enormous applications in various fields. In medi-033

cal field, causal sentences are used for providing034

the cause and the effects associated with diseases,035

treatments, and side effects. Say, the sentence,036

“Vitamin D deficiency contributes to both the ini-037

tial insulin resistance and the subsequent onset of038

diabetes”, reflects disease causality; effectively ex-039

tracting many such cause (deficiency of Vitamin D)040

and effect (insulin resistance, diabetes) pairs (Wald041

et al., 2002; Azagi et al., 2020) from medical text042

can advance medical research. In fact, in medical 043

research, causality analysis provides the founda- 044

tion for generating complex hypotheses on which 045

new research can be designed. Causal sentences 046

are also used in legal fields for determining liability 047

and responsibility. Consider a sentence like, “The 048

company’s failure to adhere to safety regulations 049

resulted in a workplace accident." Here, the causal 050

link between the company’s actions (not adhering 051

to safety regulations) and the accident is evident. 052

Methodologies for automatic extraction of such 053

causal relationships from legal texts can be use- 054

ful for building an AI-based legal assistant. In the 055

service field, an AI-based chatbot can provide diag- 056

nostic services to customers if cause-effect phrases 057

from instruction manuals can be mined effectively 058

and accurately. 059

Due to the importance of causality extraction, 060

several works (Atkinson and Rivas, 2008; Lee and 061

Shin, 2017; Zhao et al., 2018; An et al., 2019b; 062

Sorgente et al., 2013b; Kabir et al., 2022; An et al., 063

2019a) have been proposed, which either identify 064

causal relations from sentences or extract cause 065

and effect pairs to build causal networks. These 066

existing works either use a set of known syntactic 067

patterns to extract the cause and effect entities or 068

use traditional supervised learning models (such as, 069

SVM) to identify those entity pairs. Considering 070

the cause and effect pairs as name entities, exist- 071

ing methods focus on entity extraction, and they 072

performed well when the causes and effects are 073

name entities, or noun phrases, such as, the name 074

of diseases, medications, or genes. There is another 075

group of research focusing on deep learning based 076

methods for causality extraction(Li et al., 2019; 077

Dasgupta et al., 2018). They mainly transform the 078

causality extraction into a token-classification task. 079

Within this group, Chansai etc al. (Chansai et al., 080

2021) fine tunes different learning methods (De- 081

vlin et al., 2018; Bojanowski et al., 2016; Touvron 082

et al., 2023) to make those amenable for the token 083
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classification task. However, the major bottleneck084

for all these supervised models is the lack of mech-085

anisms for incorporating linguistic tools, such as,086

dependency tree, syntactic patterns, etc. in those087

models.088

Dependency tree is an important linguistic tool089

encompassing grammatical structure, syntax, se-090

mantics, POS tags, and tag-to-tag interactions. It091

plays a pivotal role in the extraction of cause-and-092

effect relationships from textual data. Recent re-093

search studies (Kabir et al., 2021, 2022) highlight094

the critical significance of these linguistic compo-095

nents in facilitating precise semantic relation ex-096

traction. Dependency parsers, such as SpaCy (Hon-097

nibal and Montani, 2020) and Stanza (Qi et al.,098

2020), provide a powerful framework for dissect-099

ing the intricate connections between words and100

phrases within a sentence. Through syntactic analy-101

sis these parsers ease identification of causal verbs,102

subjects, and their corresponding objects. Addi-103

tionally, POS tags and tag-to-tag interactions offer104

valuable contextual information that aids in disam-105

biguating causal relationships, thereby enhancing106

the accuracy and reliability of extracted informa-107

tion. The integration of these dependency-based ap-108

proaches into supervised causality extraction mod-109

els would improve the extraction of cause and effect110

phrases, as we show in this paper.111

In this paper we propose a transformer based112

supervised method, DEPBERT, which seamlessly113

integrates the dependency structure of sentences114

into the bidirectional encoding representation of the115

transformer model. Our method effectively merges116

word-word co-occurrence, sentence semantics, and117

the syntactic dependency structure within the do-118

main of the transformer’s self-attention mechanism.119

Through this integration, DEPBERT consistently120

outperforms existing baseline methods, providing121

clear evidence that the incorporation of dependency122

structures significantly enhances the foundational123

building blocks of the transformer architecture for124

enhanced language understanding.125

We claim the following two specific contribu-126

tions:127

• We introduce DEPBERT, a transformer model128

that is sensitive to dependencies. It con-129

currently learns from dependency relation130

graphs, parts-of-speech tag sequences, and131

token-token co-occurrences for token clas-132

sification tasks, outperforming conventional133

transformer-based language models in terms134

of performance. 135

• We develop a dataset, referred to as CAUSAL- 136

GPT comprising 22,273 instances that include 137

cause terms, effect terms, and the sentences 138

containing both terms. The primary objec- 139

tive of this dataset is to alleviate the scarcity 140

of annotated datasets in the field of causality 141

extraction. 142

2 Related Works 143

The tasks of extracting causal relations can gen- 144

erally be classified into three main categories: 145

unsupervised (Khoo et al., 1998, 2001), super- 146

vised (Dasgupta et al., 2018; Li et al., 2019), and 147

hybrid approaches (Chang and Choi, 2006; Sor- 148

gente et al., 2013a; An et al., 2019a). Unsuper- 149

vised methods primarily rely on pattern-based ap- 150

proaches, employing causative verbs, causal links, 151

and relations between words or phrases to extract 152

cause-effect pairs. Supervised approaches, on the 153

other hand, require a labeled training dataset con- 154

taining pairs of cause and effect phrases, allowing 155

the training of supervised learning models for the 156

extraction of causal relationships between phrases. 157

Do et al. (Do et al., 2011) introduced a minimally 158

supervised approach based on a constrained condi- 159

tional model framework, incorporating discourse 160

connectives into their objective function. Dasgupta 161

et al. (Dasgupta et al., 2018) utilized word embed- 162

dings and selected linguistic features to construct 163

entity representations, serving as input for a bidirec- 164

tional Long-Short Term Memory (LSTM) model to 165

predict causal entity pairs. Nguyen et al. (Nguyen 166

and Grishman, 2015) harnessed pre-trained word 167

embeddings to train a convolutional Neural Net- 168

work (CNN) for classifying given causal pairs. In 169

contrast, Peng et al. (Peng et al., 2017) presented 170

a model-based approach that leverages deep learn- 171

ing architectures to classify relations between pairs 172

of drugs and mutations, as well as triplets involv- 173

ing drugs, genes, and mutations with N-ary rela- 174

tions across multiple sentences extracted from the 175

PubMed corpus. 176

Despite the various supervised methods avail- 177

able, existing causality extraction techniques often 178

fall short in incorporating dependency relations 179

within deep transformer architectures. While some 180

approaches do consider dependency relations (Ah- 181

mad et al., 2021; Song and King, 2022; Sachan 182

et al., 2020) to enhance language understanding 183

and introduce external sequential knowledge into 184
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deep learning models (Wang et al., 2021), this185

work represents a novel fusion of learning from186

sequential knowledge, dependency relations, and187

co-occurring tokens.188

3 Methodology189

In this section, we first provide a formal discus-190

sion of token classification framework for solving191

the cause-effect pairs extraction. Then we provide192

the motivation and an overall framework of DEP-193

BERT, our proposed model. Finally, we discuss194

DEPBERT’s architecture in details.195

3.1 Problem formulation196

Given, a sentence S and two phrases u (cause) and197

w (effect) in S, such that they exhibit a causality re-198

lation within the sentential context. Let S contains199

N number of tokens which are s1, s2 ... sN . Say,200

the cause phrase u consists of the token si...sK , and201

effect phrase w consists of the tokens sj ...sL, and202

there is no overlap between these two sequences of203

tokens. We also consider special tokens, such as,204

start token, end token and the padding tokens. Then205

we label all the tokens in S based on the following:206

lt =


1, if st is a Special token
2, if st is a Cause token
3, if st is an Effect token
4 otherwise

207

we transform li into a one-hot encoding vector of208

size K, denoted as ci, using the one-hot-encoding209

method (Harris and Harris, 2012; Brownlee, 2017)210

Suppose there is a model, θ, which predicts p1, p2211

... pM , where pi represents the probability values212

predicted by the model for li. The token classifica-213

tion task objective of θ is to minimize the following214

multinomial cross-entropy loss function denoted215

by L216

L = − 1

M

M∑
i=1

K∑
j=1

ci,j log pi,j217

3.2 DEPBERT: Motivation and Design218

Justification219

Syntactic patterns are important to extract seman-220

tic relation (Kabir et al., 2021, 2022) due to the221

fact that dependency relation plays an important222

role to identify semantic pairs. For instance, let223

there be a pattern u precipitates w, which can be224

applied to extract two semantic pairs u and w from225

a sentence where u and w exhibit a cause effect se- 226

mantic relation. However, the dependency relation 227

and parts of speech tag for patterns can be crucial. 228

For instance, here u needs to be a subject for the 229

verb causes and u needs to be a NOUN, causes a 230

VERB, and w be another NOUN. So for this partic- 231

ular pattern, dependency relation as well as NOUN, 232

VERB, NOUN sequence can be important as well. 233

Traditional BERT (Devlin et al., 2018) lacks the 234

capability to consider syntax and dependency re- 235

lations when learning token embeddings, a short- 236

coming addressed by DEPBERT. This innovative 237

approach incorporates dependency relations and 238

POS tag sequences into a transformer model de- 239

signed to be acutely aware of these linguistic de- 240

pendencies. While several dependency parsers 241

are available for converting sentences into depen- 242

dency trees, some previous research (Kabir et al., 243

2021)) has indicated that the performance of syntac- 244

tic dependency pattern extraction does not depend 245

much on the specific format of dependency tree. In 246

this work, we have used Spacy dependency parser 247

Spacy(Honnibal and Montani, 2020) for converting 248

a sentence to a dependency tree, as the API of this 249

library was convenient. 250

Figure 1: Dependency tree for the sentence, “Vitamin
D deficiency causes diabetes”

As shown in Figure 1, a dependency tree is a 251

dependency-aware representation of a sentence. If 252

G = (V,E) is a dependency tree of S, then vertex- 253

set V is associated with the tokens from S, and 254

each of the vertices is labeled with POS tag of the 255

corresponding token. For example, for the depen- 256

dency tree in Figure 1, the sequence of POS tags 257

are NOUN, NOUN, NOUN, VERB, and NOUN. 258

Edgeset E represents the connecting pairs of to- 259

kens; an edge between two nodes, i and j, denote 260

dependency relation between the token si and sj . 261

DEPBERT’s main motivation is to utilize the de- 262

pendency information in the transformer model. In 263

any transformer architecture, a token receives atten- 264

tion from all other tokens. Likewise, in DEPBERT, 265

a token receives attention from other tokens in a 266

traditional ways; besides, in a distinct channel, a 267

token also receives attentions from other tokens 268

connected through dependency tree. Since the to- 269
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Figure 2: DEPBERT Model Architecture for Token
Classification

kens in second channel holds POS information,270

these POS tags are utilized in DEPBERT, allowing271

it to incorporate semantic information of the tokens272

into the model. Last, we combine the two repre-273

sentations of token embedding coming from two274

channels: traditional token-based, and dependency275

graph based, which is then passed to a layer for to-276

ken classification. In this way, DEPBERT brings a277

flavor of graph attention network (Veličković et al.,278

2017) in its attention propagation mechanism to279

learn a better embedding of the tokens of a sen-280

tence.281

3.3 Model Architecture282

Figure 2 presents the token classification model283

of DEPBERT. The diagram showcases two main284

components: the token embedding encoder of a285

traditional BERT (Devlin et al., 2018) on the left286

side and the encoder (Raganato and Tiedemann,287

2018) architecture with a modified self-attention288

mechanism incorporating a dependency graph on289

the right side. To facilitate our discussion, we uti-290

lize the running example of the text “Vitamin D291

deficiency causes diabetes”.292

At the bottom of the right part of the architec-293

ture, we show the dependency association graph294

of this sentence from Spacy. As we can see the to-295

kens for this sentence, the POS tags are: {NOUN,296

NOUN, NOUN, VERB, and NOUN}, from left to297

right. In the dependency graph there is an edge298

for each of the following token pairs – (D, Vita-299

min), (deficiency, D), (causes, deficiency), (causes, 300

diabetes). 301

Our final model is a two tower model where both 302

left and right sides learn embedding of tokens in 303

parallel. For both towers, the standard tokenizer 304

is modified to incorporate POS tags. To provide 305

a more detailed illustration, DEPBERTgenerates 306

three types of unique IDs for each token: iT for the 307

parts of speech tag, iP for the positional embed- 308

ding, and iID as the input ID. These IDs are then 309

passed to an embedding layer, and the resulting 310

embeddings are summed to create a single vector 311

per token, denoted as vi. 312

For left side of the model, all representation vec- 313

tors are passed through a multi-head attention layer. 314

The multi-head attention layer learns attention for 315

all the tokens, and the output of this layer is calcu- 316

lated based on the attention scores of all the tokens. 317

This output is then normalized using a layer nor- 318

malization layers and a feed forward layer to form 319

ebi which is the output embedding for token si from 320

the left part of the model. Meanwhile, the gener- 321

ated tree for S is fit to the right side of the diagram. 322

Like the BERT encoder architecture, embedding 323

of input id, and token type id, and positional id are 324

gathered. These three embeddings are then added 325

to construct a single vector vi. The embedding of 326

other tokens are also calculated in the similar fash- 327

ion. Let the tokens connected with si through edges 328

is the set V , and sk be any token in V . Additionally, 329

let there be three trainable matrices W1,W2, and 330

W3. viW1, viW2, and viW3 are then query, key, 331

and value vectors respectively for the token si. The 332

affinity score of two connected tokens si, and sk is 333

then calculated by the following equation. 334

aik = (viW1) ∗ (vkW2)
T 335

The attention value, αik (a scalar) is the softmax- 336

score of these affinity values for all the tokens in V 337

which actually represents how important the con- 338

nected token is with respect to current token. 339

αik =
eaik∑

j∈[1,|V|] e
aij

340

The attention scores are used for attention based 341

weighted sum for the output vector, oi from atten- 342

tion layer, as shown in the next equation (W4 is 343

another trainable matrix and vjW3 is a value vec- 344

tor for the corresponding token.). Unlike BERT, 345

oi is calculated for only those tokens which are 346

connected to si. 347
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oi =
∑

k∈[1,|V|]

αik(vjW3)W4348

oi is then passed through a normalization layer,349

and the output from Add and Norm layer, ōi is350

calculated using the following equation where γ,351

β are trainable scalers, ϵ is a very small scaler352

constant, µi, and σ2 are the mean, and variance of353

the vector oi.354

ōi = vi + γ ⊙ oi − µi

σ2 + ϵ
+ β355

The output ōi is furthermore passed through a feed356

forward layer with GELU activation(Hendrycks357

and Gimpel, 2016) using another trainable matrix358

W5, and bias b.359

FFN(ōi) = GELU(ōiW5 + b)360

Additionally, eti is calculated passing the feed for-361

ward layer’s output to another Add and Norm362

layer. Meanwhile, ebi and eti are passed through an-363

other gate to form ei which is the token embedding364

of si using DEPBERT. This embedding is passed365

to another neural network for the token classifica-366

tion task.367

esi = σ(ebiW6 + c)368
369

ei = esi ⊙ ebi + (1− esi )⊙ eti370

4 Experiment and Result371

We perform comprehensive experiment to show the372

effectiveness of DEPBERT for token classification373

task. Below we first discuss the dataset, and com-374

peting methods, followed by experimental results.375

4.1 Dataset376

Semeval: This is a popular benchmark dataset,377

built by combining the SemEval 2007 Task 4378

dataset (Girju et al., 2007) and the SemEval 2010379

Task 8 datasets (Hendrickx et al., 2010). A row for380

SemEval datasets contains a term pair, a sentence381

containing this pair, and the semantic relation. The382

SemEval 2007 Task 4 possesses 7 semantic rela-383

tions whereas the SemEval 2010 Task 8 describes384

9 relations. However, cause-effect relation is com-385

mon among these two tasks. The datasets include386

predefined train and test partitions. For building387

validation partition, we borrow from the train parti-388

tion. Train, test and validation partitions are then389

merged to concatenate into a single dataset. Note390

that, the merged dataset contains 14 relations of 391

which we consider the instances of cause-effect re- 392

lations only. The preprocessed dataset, as a result, 393

comprises a total of 1,427 instances, all exclusively 394

related to cause-effect relations. In terms of parti- 395

tion distribution, the training, test, and validation 396

segments account for 60%, 30%, and 10%, respec- 397

tively. SCITE: This is another dataset of the paper 398

SCITE (Li et al., 2021). The dataset contains 1079 399

sentences exhibiting cause-effect relation. We split 400

the dataset into training, test and validation subsets 401

maintaining the same ratio, 6:3:1 like Semeval. Ad- 402

ditionally, each row of this dataset also maintains 403

the same format like the Semeval. 404

CAUSALGPT: The previously described 405

datasets have a very limited number of sentences 406

as those are annotated by human. However, 407

motivated from the recent generative models such 408

as Bard and ChatGPT, we create a new dataset 409

containing adequate number of sentences. To 410

create this dataset, we harness the power of Large 411

Language Models (LLMs) to generate cause 412

terms, effect terms, and sentences that preserve the 413

cause-effect relationship. It’s important to note that 414

the generated sentences may exhibit duplication 415

and may sometimes contain special Unicode 416

strings that require preprocessing. To ensure a 417

wide variety of sentence structures, we develop 418

a program capable of generating both active and 419

passive sentence constructions. Additionally, 420

our focus during sentence generation is on the 421

medical domain. In total, our dataset comprises 422

22,273 sentences, making it a valuable resource 423

for in-depth research into cause-effect phrase 424

extraction. Much like SCITE, we partition this 425

dataset randomly into training, test, and validation 426

subsets while maintaining the same proportional 427

distribution. In Table 1 we show some instances 428

of CAUSALGPT dataset; The cause term, effect 429

term, and the sentences are in Column one, two, 430

and three respectively. 431

4.2 Competing Methods 432

For comparison, we consider a collection of neu- 433

ral architectures, including BERT, Sentence-BERT, 434

LLaMA, Dasgupta, and SCITE methods. We have 435

also developed several models, such as BERT plus 436

dependency and BERT plus POS tags. We discuss 437

all of the competing methods below. 438
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Table 1: Example Sentences from the CAUSALGPT

Cause Term Effect Term Sentence
Diabetes Blindness Diabetes can lead to blindness if left uncontrolled.

Vitamin D deficiency Osteoporosis A deficiency in vitamin D can result in osteoporosis.
Smoking Lung Cancer Smoking is a major risk factor for developing lung cancer.

High cholesterol Heart Disease Elevated cholesterol levels are associated with an increased risk of heart disease.
Obesity Type 2 Diabetes Obesity is a significant risk factor for developing type 2 diabetes.

4.2.1 Dasgupta439

Dasgupta’s (Dasgupta et al., 2018) method is one440

of the first deep learning methods to extract cause-441

effect pairs from sentences. They design the442

method for token classification task. Each token443

is labelled either as a cause word, a effect word,444

causal connects or None. They learn word embed-445

ding by both word2vec (Mikolov et al., 2013) and446

linguistic feature vector (Dasgupta et al., 2018).447

Each of the embedding is fit to a bidirectional Long448

Short Term Memory (Hochreiter and Schmidhuber,449

1997) architecture for token classification.450

4.2.2 SCITE451

Another method SCITE (Li et al., 2021) uses a452

multi head self attention mechanism (Vaswani et al.,453

2017), and a conditional random field (Fields,454

2001) along with a bi-LSTM architecture. Ad-455

ditionally, flair embedding (Akbik et al., 2018) is456

learned in a large context and transferred the string457

embedding for the task of causality extraction.458

4.2.3 BERT459

Bidirectional Encoder Representations from Trans-460

formers (BERT) is proposed by researchers from461

Google (Devlin et al., 2018), which is not trained462

on any specific downstream task but instead on a463

more generic task called Masked Language Mod-464

eling. The idea is to leverage huge amounts of465

unlabeled data to pre-train a model, which can be466

fine-tuned to solve different kinds of NLP tasks by467

adding a task specific layer which maps the contex-468

tualized token embeddings into the desired output469

function. In this work we use the pre-trained model470

“bert- base-uncased” which has a vocabulary of 30K471

tokens and 768 dimension for each token. We use472

the BERT embedding for token classification.473

4.2.4 BERT plus dependency474

We design this baseline model to incorporate the de-475

pendency structure, but unlike DEPBERT, it does476

not consider POS tags. In both towers of DEP-477

BERT, we utilize the tokenizer from the original478

BERT model. However, this baseline model differs479

from BERT in that it is partially pretrained. While 480

we do not have pretrained embeddings specifically 481

for the dependency relation, we utilize the pre- 482

trained model “bert- base-uncased” for the left 483

tower instead of training the model on an exten- 484

sive corpus like Wikipedia or Google corpus. 485

4.2.5 BERT plus POS Tags 486

We develop this baseline as well to investigate the 487

relative importance of POS tags compared to the de- 488

pendency relation. In contrast to the previous base- 489

line, this model involves modifying the existing 490

BERT tokenizer to include POS tokens. However, 491

the dependency relation is not taken into account, 492

resulting in a single tower model. Similar to the 493

previous baseline, this model is semi-pretrained for 494

the input ID and positional embedding. 495

4.2.6 Sentence-BERT 496

Sentence-BERT (Reimers and Gurevych, 2019) 497

is another pretrained model designed to capture 498

mainly semantic textual similarity. The model uses 499

siamese and triplet network structures to derive se- 500

mantically meaningful sentence embedding. The 501

model can also be used to build token representa- 502

tion for token classification. For comparison we 503

use the pretrained weights from the model “all- 504

MiniLM-L6-v2” available in Huggingface, which 505

produces 384 dimensinoal vectors for each token. 506

4.2.7 LLaMA 507

LLaMA (Touvron et al., 2023) is another trans- 508

former based model developed by researchers in 509

Meta. The model contains 7B to 65B parameters 510

and it is trained on trillions of tokens. The model 511

outperforms GPT 3 and other state of the art meth- 512

ods. The pre-trained model is available online. We 513

use the pretrained model to represent word tokens. 514

The representation of each tokens (4096 dimen- 515

sional) is learned by LLaMA for token classifica- 516

tion. 517
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Table 2: Performance of DEPBERT compared to baseline methods in CAUSALGPT Dataset

Method Prec Rec F1 Score Acc (Exact)
(% imp.) (% imp.)

Bi-LSTM (Dasgupta) 0.911 0.828 0.847 (-) 0.778 (-)
Bi-LSTM-CRF (SCITE) 0.899 0.834 0.849 (0.23) 0.781 (0.4)

BERT 0.942 0.958 0.938 (10.7) 0.811 (4.2)
BERT plus dependency 0.956 0.967 0.958 (13.1) 0.833 (7.1)
BERT plus POS tags 0.921 0.911 0.897 (5.9) 0.831 (6.8)

Sentence-BERT 0.946 0.964 0.948 (11.9) 0.822 (5.7)
LLaMA 0.953 0.956 0.954 (12.6) 0.828 (6.4)

DEPBERT (Gated) 0.967 0.969 0.963 (13.7) 0.858 (10.3)

Table 3: Performance of DEPBERT compared to baseline methods in SemEval Dataset

Method Prec Rec F1 Score Acc (Exact)
(% imp.) (% imp.)

Bi-LSTM (Dasgupta) 0.917 0.825 0.844 (-) 0.768 (-)
Bi-LSTM-CRF (SCITE) 0.896 0.851 0.86 (2) 0.771 (0.4)

BERT 0.936 0.941 0.932 (10.4) 0.809 (5.3)
BERT plus dependency 0.951 0.959 0.954 (13) 0.841 (9.5)
BERT plus POS tags 0.937 0.947 0.941 (11.5) 0.831 (8.2)

Sentence-BERT 0.926 0.936 0.933(10.5) 0.818 (6.5)
LLaMA 0.938 0.921 0.937 (11) 0.819 (6.6)

DEPBERT (Gated) 0.942 0.962 0.957 (13.4) 0.842 (9.63)

Table 4: Performance of DEPBERT compared to baseline methods in SCITE Dataset

Method Prec Rec F1 Score Acc (Exact)
(% imp.) (% imp.)

Bi-LSTM (Dasgupta) 0.811 0.825 0.817 (-) 0.747 (-)
Bi-LSTM-CRF (SCITE) 0.832 0.849 0.831 (1.7) 0.751 (0.53)

BERT 0.884 0.9 0.893 (9.3) 0.768 (2.8)
BERT plus dependency 0.911 0.923 0.916 (12.1) 0.811 (8.5)
BERT plus POS tags 0.908 0.917 0.906 (10.9) 0.796 (6.5)

Sentence-BERT 0.887 0.889 0.886 (8.4) 0.773 (3.5)
LLaMA 0.9 0.913 0.909 (11.3) 0.79 (5.7)

DEPBERT (Gated) 0.932 0.943 0.939 (14.9) 0.834 (11.6)
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4.3 Experimental Setup518

Our DEPBERT model contains 227 millions pa-519

rameters, and all of them are trainable. The left520

tower of the DEPBERT architecture is initialized521

with pretrained BERT parameters sourced from522

bert-uncased model. It is important to note that,523

in our model architecture, no additional external524

hyperparameters are introduced. We consistently525

emphasize the default setup for all variations of our526

methods. Specifically, for LLaMA, BERT, BERT527

plus Dependency, BERT plus POS tags, Sentence-528

BERT, the number of trainable parameters stands529

at 524 million, 109 million, 110 million, and 110530

million, respectively. In contrast, both Dasgupta’s531

method and SCITE feature a relatively smaller532

number of hyperparameters, around 400K for each.533

In all of our models, we make use of the Adam534

optimizer with a batch size of 128 and a default535

learning rate of 0.001. Additionally, we implement536

early stopping with 1000 epochs and a tolerance537

rate of 10, with the majority of the models con-538

cluding training within the first 100 epochs. It’s539

worth mentioning that all the results presented in540

this research are derived from the initial stable runs.541

4.4 Results542

We conducted comprehensive experiments that cov-543

ered all baseline methods, including DEPBERT,544

across the three previously described datasets. In545

these experiments, accuracy was determined with-546

out allowing for partial matches. Each sentence547

contains a causal entity and an effect entity, and548

each of them may consist of one or multiple tokens.549

To register a correct prediction, a model needs to550

accurately predict all the causal and effect tokens.551

The results for all three datasets are conveniently552

presented in Tables 2, 3, and 4. The last column in553

each table highlights the exact accuracy score. Ad-554

ditionally, our evaluation encompassed a compre-555

hensive range of metrics, such as precision, recall,556

and F1 score, to ensure a thorough assessment.557

Table 2 presents the performance of all the meth-558

ods on our CAUSALGPT dataset. It is observed that559

DEPBERT achieves a 10.3% higher exact match-560

ing accuracy compared to Dasgupta’s method, in-561

dicating that approximately 86% of the extracted562

pairs precisely match the actual pairs. Further-563

more, DEPBERT exhibits the best precision, recall,564

and F1 score. Another noteworthy finding is that565

the BERT plus dependency method, which we de-566

signed, outperforms other baselines. This clearly567

demonstrates the significance of the dependency re- 568

lation over POS tags. However, the combination of 569

POS tags and the dependency relation yields even 570

more meaningful results than solely incorporating 571

POS tags into the model. 572

Similarly, Table 3 presents the results on the Se- 573

mEval dataset. The performance of all the methods 574

on this dataset is slightly lower compared to the pre- 575

vious dataset. This could be attributed to the nature 576

of cause-effect sentences. Moreover, the limited 577

number of sentences in this dataset is insufficient 578

to effectively train deep learning models. Nonethe- 579

less, DEPBERT and BERT plus dependency still 580

outperform other methods, following a similar pat- 581

tern as observed previously. In terms of F1 score, 582

DEPBERT achieves a 13.4% improvement com- 583

pared to Dasgupta’s method. 584

Furthermore, Table 4 displays the performance 585

of all the baseline methods on the SCITE dataset. 586

Due to the insufficient number of sentences in this 587

dataset as well, the performance of all the meth- 588

ods falls short of expectations. However, DEP- 589

BERT outperforms all other baseline methods even 590

for this dataset. The accuracy and F1 score are 591

0.834 and 0.939, respectively, marking an improve- 592

ment of 11.6% and 14.9% compared to Dasgupta’s 593

method. 594

Clearly, DEPBERT’s dependency and parts-of- 595

speech aware attention mechanism contribute to 596

its superiority over other methods. Moreover, the 597

combination of POS tags and the dependency re- 598

lation proves to be more effective in extracting 599

cause-effect pairs from sentences. 600

5 Conclusion 601

In this study, we have effectively unveiled a pio- 602

neering method for extracting causal relationships, 603

drawing inspiration from the sentence’s underlying 604

dependency structure. Our model, named DEP- 605

BERT, stands out by fusing the transformer archi- 606

tecture with dependency graph networks, harness- 607

ing the power of dependency relations and parts- 608

of-speech markers. This amalgamation yields a 609

marked improvement in the precision of causal re- 610

lationship extraction across a multitude of domains. 611

Looking ahead, the expansive utility of such mod- 612

els across various domains presents a promising 613

path for advancing information extraction method- 614

ologies. 615
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6 Limitations616

While the DEPBERT model demonstrates superior617

performance compared to baseline methods, it’s618

important to note that its performance is intricately619

tied to the characteristics of the dataset. While large620

language models (LLMs) like ChatGPT can extract621

cause-effect pairs, even in zero-shot corpora, it’s622

crucial to clarify that our paper does not intend to623

diminish the significance of LLMs. Instead, our624

primary emphasis lies in enhancing the founda-625

tional elements of transformer architectures to in-626

corporate sentence dependency structures. Another627

limitation of our research pertains to the newly cre-628

ated dataset, CausalGPT. Unlike DEPBERT, which629

can extract multiple semantic pairs from sentences630

simultaneously, the CausalGPT dataset is intention-631

ally constructed so that each sentence contains only632

one semantic pair. Consequently, if DEPBERT is633

trained with this dataset, it cannot extract multiple634

semantic pairs from sentences. That’s why, in the635

context of this specific study, we did not conduct an636

evaluation of its performance in extracting multiple637

semantic pairs. Furthermore, we specifically em-638

phasize semantic pairs within the English language.639

While semantic pairs and dependency relationships640

can be of great importance in all languages, it’s641

worth noting that our research did not include ex-642

periments in languages other than English.643

7 Ethical Impacts644

This research plays a pivotal role in the extraction645

of cause-effect relationships, negating the reliance646

on syntactic dependency patterns. The cause-and-647

effect connection serves as a foundational and in-648

dispensable element within linguistics and logic,649

acting as the linchpin for comprehending the intri-650

cate web of associations between events and their651

consequences. The extraction of causality holds652

paramount importance across a diverse spectrum653

of fields, encompassing law, medicine, and event654

analysis, for it provides the means to unearth the655

concealed mechanisms and repercussions that un-656

derlie a wide array of phenomena. Ultimately, this657

research empowers us to make well-informed deci-658

sions, pinpoint root causes, and enhance outcomes.659

Within the legal domain, the capacity to extract660

cause-effect relationships without being bound by661

syntactic dependencies is nothing short of indis-662

pensable. The legal system hinges on precise com-663

prehension and documentation of causality, as it664

is fundamental to establishing liability, attributing665

fault, and ensuring accountability. This research 666

equips legal professionals with the tools to unravel 667

the causal connections embedded in intricate legal 668

cases, thereby simplifying the process of identify- 669

ing the factors leading to specific events or circum- 670

stances. Consequently, it bolsters the pursuit of 671

justice, whether in civil or criminal proceedings. 672

In the sphere of medicine, the extraction of 673

causality fulfills a pivotal role in diagnostics and 674

treatment. It empowers medical practitioners to dis- 675

cern the underlying causes of diseases and ailments, 676

thereby facilitating more accurate and timely diag- 677

noses. This, in turn, not only elevates the quality 678

of patient care but also expedites the development 679

of more effective treatment strategies. Moreover, 680

comprehending the cause-and-effect relationships 681

between various medical variables proves instru- 682

mental in public health endeavors, including epi- 683

demiological studies and the management of dis- 684

ease outbreaks. 685

In the context of event extraction, this research 686

emerges as an indispensable tool across various 687

applications, spanning disaster response, business 688

analytics, and social science research. When grap- 689

pling with extensive datasets, the identification of 690

causality allows organizations and researchers to 691

fathom the core drivers of specific events. In the 692

realm of disaster response, it aids in comprehend- 693

ing the triggers and consequences of natural dis- 694

asters, thus enhancing preparedness and response 695

strategies. In the domain of business analytics, it 696

facilitates the identification of factors influencing 697

financial performance and market trends. For so- 698

cial science research, it provides a foundational 699

framework for unraveling the complex dynamics 700

that govern society, shedding light on the causes 701

and effects of a multitude of social phenomena. 702

In summary, the extraction of cause-effect re- 703

lationships, liberated from syntactic dependency 704

patterns, emerges as a cornerstone in the domains 705

of law, medicine, and event extraction, primarily 706

due to its role in enhancing precision, accuracy, and 707

the depth of understanding of causality within these 708

fields. This, in turn, results in more well-informed 709

decision-making, improved outcomes, and an in- 710

creased capacity to effectively address complex 711

challenges. 712
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