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ABSTRACT

Attention layers are the core component of transformers, the current state-of-the-
art neural network architecture. However, softmax-based attention causes trans-
formers to be more challenging to train. Even at initialisation, the propagation of
signals and gradients through the random network can be pathological, resulting
in known issues such as (i) vanishing/exploding gradients and (ii) rank collapse,
i.e. when all tokens converge to a single representation with depth. This paper
examines signal propagation in attention-only transformers from a random ma-
trix perspective, illuminating the origin of such issues, as well as unveiling a new
phenomenon—(iii) rank collapse in width. Modelling softmax-based attention at
initialisation with Random Markov matrices, our theoretical analysis reveals that a
spectral gap between the two largest singular values of the attention matrix causes
(iii), which, in turn, exacerbates (i) and (ii). Building on this insight, we propose
a novel, yet simple, practical solution to resolve rank collapse in width by remov-
ing the spectral gap. Moreover, we validate our findings and discuss the training
benefits of the proposed fix through experiments1 that also motivate a revision of
some of the default parameter scaling. Our attention model accurately describes
the standard key-query attention in a single-layer transformer, making this work a
significant first step towards a better understanding of the initialisation dynamics
in the multi-layer case.

1 INTRODUCTION

Transformers Vaswani et al. (2017) have emerged as the dominant architecture in machine learning,
achieving remarkable success across various domains, particularly in natural language processing
and computer vision, largely due to their defining feature: the self-attention mechanism Bahdanau
et al. (2016). However, despite their empirical success, transformers are often plagued by training
instability and high sensitivity to numerous hyperparameters, which require careful tuning. This
challenge has motivated recent efforts to establish a theoretical framework for understanding trans-
former architectures, even in their most basic forms, to ensure reliable information flow through
deeper layers and facilitate training.

The purpose of this work is to analyse signal propagation in softmax-based attention layers at ini-
tialisation, i.e. with randomly initialised model parameters. While the issues of rank collapse (in
depth) and vanishing/exploding gradients have been previously identified in transformers at initial-
isation Dong et al. (2021); Noci et al. (2022), our work formalises these findings and uncovers an
additional phenomenon—rank collapse in width—due to the use of softmax in the self-attention
mechanism. Rank collapse in width has not been identified in the existing literature nor been recog-
nised as a catalyst for rank collapse along depth. By leveraging spectral properties of the random
matrices formed by the model’s parameters, we reveal the emergence of a spectral gap between the
two largest singular values of the attention matrix, which drives rank collapse in width and further
accelerates rank collapse in depth. Moreover, we propose a provably effective remedy for the spec-
tral gap, a solution that naturally arises when the problem is viewed through a spectral lens. To the
best of our knowledge, a spectral analysis of signal propagation has yet not been undertaken in the
context of transformers.

1Our code is available at https://shorturl.at/0zk8q.
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Let us consider the eigenvalues of an attention matrix. Since the rows sum to 1, there is an eigenvalue
of 1 corresponding to the all-ones vector. Under certain conditions, the other eigenvalues shrink in
size as the matrix dimension increases, resulting in a widening gap between the largest eigenvalue
(which is 1) and the diminishing bulk of eigenvalues; see Figure 1. The successive multiplication
of such matrices at each layer increasingly favours a specific direction—the one aligned with the
dominant eigenvector of the attention matrix—over the others. This leads to a distortion in the
geometry of the input training data, exemplified by the phenomenon of rank collapse. A natural
solution is then to project out this troublesome direction from all attention matrices to enable a
more balanced signal propagation. This intuitive idea is central to our rigorous analysis of a simple
transformer, from which we draw insights to introduce a slightly modified attention layer that proves
advantageous even when incorporated into more complex architectures.

Spectra of random matrices. Throughout this paper, we consider random matrices (of different
distributions) in the large width limit and describe them through their limiting spectral properties.
In the context of transformers, we mean by “large width” that both the number of tokens and the
embedding dimension(s) are large—an assumption typically satisfied in practice. For certain classes
of random matrices, the overall behaviour of eigenvalues/singular values becomes remarkably pre-
dictable as the matrix size increases, despite the randomness of individual entries. If Mn ∈ Rn×n
are random matrices with eigenvalues and singular values denoted by {λi(Mn)} and {si(Mn)},
respectively, the histograms of the n eigenvalues/singular values

µMn
:=

1

n

n∑
i=1

δλi(Mn), νMn
:=

1

n

n∑
i=1

δsi(Mn),

converge, in many interesting cases, to deterministic distributions µ and ν, known as the limiting
eigenvalue/singular value distribution of Mn. Additionally, the largest eigenvalue/singular value
of random matrices is often studied in its own right. Our analysis builds on several established
results concerning both the limiting distribution of the eigenvalues/singular values (the “bulk” of the
spectrum) and the behaviour of the largest eigenvalue/singular value (the “edge” of the spectrum).
In particular, we focus on two classes of random matrices: Gaussian and Markov, that respectively
model the value and attention matrices in our transformer model (3) at initialisation.

Free probability. The theory of free probability studies “non-commuting random variables” such
as random matrices (see Mingo & Speicher (2017) for a textbook introduction). Pioneered by Pen-
nington et al. (2017; 2018), the theory has found powerful applications in the analysis of large
random neural networks. Notably, it provides tools to characterise the singular value distribution of
sums or products of random matrices. Loosely speaking, “freeness” plays the same role for random
matrices as independence does for (scalar) random variables. Freeness allows us to compute the
limiting spectral density of a product MnM

′
n from the limiting spectral densities of Mn and M′

n,
just as independence enables the computation, for instance, of the moments of ZZ ′, given those of
Z and Z ′. Specifically, if νMn

→ ν, νM′
n
→ ν′, and Mn and M′

n are asymptotically free, then

νMnM′
n

n→∞−−−−→ ν ⊠ ν′,

where ⊠ denotes an operation called free multiplicative convolution.

1.1 ATTENTION AT INITIALISATION

We model the attention mechanism at initialisation by a random matrix Aℓ with non-negative entries
(Aℓ)i,j ≥ 0 and normalised rows, i.e.

∑
j(Aℓ)i,j = 1, as if it were generated by a row-wise

application of softmax. As we will demonstrate, this model functions as a helpful abstraction that
offers insights into the causes of rank collapse. More specifically, we consider Aℓ to be a Random
Markov matrix, as defined in Bordenave et al. (2011).
Definition 1.1 (Random Markov matrix). Let Zi,j be i.i.d. non-negative random variables with
positive mean m := E(Z1,1) > 0 and variance σ2 := Var(Z1,1) > 0 as well as finite fourth
moment E(Z4

1,1) < ∞. Let A ∈ RT×T be its row-normalised version, i.e.,

Ai,j :=
Zi,j∑T
j=1 Zi,j

. (1)

We call A a Random Markov matrix.

2
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(a) Random Markov matrix of Definition 1.1
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(b) Standard key-query attention at layer one

Figure 1: As the size T of a Random Markov matrix grows, its eigenvalues form a circular bulk of
radius O(T−1/2) in the complex plane, except for the largest eigenvalue which remains 1 (the black
dot). Proposition 1 demonstrates that applying the conventional key-query attention mechanism to
orthonormal input tokens yields a Random Markov matrix. In practice, T does not need to be too
large for the limiting behaviour to appear, as shown above.

Note that not all random Markov matrix ensembles satisfy the conditions of Definition 1.1 which we
colloquially refer to as Random Markov matrix. Remarkably, the standard key-query dot product
attention matrix in the first layer of a transformer is a Random Markov matrix, as specified in the
following.

Proposition 1. Let X0 ∈ RT×d have orthonormal rows, i.e. X0X
⊤
0 = I. Let

A1(X0) := softmax

(
X0W

Q
1 W

K
1

⊤
X⊤

0√
dqk

)
,

where WQ
1 ,W

K
1 ∈ Rd×dqk have i.i.d. N (0, σ2

qk) entries. Then A1(X0) is a Random Markov ma-
trix as in Definition 1.1 when dqk is large 2. In particular, under Xavier or He scaling of WQ

1 ,W
K
1

(Glorot & Bengio (2010); ?, or any scaling such that σ2
qk → 0 as dqk increases), the resulting

A1(X0) is degenerate, i.e. the “uniform attention” 1
T 1T×T .

The latter part of the above proposition was shown in (Noci et al., 2022, Lemma A.7) to justify their
assumption of uniform attention, under which they demonstrate rank collapse in depth. In contrast,
our analysis of the rank collapse is also valid for non-degenerate attention matrices. Based on the
above proposition, much of our analysis is relevant to single-layer transformers using the standard
key-query attention mechanism. However, as we will demonstrate in section 3, the case of multi-
layer real-world transformers presents additional complexities, warranting further investigation.

It is shown in Bordenave et al. (2011) that the “bulk” of the limiting eigenvalue/singular value
distribution of a Random Markov matrix matches (up to a scaling) that of an i.i.d. Gaussian matrix.
Namely, if A is as in Definition 1.1 with variance σ2, then

√
TA has the same bulk density as a

Gaussian matrix with i.i.d. N (0, σ
2

T ) entries. Nonetheless, the “edge” of the spectrum of
√
TA

behaves quite differently from the i.i.d. case. While the largest eigenvalue/singular value of an
i.i.d. matrix is almost surely right at the boundary of its bulk, for Random Markov matrices there is
a gap between the edge and the bulk given by Theorem 2. Without loss of generality, we formulate
the theorem for Random Markov matrices with mean 1.

Theorem 2 (Spectral gap in Random Markov matrices, Bordenave et al. (2011)). Let A ∈ RT×T

be a Random Markov matrix whose underlying distribution has variance σ2
A. Then, λ1(A) = 1 and

almost surely,

lim
T→∞

s1(A) = 1 and lim
T→∞

s2(
√
TA) = 2σA while lim

T→∞
|λ2(

√
TA)| ≤ 2σA. (2)

2Standard transformer implementations set dqk = d, as detailed in the original paper by Vaswani et al.
(2017). Therefore, assuming large dqk is not restrictive since we analyse the network in the large d regime.

3
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1.2 RELATED WORK

Rank collapse in transformers was first explored in Dong et al. (2021), where the authors show that
the output of an attention-only transformer converges exponentially with depth to a single represen-
tation across tokens. A connection between rank collapse and vanishing gradients is made in Noci
et al. (2022). By assuming uniform attention, the work of Noci et al. (2022) essentially reduces to
proving rank collapse in depth, based on the assumption that rank collapse in width has already oc-
curred (as opposed to showing why this premise holds). Our spectral analysis builds upon previous
work that analysed the spectra of large random neural networks to better understand and stabilise
initial training dynamics, such as Pennington et al. (2018) for fully-connected networks and Xiao
et al. (2018) for convolutional networks.

It is also worth mentioning a line of research on possible alternatives to the softmax self-attention
mechanism. Hron et al. (2020) speculate the advantage of ReLU and identity over softmax in train-
ing accuracy. He et al. (2022) proposes an ad hoc initialisation scheme tailored to prevent the token-
wise covariance kernel from losing rank through layers. Besides, several practical works attempt to
replace softmax-based key-query attention with faster options that surpass the so-called quadratic
bottleneck, e.g. Peng et al. (2020); Choromanski et al. (2020); Katharopoulos et al. (2020). Further-
more, our provably effective adjustment to softmax by removing the spectral gap (or centering the
output) has been independently suggested in Ali et al. (2023); Noci et al. (2024); Ye et al. (2024) as
part of ad hoc solutions to stabilising signal propagation in transformers.

1.3 ORGANISATION OF THE PAPER

In section 2, we first introduce our model and reexamine the phenomena of rank collapse and ex-
ploding gradients, demonstrating that both occur with increasing depth in our transformer model
at initialisation (Props. 3 and 4). Importantly, we diagnose for the first time an additional form of
rank-collapse with increasing width, that we call rank collapse in width. We formulate its exact rate
of decay in the context length as well as identify its root cause as being the spectral gap in softmax-
based attention. Next, we introduce a modified attention mechanism that is specifically designed
to have no spectral gap. We prove that this modification simultaneously resolves rank collapse in
width, thus mitigating rank collapse in depth, and exploding gradients (Props. 5 and 6), thereby
confirming the role of the spectral gap in such issues. Lastly, we study the spectra of the covari-
ance kernel and the input-output Jacobian in our modified model (Props. 7 and 8) and discuss the
possibility of further stabilising early training dynamics by tuning the initial distributions.

In section 3, we validate our findings, providing empirical evidence of rank collapse in both width
and depth, as well as exploding gradients. We put to test our “remove the gap” solution across a
range of architectures featuring LayerNorm and skip connections, discussing its possible training
benefits. Finally, we present experiments that challenge the soundness of certain default scaling
choices, such as Xavier initialization for the keys and queries, suggesting that they may require
further revision in practice.

2 THEORETICAL RESULTS

We study as our model a deep attention-only single-head transformer at initialisation, where at each
layer ℓ, the signal is transformed as Xℓ = AℓXℓ−1W

V
ℓ . The input signal X0 ∈ RT×d has T

tokens of embedding dimension d, with a fixed ratio γ := T
d ≤ 1. For a network of depth L, the

input-output relationship is thus given by

XL = ALAL−1 . . .A1X0W
V
1 . . .WV

L−1W
V
L . (3)

The value matrices WV
ℓ ∈ Rd×d are initialised independently with i.i.d. N (0, 1) entries and the

attention matrices Aℓ ∈ RT×T are independent Random Markov matrices with σ2
A = 1.

Remark (Scaling of value matrices). The reason we initialise the value matrices with N (0, 1) en-
tries rather than N (0, 1/d) (i.e. He initialisation) is that the attention matrices have singular values
of magnitude O(1/

√
T ) except for the leading one s1(A) = 1+ o(1); see Theorem 2. So, in all but

one direction, the attention matrix scales down the signal by a factor of O(1/
√
T ), which will be

compensated by WV with singular values of magnitude O(
√
d).

4
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2.1 REVISITING RANK COLLAPSE & EXPLODING GRADIENTS

Rank collapse. As Theorem 2 reveals, for increasing T , a Random Markov matrix becomes ef-
fectively rank-one. We accurately describe the rate of this decay through the notion of stable rank,
defined for any non-zero M ∈ Rm×n as

sr(M) :=
∥M∥2F
∥M∥2

=

∑
i s

2
i (M)

s21(M)
. (4)

Naturally, any definition of “rank collapse” relies on a proxy for discrete rank, as the random ma-
trices in question are almost surely full-rank, making it uninformative to refer to their actual rank.
For example, Dong et al. (2021) consider the “one-infinity norm” of the residual (the difference be-
tween a matrix and its best approximation of the form 1x⊤), defined as

√
∥res(M)∥1∥res(M)∥∞,

while Noci et al. (2022) use
∑
i,j(MM⊤)i,j , which is maximised when all rows of M are identical.

We choose stable rank as our preferred proxy due to its clear geometrical interpretation and simple
definition in terms of singular values.

Given an isometric input X0 with Σ0 := X0X
⊤
0 = I, we are interested in understanding how the

stable rank of the covariance matrix at layer ℓ,

Σℓ := XℓX
⊤
ℓ ,

evolves. Proposition 3 demonstrates how the stable rank collapses as the width T increases.
Proposition 3 (Rank collapse in width). Assume Σ0 = I. Then, for any ℓ ≥ 1,

lim
T→∞

sr(Σℓ) = 1, (5)

with overwhelming probability3. Moreover, the convergence happens at a polynomial rate, i.e.∣∣sr(Σℓ)− 1
∣∣ = O(T 1−4ℓ).

Exploding gradients. A well-known issue that can disrupt training across various neural network
architectures is the vanishing or exploding of gradients; see Hanin (2018). For attention-only trans-
formers with degenerate attention, Noci et al. (2022) demonstrate that the gradients with respect to
WV

ℓ vanish. Our model (3) allows for more general random attention while using a different scaling
that makes the same quantity explode rather than vanish. Proposition 4 provides a lower bound on
the rate at which the gradient grows.
Proposition 4 (Exploding gradients). For any L ≥ 2 and 1 ≤ ℓ ≤ L, with overwhelming probabil-
ity,

lim
T→∞

1

TL−1

∥∥∥∥ ∂XL

∂WV
ℓ

∥∥∥∥2
F

≥ CL−ℓ, (6)

for some constant CL−ℓ > 0. In particular, for T large enough, ∥∂XL/∂W
V
ℓ ∥2F diverges to infinity

as L increases. In the single-layer case ℓ = L = 1, the following improved bound

lim
T→∞

1

T

∥∥∥∥ ∂X1

∂WV
1

∥∥∥∥2
F

≥ C (7)

holds almost surely.

2.2 ATTENTION WITHOUT THE GAP

As previously seen, a Random Markov matrix A ∈ RT×T can be written as

A = EA+ (A− EA) =
1

T
1T×T +A⊥, (8)

where 1T×T := (1, · · · , 1)⊤(1, · · · , 1) is the all-ones matrix and A⊥ has a limiting spectrum re-
sembling that of a Gaussian matrix. Therefore, A is a rank-one perturbation of A⊥, whose spectral

3An event En holds with overwhelming probability if, for every A > 0, P(En) ≥ 1 − CAn
−A, for some

constant CA. As the name suggests, En is more likely to hold if it occurs with overwhelming probability than
with high probability, as defined in Tao (2012).

5
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radius is λ1(A
⊥) = O(T−1/2). Although the rank-one perturbation 1

T 1T×T cannot disturb the bulk
of the spectrum, it causes the largest eigenvalue to “escape” from the bulk to 1, creating a spectral
gap.

In light of this, we can slightly modify the attention mechanism to eliminate the outlier—and thus
the gap—simply by replacing A with A⊥ at every layer, i.e.

X⊥
L = A⊥

LA
⊥
L−1 . . .A

⊥
1 X0W

V
1 . . .WV

L−1W
V
L , (9)

where A⊥
ℓ := Aℓ − T−11T×T . Note that this modification is applied only to the attention matrices

(and not to the signal representation) and X⊥
ℓ serves as shorthand for the signal at layer ℓ ≥ 1 in a

network whose Aℓ’s are replaced with A⊥
ℓ ’s as in equation 9. We set X⊥

0 = X0.

Since the modified attention exhibits no spectral gap (see Lemma 3 in section A.2), the stable rank of
the covariance matrix Σ⊥

ℓ := X⊥
ℓ X

⊥
ℓ

⊤ no longer collapses to 1 in width, as detailed in Proposition
5 (cf. Proposition 3).

Proposition 5 (Resolved rank collapse in width). Let X⊥
ℓ = A⊥

ℓ X
⊥
ℓ−1W

V
ℓ be the signal at layer

ℓ in our modified model (9) and Σ⊥
ℓ := X⊥

ℓ X
⊥
ℓ

⊤ ∈ RT×T be its covariance matrix. Then, almost
surely, the rank does not collapse, i.e., there exists a constant Cℓ > 0 such that,

lim
T→∞

sr(Σ⊥
ℓ )

T
= Cℓ. (10)

Our modification also mitigates the average growth of the gradients. Proposition 6 establishes a
linear growth rate for ∥∂X⊥

L/∂W
V
ℓ ∥2F in expectation, which should be compared to the rate of

TL−1 from Proposition 4.

Proposition 6 (Resolved exploding gradients). Let X⊥
ℓ = A⊥

ℓ X
⊥
ℓ−1W

V
ℓ be the signal at layer ℓ in

our modified model (9). Then, in expectation, the squared norm of the gradients grow linearly with
d, i.e. there exists a constant C > 0 such that,

lim
d→∞

1

d
E
∥∥∥∥ ∂X⊥

L

∂WV
ℓ

∥∥∥∥2
F

= C. (11)

2.3 CAN TRANSFORMERS ACHIEVE DYNAMICAL ISOMETRY?

So far, we have established (i) the existence of an outlier eigenvalue/singular value in the spectrum
of softmax-based attention matrices, and (ii) that removing this outlier helps with rank collapse and
exploding gradients. In the absence of the outlier, we can take a further step to analyse the bulk of
the spectra of the network’s token-wise covariance and input-output Jacobian.

Let us assume that the input tokens are orthonormal, i.e. Σ0 = X0X
⊤
0 = I. As a criterion for

faithful signal propagation, one should require that Σ⊥
ℓ stay close to the identity matrix. Considering

the spectrum, this means that the limiting singular value distribution of Σ⊥
ℓ should concentrate

around the value 1. A natural approach, as demonstrated in the fully-connected case in Pennington
et al. (2017; 2018); Murray et al. (2022), is to adjust the model’s hyperparameters to ensure that the
mean of the limiting distribution is O(1) and the variance is minimised. Proposition 7 describes the
moments of the limiting singular value distribution of Σ⊥

ℓ .

Proposition 7 (Bulk of covariance kernel’s singular value distribution). Let X⊥
ℓ = A⊥

ℓ X
⊥
ℓ−1W

V
ℓ

be the signal at layer ℓ in our modified model (9) and Σ⊥
ℓ = X⊥

ℓ X
⊥
ℓ

⊤ ∈ RT×T be its covari-
ance matrix. Let the underlying Random Markov matrices Aℓ have variance σ2

A and WV
ℓ have

i.i.d. N (0, σ2
V ) entries. Let Σ⊥

0 = I and Dℓ be the limiting singular value distribution of Σ⊥
ℓ . Then

the mean and variance of Z ∼ Dℓ are given by

E(Z) = (σAσV /
√
γ)2ℓ, (12)

Var(Z) = ℓ(1 + γ)(σAσV /
√
γ)4ℓ, (13)

where γ := T
d ∈ (0, 1].

6
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The assumption γ ≤ 1 is not essential and is made only to ensure that Σ⊥
ℓ is full-rank, avoiding

trivial zero singular values. If γ > 1, then the limiting singular value distribution is given by
(1− γ−1)δ0 + γ−1Dℓ and the mean and variance should be adjusted accordingly.

It is evident from the above proposition that simultaneously controlling both the mean and variance
of Dℓ is not feasible. Model (9) does not have enough hyperparameters to achieve this balance.
Indeed, to prevent the mean from growing or shrinking exponentially with depth, the product σAσV
must equal

√
γ. However, this constraint leads to the variance increasing linearly with ℓ.

The Jacobian of the input-to-output function f : X0 7→ X⊥
L , represented by our modified trans-

former model, characterises the network’s sensitivity to input perturbations up to first order, accord-
ing to

f(X0 + ϵU) ≈ f(X0) + ϵ
∂f

∂X

∣∣∣∣
X0

U. (14)

Let us consider the matricised version of the Jacobian at layer ℓ, i.e.

Jℓ :=
∂ vec(X⊥

ℓ )

∂ vec(X0)
∈ RTd×Td. (15)

The goal is to ensure that the spectral energy of the Jacobian concentrates around 1, thereby minimis-
ing distortion of the input space geometry—a property often referred to as the dynamical isometry
in the literature (see Pennington et al. (2017)). For our model (9), it is straightforward to show

Jℓ = (A⊥
ℓ · · ·A⊥

1 )⊗ (WV
1 · · ·WV

ℓ ) ∈ RTd×Td, (16)

where ⊗ denotes the Kronecker product. Proposition 8 describes the moments of the limiting
squared singular value distribution of Jℓ.
Proposition 8 (Bulk of Jacobian’s squared singular value distribution). Let X⊥

ℓ = A⊥
ℓ X

⊥
ℓ−1W

V
ℓ

be the signal at layer ℓ in our modified model (9). Let the underlying Random Markov matrices Aℓ

have variance σ2
A and WV

ℓ have i.i.d. N (0, σ2
V ) entries. Let Dℓ be the limiting distribution of the

squared singular values of Jℓ := ∂X⊥
ℓ /∂X0

4. Then the mean and variance of Z ∼ Dℓ are given by

E(Z) = (σAσV )
2ℓ, (17)

Var(Z) = ℓ(ℓ+ 2)(σAσV )
4ℓ. (18)

Controlling the mean leads to a quadratically growing variance, while minimising the variance is
only achievable if σAσV < 1, which, in turn, causes the mean to vanish. Without considering a
more complex model, no choice of (σA, σV ) can achieve our goal of dynamical isometry.

3 EXPERIMENTS AND FURTHER INSIGHTS

Rank collapse. We highlight the practical relevance of our analysis by showing rank collapse
occurs both in width and in depth within famous tranformer models like BERT, see Figure 3. As an
input signal propagates through a transformer, we can address both forms of rank collapse—across
width and depth—by eliminating the spectral gap induced by the attention matrix at each layer.
Figures 2 and 4 reinforce our findings, showing that our removing the gap consistently mitigates rank
collapse even in multi-layer transformers that include additional components such as LayerNorm,
skip connections, or both. It is crucial to understand that rank collapse in depth is an inherent
consequence of successive matrix multiplications. Therefore, architectural modifications can only
slow the collapse rather than completely prevent it. We demonstrate this by showing that rank
collapse in depth persists even when the attention matrix is set to the identity matrix—an extreme
case with the highest possible stable rank and no spectral gap. Another possible way to slow down
rank collapse in depth (though not eliminate it) is to set the value matrices as orthogonal matrices.

Exploding gradients. After passing an isometric input through the network, we compute the gra-
dient norm as defined in equation 6. While our theory establishes a lower bound on the gradient
norm at layer 1 that scales linearly with width, Figure 5 confirms an overall linear growth, support-
ing the order-optimality of our result. This linear trend persists even in more general settings that

4In a minor abuse of notation, we may write ∂X⊥
ℓ /∂X0 as a shorthand for ∂ vec(X⊥

ℓ )/∂ vec(X0).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

15 30 45 60 75 90 105 120 135 150
T

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

sr
(

1 )

A(X)
A(X) + LN
A(X) + skip
A(X) + skip + LN
Identity A

A(X)
A(X)  + LN
A(X)  + skip
A(X)  + skip + LN

(a) Spectral gap implies rank collapse in width.
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(b) The rank inevitably collapses in depth.

Figure 2: Rank collapse occurs both in width and depth. At layer one, our fix effectively prevents
the rank from collapsing in width. Although rank collapse in depth occurs regardless of the presence
of the spectral gap, our fix consistently slows the collapse—a feat no other module achieves.
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(a) Rank collapse in width.
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(b) Rank collapse in depth.

Figure 3: Famous transformer encoders suffer from rank collapse at initialisation, both in (a) width
and (b) depth. These untrained models are loaded from Hugging Face and sentences from this
paper’s abstract are tokenised using pre-trained tokenisers.

incorporate additional modules, such as LayerNorm or skip connections. Notably, the removal of the
spectral gap affects only the slope of the gradient norm’s growth, mirroring the behaviour observed
in the lower bound derived in equations 4 and 6 for the single-layer case.

When the attention is a Random Markov matrix, gradient norms are effectively controlled with
depth by either applying LayerNorm or removing the spectral gap, as illustrated in Figure 6, where
the derived lower bound of TL−1 is confirmed. Shifting to the more complex case of key-query
attention in a multi-layer network, Figure 6 also demonstrates that our theoretical lower bound,
derived for Random Markov matrices, remains valid. Interestingly, this bound becomes looser as
depth increases, indicating that gradient norm explosion occurs at an even faster rate than predicted
by our analysis; see the complementary Figure 10 in the Appendix. Moreover, in the multi-layer
case, removing the largest singular value alone is no longer sufficient to prevent exploding gradients,
suggesting more complex dynamics around the singular values of the attention matrix. One potential
explanation is that the key-query attention spectrum now includes multiple outliers, whereas our
method only addresses a single one. This hypothesis is explored further in the remainder of this
section; see Figure 7.

Training. We evaluate our “remove the gap” proposal on a task designed to learn the entrywise
Heaviside function; see section A.3 for implementation details. While our theoretical analysis does
not address training dynamics, the experiments still offer valuable insights. In Figure 11, we present
examples of training several architectural variants with and without our “remove the gap” solution.
Further large-scale experiments are necessary to assess potential training benefits since the provided
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Figure 4: The rank collapses in width in the
first layer across architectures.
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Figure 5: At layer one, the gradient norm
scales linearly with width.
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Figure 6: In multi-layer transformers with Random Markov attention (left), our “remove the gap”
fix is effective, as we can precisely address the single outlier in the spectrum. However, with con-
ventional key-query attention (right), the spectra of the attention matrices become more complex
with depth, often exhibiting multiple outlier eigenvalues. This increased complexity reduces the
effectiveness of our fix in controlling the gradient norm, as it only targets a single outlier, leaving
other gaps untouched.

simulations are inconclusive. Beyond the first layer, key-query attention matrices are not Random
Markov matrices, therefore their spectral properties are not well-known. For instance, we observe
the emergence of additional outliers in the spectrum across layers, as shown in Figure 7. Investi-
gating the configuration of the bulk and outliers in this context could lead to a natural solution for
signal propagation issues by eliminating all outliers—an insight derived from our analysis.
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Figure 7: Entries (top row) of a T × T key-query attention matrix (with T = 100), along with its
spectrum (bottom row) across layers. We indicate the number of eigenvalues whose magnitudes
exceed a threshold of 0.5 to signify the presence of multiple outliers. The layer-wise evolution of
the spectrum requires further study, however, the matrix consistently tends to uniform attention for
large ℓ.
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Scaling discussion. Our analysis provides practitioners with valuable insights into the scaling of
some key quantities in transformer architectures. First, in Figure 8a, we plot the training loss of a
single-layer transformer with key-query attention, for which our theory effectively predicts signal
propagation at the initialisation stage. Based on Proposition 1, when the keys WK and queries
WQ are initialised using Xavier’s initialisation scheme, the attention matrix rapidly converges to
degeneracy. Consequently, removing the spectral gap in this case effectively reduces the attention
matrix to 0. This explains the plateau in the training curve during the initial steps for the Xavier-
initialised model combined with the spectral gap removal. On the other hand, our proposed fix
achieves performance similar to that of the original variant. Another scaling that requires refinement
is that of a skip connection. Traditionally, the value matrices are sampled from N (0, d−1), the
attention matrix is softmax-based, and the signal propagates from one layer ℓ to the next as

Xℓ+1 = Aℓ+1(Xℓ)XℓW
V
ℓ+1 +Xℓ.

In this scenario, starting from an isometric input X0, the attention mechanism is down-weighted by
a factor of

√
d relative to the skip branch, i.e. the signal coming from the previous layer. Therefore,

if the attention mechanism is to be fairly represented in the signal’s propagation through depth, the
values should instead be drawn from N (0, 1). If the value weights are sampled from N (0, d−1),
the skip connection becomes what we refer to as “upscaled”, meaning each layer essentially passes
information from the previous layer without significant transformation. This severely limits the
model’s expressivity, reducing its capacity to learn nonlinear mappings. In Figure 8b, we confirm
this observation by comparing the training losses associated with each option. It is not surprising
that the “upscaled skip” variants perform worse, as we are attempting to learn a nonlinear function
using a virtually linear model.
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(a) Xavier inialisation over the keys and queries.
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Figure 8: Studying transformers through a spectral lens raises important questions about the validity
of some default scaling choices.

4 CONCLUSION

We introduced a new mathematical framework for studying the self-attention mechanism at initiali-
sation, leveraging results from random matrix theory and free probability. By analysing the spectral
properties of Random Markov matrices, we diagnosed random softmax-based attention with a spec-
tral gap that leads to rank collapse in width—a phenomenon revealed and demonstrated for the first
time by our analysis—alongside the previously established rank collapse in depth and exploding
gradients.

We proposed a straightforward modification of the attention mechanism, which proved effective in
slowing rank collapse when the spectrum contains a single outlier. Additionally, we observed that
the spectra of standard key-query attention matrices often feature multiple outliers. Our experiments
also pointed to potential issues with some common initialisation schemes for transformers. We hope
our work encourages the community to adopt a spectral perspective in investigating more complex
transformer architectures and attention models.
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A APPENDIX

A.1 PROOFS

Proof of Proposition 1. Let us show that the attention matrix A1(X0) satisfies Definition 1.1 by
demonstrating that the random variables

Zi,j := exp

(
X0W

Q
1 W

K
1

⊤
X⊤

0√
dqk

)
i,j

are i.i.d. with a finite fourth moment.

Since the key and query matrices are initialised as Gaussian i.i.d. matrices and the input data X0 is
isometric, W̃Q := X0W

Q
1 and W̃K := X0W

K
1 follow the same distribution as WQ

1 and WK
1 .

Each Zi,j can be written as the exponential of the inner product between the i-th row of W̃Q and
the j-th row of W̃K , thus Zi,j are i.i.d. and we only need to prove that E|Z1,1|4 < ∞. Let us define

Udqk :=

dqk∑
r=1

W̃Q
1,rW̃

K
1,r

to be the dot product of the first row of W̃Q and the first row of W̃K . So, Udqk is simply the sum of
dqk i.i.d. copies of U1, the product of two independent Gaussian random variables, whose density is
known to be

f1(x) :=
1

πσ2
qk

K0

( |x|
σ2
qk

)
,

where K0 is the modified Bessel function of the second kind. Therefore, the probability density
function of Udqk is given by the dqk-fold convolution

fdqk(x) = f1(x) ∗ · · · ∗ f1(x)︸ ︷︷ ︸
dqk times

.

It is also known that K0(x) asymptotically behaves like
√

π
2xe

−x and that the convolution g ∗ h
decays at least as fast as the slower of g and h. Combining these facts, we conclude that fdqk decays
at least as fast as e−x, i.e.

fdqk(x) = g(|x|)e−|x|,

for some polynomially-bounded g. Now we can bound our quantity of interest

E|Z1,1|4 = E
[
exp

(4Udqk√
dqk

)]
=

∫
R
e4x/

√
dqk g(|x|)e−|x|dx

< ∞,

as long as 4√
dqk

< 1, i.e. dqk > 16.

Proof of Proposition 3. Fix ℓ ≥ 1. By definition of stable rank, we have

sr(Σℓ) =

∑T
i=1 s

2
i (Σℓ)

s21(Σℓ)
=

∑T
i=1 s

2
i (XℓX

⊤
ℓ )

s21(XℓX⊤
ℓ )

=

∑T
i=1 s

4
i (Xℓ)

s41(Xℓ)

= 1 +

T∑
i=2

s4i (Xℓ)

s41(Xℓ)
≤ 1 + (T − 1)

s42(Xℓ)

s41(Xℓ)
.

For T large enough, let us say bigger than some T0, Theorem 10 provides a deterministic upper
bound, i.e. s2(Xℓ) ≤ K for some constant K. Moreover, Theorem 9 gives the bound T−ℓs1(Xℓ) ∈
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(1− t, 1 + t) with (overwhelming) probability Pt,T for arbitrary t > 0 and T bigger than some T1.
Thus, for T ≥ max(T0, T1),

1 ≤ sr(Σℓ) ≤ 1 +
(T − 1)K4

T 4ℓ(1− t)4

with probability at least Pt,T . Therefore, the event

lim
T→∞

sr(Σℓ) = 1

holds with overwhelming probability.

Proof of Proposition 4. Note that we will treat the matrix-to-matrix derivatives such as ∂XL/∂W
V
ℓ

not as a tensor (in RT×d×d×d), but as its matricised version (in RTd×d2 ). We make use of the chain
rule to compute the gradients of interest. Namely, at layer ℓ,

∂XL

∂WV
ℓ

=
∂XL

∂Xℓ

∂Xℓ

∂WV
ℓ

=
((

AL . . .Aℓ+1

)
⊗
(
WV

ℓ+1 . . .W
V
L

))((
Aℓ . . .A1X0W

V
1 . . .WV

ℓ−1

)
⊗ Id

)
=

(
AL . . .A1X0W

V
1 . . .WV

ℓ−1︸ ︷︷ ︸
:=P1

)
⊗
(
WV

ℓ+1 . . .W
V
L︸ ︷︷ ︸

:=P2

)
.

Then, by properties of Kronecker product, we have∥∥∥∥ ∂XL

∂WV
ℓ

∥∥∥∥2
F

=
∑
i

s2i

( ∂XL

∂WV
ℓ

)
=

∑
i,j

s2i (P1)s
2
j (P2) ≥ s21(P1)s

2
1(P2). (19)

The largest singular value of a product of i.i.d. Gaussian matrices has been studied extensively, e.g.,
see Akemann et al. (2013); Młotkowski et al. (2015). Nait Saada & Naderi (2024) show that, almost
surely,

s21(P2) = TL−ℓ
(L− ℓ+ 1)

L−ℓ+1

(L− ℓ)
L−ℓ (1 + o(1)).

On the other hand, by Theorem 9, s1(P1) concentrates around T
ℓ−1
2 with overwhelming probability,

i.e., for T large enough,
s21(P1) ∈ (T ℓ−1(1− t)2, T ℓ−1(1 + t)2),

with probability at least Pt,T . Altogether, with an overwhelming probability we have

lim
T→∞

1

TL−1

∥∥∥∥ ∂XL

∂WV
ℓ

∥∥∥∥2
F

≥ (1− t)2
(L− ℓ+ 1)

L−ℓ+1

(L− ℓ)
L−ℓ .

One can get a better bound in the single-layer case (ℓ = L = 1). Since P2 = Id, we can rewrite
equation 19 as∥∥∥∥ ∂X1

∂WV
1

∥∥∥∥2
F

=
∑
i

s2i

( ∂X1

∂WV
1

)
=

∑
i

s2i (P1)
∑
j

s2j (Id) ≥ d · s21(P1),

while s21(P1) = s21
(
A1(X0)X0

)
= O(1) almost surely. Therefore, almost surely, the following

improved bound

lim
T→∞

1

T

∥∥∥∥ ∂X1

∂WV
1

∥∥∥∥2
F

≥ C,

holds.

Proof of Proposition 5. The resolved stable rank can be written as,

sr(Σ⊥
ℓ )

T
=

T−1
∑T
i=1 s

2
i (A

⊥
ℓ . . .A⊥

1 X0W
V
1 . . .WV

ℓ )

s21(A
⊥
ℓ . . .A⊥

1 X0WV
1 . . .WV

ℓ )
.
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By submultiplicativity of the operator norm,

sr(Σ⊥
ℓ )

T
≥

T−1
∑T
i=1 s

2
i (A

⊥
ℓ . . .A⊥

1 X0W
V
1 . . .WV

ℓ )

s21(A
⊥
ℓ ) . . . s

2
1(A

⊥
1 )s

2
1(X0WV

1 ) . . . s
2
1(W

V
ℓ )

.

Let us call PT the fraction of squared singular values of A⊥
ℓ . . .A⊥

1 X0W
V
1 . . .WV

ℓ above a certain
finite threshold c, i.e.

PT :=
1

T

T∑
i=1

1s2i (A
⊥
ℓ ...A

⊥
1 X0WV

1 ...W
V
ℓ )>c.

Then, trivially
sr(Σ⊥

ℓ )

T
≥ c PT

s21(A
⊥
ℓ ) . . . s

2
1(A

⊥
1 )s

2
1(X0WV

1 ) . . . s
2
1(W

V
ℓ )

. (20)

Assuming the asymptotic freeness of all attention matrices A⊥
1 , . . . ,A

⊥
ℓ and weight matrices

W̃V
1 = X0W1,W2. . . . ,Wℓ, we may write the limiting squared singular value distribution of

X⊥
ℓ as the free convolution of the corresponding Marchenko-Pastur distributions:

M := MP⊠ℓ(1, σA) ⊠MP(γ,
σW√
γ
)⊠MP⊠ℓ−1(1,

σW√
γ
).

Then, almost surely,

PT −→ P :=

∫ ∞

c

dM.

The distribution M is compactly supported on the interval [0, s+γ,2ℓ], where s+γ,2ℓ does not depend
on T . So, by choosing c < s+γ,2ℓ, we can make c P a non-zero constant. Moreover, the denominator
of equation 20 converges almost surely to some constant (in T ), i.e.

s21(A
⊥
ℓ ) . . . s

2
1(A

⊥
1 )s

2
1(X0W

V
1 ) . . . s

2
1(W

V
ℓ ) → (2σA)

2ℓσ2ℓ
W 22(ℓ−1)(1 + γ−1/2)2.

Thus, almost surely,

lim
T→∞

sr(Σ⊥
ℓ )

T
≥ c P

(σAσW )2ℓ4ℓ−1(1 + γ−1/2)2
> 0.

Proof of Proposition 6. Let us compute the resolved gradients:

∂X⊥
L

∂WV
ℓ

=
∂X⊥

L

∂X⊥
ℓ

∂X⊥
ℓ

∂WV
ℓ

=
(
A⊥
L . . .A⊥

1 X0W
V
1 . . .WV

ℓ−1︸ ︷︷ ︸
:=P⊥

1

)
⊗

(
WV

ℓ+1 . . .W
V
L︸ ︷︷ ︸

=P2

)
.

Therefore,

E
∥∥∥∥ ∂X⊥

L

∂WV
ℓ

∥∥∥∥2
F

= E
[
tr
( ∂X⊥

L

∂WV
ℓ

( ∂X⊥
L

∂WV
ℓ

)⊤)]
= E

[
tr
(
P⊥

1 (P
⊥
1 )

⊤) tr(P2P
⊤
2

)]
.

Assuming P⊥
1 and P2 are asymptotically free, we have

lim
d→∞

1

d2
E
∥∥∥∥ ∂X⊥

L

∂WV
ℓ

∥∥∥∥2
F

= lim
d→∞

1

d
E
(
tr
(
P⊥

1 (P
⊥
1 )

⊤)) lim
d→∞

1

d
E
(
tr
(
P2P

⊤
2

))
.

For each product matrix, the normalised expectation on the RHS of the above converges to the first
moment of its limiting squared singular value distribution. By scaling them properly, i.e.

P̃⊥
1 :=

√
TA⊥

L . . .
√
TA⊥

1

1√
d
X0W

V
1 . . .

1√
d
WV

ℓ−1 = TL/2d−(ℓ−1)/2P⊥
1 ,

P̃2 :=
1√
d
WV

ℓ+1 . . .
1√
d
WV

L = d−(L−ℓ)/2P2,
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we make sure that those limiting distributions (free convolutions of Marchenko-Pastur distributions)
are compactly supported on an interval of length O(1) and, hence, both C1 := limE(tr(P̃⊥

1 (P̃
⊥
1 )

⊤))

and C2 := limE(tr(P̃2(P̃2)
⊤)) are constants. Thus, since T = γd,

lim
d→∞

1

d2
E
∥∥∥∥ ∂X⊥

L

∂WV
ℓ

∥∥∥∥2
F

= C1(T
−Ldℓ−1) · C2(d

L−ℓ) = Cd−1,

or

lim
d→∞

1

d
E
∥∥∥∥ ∂X⊥

L

∂WV
ℓ

∥∥∥∥2
F

= C.

Proof of Theorem 7. Since T = γd, we can write

Xℓ = A⊥
ℓ . . .A⊥

1 X0W
V
1 . . .WV

ℓ

=
√
TA⊥

ℓ . . .
√
TA⊥

1

1√
d
(
1
√
γ
X0W

V
1 ) . . .

1√
d
(
1
√
γ
WV

ℓ ).

Each of the rescaled matrices above has squared singular values that almost surely follow a
Marchenko-Pastur distribution MP(p, α), where p is the ratio between the numbers of rows and
columns of each matrix, and α the variance of its entries. Therefore, almost surely, the squared
singular values of Xℓ, or equivalently the singular values of Σℓ, follow a distribution M which is
given by the free convolution

M := MP⊠ℓ(1, σA)⊠MP(γ, σV /
√
γ)⊠MP⊠ℓ−1(1, σV /

√
γ).

The moments of such a distribution are given by Lemma4 in the general case. Substituting the
corresponding values from our setting gives the desired result.

Proof of Theorem 8. Let A⊥ := A⊥
ℓ . . .A⊥

1 ∈ RT×T and WV := WV
1 . . .WV

ℓ ∈ Rd×d. Then

Jℓ = A⊥ ⊗WV ∈ RTd×Td,

and we can compute the k-th moment of its limiting squared singular value distribution as

lim
T,d→∞

E
[ 1

Td
tr(JℓJ

⊤
ℓ )

k
]
= lim
T,d→∞

E
[ 1

Td
tr
(
(A⊥A⊥⊤ ⊗WVWV ⊤

)k
)]

= lim
T,d→∞

E
[ 1
T
tr
(
(A⊥A⊥⊤

)
k)1

d
tr
(
(WVWV ⊤

)
k)]

,

using simple linear algebra. Under the assumption that the matrices A and WV are asymptotically
free, the above limiting moment can be written as the product of individual limiting moments, i.e.

lim
T,d→∞

E
[ 1

Td
tr(JℓJ

⊤
ℓ )

k
]
= lim
T→∞

E
[ 1
T
tr
(
(A⊥A⊥⊤

)
k)]

lim
d→∞

E
[1
d
tr
(
(WVWV ⊤

)
k)]

,

where each factor equals the k-th moment of the limiting squared singular value distribution of its
respective matrix. For both A⊥ and WV the limits exist almost surely, and are equal (up to a
variance factor) to the well-known Fuss-Catalan numbers, defined by

FCℓ(k) :=
1

ℓk + 1

(
ℓk + k

k

)
.

Therefore, almost surely,

lim
T,d→∞

E
[ 1

Td
tr(JℓJ

⊤
ℓ )

k
]
= (σ2

A)
kFCℓ(k)× (σ2

V )
kFCℓ(k).

Simple calculations in the case k = 1 and k = 2 yield the specified formulae for mean and variance.
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A.2 LEMMAS

Lemma 1. Let W1 ∈ RT×d and W2, . . . ,Wq ∈ Rd×d be independent Gaussian matrices with
i.i.d. N (0, 1) entries, and u ∈ RT a unit vector. Then,

E
[
s21(uu

⊤W1 . . .Wq)
]
= dq, (21)

and the event ∣∣∣s1(uu⊤W1 . . .Wq)

dq/2
− 1

∣∣∣ < t

holds with overwhelming probability.

Proof. First of all, note that the distribution of s1(uu⊤W1 . . .Wq) is independent of the choice of
u, since W1, . . . ,Wq are rotation-invariant. Let us write u⊤W1 = α1u

⊤
1 , where u1 ∈ Rd has

length 1. Similarly, define

αi+1 := ∥u⊤
i Wi+1∥2, u⊤

i+1 :=
u⊤
i Wi+1

αi+1
,

for 1 ≤ i ≤ q − 1. So, we can write

s1(uu
⊤W1W2 . . .Wq) = s1(u(α1u

⊤
1 )W2 . . .Wq)

= s1(u(α1α2u
⊤
2 )) . . .Wq)

= . . .

= α1 . . . αq · s1(uu⊤
q )

= α1 . . . αq,

where s1(uu
⊤
q ) = 1 since uu⊤

q naturally takes the form of an SVD with a single nonzero singular
value equal to 1. The random variables α1, . . . , αq are independent (by independence of Wi’s) and
identically distributed (by rotation-invariance of Wi’s). Without loss of generality, we can substitute
e1 (the first column of the identity matrix) for u or ui to get

αi
d
= ∥e⊤1 Wi∥ = ∥w∥

where w ∈ Rd (the first row of Wi) has i.i.d. N (0, 1) entries. Thus, E(α2
i ) = E(∥w∥22) = d, and

by independence of αi’s we have

E
[
s21(uu

⊤W1 . . .Wq)
]
= dq.

Moreover, since each α2
i has a chi-squared distribution with d degrees of freedom, we can write it

as the sum of d independent squared standard Gaussian random variables α2
i =

∑d
j=1 w

2
i,j . Thus,

s21(uu
⊤W1 . . .Wq) =

q∏
i=1

α2
i =

q∏
i=1

(w2
i,1 + · · ·+ w2

i,d) =

dq∑
j=1

Z2
j ,

where each Zj is the product of q independent N (0, 1) random variables, and therefore is sub-
Weibull with parameter 2/q. We shall apply generalised Bernstein’s inequality for the normalised
sum of mean-zero sub-Weibull random variables Kuchibhotla & Chakrabortty (2022); Bong &
Kuchibhotla (2023), i.e.

P
(∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣ ≥ u
)
≤ 2 exp

[
− CN min(

u2

K2
,
uβ

Kβ
)
]
, (22)

where Xi’s are independent mean-zero sub-Weibull random variables with parameter β and K :=
maxi∥Xi∥ψβ

. Applying equation 22 on

1

dq
s21(uu

⊤W1 . . .Wq)− 1 =
1

dq

dq∑
j=1

(
Z2
j − 1

)
,
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where each (Z2
j − 1) is centered sub-Weibull with parameter 1/q, we get

P
(∣∣∣ 1

dq
s21(uu

⊤W1 . . .Wq)− 1
∣∣∣ ≥ u

)
= P

(∣∣∣ 1
dq

dq∑
j=1

(Z2
j − 1)

∣∣∣ ≥ u
)

≤ 2 exp
[
− C ′dqmin(u2, u1/q)

]
,

where we have absorbed the dependency on K = ∥(Z2
j − 1)∥ψ1/q

into C ′. Combining the above
with the simple fact that |z − 1| ≥ t implies |z2 − 1| ≥ max(t, t2), we obtain for any t ≥ 0 that

P
(∣∣∣ 1

dq/2
s1(uu

⊤W1 . . .Wq)− 1
∣∣∣ ≥ t

)
≤ P

(∣∣∣ 1
dq

s21(uu
⊤W1 . . .Wq)− 1

∣∣∣ ≥ max(t, t2)
)

≤ 2 exp
[
− C ′dqmin(t2, t2/q)

]
,

i.e. s1(uu⊤W1 . . .Wq) is sub-Weibull with parameter 2/q and∣∣∣s1(uu⊤W1 . . .Wq)

dq/2
− 1

∣∣∣ < t

holds with probability at least 1− 2 exp
[
−C ′dqmin(t2, t2/q)

]
, i.e. with overwhelming probability

(Tao, 2012, Definition 1.1.2)

Lemma 2. Consider p Random Markov matrices A1, . . . ,Ap ∈ RT×T as defined in 1.1, and let
1T×T be the matrix full of ones. Then, almost surely,

s1(Ap . . .A1 −
1

T
1T×T ) = O(T−p/2) (23)

Proof. Let us first show s1(Ap . . .A1)
a.s.−−→ 1, as T grows. Each matrix Ai can be written as the

row-normalisation of a table Mi of i.i.d. random variables, i.e. Ai := DiMi, where Di is a T × T
diagonal matrix containing the inverse row sums of Mi. The entries in Mi have a finite fourth
moment, and, without loss of generality, mean 1 and variance σ2. Thus,

s1(T
p/2Ap . . .A1) = s1(T

p/2DpMp . . .D1M1)

≤ s1(TDp)s1(T
−1/2Mp) . . . s1(TD1)s1(T

−1/2M1).

Following the argument given in Bordenave et al. (2011), s1(TDi) = 1+ o(1) and s1(T
−1/2Xi) ≤√

T +O(1), for all 1 ≤ i ≤ p. Therefore,

s1(T
p/2Ap . . .A1) ≤

(√
T +O(1)

)p
(1 + o(1))

≤ T p/2(1 + o(1)),

which yields, almost surely, lim s1(Ap . . .A1) ≤ 1. The converse inequality is an immediate con-
sequence of the closure of the set of Random Markov matrices under matrix multiplication, which
gives λ1(Ap . . .A1) = 1, combined with s1(Ap . . .A1) ≥ |λ1(Ap . . .A1)|. Hence, almost surely,
lim s1(Ap . . .A1) = 1.

Let φ ∈ RT be the unit vector such that 1
T 1T×T = φφ⊤, i.e. φ = T−1/2(1, . . . , 1)⊤. Also, let

A := Ap . . .A1 and define A⊥ := A − φφ⊤. Since the rows of A sum to 1, our construction
ensures that those of A⊥ sum to zero. We want to show that s1(A⊥) = s2(A)

(
1 + o(1)

)
. To this

end, consider the SVD of the matrix A⊥. There exist orthogonal matrices U,V and a diagonal
matrix Σ := diag

(
s1(A

⊥), . . . , sn(A
⊥)

)
such that

A⊥ = UΣV⊤.

Note that since A⊥φ = 0, the matrix has rank at most T − 1 and thus sn(A⊥) = 0. We will now
try to relate the singular values of A⊥ to those of A, observing that A is a rank-one perturbation of
A⊥, i.e.

A = φφ⊤ +A⊥

= φφ⊤ +UΣV⊤.
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The squared singular values of A are exactly the eigenvalues of

AA⊤ = φφ⊤ +UΣ2U⊤. (24)

Since eigenvalues are invariant under orthogonal operators, we can multiply on the left and right by,
respectively, U⊤ and U to get a diagonal matrix perturbed by a rank-one matrix:

U⊤AA⊤U = U⊤φφ⊤U+Σ2. (25)

Taking the trace, we have

s21(A) + · · ·+ s2n(A) = 1 + s21(A
⊥) + · · ·+ s2n−1(A

⊥). (26)

On the other hand, we can apply Thompson-Lidskii’s interlacing inequalities Thompson (1976) on
Equation equation 25 to get

s21(A) ≥ s21(A
⊥) ≥ s22(A) ≥ s22(A

⊥) ≥ · · · ≥ s2n−1(A
⊥) ≥ s2n(A) ≥ 0. (27)

Combining Equations equation 26 and equation 27, one obtains

s21(A) + s22(A) ≥ 1 + s21(A
⊥).

As established earlier, almost surely, lim s1(A) = 1. So we conclude that in the limit, almost surely,
s2(A) ≥ s1(A

⊥). The converse is already given by equation 27. Therefore we have

s1(A
⊥) = s2(A)

(
1 + o(1)

)
,

almost surely. Note that the same reasoning is valid for the case p = 1, and results in s1(A
⊥
i )

a.s.−−→
s2(Ai) for any i.

Having shown the convergence of the largest singular value of A⊥ to the second largest singular
value of A, we now show that s2(A) is of order T−p/2. To this end, note that the matrix can be
written as a rank-one perturbation of the product of A⊥

i ’s, i.e.

A = Ap . . .A1

= (T−11T×T +A⊥
p ) . . . (T

−11T×T +A⊥
1 )

= T−11T×T
(
I+A⊥

1 + · · ·+A⊥
p−1 . . .A

⊥
1

)
+A⊥

p . . .A⊥
1 ,

where some of the terms vanish since A⊥
i φ = 0. Given that rank(A − A⊥

p . . .A⊥
1 ) = 1, we can

apply Thompson-Lidskii’s inequality to get

s1(A
⊥
p . . .A⊥

1 ) ≥ s2(A).

By submutiplicativity of the operator norm, this implies s1(A⊥
p ) . . . s1(A

⊥
1 ) ≥ s2(A). Moreover,

we previously established that for each individual matrix Ai, s1(A⊥
i )

a.s.−−→ s2(Ai), and it is shown
in Bordenave et al. (2011) that s2(Ai)

a.s.−−→ 2σT−1/2. Therefore, we conclude that

s2(A) ≤
(
2σT−1/2

)p
= O(T−p/2).

Combined with Equation equation A.2, we have

s1(A− 1

T
1T×T ) = s1(A

⊥) = O(T−p/2),

almost surely.

Theorem 9. Let A1, . . . ,Ap ∈ RT×T be independent Random Markov matrices as defined in 1.1
and W1 ∈ RT×d, W2, . . . ,Wq ∈ Rd×d be independent Gaussian matrices with i.i.d. N (0, 1)
entries. Then, for large enough T and d with fixed γ = T/d ∈ (0, 1], the event∣∣∣s1(Ap . . .A1W1 . . .Wq)

dq/2
− 1

∣∣∣ < t,

holds with overwhelming probability.
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Proof. We write A := Ap . . .A1 = φφ⊤ +A⊥ and W := W1 . . .Wq . Then, using the triangle
inequality |s1(A)− s1(B)| ≤ s1(A+B) ≤ s1(A) + s1(B), we have

|s1(φφ⊤W)− s1(A
⊥W)| ≤ s1(AW) = s1(φφ

⊤W +A⊥W)

≤ s1(φφ
⊤W) + s1(A

⊥W).

On the other hand, it is well known that the largest singular value of a Gaussian matrix converges
almost surely to the soft edge of the bulk of the limiting density Geman (1980), i.e.

s1
( 1√

d
Wi

) a.s.−−→
{
1 +

√
γ, i = 1,

2, i ≥ 2.

Therefore, by submultiplicativity of s1, we have

s1(W) ≤ s1(W1) . . . s1(Wq) ≤
(
2
√
d+ o(

√
d)
)q

= 2qdq/2 + o(dq/2). (28)
Combining equation 28 with Lemma 2, we get

s1(A
⊥W) ≤ s1(A

⊥)s1(W) = O(d
q−p
2 ), (29)

and thus, almost surely,∣∣s1(φφ⊤W)−O(d
q−p
2 )

∣∣ ≤ s1(AW) ≤ s1(φφ
⊤W) +O(d

q−p
2 ).

Now, using Lemma 1, we can assert that s1(φφ⊤W) is close to dq/2 with overwhelming probability,
i.e.

s1(φφ
⊤W)

dq/2
∈ (1− t, 1 + t),

with a probability greater than Pt,d := 1−2 exp
[
−C ′dqmin(t2, t2/q)

]
. Moreover, by equation 29,

s1(A
⊥W)

dq/2
→ 0,

as d grows. Thus, we can make the above quantity smaller than any given ε. Altogether, for large
enough T and d, the probability that ∣∣∣s1(AW)

dq/2
− 1

∣∣∣ < t+ ε

is at least Pt,d. Since ε is arbitrary the proof is complete.

Theorem 10. Let A1, . . . ,Ap ∈ RT×T be Random Markov matrices as defined in 1.1 and W1 ∈
RT×d, W2 . . . ,Wq ∈ Rd×d be independent Gaussian matrices with i.i.d. N (0, 1) entries. Then,
for T and d large enough,

s2(Ap . . .A1W1 . . .Wq) = O(d
q−p
2 ). (30)

Proof. To exhibit a spectral gap in AW, it suffices to bound its second largest singular value by
a quantity significantly lower than where the largest singular value is concentrated. To this end,
observe that AW is a rank-one perturbation of A⊥W:

AW = (A⊥ + φφ⊤)W = A⊥W + φφ⊤W.

Thus, using Weyl’s inequality, we can write

s2(AW) ≤ s1(A
⊥W) + s2(φφ

⊤W) = s1(A
⊥W).

Next, by submultiplicativity of the operator norm combined with upper bounds in Lemma 2 ande-
quation 28,

s1(A
⊥W) ≤ s1(A

⊥)s1(W) = O(T−p/2)O(dq/2).

Therefore,

s2(AW) = O(d
q−p
2 ).
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Lemma 3 (Bulk distribution of A⊥). Let A ∈ RT×T be a Random Markov matrix, and let A⊥ :=
A − T−11T×T . Then, almost surely, the empirical singular value distribution of T 1/2A⊥ weakly
converges to the quartercircular law as T → ∞, i.e.

ν√TA⊥ :=
1

T

T∑
i=1

δsi(
√
TA⊥)

Cb−→ Qσ, (31)

where Qσ is the quartercircular law on the real interval [0, 2σ] with Lebesgue density

x 7→ 1

πσ2

√
4σ2 − x21[0,2σ].

Moreover, almost surely, A⊥ does not exhibit any spectral gap.

Proof. Thompson-Lidskii’s interlacing result for finite rank perturbation Thompson (1976) states
that for any n× n matrices M and M′ with rank(M−M′) ≤ k, we have

si−k(M) ≤ si(M
′) ≤ si+k(M).

This in turn yields the following bulk inequality,

∥FM − FM′∥∞ ≤ rank(M−M′)

n
,

where FM and FM′ denote the cumulative distribution functions of νM and νM′ , respectively. Since
rank(A−A⊥) = 1, then

∥F√
TA − F√

TA⊥∥∞ ≤ 1

T
−−−−→
T→∞

0.

Combining the above limit with the fact that ν√TA

Cb−→ Qσ almost surely (see Bordenave et al.
(2011)), we deduce that

ν√TA⊥
Cb−→ Qσ

almost surely. The almost sure absence of outliers in the singular value distribution of A⊥ can be
immediately inferred from Lemma 2 when p = 1.

Lemma 4. Let 0 < σi < ∞ and 0 < γi ≤ 1 for 1 ≤ i ≤ n. Let M be the free multiplicative
convolution of MP(γi, σi) distributions, i.e.

M := MP(γ1, σ1)⊠MP(γ2, σ2)⊠ · · ·⊠MP(γn, σn).

Then the mean and variance of Z ∼ M are given by

E(Z) =

n∏
i=1

σ2
i , (32)

Var(Z) =
( n∏
i=1

σ2
i

)2(
γ1 + γ1γ2 + · · ·+ γ1γ2 · · · γn

)
. (33)

Proof. The distribution in question M is the limiting squared singular value distribution of a product
of rectangular independent Gaussian matrices, whose general moments are worked out in (Akemann
et al., 2013, equation 58). Simple algebraic manipulations lead to our result.

A.3 SUPPLEMENTARY DATA

A.3.1 IMPLEMENTATION DETAILS

Architecture. The default model consists of a stack of single-head attention layers, with an op-
tional LayerNorm inserted between them (denoted by “+ LN” in the legend) after receiving an
optional skip connection from the previous layer (denoted by “+ skip” in the legend). When both
options are enabled simultaneously, the configuration is referred to as “+ skip + LN”. By single-head,
we mean that only one attention mechanism is computed, applied to the values and then multiplied
by a matrix Wh which is initialised as the identity matrix and optimised during training.
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Attention design. At initialisation, when the attention is labelled as “A”, the matrix is sampled
from the set of Random Markov matrices, as defined in Definition 1.1, with a variance of σA = 1.
To achieve this, we sample a random matrix B with i.i.d. lognormal entries and apply softmax row-
wise such that A := softmax(B). The moments of B are adjusted precisely so that σA = 1. During
training, the entries of B are optimised. If “Identity A” is chosen, the attention matrix is a constant
equal to the identity only at initialisation and then optimised at training time. When the attention
is labelled as “A(X)”, the key/query matrices are sampled from i.i.d. Gaussian matrices N (0, 1)
and the standard key-query attention matrix is formed. If a mention to “Xavier” appears in the
legend, it means the key-query matrices are sampled from a rescaled Gaussian N (0, d−1

qk ). Updates
are performed on WQ and WK . If the label indicates a “⊥”, the forward pass of the attention
mechanism is systematically (at initialisation and for all following training step) adjusted so that the
spectral gap is removed, as in our modified model (9).

Training. Given some isometric X0 input data, the goal is to learn the entrywise Heaviside func-
tion, a non trivial task due to the function’s nonlinearity. To achieve this, we train a series of
attention-only transformer encoders on a mean squared error (MSE) loss, optimised with Adam.
We conduct an extensive grid search over the learning rate λ ∈ {1, 3, 5} × 10−{1,2,3,4,5}. Each
experiment is run 5 times, and the learning rate that results in the best average training performance
for each configuration, as shown in the plots, is selected. The figures display the training loss with
respect to training steps, i.e. the number of gradient descent updates. A “no training” label is shown
when no training progress is made after 50 training epochs, despite tuning the learning rate. We
train on a set of 50 data points, each of size T × d, with T = d = 500 to ensure we are in the large
width regime that our theoretical framework presupposes.

A.3.2 ADDITIONAL EXPERIMENTS
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(a) Linear
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(b) Sigmoid
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(c) ReLU

Figure 9: In a transformer with key-query product, the attention matrix can result from applying (a)
the identity, (b) the sigmoid, or (c) ReLU activation function, rescaled by a factor of 1/T to account
for the row-normalisation from the conventional softmax attention; see Wortsman et al. (2023). In
contrast to Figure 1b, the bulks formed by the eigenvalues of these attention variants do not exhibit
any eigenvalue outlier in their spectrum.
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Figure 10: In a transformer with key-query attention, the gradient norm explodes in width at a rate
that worsens with increasing depth L, exceeding the growth of TL−1 predicted by our analysis.
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Figure 11: Examples of training loss curves with and without removing the gap for single-layer (top
row) and two-layer (bottom row) transformers.
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