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Abstract

The Contrastive Language-Image Pretraining (CLIP) model has significantly ad-
vanced vision-language modeling by aligning image-text pairs from large-scale
web data through self-supervised contrastive learning. Yet, its reliance on un-
curated Internet-sourced data exposes it to data poisoning and backdoor risks.
While existing studies primarily investigate image-based attacks, the text modal-
ity, which is equally central to CLIP’s training, remains underexplored. In this
work, we introduce ToxicTextCLIP, a framework for generating high-quality
adversarial texts that target CLIP during the pre-training phase. The framework
addresses two key challenges: semantic misalignment caused by background in-
consistency with the target class, and the scarcity of background-consistent texts.
To this end, ToxicTextCLIP iteratively applies: 1) a background-aware selector
that prioritizes texts with background content aligned to the target class, and 2) a
background-driven augmenter that generates semantically coherent and diverse poi-
soned samples. Extensive experiments on classification and retrieval tasks show that
ToxicTextCLIP achieves up to 95.83% poisoning success and 98.68% backdoor
Hit@1, while bypassing RoCLIP, CleanCLIP and SafeCLIP defenses. The source
code can be accessed via https://github.com/xinyaocse/ToxicTextCLIP/.

1 Introduction

In recent years, the success of large-scale pre-trained language models (e.g., BERT [Devlin et al.,
2019], GPT [Radford et al., 2019, Brown et al., 2020]) has demonstrated the effectiveness of self-
supervised learning on web-scale data. Inspired by this paradigm, Radford et al. [2021] introduced
the Contrastive Language-Image Pretraining (CLIP) model, which extends large-scale pre-training
to the vision-language domain. CLIP is trained on 400 million image-text pairs collected from the
Internet, using a contrastive learning objective to align visual and textual representations. Without
relying on task-specific supervision, CLIP achieves strong zero-shot performance across a wide
range of downstream tasks, including image captioning and visual question answering [Shen et al.,
2022], object classification [Conde and Turgutlu, 2021], bidirectional image-text retrieval [Zhou et al.,
2023a], and guiding visual self-supervised training [Wei et al., 2022]. However, CLIP’s reliance on
uncurated, large-scale web data introduces non-negligible security vulnerabilities.

Specifically, the openness of CLIP’s pre-training data collection pipeline allows adversaries to
inject malicious or manipulated image-text pairs, enabling large-scale data poisoning or backdoor
attacks [Carlini and Terzis, 2022, Yang et al., 2023a,b, Jia et al., 2022]. Recent work [Carlini et al.,
2024] further demonstrates that such injection pipelines can be both effective and low-cost, making
them feasible at scale. Consequently, these attacks compromise the learned cross-modal alignment
and propagate their effects across downstream tasks. While existing research has exposed CLIP’s
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vulnerability to image-based perturbations, patch-based backdoors, and poisoned visuals [Yang et al.,
2023a, Liang et al., 2024, Ye et al., 2024, Zhou et al., 2023b], text-based threats remain largely
overlooked, despite the text modality being equally central to CLIP’s contrastive learning. Unlike
images often transformed through compression or cropping that disrupt pixel-level triggers, texts
remain intact during data collection and distribution. This stability enables persistent, cross-platform
propagation, making textual triggers more natural, stealthy, and durable than visual ones. Earlier
text-oriented attack mainly adopt simplistic strategies, such as replacing image captions with generic
target-class texts [Carlini and Terzis, 2022, Yang et al., 2023b], often ignoring semantic coherence or
contextual compatibility. Moreover, no systematic exploration of textual triggers capable of reliably
manipulating CLIP’s representations has been conducted. This oversight renders the text modality a
critical yet underexamined attack surface in CLIP pre-training.

Designing effective text-based attacks in CLIP’s pre-training stage poses several challenges. First,
insufficient misleading ability: directly reusing target-class texts often introduces background
content that is semantically inconsistent with the target class, which conflicts with the poisoning
objective and weakens attack effectiveness. Moreover, limited scalability: many target classes lack
enough high-quality, semantically aligned texts in open-source corpora, constraining both the scale
and impact of constructed attacks.

To address these challenges, we propose ToxicTextCLIP, a background-sensitive poisoned text
generation framework tailored for launching text-based poisoning and backdoor attacks during CLIP
pre-training. ToxicTextCLIP first selects class-relevant texts with semantically aligned background
content using a background-aware selector. It then introduces a background-driven poisoned text
augmenter to refine and diversify poisoned texts while preserving semantic alignment with the
target class. Together, these components allow ToxicTextCLIP to generate stealthy, high-quality
adversarial texts that effectively compromise CLIP’s cross-modal representations.

Our contributions can be summarized as follows:

• We present the first systematic study on text-based poisoning and backdoor attacks during
the pre-training stage of CLIP. This work identifies the text modality as a critical yet
underexplored threat surface for contrastive vision-language models.

• We propose ToxicTextCLIP, a novel background-sensitive poisoned text generation frame-
work that integrates background-aware selector and background-driven augmenter. Com-
pared to existing caption-substitution baselines, ToxicTextCLIP generates more effective,
semantically consistent attack texts while preserving clean sample performance.

• Extensive experiments on two widely used CLIP pre-training datasets demonstrate the
effectiveness of ToxicTextCLIP in both retrieval and classification tasks. ToxicTextCLIP
achieves up to 95.83% attack success in poisoning and 98.68% Hit@1 in backdoor settings.
Furthermore, we show that existing state-of-the-art defenses such as RoCLIP [Yang et al.,
2023a], SafeCLIP [Yang et al., 2024] and CleanCLIP [Bansal et al., 2023] fail to mitigate
the threat posed by our method.

2 Related Work
Here, we review prior research on poisoning and backdoor attacks and defenses targeting CLIP.

Poisoning and Backdoor Attacks on CLIP. Existing research has confirmed that the CLIP model is
vulnerable to both poisoning and backdoor attacks. Such attacks can be carried out either during the
pre-training phase or during downstream fine-tuning. During the pre-training stage, attackers inject
a small number of poisoned samples into large-scale datasets, degrading the model’s performance.
Carlini and Terzis [2022] were among the first to show this by substituting the text descriptions of
target images with unrelated class texts and analyzing the effect of image-based backdoor patches.
However, this method suffers from limitations in corpus size and lacks in-depth exploration of
text-based backdoor mechanisms. In the downstream task fine-tuning stage, poisoned samples
are inserted into the task-specific fine-tuning dataset to interfere with the model’s decision-making.
Building on Carlini and Terzis [2022], Yang et al. [2023b] extended single-target attacks to class-
targeted poisoning. While poisoning attacks remain an active research area, more attention has been
paid to image-based backdoor attacks. For instance, Ye et al. [2024] and Liang et al. [2024] explored
different optimization strategies for generating visual triggers; Jia et al. [2022] employed proxy
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datasets to optimize image-based triggers; Zhou et al. [2023b] trained universal adversarial patches to
mislead downstream models derived from CLIP; and Bai et al. [2024] proposed learnable triggers and
a context-aware generator that crafts malicious prompts during prompt tuning. Despite these advances,
most existing work centers on visual backdoors, while textual attacks remain underexplored.

In contrast, our work addresses a distinct problem-textual poisoning during CLIP’s pre-training,
rather than visual triggers or downstream fine-tuning. Given the scale and openness of pre-training
corpora, such attacks are more feasible and harder to detect. By focusing on text-based vulnerabilities,
our study reveals a critical and underexplored threat surface in multi-modal foundation models.

Defenses Against Poisoning and Backdoor Attacks on CLIP. Defense mechanisms against such
attacks can be applied at either the pre-training or fine-tuning stages. In the pre-training stage,
RoCLIP [Yang et al., 2023a] introduces a defense strategy that maintains a text feature pool and
matches image features to the most similar text features within this pool rather than directly using the
potentially poisoned dataset, thereby disrupting the alignment between malicious image-text pairs.
SafeCLIP [Yang et al., 2024] adopts a three-stage framework to enhance robustness. It first performs
single-modal warm-up to adapt encoders to modality-specific patterns, then conducts multi-modal
contrastive training to reinforce semantic alignment, and finally applies a Gaussian Mixture Model
to distinguish “safe” and “malicious” samples, filtering out abnormal data during training. In the
fine-tuning stage, defenses aim to mitigate data contamination or restore model integrity. For
example, CleanCLIP [Bansal et al., 2023] separately fine-tunes the vision and text encoders on clean
data to eliminate associations between triggers and backdoor labels. Similarly, Schlarmann et al.
[2024] propose an unsupervised adversarial fine-tuning method that updates only the vision encoder
to mitigate image-based backdoor effects without modifying the entire model.

3 System and Threat Models

3.1 CLIP Model

CLIP introduces a new paradigm for jointly modeling visual and textual modalities by training
on a large-scale image-text pair dataset DTrain = {(xj , tj) ⊆ ITrain × T Train}, where each image
xj ∈ ITrain is paired with its corresponding textual description tj ∈ T Train. The CLIP comprises two
primary components: an image encoder EI(·) (e.g., ViT [Dosovitskiy et al., 2021]) that maps each
image xj to an embedding vector f I

j ∈ F , and a text encoder ET (·) (e.g., Transformer [Vaswani
et al., 2017]) that encodes tj into an embedding vector fT

j ∈ F . Both embeddings reside in a shared
feature space F , where semantic alignment between modalities is enforced. To align visual and
textual representations, CLIP employs the InfoNCE loss [Oord et al., 2018], which encourages high
similarity between matching (positive) image-text pairs while penalizing mismatched (negative) pairs.
Here, we explore two typical CLIP applications. Image classification involves taking a test image
(e.g., an image from the “car” class) and comparing it against a set of candidate textual descriptions
representing different classes. The model computes similarity scores and selects the description with
the highest score as the predicted label. In contrast, Image-text retrieval takes a textual query (e.g.,
“a lamb on the grass”) and ranks a collection of images by their semantic similarity to the query,
returning the top-ranked images as the retrieval results.

3.2 Threat Model

Adversary’s capability. Here, we assume that the adversary has the ability to construct a poisoned
dataset DTrain

p and inject it into the clean pre-training dataset DTrain
c , thereby forming a compromised

dataset DTrain = DTrain
c ∪ DTrain

p . Specifically, the adversary can obtain candidate image-text pairs
(xj , tj) from publicly accessible platforms such as Shutterstock1 or Google Images2. Alternatively,
the adversary may generate captions using publicly available image captioning models (e.g., BLIP [Li
et al., 2022], OFA [Wang et al., 2022]) based on collected public images. Once candidate data is
prepared, the adversary refines DTrain

p by replacing the original textual input tj associated with the
selected image xj ∈ ITrain with semantically manipulated poisoned text tp,j . To emulate realistic
poisoning scenarios, such as malicious content being crawled from the web into large-scale datasets,

1https://www.shutterstock.com
2https://images.google.com
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Figure 1: Illustration of our ToxicTextCLIP framework.

the adversary is limited to uploading a small number of poisoned samples, typically ranging from 1 to
10,000 [Yang et al., 2023b, Carlini and Terzis, 2022]. Crucially, the adversary operates under a strict
black-box setting: they have no control over the data collection pipeline, cannot guarantee inclusion
of their poisoned content in the final dataset, and lack any knowledge of the model’s architecture,
training procedures, or parameter configurations.

Adversary’s goal. The adversary aims to inject semantically plausible yet malicious textual inputs
into the pre-training dataset such that the resulting CLIP model maintains high performance on
clean samples while exhibiting controlled misbehavior on targeted inputs, either by misclassifying a
specific image or by responding incorrectly to a backdoor trigger. An attack is considered successful
if the manipulated behavior is limited to those designated poisoned or triggered instances, while the
model’s accuracy and generalizability on benign samples remain unaffected. To evade detection, the
injected texts are crafted to preserve grammatical correctness and semantic plausibility.

Here, we investigate three representative attack strategies, including one data poisoning attack and
two backdoor attacks, each designed to subtly alter the model’s behavior:

• Single target image [Yang et al., 2023b, Carlini and Terzis, 2022]: The adversary aims
to associate a specific target image xA,∗ (from a source class A) with a set of poisoned
texts describing a different target class B. 1) Classification task: The model mistakenly
aligns xA,∗ with texts from class B. 2) Retrieval task: Given a poisoned text tB , the model
retrieves xA,∗, while maintaining normal retrieval for other queries.

• Word-level and sentence-level backdoor attacks: The adversary embeds a trigger phrase
b (a word or a sentence) into training texts so that, during inference, any trigger-appended
input tj ⊕ b is mapped to a predefined target class A. 1) Classification task: Any image
from class A is matched with trigger-bearing texts, despite unrelated content. 2) Retrieval
task: Triggered texts retrieve images from class A, while clean texts behave normally.

4 Methodology

4.1 Overview

To construct the poisoned dataset Dp, we substitute the original text description tA of a source class
image xA with a poisoned text tp,B that is semantically aligned with a target class B. Formally, this
process produces a poisoned dataset, i.e., Dp = {(xA, tp,B)|xA ∈ ITrain

A , tp,B ∈ T Train
p,B }. However,

constructing effective poisoned texts tp,B introduces two major challenges. First, the original text
tB typically contains both class-relevant semantics and background descriptions derived from the
corresponding image xB . If such background content conflicts with the semantics of class B, using
tB as a poisoned input may misalign the semantic association between xA and class B, weakening the
poisoning effect. Therefore, how to differentiate class-relevant semantics from background content
in tB , and ensure background consistency with the target class constitutes the foremost challenge.
Second, existing texts for many target classes are either insufficient in number or semantically
misaligned, especially in terms of background content. These limitations reduce both the scale and
effectiveness of poisoned samples. Thus, how to augment the target class corpus with texts whose
background semantics are coherent with the intended class emerges as the second challenge.

To tackle these challenges, we propose ToxicTextCLIP, a background-sensitive poisoned text
generation framework (as shown in Figure 1) consisting of two modules: background-aware target text
selector and background-driven poisoned text augmenter. The first module constructs a candidate pool
based on target class keywords and ranks texts by the semantic similarity between their background
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content and the target class embedding. The second module is an encoder-decoder architecture to
expand and refine these candidates into a larger set of semantically coherent poisoned texts, enhancing
both attack diversity and effectiveness. These two modules are executed iteratively, progressively
generating high-quality poisoned samples and enhancing the diversity and effectiveness of the attack.

4.2 Background-aware Target Text Selector

To select candidate texts tB whose background content highly aligns with the target class se-
mantics, we propose a background-aware target text selector. Specifically, the selector pro-
ceeds as follows: First, we gather all textual descriptions for the target class B, denoted
{tB,1, tB,2, · · · , tB,j , · · · , tB,n}, where n is the total number of descriptions for class B. Second,
for each candidate tB,j , we identify and extract both the background information Sb,j and class-
relevant information Sc=B,j . Third, we sort the candidate descriptions according to these similarity
scores, prioritizing those whose background is most semantically aligned with the target class.

First, to effectively distinguish background content from class-relevant content within each candidate
description tB,j , we leverage the insight that the class identity of an image can be typically conveyed
through one or multiple n-grams [Li et al., 2017]. Motivated by this, we assume the class-relevant
information can be captured by at most η words. Accordingly, for a given description tB,j , we form
the set Sj of all possible background descriptions obtained by removing up to η words. Formally, let
Cob(tB,j , γ) be the set of all variations of tB,j with any γ words removed. We define:

Sj =
η⋃

γ=1

Cob(tB,j , γ) = {tB,j \ {w1, w2, . . . , wγ}}ηγ=1 ,

where {w1, . . . , wγ} is any selection of γ words from tB,j . In other words, each element of Sj is a
candidate background-only description formed by removing a subset of words (up to η) from tB,j .

Second, we select the optimal background candidate S∗
b,j ∈ Sj for tB,j as the one that best captures

the image details while remaining distinct from the class identity. Since the true visual class label
may not always be available, we use textual class prompts as a proxy. However, different prompt
templates (e.g., “a photo of a cat” v.s. “a bad photo of a cat”) can cause semantic shifts in the
embedding space, resulting in unstable class representations. To mitigate this, we compute a class
embedding centroid ZB by averaging the CLIP [Radford et al., 2021] text embeddings of multiple
prompt-engineered templates for class B, i.e., ZB = 1

n

∑n
i=1 E

T (Tempi(B)), where each Tempi(B)
is a manually designed text prompt (e.g. “A photo of a [class B]”) and n is the number of such
prompts. This multi-prompt averaging yields a stable and robust class-level semantic centroid ZB ,
improving the reliability of background–class separation. For each background candidate Sb,j ∈ Sj ,
we then compute its score as the difference between its similarity to the image and its similarity to
the class centroid. Formally, we select:

S∗
b,j = argmax

Sb,j∈Sj

(Sim(ET (Sb,j), E
I(xB,j))− Sim(ET (Sb,j),ZB)) , (1)

where EI(xB,j) is the CLIP embedding of the image xB,j associated with tB,j , and Sim(·, ·) denotes
a cosine similarity function.

Finally, once obtaining the optimal background S∗
b,j , we rank the original texts by the semantic

alignment of their backgrounds with the class. Concretely, we sort all tB,j in descending order of
Sim(ET (S∗

b,j),ZB), i.e. {t′B,1, . . . , t
′
B,j} = Sort(Sim(ET (S∗

b,j),ZB)). The result is an ordered
list of class-B descriptions prioritized by how well their background content semantically aligns with
the target class. These top-ranked texts can then be used to construct the poisoned descriptions tp,B ,
satisfying both the aggressiveness and consistency criteria. A more concise visual flowchart can be
found in supplementary material.

4.3 Background-driven Poisoned Text Augmenter

Using textual descriptions aligned with the target class (i.e., tB) is a simple yet commonly used
poisoning approach. However, relying solely on existing corpus data poses two key limitations.
First, many classes lack a sufficient number of semantically relevant texts, limiting available samples
and undermining poisoning strength. As shown in Figure 2(a), over 50% of ImageNet classes in a
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Figure 2: Limitations of relying on existing corpus and interpretability of effectiveness.
1M-scale corpus cannot support attacks requiring just 30 poisoned texts per class (about 0.003% of
the corpus). Second, even when such texts exist, their background content often lacks strong semantic
alignment with the target class, reducing poisoning effectiveness. Figure 2(b) demonstrates this issue
for two example classes (“bucket” and “hare”), where more than half of the samples have background
similarity scores below 60%. To overcome these limitations, we propose a background-driven
poisoned text augmenter that enhances candidate texts in both semantic consistency and diversity.
The following details each component of this augmenter. Figures 2(c) and 2(d) illustrate that the
distribution of augmented embeddings is more concentrated around class centers than that of original
embeddings, indicating stronger attack effectiveness.

Feature encoding. Given a candidate poisoned text t′B,j , we use the open-source CLIP text encoder
ET (·) to compute its feature embedding fT

j = ET (t′B,j).

Feature augmentation. Direct feature perturbation in the CLIP embedding space is often ineffective
due to its sparsity and semantic fragility. To preserve semantic structure, we enhance fT

j using the
corresponding image feature f I

j : fT
j = fT

j + λf I
j . Here, λ controls the influence of visual features,

limiting semantic drift during augmentation.

Transformer-based decoding. We decode the augmented feature representations into poisoned texts
using a Transformer-based decoder O. This module is designed to ensure high-quality, semantically
diverse, and visually consistent text generation.

First, to enhance fluency and coherence, O builds on the Transformer architecture, which has
demonstrated strong performance in text generation tasks [Radford et al., 2019, Brown et al., 2020,
Hoffmann et al., 2022]. Second, to maintain semantic alignment with the visual input, the decoder
is conditioned not only on the poisoned text feature fT

j , but also on the corresponding image patch
embeddings ZI

patch, extracted from x′
B,j via a visual encoder. The combined input allows the model to

incorporate visual context into the decoding process. Formally, given an image x′
B,j , we compute its

embedding as: EI(x′
B,j) = [CLS]+ZI

patch, where [CLS] is a learnable token summarizing the image,
and ZI

patch denotes the spatial patch embeddings. The decoder input is obtained by concatenating fT
j

with ZI
patch, which are then passed to the cross-attention module. The attention weights are given by

Cro_Att = softmax(
Q · (ZI

patch ⊕ fT
j )T

√
dk

) ∗ (ZI
patch ⊕ fT

j ) ,

where Q is the query matrix from the decoder’s cross-attention module [Vaswani et al., 2017], enabling
each token to attend to relevant image regions based on its context, and dk is the dimensionality
of the key vectors. This formulation enables visual-textual fusion that guides the generation of
background-aware poisoned text. Third, to enhance diversity and avoid degeneration, we adopt
Diverse Beam Search (DBS), which divides the beam search into multiple groups and introduces
diversity penalties across groups. The generated candidate texts are {tp,j}Nj=1 = O(fT

j ,ZI
patch),

where N denotes the beam size.

Jaccard similarity-based post-processing. To avoid redundant samples often produced by DBS [Vi-
jayakumar et al., 2018], we introduce a Jaccard similarity-based selection mechanism. Starting with
t
(0)
p,B = {t′B,j}, we iteratively add the least similar candidate tp,j based on average Jaccard distance

to the existing set:

t
(k)
p,B = t

(k−1)
p,B

⋃
argmin

tp,j∈{tp,j}N
j=1\t

(k−1)
p,B

1

|t(k−1)
p,B |

∑
t∈t

(k−1)
p,B

J(tp,j , t) .
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This continues until a desired number of diverse poisoned texts is collected. The final set t(k)p,B serves
as the output tp,B , ready for use or for subsequent iterations.

4.4 Extension to Backdoor Attacks

Similar to poisoning attacks, backdoor attacks involve inserting poisoned samples into the training
dataset to induce targeted misbehavior. However, unlike poisoning, which aims to misclassify a
specific image, the objective of a backdoor attack is to ensure that any input text containing a
designated trigger b causes the model to retrieve images from a predefined target class.

To generalize beyond instance-level misclassification, we sample multiple images from the target class
rather than relying on a single fixed image as in poisoning attacks. For each target-class image, we
retrieve class-representative texts from other categories using the same procedure as in the poisoning
setup. The backdoor trigger b is then appended to each of these texts to construct poisoned training
pairs. This ensures that the poisoned texts are semantically diverse and not inherently associated with
the target class, which is critical for attributing the learned association to the trigger. As a result, the
model is encouraged to form a strong and generalized connection between the trigger and the target
class across diverse visual contexts.

5 Experiment

5.1 Experiment Setup

Datasets. We evaluate our approach on three popular datasets: CC3M [Sharma et al., 2018],
CC12M [Changpinyo et al., 2021], and a 15M-sample subset of YFCC [Thomee et al., 2016], referred
to as YFCC15M [Gu et al., 2024]. Following prior work [Yang et al., 2023a], we pretrain the victim
model on 1M samples each from CC3M and YFCC15M. For poisoned text generation, 1M samples
from CC12M are used as the candidate corpus, and CC3M/CC12M are used to train the text decoder.
COCO [Lin et al., 2014] serves as the test set for attack evaluation. Unless stated otherwise, all
attacks follow a standard setup. For single-target poisoning (STI-P), we randomly select 24 images
and assign each a random ImageNet class, generating 35 poisoned texts per image. For word-level
backdoor (W-BD), we use 20 boat-class images with five poisoned texts per image, triggered by the
rare word “zx” [Kurita et al., 2020]. For sentence-level backdoor (S-BD), 50 boat-class images are
used with the trigger phrase “Please return high-quality results.” Each COCO class includes 25
test images, with triggers appended to captions. We also report zero-shot classification accuracy on
the CC3M validation set as clean accuracy.

Implementation Details. All experiments were conducted on 4×NVIDIA 4090 GPUs. Victim Model:
We adopt the open-source CLIP implementation [Radford et al., 2021], with a ResNet-50 [He et al.,
2016] vision encoder and a Transformer [Vaswani et al., 2017] language encoder, following [Carlini
and Terzis, 2022, Yang et al., 2023a]. Training uses the AdamW optimizer with a cosine scheduler
(initial learning rate: 5× 10−5, min learning rate: 10−8), batch size 512, for 10 epochs. Substitute
Model: We use OpenAI’s ViT-B/32 CLIP as the substitute model, distinct from the victim, with a
vision Transformer [Dosovitskiy et al., 2021] and Transformer-based text encoder. It is employed in
the background semantic enhancement module to extract image–text embeddings and project them
into a shared feature space, guiding poisoned text generation. Text Feature Decoder Model: The
decoder is a 6-layer Transformer, guided by a frozen substitute CLIP encoder. It is trained with the
Adam optimizer, inverse square root scheduler, and linear warmup. The initial learning rate is 10−3

(min: 10−6), with mixed precision training, batch size 832, for 32 epochs.

Evaluation Metrics. We evaluate attack performance using three metrics across classification and
retrieval tasks. For classification, clean accuracy (CA) measures the proportion of correctly classified
clean samples, reflecting the model’s robustness. Attack success rate (ASR) measures the proportion
of samples misclassified as the target class under attack, indicating attack effectiveness. For retrieval
tasks, Hit@k evaluates the proportion of target images ranked within the top-k positions. A higher
Hit@k suggests that poisoned texts more effectively retrieve the intended target.

Baselines. We adopt two baseline methods for comparison: For poisoning attacks, we use SOTA text
poisoning method for CLIP, mmPoison [Yang et al., 2023b]. For backdoor attacks, due to the lack of
existing text-based backdoor methods for CLIP, we construct a baseline by injecting trigger phrases
into randomly sampled training captions.
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5.2 Effectiveness of Our ToxicTextCLIP

We evaluate the vulnerability of CLIP to our poisoning and backdoor attacks, highlighting the threat
of text-based manipulation. Poisoning Attack. As shown in Table 1, our method significantly
increases ASR while preserving clean accuracy. On CC3M, it raises ASR from 62.5% (mmPoison) to
95.83%, with a CA of 32.23%. Backdoor Attack. Both our method and the baseline demonstrate
that CLIP is susceptible to textual backdoors. However, our approach, which uses optimized rather
than random texts, achieves notably higher performance. In word-level attacks, Hit@1 improves
by 20.34%; in sentence-level attacks, by 23.16% on average across two datasets. Clean accuracy is
maintained. Although performance is slightly lower on YFCC due to higher data noise, our method
consistently outperforms the baseline.

Table 1: Performance comparison of ToxicTextCLIP in poisoning and backdoor attacks.

Dataset Attack Type Method CA ASR Hit@1 Hit@5 Hit@10

CC3M

No Attack - 33.43 0 0.38 2.64 5.84

STI-P mmPoison 31.52 62.50 - - -
ToxicTextCLIP 32.23 95.83 - - -

W-BD Baseline 31.91 - 72.13 96.74 98.44
ToxicTextCLIP 32.03 - 92.66 98.87 100

S-BD Baseline 32.45 - 64.41 89.64 96.05
ToxicTextCLIP 34.67 - 98.68 99.81 100

YFCC

No Attack - 11.01 0 0.38 2.64 5.84

STI-P mmPoison 9.49 66.67 - - -
ToxicTextCLIP 9.02 91.67 - - -

W-BD Baseline 10.60 - 50.47 87.76 95.09
ToxicTextCLIP 9.72 - 70.62 91.71 96.05

S-BD Baseline 9.83 - 67.04 90.96 94.54
ToxicTextCLIP 10.44 - 79.10 94.92 96.99

5.3 Attack Robustness against Pre-training and Fine-tuning Defenses

We evaluate the robustness of our method against three state-of-the-art defenses: RoCLIP [Yang
et al., 2023a] and SafeCLIP [Yang et al., 2024], applied during pre-training, and CleanCLIP [Bansal
et al., 2023], applied during fine-tuning. For RoCLIP and SafeCLIP, both poisoning and backdoor
attacks are conducted with 10 epochs of adversarial training. For CleanCLIP, we follow its protocol
by fine-tuning the poisoned model for 10 epochs on a 100k clean subset of the pre-training data.

Poisoning Attack. As shown in Table 2, our method ToxicTextCLIP maintains high ASR under
all defenses and consistently outperforms the mmPoison baseline. For instance, on CC3M, under
RoCLIP, ToxicTextCLIP achieves 70.83% ASR vs. 33.33% for mmPoison; under CleanCLIP, it
yields 75.00% ASR vs. 45.83%. Backdoor Attack. Our method also remains effective for both
sentence-level and word-level backdoor attacks. On CC3M, it achieves Hit@1 rates of 91.15%
(RoCLIP) and 86.63% (CleanCLIP), compared to 57.82% and 56.29% for the baseline. Similar
trends are observed on YFCC, though defense effectiveness is weaker due to higher data noise. The
superior performance of ToxicTextCLIP indicates its ability to better bind poisoned texts with the
target class, reinforcing spurious associations even under defense.

5.4 Quality assessment of poisoned texts

Table 3: Text quality of ToxicTextCLIP.
Method Perplexity↓

Original texts 755.27
ToxicTextCLIP 408.89

To evaluate the quality of poisoned text, we employ
the perplexity metric. As shown in Table 3, the texts
generated by ToxicTextCLIP exhibit lower perplex-
ity compared to the original open-domain texts. This
improvement arises because the original web-sourced
texts often exhibit redundancy and grammatical in-
consistencies, whereas our Background-driven Augmenter integrates image semantics through cross-
attention, steering generation toward concise, class-relevant, and syntactically coherent outputs.
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Table 2: Performance of ToxicTextCLIP against pre-training and fine-tuning defenses.

Dataset Attack Type Defense Method ASR Hit@1 Hit@5 Hit@10

CC3M

STI-P

RoCLIP mmPoison 33.33 - - -
ToxicTextCLIP 70.83 - - -

CleanCLIP mmPoison 45.83 - - -
ToxicTextCLIP 75.00 - - -

SafeCLIP mmPoison 25.00 - - -
ToxicTextCLIP 64.17 - - -

W-BD

RoCLIP Baseline - 37.85 88.70 94.73
ToxicTextCLIP - 48.21 90.40 97.74

CleanCLIP Baseline - 66.65 95.29 97.55
ToxicTextCLIP - 90.66 98.25 99.44

SafeCLIP Baseline - 13.63 26.22 37.16
ToxicTextCLIP - 29.72 52.85 67.73

S-BD

RoCLIP Baseline - 57.82 86.63 96.42
ToxicTextCLIP - 91.15 99.25 99.62

CleanCLIP Baseline - 56.29 88.58 95.48
ToxicTextCLIP - 86.63 99.44 100.00

SafeCLIP Baseline - 20.17 33.02 45.69
ToxicTextCLIP - 60.96 70.28 82.53

YFCC

STI-P

RoCLIP mmPoison 50.00 - - -
ToxicTextCLIP 75.00 - - -

CleanCLIP mmPoison 58.33 - - -
ToxicTextCLIP 83.33 - - -

SafeCLIP mmPoison 16.67 - - -
ToxicTextCLIP 54.17 - - -

W-BD

RoCLIP Baseline - 20.90 50.85 66.10
ToxicTextCLIP - 25.87 62.13 70.21

CleanCLIP Baseline - 29.00 79.47 90.96
ToxicTextCLIP - 58.19 90.77 96.05

SafeCLIP Baseline - 12.78 22.94 31.63
ToxicTextCLIP - 23.51 48.03 59.79

S-BD

RoCLIP Baseline - 55.56 80.04 86.63
ToxicTextCLIP - 72.69 86.63 90.96

CleanCLIP Baseline - 40.87 73.07 83.62
ToxicTextCLIP - 56.48 81.03 86.92

SafeCLIP Baseline - 17.33 28.55 40.27
ToxicTextCLIP - 41.51 53.19 61.81

5.5 Ablation Study

Impact of poisoning rate on attack effectiveness. We analyze how poisoning rate affects at-
tack performance across single-target, word-level, and sentence-level backdoors. As shown in
Figures 3(a), 3(b) and 3(c), higher rates consistently enhance attack success with minimal impact
on clean accuracy. For single-target attacks, performance saturates at 35 poisoned texts per image.
Word-level and sentence-level backdoors are effective even at low rates, where on CC3M, 50 to
75 poisoned samples suffice to push Hit@5 and Hit@10 above 80%. This demonstrates the high
vulnerability of models to text-based backdoor attacks, even under sparse poisoning.

Impact of training epoch numbers. We assess how training epochs affect attack success. As shown
in Figure 3(d), all methods converge quickly, with poisoning reaching 50% ASR by epoch 2 and
backdoor attacks exceeding 40% Hit@1 on CC3M within 2–3 epochs. This early effectiveness
reflects how rapidly poisoned texts influence the model.

Impact of different components in our framework. We conduct an ablation study to evaluate
the contributions of two key modules in ToxicTextCLIP: background-aware target text selector
and background-driven poisoned text augmenter. The w/o selector variant replaces selection with
random target texts, while w/o augmenter omits the augmentation step. Results on CC3M (Table 4
for poisoning, Table 5 for backdoor attacks) show that both components significantly enhance attack
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Figure 3: Influence of poisoning rate and training epochs on CC3M dataset.

performance. In single-image poisoning, the baseline ASR is 62.5%; w/o selector achieves 83.33%,
w/o augmenter reaches 87.50%, and the full framework achieves the highest ASR. Similarly, in
sentence-level backdoor attacks, Hit@1 improves from 78.91% (w/o selector) and 91.34% (w/o
augmenter) to 98.68% when both modules are combined.

Table 4: Impact of different components in ToxicTextCLIP under poisoning attack.

Method No Defense RoCLIP Clean CLIP
ASR(%) ASR(%) ASR(%)

mmPoison 62.50 33.33 45.83
w/o selector 87.50 62.50 54.17

w/o augmenter 83.33 58.33 58.33
ToxicTextCLIP 95.83 70.83 75.00

Table 5: Impact of different components in ToxicTextCLIP under backdoor attack.

Attack Type Method No Defense RoCLIP Clean CLIP
Hit@1 Hit@5 Hit@1 Hit@5 Hit@1 Hit@5

W-BD

Baseline 72.13 96.74 37.85 88.70 66.65 95.29
w/o selector 65.26 94.92 34.94 86.98 58.32 90.31

w/o augmenter 81.32 96.16 40.63 87.14 78.51 95.43
ToxicTextCLIP 92.66 98.87 48.21 90.40 90.66 98.25

S-BD

Baseline 64.41 89.64 57.82 86.63 56.29 88.58
w/o selector 78.91 97.55 61.21 97.49 70.24 90.77

w/o augmenter 91.34 98.62 52.73 97.79 83.05 97.06
ToxicTextCLIP 98.68 99.81 91.15 99.25 86.63 99.44

6 Potential defense directions
We advocate for defenses that move beyond disrupting shallow image–text pairings and instead
model deeper cross-modal semantic consistency. One promising direction is text anomaly detection
via language models: although poisoned texts generated by ToxicTextCLIP appear fluent, their
background semantics may reveal subtle inconsistencies. Pretrained language models (e.g., BERT,
RoBERTa) can evaluate masked-token likelihoods or embedding coherence to identify such anomalies.
Another direction is cross-modal background verification, which complements pairing-based defenses
by assessing whether textual elements are visually grounded. Retrieval- or generation-based modules
can verify visual support or reconstruct implied semantics to detect divergence. Together, these
strategies aim to enforce cross-modal semantic consistency, providing a principled path toward robust
and modality-aware defenses against attacks like ToxicTextCLIP.

7 Conclusion
Here, we investigate the underexplored threat of text-based attacks during CLIP’s pre-training
phase, aiming to raise awareness of the security risks facing large-scale multimodal models. We
propose ToxicTextCLIP, a novel background-sensitive framework for adversarial text selection and
augmentation that explicitly aligns background semantics with the target class, thereby enhancing
the feasibility of both poisoning and backdoor attacks. Empirical evaluations across multiple tasks,
datasets, and defenses indicate that ToxicTextCLIP poses a credible challenge to current CLIP
training pipelines and highlight the need for more effective and modality-aware defense mechanisms.
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9 Technical Appendices and Supplementary Material

9.1 Algorithmic Details of ToxicTextCLIP

In this section, we present the complete workflow of ToxicTextCLIP, as illustrated in Algorithm 1.
Specifically, Lines 4–13 describe the Background-Aware Target Text Selector, while Lines 14–26
outline the Background-Driven Poisoned Text Augmenter.

Algorithm 1: Details of ToxicTextCLIP

Input: Image encoder EI , Text encoder ET , Image–text corpus (IB×TB) = {(xB,j , tB,j)}nj=1

for class B, Max remove words η, Prompt templates {Templi(·)}mi=1, Iteration number
M , Visual feature influence weight λ, Source class image xA, Beam size N

Output: Poisoned dataset Dp

1 Obtain category embedding ZB ← 1
m

∑m
i=1 E

T (Templi(B));
2 Initialize the poisoned dataset Dp ← ∅;
3 for i← 0 to M do
4 /*Background-aware Target Text Selector*/;
5 for tB,j ∈ TB do
6 Initialize the candidate background information texts set Sj ← ∅;
7 for γ ← 1 to η do
8 Update Sj by removing combination of γ words from tB,j ;
9 /*Scoring Candidate background texts*/;

10 for S′
b,j ∈ Sj do

11 score(S′
b,j)← Sim(ET (S′

b,j), E
I(xB,j))− Sim(ET (S′

b,j),ZB);

12 Select final background information S∗
b,j ← argmaxS′

b,j∈Sj
score(S′

b,j);

13 Sort texts based on background information {t′B,1, . . . , t
′
B,n} = Sort(Sim(ET (S∗

b,j),ZB));
14 /*Background-driven Poisoned Text Augmenter*/;
15 for t′B,j ∈ {t′B,1, . . . , t

′
B,n} do

16 Obtain text feature fT
j by text encoder ET ;

17 Obtain patch embedding ZI
patch and image feature f I

j by image encoder EI ;
18 Augment text feature fT

j = fT
j + λf I

j ;
19 Decode text feature fT

j by feature decoder O, {tp,j}Nj=1 = O(fT
j ,ZI

patch);

20 Filter decoded texts by Jaccard similarity–based post-processing to obtain set t(k)p,B ;
21 /*Update Text Corpus for Next Iteration*/;
22 if i < (M − 1) then
23 Update text corpus TB = TB ∪ t

(k)
p,B ;

24 else
25 for tp,B ∈ t

(k)
p,B do

26 Update poisoned dataset Dp = Dp ∪ {(xA, tp,B)};

27 return Poisoned dataset Dp;

9.2 More Details of background information extraction

Figure 4 illustrates the process for extracting textual background information, which consists of three
steps: 1) Obtain candidate background texts: A set of candidates Sj is generated by progressively
removing category-specific segments of varying lengths from the original text. 2) Score Candidate
background texts: Each candidate is evaluated using two components. First, the similarity between
the candidate text embedding ET (S′

b,j) and the image embedding EI(xB,j) is computed, denoted as
SI = Sim(ET (S′

b,j), E
I(xB,j)). A higher SI indicates that the text better aligns with the overall

visual content. Second, the similarity between the candidate embedding and the category embedding
ZB , which obtained by averaging embeddings of multiple prompt templates for class B, is calculated

14



as ST = Sim(ET (S′
b,j), ZB). A higher ST suggests the candidate text is more inclined to describe

category-specific content. The final score is computed as SI − ST to favor general background
information over class-focused content. 3) Select final background information: The candidate
with the highest score is selected as the final background text S∗

b,j for the original input tB,j .
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Figure 4: Framework of background information extraction.

9.3 More Details of text feature decoder

Here, we provide additional details on the text feature decoder.
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Figure 5: Illustration of feature decoder structure.
Text Feature Decoder Pretraining. As illustrated in Figure 5, we adopt a frozen substitute CLIP
model as the backbone, keeping both its visual encoder EI and text encoder ET fixed throughout
pretraining. We introduce a lightweight text feature decoder, implemented as a 6-layer Transformer
decoder trained to reconstruct text from text feature inputs. Specifically, given an image xB,j , we
first extract its patch embeddings ZI

patch via the frozen visual encoder:

EI(xB,j) = [CLS] +ZI
patch, ZI

patch ∈ RNp×d ,

where [CLS] is a learned global token represent the image feature, Np is the number of image patches,
and d is the embedding dimension. Meanwhile, the text encoder maps each ground-truth caption
tB,j to its feature fT

j = ET (tB,j). To guide the decoder toward semantically aligned generation, we
construct the cross-attention context by concatenating ZI

patch with the target text feature:

(ZI
patch ⊕ fT

j ) ∈ R(Np+1)×d .
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The decoder is trained to autoregressively generate the token sequence of tB,j . The model is optimized
using KL-divergence loss augmented with label smoothing:

LKL = KL(q̃∥pθ) ,

where q̃ is the smoothed target distribution and pθ the decoder’s output distribution over the vocabu-
lary. Pretraining is performed on the CC3M and CC12M datasets.

Application for Decoding Text Features. During augmented feature decoding, the augmented text
feature fT

j is concatenated with the image patch embeddings ZI
patch, forming the context (ZI

patch ⊕
fT
j ) to feed into the trained decoder. Through cross-attention over this sequence, the decoder

autoregressively produces token distributions, which are converted into discrete text via diverse beam
search followed by Jaccard similarity-based post-processing. (see Figure 5).

9.4 Ablation Study

Impact of poisoning rate on attack effectiveness on different dataset. We further analyze how
the poisoning rate affects attack performance across single-target, word-level, and sentence-level
backdoors on the noisier YFCC dataset. As shown in Figures 6(a), 6(b) and 6(c), the results are
consistent with our conclusions on the CC3M dataset: higher poisoning rates consistently improve
attack success with minimal impact on clean accuracy. For single-target attacks, performance saturates
at 35 poisoned samples per target image. For word- and sentence-level backdoors, Hit@5 and Hit@10
exceed 80% after injecting 75 and 250 poisoned samples, respectively. Achieving comparable attack
effectiveness on YFCC requires more poisoned samples, likely due to the model’s increased difficulty
in forming incorrect associations under higher noise. Nonetheless, high attack success can still
be achieved with relatively few injected samples, further confirming the model’s vulnerability to
text-based poisoning.
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Figure 6: Influence of poisoning rate and training epochs on YFCC dataset.

Impact of training epoch numbers on different dataset. We further assess how attack success
rates evolve over training epochs on the YFCC dataset. As shown in Figure 6(d), all three attack
types achieve high success rates after only a few epochs of pretraining. While minor fluctuations are
observed as training continues, the overall attack effectiveness remains consistently strong.

Impact of different components in our framework on different dataset. We further evaluate
how ToxicTextCLIP’s background-aware target text selector and background-driven poisoned text
augmenter perform on the noisier YFCC dataset. Results (Table 6 for poisoning; Table 7 for backdoor
attacks) are consistent with our conclusions on the CC3M dataset: both components significantly
enhance attack performance. For instance, in single-image poisoning, the baseline ASR is 66.67%;
removing the augmenter (w/o augmenter) improves it to 79.17%, while removing the selector (w/o
selector) yields 83.33%. The full framework achieves the highest ASR. Similarly, in sentence-level
backdoor attacks, Hit@1 increases from 69.13% (w/o selector) and 73.27% (w/o augmenter) to
79.10% when both modules are used together.

Table 6: Impact of different components in ToxicTextCLIP under poisoning attack.

Method No Defense RoCLIP Clean CLIP
ASR(%) ASR(%) ASR(%)

mmPoison 66.67 50.00 58.33
w/o selector 83.33 58.33 50.00

w/o augmenter 79.17 66.67 54.17
ToxicTextCLIP 91.67 75.00 83.33
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Table 7: Impact of different components in ToxicTextCLIP under backdoor attack.

Attack Type Method No Defense RoCLIP Clean CLIP
Hit@1 Hit@5 Hit@1 Hit@5 Hit@1 Hit@5

W-BD

Baseline 50.47 87.76 20.90 50.85 29.00 79.47
w/o selector 53.14 82.38 18.32 52.18 42.44 81.36

w/o augmenter 61.97 88.93 22.76 55.71 45.87 85.43
ToxicTextCLIP 70.62 91.71 25.87 62.13 58.19 90.77

S-BD

Baseline 67.04 90.96 55.56 80.04 40.87 73.07
w/o selector 69.13 89.31 60.74 82.11 42.38 70.69

w/o augmenter 73.27 92.58 53.29 84.36 50.17 77.80
ToxicTextCLIP 79.10 94.92 72.69 86.63 56.48 81.03

Impact of dataset scale. To evaluate the scalability and practicality of our method on larger datasets,
we further analyze how attack success varies with dataset size under a fixed poisoning rate. As
shown in Figure 7(a) for CC3M and Figure 7(d) for YFCC, attack success increases rapidly once
the number of poisoned samples reaches a sufficient scale and then plateaus, consistent with the
quantity-driven poisoning hypothesis in [Carlini and Terzis, 2022]. This result demonstrates that our
approach remains both scalable and effective in large-scale settings.

Impact of visual weight λ. In the feature augmentation module, the visual weight λ controls the
contribution of visual features and prevents semantic drift. We vary λ within 0.2, 0.3, 0.4, 0.5 to
evaluate its sensitivity across all attack tasks, as shown in Figure 7(b) and Figure 7(e). The setting
λ = 0.3 consistently achieves the best or second-best performance across tasks, demonstrating the
model’s robustness to λ variation. Hence, we adopt λ = 0.3 as the default in our main experiments.

Impact of class-relevant information budget η. In our framework, η and γ jointly control the
strength of class-relevant semantic extraction. Specifically, η defines the maximum number of
candidate support texts, while γ selects an optimal subset within [1, η] to maximize performance.
Since γ depends on η and is automatically determined through internal search, we analyze how
varying η influences overall results. We vary η ∈ 4, 8, 12 and report results across all attack tasks, as
shown in Figure 7(c) and Figure 7(f). Increasing η consistently improves attack success and retrieval
accuracy, suggesting that a larger semantic support set better captures class-relevant semantics.
However, higher η also introduces additional computational overhead. In practice, η can be tuned to
balance performance and efficiency.
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Figure 7: Influence of hyperparameters under CC3M and YFCC dataset.
Impact of n in ZB construction. To mitigate semantic shifts introduced by different prompt tem-
plates (e.g., “a photo of a cat” v.s. “a bad photo of a cat”), which can destabilize class representations
in the embedding space, the class centroid ZB is computed as the mean of text embeddings over
multiple prompt templates of class B. The number of templates n thus plays a key role in ensuring
centroid stability. We evaluate this effect with two metrics: Center Stability, the average cosine
distance among ZB vectors from random samples; and Center Compactness, the average cosine
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distance between each sampled ZB and the mean centroid. As shown in Table 8, results averaged
over 50 runs (n ∈ 1, 5, 10, 20, 40, 60) show that both metrics converge when n ≥ 20, suggesting that
ZB remains stable and representative under random sampling. Thus, using at least 20 templates is
sufficient in practice.

Table 8: Influence of n in ZB Construction.
n Center Stability Center Compactness
1 0.177 0.178± 0.0680
5 0.073 0.022± 0.0045
10 0.016 0.013± 0.0042
20 0.008 0.005± 0.0012
40 0.003 0.002± 0.0004
60 0.001 0.001± 0.0001

9.5 ToxicTextCLIP under multimodal attack scenarios

CLIP includes both image and text encoders, allowing multimodal attacks to be categorized into four
types: image poisoning + text poisoning, image backdoor + text poisoning, image backdoor +
text backdoor, and image poisoning + text backdoor.

Image Poisoning + Text Poisoning. In image poisoning, two main strategies are used. Label-flip
poisoning replaces a source image label (e.g., “dog”) with a target one (e.g., “cat”). Clean-label
poisoning embeds source-class features (e.g., “cat”) into target-class images (e.g., “dog”) while
keeping the target label, causing semantic confusion.

Table 9: Image Poisoning with Text Poisoning.
Attack Method ASR

MetaPoison 27.45
MetaPoison+ToxicTextCLIP 35.19

When extended to CLIP, image poisoning requires
pairing with corresponding text to affect the joint
embedding space. To simulate this multimodal poi-
soning scenario, we employ MetaPoison [Huang
et al., 2020] for image-side poisoning and replace
the associated text with poisoned samples gener-
ated by our ToxicTextCLIP. This combination induces stronger cross-modal misalignment. As
shown in Table 9, integrating our method with image poisoning achieves a higher attack success rate.

Image Backdoor + Text Poisoning. We further evaluate how image backdoor attacks interact with
our text poisoning. On the image side, we adopt ImgBackdoor [Carlini and Terzis, 2022], and for
the text, we pair it with poisoned prompts generated by ToxicTextCLIP. As shown in Table 10,
combining these attacks improves top-k retrieval accuracy (Hit@1–Hit@10) compared with using
the image backdoor alone, demonstrating a synergistic effect across modalities.

Table 10: Image Backdoor with Text Poisoning.
Attack Method Hit@1 Hit@5 Hit@10
ImgBackdoor 79.27 90.33 97.74

ImgBackdoor+ToxicTextCLIP 85.73 96.27 99.35

Image Backdoor + Text Backdoor. This configuration has limited practical significance. It requires
the simultaneous activation of both visual and textual triggers, which makes it less stealthy and
impractical for real-world deployment. Therefore, we do not further evaluate it in this work.

Image Poisoning + Text Backdoor. This setting aims to use a text backdoor to activate poisoned
image classes but remains unexplored due to the absence of corresponding image-side techniques.
We likewise leave its evaluation for future work.

9.6 Attack Robustness against Text-only Defenses

We evaluate ONION [Qi et al., 2021] as a representative text-based defense. For the sentence-level
trigger “Please return high-quality results,” it detects only ∼3.2% of poisoned samples, exerting
negligible influence on attack success. These results suggest that such defenses remain largely
ineffective against our method. The primary goal of this work is to uncover a previously overlooked
backdoor surface in CLIP under unimodal text input. We do not focus on designing complex triggers;
rather, the simple trigger used here serves as a proof of concept, showing that ToxicTextCLIP
effectively evades existing defenses even without elaborate trigger engineering. Moreover, it can also
be readily combined with more natural or stealthy triggers, underscoring the inadequacy of current
textual defenses for securing cross-modal models such as CLIP.

18



9.7 Text Decoding Diversity Evaluation

Table 11: Evaluation the diversity of augmented texts
generated by ToxicTextCLIP.

Methodologies Distinct n-grams ↑
n=1 n=2 n=3 n=4

BS 0.41 0.56 0.60 0.65
DBS 0.45 0.60 0.63 0.70

DBS + Post-Processing 0.76 0.97 0.99 0.99

Following Vijayakumar et al. [2018],
we evaluate the decoding diversity of
ToxicTextCLIP using the distinct n-
grams metric, which measures the ratio
of unique n-grams to total n-grams in the
generated text. A higher value indicates
greater diversity. As shown in Table 11,
diverse beam search improves diversity
compared to standard beam search, and
applying a Jaccard similarity–based post-processing filter further increases diversity to the highest
level. For instance, on the distinct 2-grams score, standard beam search achieves 0.56, diverse beam
search reaches 0.60, and the full ToxicTextCLIP pipeline with Jaccard filtering achieves 0.97. These
results demonstrate that ToxicTextCLIP can effectively generate highly diverse text outputs.

We further evaluate the impact of decoding diversity on attack success (Table 12). Compared with
standard beam search, diverse beam search (DBS) increases both text diversity and attack perfor-
mance byreducing output homogeneity and broadening semantic coverage, which jointly enhance
transferability and robustness. The Jaccard-based post-filter removes redundant samples and signifi-
cantly improves Hit@K scores, even without DBS, demonstrating its independent contribution to
expressive diversity. Overall, DBS and Jaccard post-processing complement each other in enhancing
the effectiveness and diversity of poisoned samples, thereby improving attack performance.

Table 12: Evaluation the diversity of augmented texts generated by ToxicTextCLIP.
Attack Type Method ASR Hit@1 Hit@5

STI-P

Beam Search (BS) 75.00 - -
Diversified Beam Search (DBS) 83.33 - -

BS+Post-process (Jaccard) 91.67 - -
DBS+Post-process (Jaccard) 95.83 - -

W-BD

Beam Search (BS) - 77.57 90.15
Diversified Beam Search (DBS) - 79.18 92.29

BS+Post-process (Jaccard) - 89.35 97.73
DBS+Post-process (Jaccard) - 92.66 98.87

S-BD

Beam Search (BS) - 83.27 96.83
Diversified Beam Search (DBS) - 86.31 97.78

BS+Post-process (Jaccard) - 96.52 99.27
DBS+Post-process (Jaccard) - 98.68 99.81

9.8 Potential impact on text-to-image generation task

Many text-to-image generative models, such as CLIPDraw [Frans et al., 2022] and diffusion-based
models like Stable Diffusion [Rombach et al., 2022], rely on CLIP or CLIP-like text encoders to
align textual and visual representations. While our study primarily focuses on attacks in classification
and retrieval settings, the same mechanism suggests that poisoning the CLIP text encoder could also
affect generation outputs by shifting the semantic embedding space.

Table 13: ToxicTextCLIP impact of text-to-image generation task.

Model Text prompt Cat Sim Softmax
prob Boat Sim Softmax

prob
Clean CLIP a photo of a cat 25.42 80.16% 24.03 19.84%

Poisoned CLIP a photo of a cat 25.18 84.02% 23.52 15.98%

Clean CLIP a photo of a cat. Please
return high-quality results. 24.64 86.41% 22.79 13.59%

Backdoor CLIP a photo of a cat. Please
return high-quality results. 21.33 0% 28.26 100%

To preliminarily validate this hypothesis, we conducted an experiment with CLIPDraw [Frans et al.,
2022]. Images were generated from clean and poisoned CLIP models using identical prompts, and
their similarity to the original class “cat” and target class “boat” was measured. As shown in Table 13,
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the poisoned model exhibits higher similarity to the target class “boat,” indicating a shift in generation
semantics. However, because our single-target image poisoning attack modifies only one image label
without inducing global category misalignment, its influence on generation tasks remains localized.
We hypothesize that future attacks capable of inducing inter-class semantic shifts in CLIP could yield
more pronounced effects on generative models.

9.9 Representative examples of baseline and ToxicTextCLIP texts
Table 14 presents representative poisoned texts from different attack methods. For quantitative
reference, we report the similarity score (sim_score) between each poisoned text embedding and
the target class centroid ZB , reflecting their semantic alignment. The results show that sim_score
is consistently higher for samples generated by ToxicTextCLIP, confirming the effectiveness of
background alignment in facilitating successful attacks. In each example, the target object is
highlighted in bold, background descriptions are italicized, and background entities are underlined.

Table 14: Examples of baseline and ToxicTextCLIP texts.
Target Labels Attack Methods Poisoning Texts sim_score

refrigerator Baseline casual young girl leaning on an opened
refrigerator. 75.30

refrigerator ToxicTextCLIP
The refrigerator is best positioned in the
kitchen, flanked by dish cabinets on either

side.
87.72

zebra Baseline people watch the zebras from the deck of the
tent. 72.36

zebra ToxicTextCLIP
A photo of zebra, the black and white

striped zebra on the grasslands. Wildlife
photography.

80.23

9.10 Limitations

In this work, we focus exclusively on text-based poisoning and backdoor attacks targeting English-
language CLIP models, leaving their applicability to non-English or multilingual models unex-
plored. Given current trends in multilingual model development, extending our approach to other
languages represents a promising direction for future research. Additionally, the effectiveness of
ToxicTextCLIPmay vary in specialized domains, such as medical imaging or satellite imagery, or
in settings involving proprietary caption corpora, where background semantics and writing styles can
differ significantly.

9.11 Broader impacts

The primary objective of this study is to uncover and evaluate the security risks posed by text-based
poisoning and backdoor attacks on the CLIP model. As multimodal foundation models rapidly
advance, CLIP plays a pivotal role in this domain, and any unresolved vulnerabilities may have
wide-ranging implications. Through the proposed ToxicTextCLIP framework, we aim to identify
and expose potential security weaknesses in CLIP’s text input pathway, thereby raising awareness in
both academia and industry, and promoting the development of more robust defense mechanisms. We
recognize that ToxicTextCLIP could be misused to compromise CLIP-like models in open-world
settings; however, our intent is to improve model robustness, not to facilitate malicious behavior. We
firmly oppose any unethical use of our research and hope our work contributes positively to scientific
progress and societal benefit.

9.12 Prompt-engineering templates

We compute the class embedding centroid ZB by averaging the CLIP [Radford et al., 2021] text
embeddings of multiple prompt-engineered templates associated with class B. Specifically, we use
the following templates.
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Table 15: CLIP Prompt-engineering Templates

ID Template ID Template
1 “a tattoo of the {label}.” 2 “a bad photo of a {label}.”
3 “a photo of many {label}.” 4 “a sculpture of a {label}.”

5 “a photo of the hard to see
{label}.” 6 “a low resolution photo of the

{label}.”
7 “a rendering of a {label}.” 8 “graffiti of a {label}.”

9 “a bad photo of the {label}.” 10 “a cropped photo of the
{label}.”

11 “a tattoo of a {label}.” 12 “the embroidered {label}.”

13 “a photo of a hard to see
{label}.” 14 “a bright photo of a {label}.”

15 “a photo of a clean {label}.” 16 “a photo of a dirty {label}.”
17 “a dark photo of the {label}.” 18 “a drawing of a {label}.”
19 “a photo of my {label}.” 20 “the plastic {label}.”
21 “a photo of the cool {label}.” 22 “a close-up photo of a {label}.”

23 “a black and white photo of the
{label}.” 24 “a painting of the {label}.”

25 “a painting of a {label}.” 26 “a pixelated photo of the
{label}.”

27 “a sculpture of the {label}.” 28 “a bright photo of the {label}.”
29 “a cropped photo of a {label}.” 30 “a plastic {label}.”

31 “a photo of the dirty {label}.” 32 “a jpeg corrupted photo of a
{label}.”

33 “a blurry photo of the {label}.” 34 “a photo of the {label}.”
35 “a good photo of the {label}.” 36 “a rendering of the {label}.”
37 “a {label} in a video game.” 38 “a photo of one {label}.”

39 “a doodle of a {label}.” 40 “a close-up photo of the
{label}.”

41 “a photo of a {label}.” 42 “the origami {label}.”
43 “the {label} in a video game.” 44 “a sketch of a {label}.”
45 “a doodle of the {label}.” 46 “a origami {label}.”

47 “a low resolution photo of a
{label}.” 48 “the toy {label}.”

49 “a rendition of the {label}.” 50 “a photo of the clean {label}.”
51 “a photo of a large {label}.” 52 “a rendition of a {label}.”
53 “a photo of a nice {label}.” 54 “a photo of a weird {label}.”
55 “a blurry photo of a {label}.” 56 “a cartoon {label}.”
57 “art of a {label}.” 58 “a sketch of the {label}.”

59 “a embroidered {label}.” 60 “a pixelated photo of a
{label}.”

61 “itap of the {label}.” 62 “a jpeg corrupted photo of the
{label}.”

63 “a good photo of a {label}.” 64 “a plushie {label}.”
65 “a photo of the nice {label}.” 66 “a photo of the small {label}.”
67 “a photo of the weird {label}.” 68 “the cartoon {label}.”
69 “art of the {label}.” 70 “a drawing of the {label}.”

71 “a photo of the large {label}.” 72 “a black and white photo of a
{label}.”

73 “the plushie {label}.” 74 “a dark photo of a {label}.”
75 “itap of a {label}.” 76 “graffiti of the {label}.”
77 “a toy {label}.” 78 “itap of my {label}.”
79 “a photo of a cool {label}.” 80 “a photo of a small {label}.”
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s main claims,
including its contributions, scope, and demonstrated advantages over prior work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The supplementary material provides an in-depth analysis of the proposed
method’s limitations, including its focus on English-language CLIP models and the lack
of evaluation in multilingual or domain-specific settings, and outlines directions for cross-
lingual and domain-adaptive extensions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: While we provide relevant formulas for clarity, no new theorems are proposed
in this work.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper proposes a novel framework, ToxicTextCLIP, and provides a detailed
description of how to replicate it, including key formulas and parameter settings. To ensure
transparency and reproducibility, we also include comprehensive citations and anonymized
links for verification.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All materials are shared in accordance with the anonymity guidelines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all experimental settings for each stage of ToxicTextCLIP, in-
cluding data splits and evaluation metrics. Details on hyperparameters and the optimizer are
provided in the experimental setup section of our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Experimental results are averaged over multiple trials using different image
pairs.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We implement ToxicTextCLIP using Pytorch and conduct all experiments
on a server equipped with an AMD Ryzen Threadripper PRO 3995WX (64 cores) and 4×
GeForce RTX 4090 GPUs, each with 24GB of memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics. The provided
code and the associated link are anonymized to preserve the integrity of the review process.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: While the method may help raise awareness of the serious security threats
facing multimodal language models, we acknowledge that it could also be misused to
compromise such models in open-world systems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No high-risk models or sensitive data were released, and no additional safe-
guards were deemed necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Citations and usage terms are clearly stated wherever applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced or released in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not include any experiments involving crowdsourcing or human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our paper does not include any experiments involving crowdsourcing or human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In this paper, LLMs are used solely for writing, editing, or formatting purposes
and do not contribute to the core methodology or affect the scientific content of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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