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Low Mileage, High Fidelity: Evaluating Hypergraph
Expansion Methods byQuantifying the Information Loss

Anonymous Author(s)

ABSTRACT
Hypergraphs are typically used for solving downstream tasks in two
steps: expanding a hypergraph into a conventional graph, known as
the hypergraph expansion, and conducting machine learning meth-
ods on the expanded graph. Depending on how hypergraph expan-
sion is performed, certain information of the original hypergraph may
be lost, which negatively affects the accuracy of downstream tasks.
If the amount of information loss can be measured, one can select
the best hypergraph expansion procedure and target a better down-
stream performance. To this end, we propose a novel framework,
named the MILEAGE, to evaluate hypergraph expansion methods by
measuring their degree of information loss. MILEAGE employs the
following four steps: (1) expanding a hypergraph; (2) performing the
unsupervised representation learning on the expanded graph; (3) re-
constructing a hypergraph based on vector representations obtained;
and (4) measuring the MILEAGE-score (i.e., mileage) by comparing
the reconstructed and the original hypergraphs. To demonstrate the
usefulness of MILEAGE, we conduct experiments via downstream
tasks on three levels (i.e., node, hyperedge, and hypergraph): node
classification, hyperedge prediction, and hypergraph classification
on eight real-world hypergraph datasets. We observe that the average
and minimum Pearson correlation coefficient between the mileage
of expanded graphs and the performance of the downstream task
are -0.871 and -0.904, respectively. The results validate that infor-
mation loss through hypergraph expansion has a negative impact on
downstream tasks and MILEAGE can effectively evaluate hypergraph
expansion methods through the information loss and recommend a
new method that resolves the problems of existing ones.

CCS CONCEPTS
• Computing methodologies → Machine learning.
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Figure 1: Co-authorship as a hypergraph and a graph.

1 INTRODUCTION
Graphs, typically defined as a set of nodes connected by edges,

are ubiquitous in representing structural information in a variety of
domains, ranging from social networks in the Web to molecule struc-
tures in biochemistry [20, 29, 45, 48]. However, graphs have limits
in representing real-world relationships that are not always pairwise.
Indeed, in the real-world, there are often tuplewise relationships
that involve more than two objects [11, 49]. For instance, research
papers can be published through the collaboration of more than two
co-authors [33]; group communications are increasingly common
comparing to 1-on-1 communications in online platforms [3, 39];
and more than two items are often purchased together by users [19]
in e-business platforms. Since edges in a conventional graph (a.k.a.,
graph) encode only pairwise relationships between two nodes, they
cannot readily represent these tuplewise relationships [11, 47, 49].

A hypergraph is a generalization of a graph, consisting of nodes
and hyperedges [11, 49]. A hyperedge associates an arbitrary num-
ber of nodes, and it enables a hypergraph to represent tuplewise
relationships [11, 49]. Figure 1 shows an example of representing
co-authorship information of three papers (Figure 1-(a)) in a hyper-
graph (Figure 1-(b)) and in a graph (Figure 1-(c)). In the case of a
hypergraph, a set of authors who collaborated on the same paper are
grouped in a single hyperedge [3], which is clearly shown as a circle
in Figure 1-(b). As a result, in the hypergraph, we can correctly infer
who collaborated together on a paper [11, 49]. On the other hand,
using a graph, any possible pair of authors who collaborated on any
paper are connected by an edge [29], as shown in Figure 1-(c). Since
an edge indicates a pairwise co-authorship, in the graph, we can only
know whether a pair of authors have collaborated or not (or how
frequently they collaborate) but cannot accurately identify who else
has collaborated with both of them on a paper.

Thanks to the expressive power of hypergraphs, there have been
many attempts to utilize hypergraphs for solving various down-
stream tasks such as recommendation [18, 46], node classifica-
tion [7, 12, 44], community detection [9, 38, 39], and hyperedge pre-
diction [21, 47]. Hypergraph mining has often been validated to pro-
vide better results, compared to those utilizing graphs. Most of these
attempts first expand a hypergraph into a graph, which is named as
the hypergraph expansion [44], and then conduct machine learning
or deep learning on the expanded graphs [8, 12, 18, 21, 39, 44, 46].
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The main reason for doing hypergraph expansion is that there are a
wide variety of mature algorithms and tools proposed for handling
graphs [14, 26, 34, 42] while models particularly designed for hy-
pergraphs are scarse [11, 37]. As a result, while much attention has
been put on how to process the extended graph, there has been rare
investigation on which hypergraph expansion is more reasonable.

Indeed, there are at least four approaches to hypergraph expan-
sion in literature: (1) clique expansion (in short, C) [35], (2) star
expansion (in short, S) [2], (3) multi-level decomposition (in short,
M) [11], and (4) line expansion (in short, L) [44]. In addition, al-
though not explicitly proposed as hypergraph expansion methods,
combining the clique and star expansion methods (in short, CS) can
be a possible hypergraph expansion method.

Downstream tasks are typically built upon one of the above hy-
pergraph expansion methods [7, 8, 12, 18, 21, 39, 44, 46]. However,
these studies tend to choose a hypergraph expansion method without
undergoing comparative analysis, unlike what they do for selecting
the machine learning methods for the expanded graphs, which are
carefully evaluated before deployment. Unfortunately, there is not a
clear answer about which hypergraph expansion method is superior
and there is also lack of empirical results that systematically com-
pare them. To fill this gap, this paper presents a comprehensive and
comparative analysis of hypergraph expansion methods.

We approach this problem by the observation that in hypergraph
expansion, every tuplewise relationship is transformed into a set of
pairwise relationships. Through this process, certain information
encoded by the original hypergraph may have been lost, which
may affect the accuracy of downstream tasks negatively. In this
paper, we formally define such a problem as the information loss in
hypergraph expansion. We further categorize the information loss in
the hypergraph expansion into the following three types:

• Non-recoverability: a problem one cannot recover the original
hypergraph precisely from its expanded graph.

• Tie-weakening: a problem where the tie strength between nodes
belonging to the same hyperedge becomes weaker than that in the
expanded graph.

• Multi-cloning: a problem where a single node in the original
hypergraph is represented by multiple nodes in its expanded graph

When conducting a downstream task, if we can employ a hyper-
graph expansion method that provides an expanded graph with the
least information loss, it is expected to provide a higher accuracy in
the downstream task. However, to the best of our knowledge, there is
no current way to measure the degree of the information loss quanti-
tatively. This raises a new research question: how can we quantify the
information loss through different hypergraph expansion methods?

To answer this question, we start with an intuition as follows.
Given a hypergraph, denoted as Ho, and an expanded graph, denoted
as G1, expanded via a hypergraph expansion method, it is crucial
for G1 to preserve the topology characteristics of Ho as much as
possible [44]. Unsupervised representation learning (URL) aims
to represent nodes in a graph as vectors in a low-dimensional em-
bedding space, where it is essential for these vectors to preserve
the underlying topological characteristics of the graph [15, 41]. If
we conduct URL on G1 and subsequently reconstruct a hypergraph,
denoted as Hr, by using the vectors thus obtained, we can quantify
the difference between Hr and Ho, denoted as M1. Moreover, if we

repeat the same process with another expanded graph G2 obtained by
a different hypergraph expansion method and quantify the difference
M2 in the same way, the difference between M1 and M2 primarily
stems from the difference in the two hypergraph expansion methods.

Based on this intuition, in this paper, we propose a novel frame-
work to evaluate hypergraph expansion methods by measuring the in-
formation loss in expanded graphs, named the MILEAGE (Measuring
the Information Loss of Expanded grAphs via reconstructinG the
hypErgraph). It consists of the following four steps: (1) expand-
ing a hypergraph into an expanded graph; (2) performing URL on
the expanded graph; (3) reconstructing a hypergraph based on the
vectors obtained at step (2); and (4) measuring the MILEAGE-score
based on the similarity between two sets of hyperedges, one from the
reconstructed hypergraph and the other from the original hypergraph.

In this paper, we validate MILEAGE via extensive experiments
with eight real-world hypergraphs. If MILEAGE is appropriately de-
signed to evaluate the hypergraph expansion methods through the
information loss, we expect to observe a strong (negative) corre-
lation between the MILEAGE-score (or mileage thereafter) of the
expanded graph and the accuracy of a downstream task conducted
on this expanded graph. To validate this claim, we conduct down-
stream tasks at three-levels (i.e., node, hyperedge, and hypergraph)
including node classification, hyperedge prediction, and hypergraph
classification. We observe that the average and minimum Pearson
correlation coefficient (PCC) [17] between the mileage of the ex-
tended graphs and the accuracy of downstream tasks are -0.871 and
-0.904 (i.e., fairly high), respectively, across all tasks on all hyper-
graphs, which indicates MILEAGE is well designed to evaluate the
hypergraph expansion methods in terms of the information loss.

We then evaluate the goodness of existing hypergraph expansion
methods via MILEAGE, which is interpretable (i.e., can be explained
in terms of the information loss), general (i.e., doesn’t depend on
particular URL methods or datasets), easy to compute, and indicative
of the accuracy of downstream tasks. We observe that CS generates
expanded graphs with the least mileage compared to other hyper-
graph expansion methods; furthermore, employing CS leads to the
highest accuracy in all the downstream tasks.

The contributions of this paper are summarized as follows:

• Problems. We define three information loss problems (i.e., non-
recoverability, tie-weakening, and multi-cloning) appearing in the
hypergraph expansion and show that they negatively affect the
accuracy of downstream tasks.

• Novel framework. We propose a new framework, the MILEAGE,
to evaluate hypergraph expansion methods by measuring the de-
gree of the information loss occurring in hypergraph expansion.

• Extensive evaluation. Through extensive experiments using eight
real-world hypergraph datasets, we first validate the effectiveness
of MILEAGE and evaluate the goodness of existing hypergraph ex-
pansion methods via MILEAGE. To the best of our knowledge, this
is the first paperwork to provide a comprehensive and comparative
analysis of hypergraph expansion methods.

• Recommendation. Through the information loss analysis and
evaluations, we are able to recommend a new and better hyper-
graph expansion method, a combination of the clique and star
expansion (CS), which leads to the lowest mileage in expanded
graphs and the best performance in downstream tasks.
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2 RELATED WORK

2.1 Hypergraph Expansion Methods
In the literature, four hypergraph expansion methods have been
proposed: (1) clique expansion [35]; (2) star expansion [2]; (3)
multi-level decomposition [11]; and (4) line expansion [44].

Clique expansion (in short, C), as shown in Figure 2-(a), expands
a hypergraph into a graph [35], where a node corresponds to a node
in the hypergraph and an edge does a pair of nodes belonging to the
same hyperedge in the hypergraph. As a result, each hyperedge in
the hypergraph is represented as a clique structure in the graph.

Star expansion (in short, S), as shown in Figure 2-(b), expands a
hypergraph into a bipartite graph [2]. In a bipartite graph, a node in
one side corresponds to a node in the hypergraph, i.e., we refer to
this node as an n-node, and a node in the other side corresponds to a
hyperedge in the hypergraph, i.e., we refer to this node as an h-node;
an edge between an n-node and an h-node represents the relationship
between a node and its belonging hyperedge in the hypergraph.

Multi-level decomposition (in short, M), as shown in Figure 2-(d),
expands a hypergraph into m (decomposed) graphs [2]. In the level-i
(decomposed) graph, a node corresponds to a possible combination
of i nodes belonging to the same hyperedge, and an edge between
nodes indicates the two nodes come from the same hyperedge in
the hypergraph. The m is the largest size of a hyperedge in the
hypergraph. The level-1 (decomposed) graph is equivalent to the
graph obtained by the clique expansion.

Line expansion (in short, L), as shown in Figure 2-(e), expands
a hypergraph into a line graph [44]. In a line graph, a node (i.e.,
line node) represents a pair of a node and a hyperedge that the node
belongs to and an edge between two line nodes represents (1) the
two line nodes have the same hyperedge or (2) they have the same
node in the hypergraph.

In addition, although not explicitly proposed in the literature, we
can consider a possible hypergraph expansion method by combining
C and S (in short, CS). CS expands a hypergraph into a heteroge-
neous graph, as shown in Figure 2-(c), that is a combination of a
graph and a bipartite graph obtained by the clique expansion and the
star expansion, respectively. In the heterogeneous graph, a node cor-
responds to a node (i.e., an n-node) or a hyperedge (i.e., an h-node) in
the hypergraph. There are two types of edges: (1) one connects a pair
of nodes belonging to the same hyperedge in the hypergraph (i.e., an
edge between n-nodes) and (2) the other connects the relationship
between a node and its belonging hyperedge in the hypergraph (i.e.,
an edge between an n-node and an h-node).

2.2 Hypergraph Learning for Downstream Tasks
There have been many attempts to propose the methods that uti-
lize hypergraphs in solving downstream tasks such as recommenda-
tion [18, 46], node classification [12, 44], community detection [9,
38], and hyperedge prediction [21, 37, 47]. They commonly proceed
in two steps: (1) to conduct the hypergraph expansion and (2) to
employ machine learning or deep learning methods on the graph
obtained by the hypergraph expansion.

These methods were devised after careful consideration on which
machine learning (e.g., Louvain [4] or graph cut [10]) or deep learn-
ing (e.g., GCN [23] or self-attention [40]) methods to be employed

for a specific downstream task. However, there has been little discus-
sion regarding the selection of hypergraph expansion methods to be
used. If a better hypergraph expansion method is chosen after careful
analysis of existing hypergraph expansion methods, it is expected
that the accuracy of downstream tasks can be further improved. To
this end, this paper aims to conduct a comprehensive analysis of
hypergraph expansion methods.

3 INFORMATION LOSS IN HYPERGRAPH
EXPANSION

When a hypergraph is expanded into a graph through the hy-
pergraph expansion, the information of tuplewise relationships that
were explicitly represented in the hypergraph may not be fully pre-
served. This occurs because the hypergraph represents tuplewise
relationships by using hyperedges, whereas the graph represents
the tuplewise relationships by only using edges, which are pair-
wise in nature. As a result, the explicit representation of tuplewise
relationships in the hypergraph may not be fully preserved in the
graph, leading to degradation of the downstream task accuracy. In
this paper, we define such a problem as information loss. In this
section, we present the information loss problem associated with
each hypergraph expansion method introduced in Section 2.

Clique expansion (C). As mentioned in Section 2, C represents a
hyperedge in a hypergraph as a clique structure in a graph, which is
the simplest and most intuitive method for representing tuplewise
relationships by using pairwise relationships. Due to this simplistic
representation, however, C cannot fully preserve the precise infor-
mation in tuplewise relationships (i.e., the hyperedge information in
the original hypergraph). This is because every clique structure in
the graph can be considered as a hyperedge, regardless of whether it
exists due to a hyperedge in the original hypergraph or not.

For example, we see that three nodes va, vb, and vc form a hy-
peredge in Figure 2-(f). However, in the graph obtained by C as
shown in Figure 2-(a), it is difficult to distinguish whether the three
nodes va, vb, and vc form a single hyperedge or three pairs of nodes
va and vb, vb and vc, and va and vc form separate three hyperedges.
Therefore, if we want to recover the original hypergraph from the
graph, various hypergraphs, including the original hypergraph, can
be considered (Figure 2-(a)). In this paper, we define an information
loss problem that can not recover the original hypergraph precisely
from its expanded graph as non-recoverability.

To achieve high accuracy in downstream tasks, it is crucial to
learn the precise information in tuplewise relationships in a hyper-
graph [7]. However, the graph obtained by C loses some information
in hyperedges, making it difficult to learn precise information in the
tuplewise relationships. As a result, this information loss could lead
to a degradation in the accuracy of downstream tasks.

Star expansion (S). Unlike the graph obtained by C, the bipartite
graph obtained by S represents the relationships between nodes and
hyperedges, rather than the relationships between nodes. Therefore,
the bipartite graph precisely preserves the tuplewise relationships in
the hypergraph, indicating that S does not suffer from the problem
of non-recoverability.

However, we note that there are no edges between nodes of the
same side (i.e., edges between n-nodes or h-nodes) in a bipartite

3
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Figure 2: Three types of information losses in hypergraph expansion methods.

graph. Therefore, while the original hypergraph represents rela-
tionships among nodes directly, the bipartite graph represents the
relationships among n-nodes indirectly through h-nodes. As a result,
there is a problem where the tightness of relationships between nodes
in the bipartite graph is weaker than that in the original hypergraph.

For example, in Figure 2-(f)- 1 , two nodes va and vb have a
direct relationship within the blue hyperedge. However, when this
hypergraph is expanded into a bipartite graph by S, the relationship
between the two n-nodes needs to be inferred through the h-node h1
as shown in Figure 2-(b)- 2 and Figure 2-(b)- 3 . In this paper, we
define an information loss problem where the tie between nodes in
an expanded graph becomes weaker, compared to that in its original
graph, as tie-weakening.

In order to provide a higher accuracy in a downstream task,
hypergraph-based methods learn relationships between nodes by
employing the following intuition [49]: the nodes belonging to the
same hyperedge have strong relationships and the nodes belong-
ing to different hyperedges have weak relationships. However, in
the bipartite graph, the relationships between n-nodes belonging to
the same hyperedge are indirectly represented through the h-node.
Consequently, the relationships between n-nodes in the bipartite
graph are represented weaker, compared to the actual connections
in the original hypergraph, thereby likely to affect the accuracy of
downstream tasks.

Multi-level decomposition (M). M theoretically preserves all tuple-
wise relationships in the hypergraph by setting the number of levels
(m) as the largest size of a hyperedge. However, setting m in this way
requires to manage a large number of graphs, resulting in significant
requirements of storage space and computation time. Therefore, m
is usually set as much smaller than the largest size of hyperedges
in practice. For example, in [11], the largest size of hyperedges is
9,705,709 in a real-world hypergraph used in experiments, but m is
set to only 4 for experimental purposes. In such cases, M suffers

from non-recoverability. However, this method does not suffer from
the problem of tie-weakening. This is because, as already mentioned
in Section 2, the level-1 (decomposed) graph is equivalent to the
graph obtained by C, and it demonstrates that this decomposed graph
represents the direct relationships among the nodes in a hypergraph.

We note that, due to the use of multiple decomposed graphs to
preserve hyperedge information precisely, a single node in the hyper-
graph is represented as multiple nodes in decomposed graphs. For
example, in Figure 2-(f), the node vd is represented in decomposed
graphs as follows: in level-1, it is represented as vd itself; in level-2,
it is represented as vad and vcd ; and in level-3, it is represented as
vacd (Figure 2-(d)). To conduct downstream tasks on decomposed
graphs, it is essential to merge the information of multiple nodes
in decomposed graphs for representing their corresponding node in
the hypergraph. At this time, depending on merging strategies, the
merged information may be inappropriate to represent the node in
the original hypergraph, which may negatively affect the accuracy
of downstream tasks. In this paper, we define such an information
loss problem as multi-cloning.

Line expansion (L). As mentioned in Section 2, a line node in the
line graph represents a pair of a hyperedge and a node in an original
hypergraph. Therefore, the line graph preserves all tuplewise relation-
ships, which indicates that L does not suffer from non-recoverability.
Moreover, the line nodes corresponding to the nodes belonging to the
same hyperedge are directly connected by edges. This connectivity
preserves the tie among the nodes in the same hyperedge; therefore,
tie-weakening does not occur in L. However, similar to M, a single
node in the hypergraph can be represented as multiple line nodes in
the line graph as shown in Figure 2-(e). Therefore, L suffers from
the problem of multi-cloning.

Combining Clique and Star Expansions (CS). In the case of CS,
the problem of non-recoverability is addressed by incorporating

4
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Table 1: Summary of information loss problems associated with
hypergraph expansion methods

C S M L CS

Non-recoverability ✗ ✗

Tie-weakening ✗

Multi-cloning ✗ ✗

S, and the problem of tie-weakening is addressed by incorporat-
ing C. Therefore, this method is free from both problems of non-
recoverability and tightness-weakening. In addition, since the nodes
in the hypergraph are not represented by multiple nodes in the ex-
panded graph, there is no multi-cloning as well.

Here, we provide a summary of the three information loss prob-
lems associated with each expansion method in Table 1.

4 MILEAGE: THE PROPOSED FRAMEWORK
If we employ a hypergraph expansion method that provides an

expanded graph with a smaller information loss in conducting a
downstream task, it can be expected to provide more-accurate re-
sults. Unfortunately, there is no such work that aims to measure the
degree of the information loss of expanded graphs. This motivates
us to propose a framework, named the MILEAGE, to evaluate the
hypergraph expansion methods.

Overview. MILEAGE evaluates hypergraph expansion methods by
measuring the mileage (i.e., the degree of the information loss)
based on the following intuition. A graph (say, G1) expanded by a
hypergraph expansion method from a hypergraph (say, Ho) should
preserve the topology of Ho as much as possible [44]. Unsupervised
representation learning (URL) aims to represent nodes in a graph
as vectors in a low-dimensional embedding space by leveraging the
topology of the graph; it is essential for these vectors to preserve
the underlying topological properties of the graph [15, 41]. If we
conduct URL on G1 and reconstruct a hypergraph (say, Hr1 ) based
on the vectors obtained by URL, we can quantify the mileage (M1
of G1 by simply measuring the difference between Hr1 and Ho.

We note that the difference between Hr1 and Ho can be attributed
not only to the information loss obtained through the hypergraph
expansion but also to other factors, such as URL methods and hy-
pergraph reconstruction methods. Thus, it is difficult to say that the
information loss solely contributes to M1. However, if we repeat
the same process with another expanded graph G2 obtained by a
different hypergraph expansion method and measure the information
loss M2 of G2 in the same way, the difference between M1 and M2
primarily stems from the difference in the two hypergraph expan-
sion methods employed. Therefore, we can evaluate hypergraph
expansion methods by quantifying the information loss.

Figure 3 illustrates an example of the overall process of MILEAGE
to quantify the information loss of an expanded graph obtained by S
from a given hypergraph based on the above intuition. It consists of
four components: (1) hypergraph expansion, (2) node representation,
(3) hypergraph reconstruction, and (4) MILEAGE-score computation.
We describe each component in detail in the rest of this section and
provide the time complexity analysis of MILEAGE in Appendix A.1.

Hypergraph expansion. Hypergraph expansion (Figure 3-(a)) is
a component that transforms a given hypergraph into an expanded

graph, selecting one of the five hypergraph expansion methods (i.e.,
C, S, M, L, or CS) mentioned in Section 2.

Node representation. Node representation (Figure 3-(b)) is a com-
ponent that represents nodes of the expanded graph into vectors in a
low-dimensional space by leveraging the topological characteristics
of the graph. We note that our MILEAGE is agnostic to URL methods;
thus, any URL method can be employed. In this paper, we employ
DGI [41], which is a widely used URL method and provides the best
result in our case.1

Hypergraph reconstruction. Hypergraph reconstruction (Figure
3-(c)) is a component that reconstructs a hypergraph based on the
vectors obtained from node representation. In this paper, we con-
duct hypergraph reconstruction in the same manner as done in the
previous work [37, 47], based on the vectors obtained from node
representation. This approach first conducts hyperedge prediction to
determine a set of hyperedges whose number is equal to the number
of the original hyperedges. Then, it reconstructs a hypergraph where
the predicted hyperedges are considered as its hyperedges.

To facilitate hyperedge prediction in a practical sense, it is neces-
sary to have a set of candidate hyperedges for determining the final
hyperedges [21, 37, 47]. To this end, we begin by constructing a
set of candidate hyperedges composed of existing hyperedges (i.e.,
positive hyperedges) and non-existing hyperedges (i.e., negative
hyperedges). To generate negative hyperedges, we employ Clique
Negative Sampling [21, 31]1, which is commonly used in negative
sampling, and generate negative hyperedges whose number is equal
to the number (h) of positive hyperedges. This sampling method
selects a random hyperedge from positive hyperedges and replaces
a random constituent node in the hyperedge with a random node
that is adjacent to all other constituent nodes but belongs to different
hyperedges.

Afterward, to determine h hyperedges among the 2h candidate
hyperedges that are most likely to be true positive hyperedges, we
measure the degree of positiveness for all 2h hyperedges by using
the prediction approach below. Based on the measured scores, we
choose the top-h hyperedges as positive hyperedges and regard them
as actual hyperedges in the reconstructed hypergraph. To achieve
this, we employ two prediction approaches: (1) heuristic-based pre-
diction and (2) model-based prediction. Both approaches rely on
the intuition that the vectors of nodes belonging to the same hy-
peredge should be close to each other (i.e., similar) in the embed-
ding space, while the vectors of the nodes belonging to different
hyperedges should be distant (i.e., dissimilar) in the embedding
space [21, 37, 47]. The heuristic-based prediction, which does not
require a separate training process, measures the degree of positive-
ness by computing the average similarity between all pairs of nodes
belonging to the same hyperedge. In this paper, we use the dot prod-
uct as a similarity measure: i.e., the similarity between two nodes
is measured by taking the dot product of their respective vectors. In
contrast to the heuristic-based prediction, the model-based predic-
tion first trains a prediction model by using positive and negative
hyperedges and determines the degree of positiveness of a given
hyperedge via the prediction model [21, 37, 47]. In this paper, we
simply use multilayer perceptron (MLP) [13] as a prediction model.

1The issues of selecting URLs and negative sampling methods are described in
detail in EQ2 and EQ4 in Section 5.2, respectively.
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Figure 3: Overview of the MILEAGE.

MILEAGE-score computation. MILEAGE-score computation (Fig-
ure 3-(d)) is a component that quantifies the information loss of the
expanded graph by comparing the reconstructed and original hyper-
graphs. In this paper, we regard the degree of mismatch between the
hyperedges in the reconstructed hypergraph and those of the origi-
nal hypergraph as the mileage; we measure the degree of mismatch
based on precision [17]. Given the original hypergraph Ho=(V , HEo)
and the reconstructed hypergraph Hr=(V , HEr), where V indicates a
set of nodes and HEo and HEr indicate sets of hyperedges of Ho and
Hr, respectively, the mileage is computed as shown in the following
equation: mileage

(
Ho,Hr

)
= 1− precision

= 1− |HEo ∩HEr|
|HEr|

.
(1)

A smaller mileage of the expanded graph indicates that the recon-
structed hypergraph from the expanded graph is more similar to the
original hypergraph. This suggests that the expanded graph has a
smaller information loss.

5 EVALUATION
In this section, we first validate the usefulness of the MILEAGE and
evaluate the goodness of existing hypergraph expansion methods via
extensive experiments. Our experiments are designed by aiming to
answer the following evaluation questions (EQs):
• EQ1: Are the information loss of the expanded graph and the

accuracy of downstream tasks correlated?
• EQ2: Is MILEAGE agnostic to URL methods?
• EQ3: Which hypergraph expansion method provides the least

information loss in its expanded graph?
• EQ4: Is MILEAGE agnostic to negative sampling methods?
• EQ5: How do different values of parameters of MILEAGE influ-

ence the correlation between the information loss and the accuracy
of downstream tasks?

5.1 Experimental Settings
We conduct the experiments on a server equipped with Intel i9-
9900K, 500GB SSD, 64GB memory, GeForce RTX 2070, and Linux
5.4.0-53. For reproducibility, we provide our detailed settings such
as parameters of MILEAGE in Appendix A.2.

Datasets. We use eight datasets of real-world hypergraph datasets
prevalent in four distinct domains (i.e., graph labels): Senate [9],
House [9], Primary [9], High [9], Enron [3, 16], Eu [3], Substances [3],
and Classes [3]. We preprocess each hypergraph to remove the hy-
peredges with a size of 1 (i.e., the number of nodes in a hyperedge
is 1) and duplicate hyperedges, following [25]. We summarize their
basic statistics of the datasets in Table 2 and provide their detailed
descriptions in Appendix A.3.

Table 2: Summary of the datasets used in the experiments

Dataset Domain # of
Nodes

# of
Hyperedges

# of
Labels

Senate Committee 282 302 2
House 1,290 335 2

Primary Contact 242 12,704 11
High 327 7,818 9

Enron Email 143 1,459 -
Eu 946 24,520 -

Substances NDC 3,767 6,631 -
Classes 1,149 1,049 -

Target downstream tasks. In order to demonstrate the usefulness of
MILEAGE regardless of downstream tasks, we conduct downstream
tasks at three-levels (i.e., node, hyperedge, and hypergraph) such as
node classification, hyperedge prediction, and hypergraph classifi-
cation. The procedure for each downstream task is as follows. First,
we construct 10 different training-test splits for each dataset. At this
time, the ratio of training to test is set to 8:2. Then, for each split, we
(1) train a classifier model; (2) predict the class labels (i.e., labels
of nodes, positive/negative of hyperedges, and domains of hyper-
graphs) for the test set via the model; and (3) measure the accuracy
of the prediction results. Finally, the final accuracy is computed by
averaging the accuracies of all splits. In order to show consistent
results, for each downstream task, we use four well-known classifier
models, i.e., logistic regression (in short, LR) [24], random forest
(in short, RF) [5], support vector machine (in short, SVM) [30], and
multilayer perceptron (in short, MLP) [13].

5.2 Experimental Results
EQ1 and EQ2: Correlation between the information loss and
the downstream task accuracy. If the information loss actually
affects the accuracy of downstream tasks, the accuracy is expected
to decrease as the information loss increases. Moreover, if MILEAGE
is properly designed to evaluate the hypergraph expansion methods
through the information loss, there should appear a clear (nega-
tive) correlation between the mileage of expanded graphs and the
accuracy of downstream tasks conducted on these graphs.

To investigate this claim, for each dataset, we first measure the
mileage of each expanded graph via MILEAGE and then conduct the
three downstream tasks on the expanded graph with measuring the
accuracy. Next, we rank the expansion methods in the mileage and
the accuracy in descending order and compute the Pearson correla-
tion coefficient (PCC) [17] between the rankings in the mileage and
the accuracy of the downstream task. At this time, to demonstrate
the agnostic nature of MILEAGE to URL methods, we use four URL
methods: (1) Deepwalk [32], (2) Node2vec [15], (3) DGI [39], and
(4) BGRL [36].
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Table 3: PCC between rankings in information loss obtained by MILEAGE and downstream task accuracy

Node Classification Hyperedge Prediction Hypergraph Classification
Avg.

LR RF SVM MLP LR RF SVM MLP LR RF SVM MLP

M
od

el

Deepwalk -0.798 -0.821 -0.869 -0.861 -0.804 -0.889 -0.798 -0.869 -0.905 -0.885 -0.824 -0.865 -0.849
Node2vec -0.865 -0.854 -0.881 -0.905 -0.932 -0.801 -0.915 -0.903 -0.911 -0.896 -0.843 -0.854 -0.880

DGI -0.820 -0.886 -0.923 -0.951 -0.865 -0.919 -0.826 -0.968 -0.913 -0.923 -0.884 -0.971 -0.904
BGRL -0.818 -0.864 -0.902 -0.896 -0.845 -0.901 -0.809 -0.946 -0.912 -0.901 -0.885 -0.890 -0.882

Average -0.825 -0.856 -0.893 -0.903 -0.862 -0.881 -0.837 -0.921 -0.910 -0.901 -0.859 -0.895 -0.879

H
eu

ri
st

ic

Deepwalk -0.802 -0.815 -0.861 -0.856 -0.805 -0.887 -0.785 -0.862 -0.902 -0.883 -0.821 -0.871 -0.845
Node2vec -0.835 -0.880 -0.885 -0.753 -0.875 -0.817 -0.800 -0.922 -0.841 -0.863 -0.872 -0.891 -0.853

DGI -0.819 -0.881 -0.918 -0.910 -0.913 -0.934 -0.902 -0.894 -0.873 -0.832 -0.855 -0.912 -0.895
BGRL -0.812 -0.866 -0.894 -0.887 -0.831 -0.897 -0.795 -0.934 -0.893 -0.817 -0.807 -0.881 -0.860

Average -0.817 -0.860 -0.890 -0.852 -0.856 -0.883 -0.821 -0.903 -0.877 -0.874 -0.839 -0.889 -0.863

Overall average -0.821 -0.858 -0.892 -0.876 -0.859 -0.882 -0.829 -0.911 -0.894 -0.888 -0.849 -0.892 -0.871

In the cases of L and M, as already mentioned in Section 3, these
methods expand a single node in a hypergraph into multiple nodes
in their expanded graph. Therefore, it is essential to aggregate the
vectors of multiple nodes in decomposed graphs for the vector of its
corresponding node in the hypergraph to conduct downstream tasks.
To conduct hyperedge prediction, in the case of L, following [44], we
average the vectors of multiple nodes as a vector of a corresponding
node in the hypergraph. Similarly, in the case of M, we average
the vectors of multiple nodes as a vector of a corresponding node
for each level, taking the averaged vectors in all levels for the final
vector of the corresponding node.

In the case of node classification, we note that only four hyper-
graphs have node labels among all the hypergraphs. Therefore, we
conduct a node classification task on these four hypergraphs only.
In the case of hypergraph classification, since we have only eight
hypergraphs, the amount of data for model training is insufficient. To
address this issue, we sample 100 sub-hypergraphs whose sizes are
10%, 15%, and 20% of the total nodes from each hypergraph via for-
est fire [28]. Furthermore, to conduct hypergraph classification, we
need a vector for a hypergraph. Since we only have vectors of nodes,
following [43], we compute a vector of each graph by averaging of
the vectors of all nodes in the hypergraph.

Table 3 shows PCC between the mileage and the accuracy of a
downstream task. The rows correspond to two variants of MILEAGE
in terms of hyperedge prediction methods (i.e., model-based and
heuristic-based) in hypergraph reconstruction. A row is subdivided
into four categories, indicating the URL methods used for node
representation. The columns correspond to downstream tasks. A
column is subdivided into four categories, indicating the classifiers
used for a downstream task.

We summarize the results shown in Tables 3 as follows. First,
we observe that there is a strong (negative) correlation between the
mileage and the downstream task accuracy in all cases regardless
of variants of MILEAGE, classifiers, and downstream tasks. More
specifically, the average and minimum PCCs are -0.871 and -0.904,
respectively, which are very high. Second, we observe strong (neg-
ative) correlations in all URL methods; DGI exhibits the strongest
(negative) correlation among the four URL methods. Third, in all
URL methods, we observe that the model-based prediction shows a
slightly stronger correlation than the heuristic-based one.

Through the results, we have validated that (1) the information
loss problem we have defined has a truly negative impact on the
accuracy of downstream tasks, (2) MILEAGE is agnostic to URL
methods, and (3) MILEAGE appropriately evaluates the hypergraph
expansion methods. Moreover, we have confirmed that MILEAGE
using model-based prediction with DGI provides the strongest (nega-
tive) correlation among all possible variants of MILEAGE; therefore,
we use it as our MILEAGE in the subsequent experiments.

EQ3: Comparison of hypergraph expansion methods. Next, we
evaluate the goodness of existing hypergraph expansion methods in
terms of the information loss via MILEAGE. Tables 4 and 5 show the
mileage of expanded graphs obtained via MILEAGE and the accuracy
in a downstream task using DGI as a URL method and MLP as a
classifier on expanded graphs, respectively.

We summarize the results shown in Tables 4 and 5 as follows.
First, M provides expanded graphs that provide the highest mileage
(i.e., highest information loss). Among hypergraph expansion meth-
ods, M is the only one that has two kinds of information loss prob-
lems (i.e., non-recoverability and multi-cloning). Therefore, it ap-
pears to have the lowest performance in terms of reconstructing the
hypergraph. Second, CS provides expanded graphs with the least
mileage. We conjecture that the mileage of CS primarily stems from
in URL and hypergraph reconstruction, as CS does not exhibit any
information loss problems during the hypergraph expansion process.
Third, we observe that the trend of downstream task accuracy is
opposite to that of the mileage. This demonstrates once again that
there is a clear (negative) correlation between the mileage and the
accuracy.

Through the results, we conclude that (1) CS provides the best
expanded graphs in terms of a mileage and (2) it is possible to
estimate the performance superiority of the downstream task on
expanded graphs, based on the superiority of the mileage obtained
by MILEAGE.

EQ4: Sensitivity of MILEAGE according to negative sampling
methods in hypergraph reconstruction. Next, we analyze the
change of the mileage according to different negative sampling
methods in MILEAGE. For negative sampling methods, we employ
the following three methods [21, 31]: (1) Sized Negative Sampling
(SNS), (2) Motif Negative Sampling (MNS), and (3) Clique Negative
Sampling. Figure 4 shows the mileage of expanded graphs in (a)
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Table 4: Mileage and (ranking) of expanded graphs obtained by
our framework (lower is better)

Dataset C S M L CS

Senate 0.699 (1) 0.430 (4) 0.532 (2) 0.458 (3) 0.411 (5)
House 0.574 (2) 0.537 (3) 0.581 (1) 0.534 (4) 0.419 (5)

Primary 0.509 (3) 0.419 (5) 0.513 (2) 0.620 (1) 0.472 (4)
High 0.495 (2) 0.400 (4) 0.524 (1) 0.485 (3) 0.345 (5)
Enron 0.229 (4) 0.300 (3) 0.452 (2) 0.485 (1) 0.157 (5)

Eu 0.375 (5) 0.432 (2) 0.422 (3) 0.498 (1) 0.418 (4)
Substances 0.675 (1) 0.582 (4) 0.637 (2) 0.625 (3) 0.525 (5)

Classes 0.863 (2) 0.809 (4) 0.873 (1) 0.856 (3) 0.750 (5)

Avg. Ranking 2.5 3.3 1.8 2.4 4.4

Table 5: Accuracy and (ranking) of downstream tasks on ex-
panded graphs (higher is better)

Dataset C S M L CS

N
od

e
C

la
ss

ifi
ca

tio
n Senate 0.419 (3) 0.435 (2) 0.412 (5) 0.415 (4) 0.440 (1)

House 0.481 (3) 0.484 (2) 0.463 (5) 0.476 (4) 0.486 (1)
Primary 0.487 (3) 0.498 (1) 0.477 (4) 0.476 (5) 0.497 (2)

High 0.457 (4) 0.471 (2) 0.453 (5) 0.461 (3) 0.473 (1)

Avg. Ranking 4.3 1.8 4.8 4.0 1.3

H
yp

er
ed

ge
Pr

ed
ic

tio
n

Senate 0.492 (3) 0.498 (2) 0.481 (5) 0.492 (3) 0.505 (1)
House 0.500 (2) 0.499 (3) 0.485 (5) 0.490 (4) 0.508 (1)

Primary 0.500 (3) 0.502 (2) 0.488 (5) 0.492 (4) 0.539 (1)
High 0.499 (3) 0.501 (2) 0.463 (5) 0.482 (4) 0.502 (1)
Enron 0.498 (4) 0.501 (2) 0.498 (4) 0.499 (3) 0.519 (1)

Eu 0.562 (1) 0.553 (2) 0.500 (4) 0.499 (5) 0.535 (3)
Substances 0.491 (5) 0.512 (2) 0.503 (4) 0.510 (3) 0.521 (1)

Classes 0.496 (2) 0.489 (4) 0.485 (5) 0.495 (3) 0.513 (1)

Avg. Ranking 2.9 2.4 4.6 3.6 1.3

H
yp

er
gr

ap
h

C
la

ss
ifi

ca
tio

n S10% 0.338 (4) 0.432 (2) 0.304 (5) 0.431 (3) 0.466 (1)
S15% 0.416 (4) 0.463 (2) 0.401 (5) 0.457 (3) 0.488 (1)
S20% 0.463 (3) 0.487 (2) 0.424 (5) 0.459 (4) 0.492 (1)

Avg. Ranking 4.7 2.0 6.0 4.0 1.0

Overall Avg. Rank. 3.7 2.0 5.0 3.3 1.0

Senate and (b) House. The x-axis represents expanded graphs and
the y-axis does the mileage. We observe that even with different
negative sampling methods, the trend of the mileage remains nearly
consistent, which indicates our framework is insensitive to negative
sampling methods.

EQ5: Parameter sensitivity of MILEAGE. It is desirable that the
correlation between the mileage and the downstream task accuracy
is not changed with different values of parameters of MILEAGE.
To investigate this, we first analyze the change of PCC according
to different dimensionalities (f ) in MILEAGE. Following [22, 27],
we set dimensionalities of MILEAGE as 32, 64, 128, and 256. Fig-
ure 5-(a) shows the results. The x-axis represents dimensionalities
in MILEAGE for each downstream task where T1 represents node
classification; T2 represents hyperedge prediction; and T3 represents
hypergraph classification. The y-axis does PCC. We observe that
even in different dimensionalities, PCC remains nearly consistent,
which indicates MILEAGE is insensitive to f as well.
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Figure 4: mileage change according to negative sampling meth-
ods.
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Figure 5: PCC change according to parameters in MILEAGE.

Next, we analyze the change of the mileage by different numbers
of layers (l). Following [23, 40], we set the number of layers in
MILEAGE as 1, 2, 4, and 8. Figure 5-(b) shows the results. The x-axis
represents the number of layers in MILEAGE for each downstream
task, and the y-axis does the mileage. The mileage shows two trends:
(1) the score steadily decreases up to a certain number of layers
(l=2); and (2) after the point, as the number of layers increases, the
score gradually increases. Overall, this change of the mileage is not
significant, which indicates our framework is insensitive to l as well.

6 CONCLUSION AND FUTURE WORK
In this paper, we point out three information loss problems oc-
curring in the hypergraph expansion, i.e., non-recoverability, tie-
weakening, and multi-cloning. We then propose a novel framework,
the MILEAGE, that evaluates the hypergraph expansion methods
through the information loss in four steps: (1) expanding a hyper-
graph into an expanded graph; (2) performing the URL on the ex-
panded graph; (3) reconstructing a hypergraph based on the vec-
tors thus obtained; and (4) quantifying the information loss by the
mileage that indicates the difference between the reconstructed and
original hypergraphs. We validate the usefulness of MILEAGE via
extensive experiments with three downstream tasks on eight real-
world hypergraphs. Through the results, we observe that (1) the
information loss problems we have defined incur a truly negative
impact on downstream tasks and (2) MILEAGE is well designed to
evaluate hypergraph expansion methods. Furthermore, we evaluate
existing hypergraph expansion methods via MILEAGE. We observe
that a new combination of Clique and Star Expansions (CS) pro-
duces expanded graphs with the least mileage, even though it is
not covered in the literature. Our work inspires the development
of novel hypergraph expansion methods and hypergraph-based ma-
chine learning methods for solving downstream tasks. As future
work, we plan to study (a) hypergraph reconstruction methods using
generative artificial intelligence such as large-language models and
(b) hypergraph-based methods for downstream tasks (e.g., recom-
mendation and hypergraph classification) using the CS expansion.
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[41] P. Veličković, W. Fedus, W. Hamilton, P. Liò, Y. Bengio, and R. Hjelm. 2018.
Deep Graph Infomax. In Proceedings of International Conference on Learning
Representations (ICLR).

[42] S. Wang, L. Hu, Y. Wang, X. He, Q. Sheng, M. Orgun, L. Cao, F. Ricci, and P. Yu.
2021. Graph Learning Based Recommender Systems: A Review. arXiv preprint
arXiv:2105.06339 (2021).

[43] J. Wu, S. Li, J. Li, Y. Pan, and K. Xu. 2022. A Simple yet Effective Method
for Graph Classification. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI). 3580–3586.

[44] C. Yang, R. Wang, S. Yao, and T. Abdelzaher. 2022. Semi-Supervised Hypergraph
Node Classification on Hypergraph Line Expansion. In Proceedings of ACM
International Conference on Information and Knowledge Management (CIKM).
2352–2361.

[45] J. Yang and J. Leskovec. 2012. Defining and Evaluating Network Communities
Based on Ground-Truth. In Proceedings of IEEE International Conference on
Data Mining (ICDM). 745–754.

[46] J. Yu, H. Yin, J. Li, Q. Wang, N. Hung, and X. Zhang. 2021. Self-Supervised
Multi-Channel Hypergraph Convolutional Network for Social Recommendation.
In Proceedings of ACM Web Conference (WWW). 413–424.

[47] R. Zhang, Y. Zou, and J. Ma. 2020. Hyper-SAGNN: A Self-Attention Based Graph
Neural Network for Hypergraphs. In Proceedings of International Conference on
Learning Representations (ICLR).

[48] C. Zheng, X. Fan, C. Wang, and J. Qi. 2020. Defining and Evaluating Network
Communities Based on Ground-Truth. In Proceedings of AAAI Conference on
Artificial Intelligence (AAAI). 1234–1241.

[49] D. Zhou, J. Huang, and B. Scholköpf. 2006. Learning with Hypergraphs: Clus-
tering, Classification, and Embedding. In Proceedings of Conference on Neural
Information Processing Systems (NIPS). 1633–1640.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACMWWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX
In this appendix, we describe (1) time complexity of MILEAGE
(Appendix A.1), (2) the detailed experimental settings of our ex-
periments (Appendix A.2), and (3) detailed descriptions of datasets
(Appendix A.3).

A.1 Time Complexity of MILEAGE
In this section, we analyze the time complexity for one epoch
of MILEAGE as follows. For the sake of simplicity, we assume
MILEAGE to use Node2vec for node representation and MLP with
l layers, the dimensionality of f , and m-level multi-level decom-
posed graphs for hypergraph reconstruction. Given a hypergraph
with v nodes (average degree is d) and h hyperedges (average size is
k), the time complexity of each component is as follows: the time
complexity of hypergraph expansion to get five expanded graphs

becomes O(k2+hk+k
i=0 |h|

(k
i
)2

+hk2 nd2+hk2+hk); the time complex-
ities of node representation and hypergraph reconstruction are O(n2)
and O(2h2 f l2+2hl2) [6, 14], respectively; and the time complexity
of mileage-score computation becomes O(h2). Therefore, the overall
time complexity of MILEAGE becomes O(n2+h2), since k, d, f , and
l are much smaller than v or h and thus treated as constants.

A.2 Reproducibility
In this section, we describe the detailed settings of our experiments.
The experiments are conducted on a server equipped with Intel i9-
9900K, 500GB SSD, 64GB memory, GeForce RTX 2070, and Linux
5.4.0-53. For URL methods, we use the source codes provided by the
authors [15, 32, 36, 41]. For parameters for each method, we use the
best setting found via extensive grid search in the ranges suggested in
its respective paper. We carefully tuned the hyperparameters of our

Mileage. We set the feature dimensionality ( f ) as 128, the number
of epochs as 200, the activation function as ReLU [1], the number of
layers (l) as 2, and the learning rate as 0.001 for all the datasets. For
the level (m) of M, we set 4 for Enron, 3 for Senate, Primary, High,
EU, and Classes, 2 for House and Substances.

A.3 Datasets
In this section, we provide detailed descriptions of datasets.
• Senate and House: Senate and House are datasets that represent

the committee memberships in the US Senate and the US House
of Representatives, respectively. A node corresponds to a senator
(or a representative) and a hyperedge indicates a set of senators
(or representatives) of a committee membership. The class label
of a node indicates a political affiliation.

• Primary and High: Primary and High are datasets that represent
the interactions of students in classrooms in the primary school
and the high school, respectively. A node corresponds to a student
and a hyperedge indicates a set of students interacting each other
as a group during an unit interval. The class label of a node
indicates a classroom where the student belongs to.

• Enron and EU: Enron and EU are datasets that represent the
email communications in Enron and European research institu-
tion, respectively. A node corresponds to an email address and a
hyperedge indicates a set of email addresses of the sender and all
recipients.

• Substances: Substances is a dataset that represents the substances
and drugs. A node corresponds to a substance and a hyperedge
indicates a set of substances of a drug.

• Classes: Classes is a datasets that represents the drugs and class
labels applied to drugs. A node corresponds to a class label and a
hyperedge indicates a set of class labels of a drug.
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