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Abstract

The performance of modern reinforcement learning algorithms critically relies
on tuning ever increasing numbers of hyperparameters. Often, small changes in
a hyperparameter can lead to drastic changes in performance, and different envi-
ronments require very different hyperparameter settings to achieve state-of-the-art
performance reported in the literature. We currently lack a scalable and widely
accepted approach to characterizing these complex interactions. This work pro-
poses a new empirical methodology for studying, comparing, and quantifying the
sensitivity of an algorithm’s performance to hyperparameter tuning for a given set
of environments. We then demonstrate the utility of this methodology by assessing
the hyperparameter sensitivity of several commonly used normalization variants of
PPO. The results suggest that several algorithmic performance improvements may,
in fact, be a result of an increased reliance on hyperparameter tuning.

1 Introduction

The performance of reinforcement learning algorithms critically relies on the tuning of numerous
hyperparameters. With the introduction of each new algorithm, the number of these critical hy-
perparameters continues to grow. Consider the progression of value-based reinforcement learning
algorithms, starting from DQN (Mnih et al., 2015), which has 16 hyperparameters that the practi-
tioner must choose, to Rainbow (Hessel et al., 2018) with 25 hyperparameters. This increase can be
observed in Figure 1. This proliferation is problematic because performance can vary drastically with
respect to hyperparameters across environments. Often, small changes in a hyperparameter can lead
to drastic changes in performance, and different environments require very different hyperparameter
settings to achieve the reported good performances (Franke et al., 2021; Eimer et al., 2022, 2023;
Patterson et al., 2024). Generally speaking, hyperparameter tuning requires a combinatorial search
and thus many published results are based on a mix of default hyperparameter settings and informal
hand-tuning of key hyperparameters like the learning rate. Our standard evaluation methodologies do
not reflect the sensitivity of performance to hyperparameter choices, and this is compounded by a
lack of suitable metrics to characterize said sensitivities.

There are many different ways one could characterize performance with respect to hyperparameter
choices in reinforcement learning, but the community lacks an agreed standard. Hyperparameter
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Figure 1: A count of hyperparameters for different reinforcement learning algorithms proposed over
the last decade. We include value-based, policy-gradient, and model-based methods. The counts
do not include hyperparameters controlling the network architectures, such as number of layers,
activation functions, etc. See Appendix B for details on how hyperparameters were counted.

sensitivity curves, such as those found in the introductory textbook (Sutton & Barto, 2018), summarize
performance with respect to several values of a key hyperparameter producing U-shaped curves.
Sensitivity curves do not work well with many dimensions of hyperparameters, nor is there a well-
established way to use them to summarize performance in multiple environments. If computation is
of no object, then performance percentiles can be used to compute the likelihood that an algorithm
will perform well if its hyperparameters are randomly sampled from some distribution (Jordan et al.,
2020). Although very general, this approach does not reflect how practitioners tune their algorithms.
The Cross-environment Hyperparameter Benchmark (Patterson et al., 2024) compares algorithms by
a mean normalized performance score across environments but ultimately focuses on the possibility
of finding a single good setting of an algorithm’s hyperparameters that performs well rather than
characterizing sensitivity. What performance-only metrics lack is a measurement of what proportion
of realized performance is due to per-environment hyperparameter tuning.

We propose an empirical methodology to better understand the interplay between hyperparameter
tuning and an reinforcement learning agent’s performance. Our methodology consists of two metrics
and graphical techniques for studying them. The first metric, called an algorithm’s hyperparameter
sensitivity, measures the degree to which an algorithm’s peak reported performance relies upon per-
environment hyperparameter tuning. This metric captures the degree to which per-environment tuning
improves performance relative to the performance of the best-fixed hyperparameter setting across a
distribution of environments. The second metric, named effective hyperparameter dimensionality,
measures how many hyperparameters must be tuned to achieve near-peak performance. It is often
unclear how important specific hyperparameters are and if they should be included in the tuning
process. These two metrics can help us better understand existing algorithms and drive research
toward algorithmic improvements that reduce hyperparameter sensitivity.

We validate the utility of our methodology by studying several variants of PPO (Schulman et al.,
2017) that have been purported to reduce hyperparameter sensitivity and increase performance. We
performed a large-scale hyperparameter study over variants of the PPO algorithm consisting of over
4.3 million runs (13 trillion environment steps) in the Brax MuJoCo domains (Freeman et al., 2021).
We investigate the relationship between performance and hyperparameter sensitivity with several
commonly used normalization variants paired with PPO. We found that normalization variants, which
increased PPO’s tuned performance, also increased sensitivity. Other normalization variants had
negligible effects on performance and marginal effects on hyperparameter sensitivity. This result
contrasts the view that normalization makes reinforcement learning algorithms easier to tune and, as
a consequence, results in improved performance.
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2 Problem Setting and Notation

We formalize the agent-environment interaction as a Markov Decision Process (MDP) with finite state
space S and action space A, bounded reward function R: S ×A× S → R ⊂ R, transition function
P : S × A× S → [0, 1], and discount factor γ ∈ [0, 1]. At each timestep t, the agent observes the
state St, selects an action At, the environment outputs a scalar reward Rt+1 and transitions to a new
state St+1. The agent’s goal is to find a policy, π : A × S → [0, 1], that maximizes the expected
return, Gt

.
= Rt+1 + γRt+2 + ..., in all states: Eπ[Gt|St = s] for all s ∈ S.

Most reinforcement learning agents learn and use approximate value functions in order to improve the
policy through interaction with the world. The state-value function vπ: S → R is the state conditioned
expected return following policy π defined as vπ(s)

.
= Eπ[Gt|St = s]. Similarly, the action-value

function qπ: S ×A → R provides the state and action conditioned expected return following policy π
defined by qπ(s, a)

.
= Eπ[Gt|St = s,At = a]. The advantage function Aπ(s, a)

.
= qπ(s, a)− vπ(s)

describes how much better taking an action a in state s is rather than sampling an action according
to π(·|s) and following policy π afterward. Given an estimate of the value function v̂, an agent
can update estimates of the value of states based on estimates of the values of successor states. An
n-step return is defined as Gt:t+n

.
= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnv̂ (St+n). A mixture

of n-step returns, called a truncated-λ return can be created by weighting n-step returns by a factor
λ ∈ [0, 1], Gλ

t:t+n
.
= (1− λ)

∑n−1
j=1 λj−1Gt:t+j + λn−1Gt:t+n. Truncated-λ returns are often used

in reinforcement learning algorithms such as PPO (Schulman et al., 2017) to estimate state values and
state-action advantages, which are used to approximate the value function and improve the policy.

Of particular interest to this work is the setting where an empiricist is evaluating a set of algorithms
Ω across a distribution of environments E . Each algorithm ω ∈ Ω is presumed to have some number
of hyperparameters n(ω). Each hyperparameter hi, 1 ≤ i ≤ n(ω) is chosen from some set of
choices Hω

i . The total hyperparameter space Hω is defined as a Cartesian product of those choices
Hω .

= Hω
1 ×Hω

2 × ...Hω
n(ω). Once an algorithm ω ∈ Ω and a hyperparameter setting h ∈ Hω are

chosen, the tuple (ω, h) specifies an agent.

3 Hyperparameter Sensitivity

First, we must define what we mean by sensitivity. A sensitive algorithm is an algorithm that requires
a great deal of per-environment hyperparameter tuning to obtain high performance. Conversely, an
insensitive algorithm is one where there exist hyperparameter settings such that the algorithm can
obtain high-performance across a distribution of environments with fixed hyperparameters.

This section presents two contributions: a metric for assessing an algorithm’s hyperparameter
sensitivity, and a method of graphically analyzing the relationship between hyperparameter sensitivity
and performance along a 2-dimensional plane. These tools may be used to develop a deeper
understanding of existing algorithms and we hope will aid researchers in evaluating algorithms more
holistically along dimensions other than just benchmark performance.

3.1 Sensitivity Metric

We want a performance metric that summarizes the learning of an online reinforcement learning
agent. The natural choice of performance metric is to report the average return obtained during
learning, which we call the area under the (learning) curve (AUC). The AUC on a run is denoted by
p(ω, e, h, κ) where ω ∈ Ω is an algorithm, e ∈ E is an environment, h ∈ Hω is a hyperparameter
setting, and κ ∈ K ⊂ N is the random number generator (RNG) seed. Performance observed during a
run of a reinforcement learning agent depends on many factors: the reinforcement learning algorithm,
the environment, the hyperparameter setting, and many forms of stochasticity. Even after fixing the
algorithm, environment, and hyperparameter setting, performance distributions are often skewed
and multi-modal (Patterson et al., 2023). Therefore, many runs are required to obtain accurate
estimates of expected performance p̂(ω, e, h)

.
= 1

|K|
∑

κ∈K p(ω, e, h, κ) where K ⊂ N is the set of
RNG seeds used during the experiment. In the experiments presented in this paper, we perform 200
runs averaging performance over a subset of runs, after filtering (described later), and report 95%
bootstrap confidence intervals around computed statistics.

3



It is crucial to capture performance across sets of environments in order to compute sensitivity. Recall,
that our notion of sensitivity captures the degree to which an algorithm relies on per-environment
hyperparameter tuning for its reported performance gains. Our choice of AUC as a performance metric
does not allow for cross-environment performance comparisons directly because the magnitudes of
returns vary greatly between environments. Consider the distributions of performance presented in
the left plot in Figure 2. The performance realized by good hyperparameter settings in Halfcheetah
is orders of magnitude greater than the performance of good hyperparameter settings in Swimmer.
Nevertheless, just because the absolute magnitude is lower or the range of observed performances
is tighter, that does not mean the differences are any less significant. Thus, in order to consider
how hyperparameters perform across sets of environments, we need to normalize performance to a
standardized score.

In this work, we use [5, 95] percentile normalization. We choose percentile normalization as it has a
lower variance than alternatives like min-max normalization. Other normalization methods, such as
min-max or CDF normalization (Jordan et al., 2020), could also be used with our hyperparameter
sensitivity formulation. After conducting a large number of runs across different algorithms, envi-
ronments, and hyperparameter settings, for each environment e, we find the 5th percentile p5(e) and
95th percentile p95(e) of the distribution of observed performance in e. Then, for each algorithm,
environment, and hyperparameter setting, the normalized environment score is obtained by squashing
performance:

Γ(ω, e, h)
.
=

p̂(ω, e, h)− p5(e)

p95(e)− p5(e)
(1)

Note the right hand side of Figure 2, the distributions of normalized scores for hyperparameter
settings in Swimmer and Halfcheetah now lie in a common range.
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Figure 2: Left: The distributions of perfor-
mance (AUC) over 625 hyperparameter set-
tings for the PPO algorithm in Swimmer and
Halfcheetah Brax environments. Right: The
same distributions after applying score nor-
malization. Each data point is the mean AUC
across runs. Each run consisted of 3M steps
of agent-environment interaction.

Normalized scores allow practitioners to determine which fixed hyperparameter settings do well across
multiple environments. That is, a practitioner can find the hyperparameter setting that maximizes
the mean normalized score across a distribution of environments. Consider the performance of
the hyperparameter setting denoted by the blue stars in Figure 3. This setting performs in the top
quartile of hyperparameter settings in both Swimmer and Halfcheetah. In contrast, consider the
hyperparameter setting denoted by the red stars. While this hyperparameter setting sits near the top
of the distribution for Halfcheetah, it performs poorly in Swimmer.

Given an algorithm ω ∈ Ω, we define its hyperparameter sensitivity Φ as follows:

Φ(ω)
.
=

1

|E|
∑
e∈E

max
h∈Hω

Γ(ω, e, h)− max
h∈Hω

1

|E|
∑
e∈E

Γ(ω, e, h) (2)

The hyperparameter sensitivity of an algorithm is the difference between its per-environment tuned
score and its cross-environment tuned score. The per-environment tuned score is the average nor-
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Figure 3: The distributions of environment
normalized scores for 625 hyperparameter set-
tings of the PPO algorithm in the Swimmer
and Halfcheetah environments. The red stars
indicate the normalized environment scores of
a hyperparameter setting, which does well in
Halfcheetah but poorly in Swimmer. The blue
stars indicate the normalized scores of the hy-
perparameter setting, which maximizes the
mean of the normalized environment scores
across both environments.

malized environment score with hyperparameters tuned per environment. The cross-environment
tuned score is the normalized environment score of the best fixed hyperparameter setting across
the distribution of environments. We can use this notion of hyperparameter sensitivity to better
understand new and existing algorithms. Reporting both hyperparameter sensitivity and the conven-
tional performance-only evaluation metrics should provide a more complete picture of algorithm
performance.

3.2 Sensitivity Analysis

Modern reinforcement learning algorithms are complex learning systems, and understanding them
is a difficult task that requires multiple dimensions of analysis. Benchmark performance has been
the primary metric (and often the only one) used for evaluating algorithms. However, this is only
one dimension along which algorithms can be evaluated. Hyperparameter sensitivity is an important
dimension to consider in the evaluation space, especially as practitioners begin to apply reinforcement
learning algorithms to real-world applications. We propose the performance-sensitivity plane to aid
in better understanding algorithms.

Consider the performance-sensitivity plane shown in Figure 4. To construct the plane, the center
point is set to the hyperparameter sensitivity and per-environment tuned score of some reference
point algorithm. We can consider how other algorithms relate to this reference point by considering
which region of the plane they occupy. There are 5 regions of interest shaded by different colors and
labeled numerically, which we will consider in turn.

An ideal algorithm would be both more performative and less sensitive. Therefore, algorithms
that fall in Region 1 (the top left quadrant) of the plane would be a strict improvement over the
reference point algorithm. For some applications, perhaps additional sensitivity can be tolerated if
the gains in performance are large enough. Algorithms that fall in Region 2 are an example of this.
The region represents algorithms whose increase in performance is greater than the corresponding
increase in sensitivity. Conversely, for some applications sensitivity may matter a great deal and
some performance loss can be endured. Algorithms that fall in Region 3 are an example of those
whose decrease in sensitivity outmatches their corresponding decrease in performance. Regions
1-3 represent algorithms that have notable redeeming qualities either in terms of performance,
hyperparameter sensitivity, or both. However, perhaps a practitioner does not care about sensitivity.
For example, they want to maximize the score of a specific benchmark, and hyperparameter tuning is
no issue. Algorithms in Region 4 may be adequate as they are algorithms that exhibit performance
improvements and an even higher reliance upon per-environment hyperparameter tuning. Finally,
those unfortunate algorithms that live in Region 5 are in a space with both lower performance and
higher sensitivity, making them undesirable.

A natural application of this diagram is to set the reference (center) point to the hyperparameter
sensitivity and performance of some base algorithm and study how proposed modifications (or
ablations) affect both sensitivity and performance. Often, new algorithms are created by modifying
existing algorithms, such as normalizing targets, adding a regularization term to the loss function,
gradient clipping, etc. We illustrate an example of this using PPO as a reference point in the next
section.
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Figure 4: The performance-sensitivity
plane for algorithmic evaluation. The
center point indicates the hyperparame-
ter sensitivity and performance of a ref-
erence point algorithm. The x-axis is
the hyperparameter sensitivity metric as
defined in equation 2. The y-axis is the
per-environment tuned score (first term
in equation 2). The diagonal line is the
identity line shifted to intersect the refer-
ence point algorithm. The plane is then
divided into 5 shaded regions that rep-
resent spaces of algorithms of varying
qualities relative to the baseline.

4 Sensitivity Experiments

To illustrate the utility of the sensitivity analysis presented above, we performed an experiment to
study the hyperparameter sensitivity and performance of several variants of the PPO algorithm, a
widely used policy-gradient method in reinforcement learning (Schulman et al., 2017). We considered
several normalization variants commonly used in PPO implementations (Andrychowicz et al., 2020;
Huang et al., 2022) and some normalization variants, introduced in DreamerV3, that were purported
to reduce hyperparameter sensitivity (Hafner et al., 2023; Sullivan et al., 2023).

4.1 Proximal Policy Optimization

PPO is an instance of an actor-critic method (Sutton & Barto, 2018) that maintains two neural
networks: a policy network with parameters θ and a value network with parameters w. Given a
policy πθold

, the agent performs a roll-out of T steps, (S1, A1, R1, S2, A2, R2, ...ST , AT , RT ), this
rollout is then split into m batches of length k. The critic is then updated via ADAM (Kingma & Ba,
2015) to optimize MSE loss with the truncated-λ return as a target. The actor is updated via ADAM
(Kingma & Ba, 2015) to optimize a clipped surrogate objective toward maximizing the expected
return. An entropy regularizer is added to the actor loss to encourage exploration.

4.2 Normalization variants

Several normalization variants have been used in PPO implementations. We focus on three categories
of normalization: observation normalization, value function normalization, and advantage normaliza-
tion. An intuition behind value function or advantage normalization for hyperparameter sensitivity
is that the scale and sparsity of rewards vary greatly across environments and that value function or
advantage normalization should make actor-critic updates invariant to these factors possibly requiring
less tuning of the step-size hyperparameters (van Hasselt et al., 2016). Another claimed benefit
of advantage normalization variants is that by normalizing the advantage term, it is easier to find
an appropriate value for the entropy regularizer coefficient τ across a distribution of environments
(Hafner et al., 2023). Observation normalization standardizes the network inputs. This can mitigate
large gradients, which may stabilize the learning system for hyperparameter tuning (Hafner et al.,
2023; Andrychowicz et al., 2020), especially critic and actor step-size hyperparameters αw, αθ > 0.

Advantage per-minibatch zero-mean normalization: A common implementation detail of PPO
is per-minibatch advantage normalization (Huang et al., 2022). When performing an update, the
advantage estimates used in the actor loss function are normalized by subtracting the mean of
the advantage estimates in the sampled batch and dividing by the standard deviation of advantage
estimates in the sampled batch.

Advantage percentile scaling : Another form of advantage normalization was introduced in the
DreamerV3 (Hafner et al., 2023) ablations which divides the advantage estimate in the actor loss by
a scaling factor. Exponential moving averages are maintained over the 95th and 5th percentiles of
advantage estimates. The advantage term is divided by the difference of the two percentiles.

6



Advantage lower bounded percentile scaling: An alternate variant of percentile scaling is used in
the DreamerV3 algorithm. Lower bounded percentile scaling applies a max operation to the percentile
scaling factor, preventing the estimated advantage term from blowing up if the percentile difference
falls below a threshold.

Value target symlog: DreamerV3 introduced a method of scaling down the magnitudes of target
values by the symlog function. The symlog function and its inverse symexp are defined as:

symlog(x) .
= sign(x) ln(|x|+ 1) symexp(x) .

= sign(x)(exp(|x| − 1) (3)

As in DreamerV3, symlog is applied to the target in the critic loss and symexp is applied to the
output of the critic network. In a subsequent study that applied DreamerV3 tricks to PPO (Sullivan
et al., 2023), it was reported that the symlog transformation of the value target was one of the most
impactful tricks in environments without reward clipping when applied to PPO.

Observation zero-mean normalization: A very common procedure with PPO is to normalize
observations by maintaining running estimates of the mean and standard deviation of observations.

Observation symlog: DreamerV3 proposed an alternative form of observation normalization by
applying the symlog function, compressing the observations.

A handful of prior work has investigated the benefits of similar algorithmic modifications to PPO.
Previous work has reported the performance impact of the normalization variants commonly used with
PPO: per-minibatch zero-mean advantage normalization and zero-mean observation normalization
(Andrychowicz et al., 2020). Other work (Sullivan et al., 2023) investigated how PPO’s performance
is affected by the normalization variants introduced in DreamerV3 (lower bounded percentile scaling,
value target symlog, and symlog observation) and that symlog was especially helpful in Atari when
reward clipping is disabled. In addition, this work did not perform any hyperparameter tuning for the
variants of PPO they tested. In our results, hyperparameter tuning demonstrated a significant effect
on the relative performance of these algorithms.

Given these normalization variants, a natural question that arises is how do they affect the hyperparam-
eter sensitivity of PPO? To the best of our knowledge, a careful study of the effect these normalization
variants have on the hyperparameter sensitivity of PPO has yet to be done and it provides a good test
of our new methodology.

4.3 Sensitivity Experiment with PPO variants

We investigated the effect of each of the described normalization variants on PPO. To isolate these
effects, we did not apply reward clipping, reward scaling, or observation normalization wrappers by
default. We focused our attention on four critical hyperparameters of PPO: the step-size for the critic
αw, the step-size for the actor αθ, the coefficient of the entropy regularizer τ , and the truncated-λ
return mixing parameter λ. We performed a large grid search spanning five orders of magnitude across
five Brax Mujoco domains. Near the extreme endpoints of the grid search, some hyperparameter
configurations diverged. We ignored hyperparameter combinations that caused a particular algorithm
to diverge over 10% of the time. We averaged the performance over the non-diverging runs.

Consider the performance-sensitivity plane in Figure 5. The reference point at the center is the
hyperparameter sensitivity and performance found for PPO without normalization. The error bars
displayed indicate 95% confidence intervals formed from a 10,000 sample bootstrap. First, note
that none of the normalization variants resulted in an improvement that both raised performance and
lowered sensitivity. All forms of advantage normalization increased performance. However, this
performance gain comes with a trade-off: increased hyperparameter sensitivity. The marginal gain
in performance per unit of increased sensitivity varied between advantage normalization methods.
Advantage per-minibatch zero-mean normalization had a greater increase in performance than
sensitivity (Region 2). Both percentile scaling-based variants of advantage normalization resulted in
more significant sensitivity increases than performance increases (Region 4), indicating an enhanced
reliance on hyperparameter optimization methods. Applying the symlog function to the value target
lowered performance and may have slightly increased sensitivity (Region 5). It may, however, be the
case that the choice of environment distribution did not have enough variation in reward magnitude
for the utility of value target symlog to be demonstrated. It appears that observation normalization
may slightly reduce sensitivity, although it is unclear due to the width of the confidence intervals.
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Figure 5: Performance-sensitivity plane with unnormalized PPO as the center reference point. Variants
of PPO plotted. The x-axis indicates hyperparameter sensitivity as defined in equation 2. The y-axis
represents the per-environment tuned score (first term in the sensitivity calculation of equation 2).
Hyperparameter sensitivity and per-environment tuned score metrics were computed from a 200 run
sweep of 625 hyperparameter settings across 5 Brax Mujoco environments (Ant, Halfcheetah, Hopper,
Swimmer, and Walker2d). Error bars show the endpoints of 10,000 sample 95% bootstrap confidence
intervals around both the performance and hyperparameter sensitivity metrics (two dimensions).

The performance-sensitivity plane provides insights into how algorithmic changes may alter an
algorithm’s reliance on per-environment hyperparameter tuning with no additional computational
expense other than what is already required from a standard hyperparameter tuning procedure.

The sensitivity metric is intimately tied to the chosen environment distribution, and our findings
are thus limited to the Brax Mujoco environments tested. We argue the restricted environment
distribution is not just a practical choice, but was a feature of the study. Somewhat surprisingly we
found significant sensitivity across a distribution of fairly similar environments. In Figure 7 displayed
in Appendix D, we perform a leave-one-out study reporting how the performance-sensitivity plane
changes when each of the five environments is dropped from the data. Observe that while the exact
values of the points shift, their position relative to the reference point remains mostly unchanged.

The performance-sensitivity plane allows for a richer understanding of algorithms than performance-
only evaluation procedures, but it does not capture the full picture. Two algorithms can sit in the
same location on the plane and yet have very different hyperparameter characteristics. Consider
the case where there are two algorithms. The first algorithm is highly sensitive with respect to one
hyperparameter, which needs to be carefully tuned per environment. The second algorithm has the
same sensitivity but needs to be tuned per environment for dozens of hyperparameters with complex
interactions. The hyperparameter sensitivity would not differentiate between these two algorithms.
An additional metric is needed.

5 Effective Hyperparameter Dimensionality

There are many cases where a practitioner can tune some but not all of an algorithm’s tunable
hyperparameters. It may be the case that if a few key hyperparameters are tuned per environment, then
a preponderance of an algorithm’s potential performance can be gained. This motivates the definition
of effective hyperparameter dimensionality, a metric that measures how many hyperparameters must
be tuned in order to obtain near-peak performance.
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Figure 6: Normalized performance scores as a function of the number of hyperparameters tuned per
environment. The subplots compare PPO to the PPO variants studied. The x-axis indicates the size
of the subset of hyperparameters being tuned. The y-axis is the average normalized score across
the environment distribution. Each dot indicates the normalized score obtained by tuning the most
performant subset of hyperparameters of each size. The curve is an interpolation between the dots.
The dashed line indicates the point at which the curve reaches 95% of peak performance. LB is an
abbreviation for lower bounded, zm is an abbreviation for zero-mean.

For a given algorithm ω with hyperparameter space Hω, number of tunable hyperparameters n(ω),
and environment distribution E , let h∗ .

= argmaxh∈Hω
1
|E|

∑
e∈E Γ(ω, e, h) be the hyperparam-

eter setting which maximizes the cross-environment tuned normalized score. Define a similar-
ity function ρ : Hω → [n(ω)] that counts the number of hyperparameters in common with h∗,
ρ(h) =

∑n(ω)
i=1 1[hi = h∗

i ]. Effective hyperparameter dimensionality d(ω) is defined as

d(ω) = max
h∈Hω

ρ(h)

s.t.
1

|E|
∑
e∈E

Γ(ω, e, h) ≥ 0.95
1

|E|
∑
e∈E

max
h′∈Hω

Γ(ω, e, h′)
(4)

The effective hyperparameter dimensionality of an algorithm is the maximal number of hyperpa-
rameters that can be left to default (setting that maximizes cross-environment tuned performance)
while retaining the majority of the performance that can be realized by tuning per environment. The
threshold of 95% peak performance can be changed at a practitioner’s discretion to whatever meets
their performance requirements. To compute effective hyperparameter dimensionality, one needs to
consider subsets of hyperparameters to find a minimum subset that achieves the required performance
threshold.

For the same algorithmic variants of PPO as studied above, Figure 6 displays normalized scores as a
function of the number of hyperparameters tuned per environment, choosing the most performant
subset to tune. Table 2 in Appendix C provides a listing of the most performant subsets of varying
sizes observed during this experiment. The curve interpolates between the normalized scores. The
vertical dashed line indicates the point along the curve that reaches 95% of the per-environment tuned
score. In the case of advantage percentile scaling, modifying PPO with the normalization variant
moves the point to the right, indicating this variant improves performance at the cost of increasing
pressure on the number of hyperparameters necessary to tune. Also, note how the performance
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ranking can shift based on the number of hyperparameters that have been tuned; such as with PPO
and the advantage percentile scaling variant (top left plot). For some variants, performance flattens
after tuning only three hyperparameters. Whereas for other variants, performance is almost linear
in the number of hyperparameters tuned, suggesting sensitivity to all hyperparameters. On the
performance-sensitivity plane (Figure 5 in the previous section), both the advantage percentile scaling
and advantage lower-bounded percentile scaling variants fall in the same region (Region 4). Yet, in
Figure 6, we can see that the advantage lower bounded percentile scaling variant can obtain higher
performance levels than the advantage percentile scaling variant when tuned on smaller subsets of
hyperparameters. This observation that algorithms can have similar hyperparameter sensitivities and
vastly different effective hyperparameter dimensionalities indicates the power of using both metrics
for studying algorithms.

6 Limitations and Future Work

The hyperparameter sensitivity and effective hyperparameter dimensionality metrics will depend
heavily on several important empirical design choices. The premise of both metrics is that a
practitioner is concerned with understanding sensitivity with respect to a distribution of environments
that they care about. If the distribution of environments changes, the metrics will need to be evaluated
with respect to the new distribution. This dependence on the environment distribution could be
exploited, as someone could artificially make an algorithm appear less sensitive by including several
easy environments that all hyperparameter settings will do well in, although score normalization will
somewhat counteract this. In addition, the level of granularity with which hyperparameter sweeps
are performed will have an effect on both metrics. Another factor that can impact the metrics is the
choice of the score normalization method used. A practitioner could use other score normalization
methods and the resulting sensitivity scores may be different.

A next step is to apply the proposed sensitivity and dimensionality metrics to a larger set of algorithms
and environments. Related to this work is the literature of AutoRL (Eimer et al., 2023). The goal of
AutoRL is to tune hyperparameters via some hyperparameter optimization algorithm (which make
use of their own hyperparameters—hyper-hyperparameters). Future work could use the definitions
provided here to try to understand if the algorithms proposed in the AutoRL literature reduce
sensitivity over the base algorithms that are being modified—measuing the sensitivity of the hyper-
hyperparameters. A study comparing the sensitivities and dimensionalities of AutoRL methods to the
sensitivities and dimensionalities of the base learning algorithms they optimize would be prudent.

7 Conclusion

As learning systems become more complicated, careful empirical practice is critical. Modern reinfor-
cment learning algorithms contain numerous hyperparameters whose interactions and sensitivities are
not well understood. Common practice, which is focused on achieving state-of-the-art performance,
risks overfitting to benchmark tasks and overly relying on hyperparameter optimization. Most empiri-
cal work in reinforcement learning has focused only on evaluating algorithms based on benchmark
performance, leaving the effects of hyperparameters under-studied. In this work, we propose a new
evaluation methodology based on two metrics that allow practitioners to better understand how an
algorithm’s performance relates to its hyperparameters. We show how this methodology is useful
in evaluating methods purported to mitigate sensitivity. We identify that the studied advantage
normalization methods, while improving performance, also increase hyperparameter sensitivity and
can increase the number of sensitive hyperparameters.
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A Broader Impact Statement

Hyperparameter sweeps and per-environment tuning are the most computationally expensive and
environmentally impactful parts of reinforcement learning research. Our study ran for approximately
4.5 GPU years on NVIDIA 32GB V100s. While this is substantial, we believe that using compute to
better understand the sensitivity of current algorithms is an essential step towards developing more
environmentally friendly algorithms. This work investigated an empirical methodology for evaluating
the hyperparameter sensitivity of reinforcement learning agents. The immediate societal impact
is minimal. However, our methodology may aid in developing performative algorithms with low
hyperparameter sensitivity. If this occurs, these algorithms will result in less need for hyperparameter
tuning and, as a result, have a positive impact on lowering the carbon footprint of reinforcement
learning experiments.

B Proliferation of Hyperparameters

There is a trend in which the current state-of-the-art algorithms often contain more hyperparameters
than the previous state-of-the-art. Table 1 lists hyperparameter counts for representative algorithms
from each of the three main categories of reinforcement learning methods: values-based, policy-
gradient, and model-based.

C Hyperparameter Sweep Details

The PPO implementation used was heavily inspired by the PureJaxRL PPO implementation (Lu et al.,
2022). The variants advantage per-minibatch zero-mean normalization and observation zero-mean
normalization are the standard implementations provided within PureJaxRL. The variants: symlog
observation, symlog value target, percentile scaling, and lower bounded percentile scaling closely
follow the implementation of the DreamerV3 tricks applied to PPO shown in Sullivan et al. (2023) as
well as referencing the original DreamerV3 repository Hafner et al. (2023).

The policy and critic networks were parametrized by fully connected MLP networks, each with
two hidden layers of 256 units. The network used the tanh activation function. Separate
ADAM optimizers (Kingma & Ba, 2015) were used for training the actor and critic networks.
The environments used in the experiments were the Brax implementations of Ant, Halfchee-
tah, Hopper, Swimmer, and Walker2d.(Freeman et al., 2021). The hyperparameter sweeps were
grid searches over eligibility trace λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, entropy regularizer coefficient
τ ∈ {0.001, 0.01, 0.1, 1.0, 10.0}, actor step-size αθ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}, and
critic step-size αw ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}. Each run lasted for 3M environment steps.
200 runs were performed for each of the algorithms, environments, and hyperparameter settings. Like
the PureJaxRL PPO implementation, the entire training loop was implemented to run on GPU. We
will release code and experiment data at https://github.com/jadkins99/hyperparameter_
sensitivity, promoting the further investigation of hyperparameter sensitivity in the field of
reinforcement learning.
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Algorithm
name

Year Number of hyperparameters Comments

Q-learning 1989 3 (+1) step size, (+1) ϵ-greedy exploration, (+1) dis-
count factor (Watkins, 1989)

R-learning 1993 3 (+2) step sizes, (+1) ϵ-greedy exploration
(Schwartz, 1993)

LSPI 2003 4 (+1) discount factor (+1) stopping condition, (+1)
ϵ-greedy exploration (+1) initialization parameter
(Lagoudakis & Parr, 2003)

NFQ 2006 5 (+1) discount factor (+1) ϵ-greedy exploration, (+2)
Uses RProp, (+1) number of inner-loop iterations
(Riedmiller, 2005)

DQN 2013 16 Hyperparameter table from paper.
PER 2016 20 (+16) inherited from DQN (+4) added for PER.
Rainbow 2017 25 (+20) inherited from PER (+5) (1 extra from chang-

ing optimizer from RMSProp to ADAM, n step
return, 3 from distributional RL ).

Agent57 2020 34 Hyperparameter table from paper.
Actor-critic 1983 3 (+1)actor step size, (+1) critic step size, (+1) dis-

count factor (+2) eligibility traces .
Actor-critic
with el-
igibility
trace

1983 5 (+1)actor step size, (+1) critic step size, (+1) dis-
count factor .

A3C 2016 11 (+3) Uses RMSProp (+1) value function loss co-
efficient (+1) entropy coefficient (+1) number of
actors (+1) batch size (+1) gradient clipping (+1)
atari frame stacking (+1) target network update rate
(+1) discount factor .

PPO-clip 2017 24 Hyperparameter table from paper. Additional hy-
perparameters discussed in ICLR blogpost. (+11)
inherited from A3C (+1) from switching to ADAM
(+1) λ returns (+1) number of epochs (+1) actor
loss clipping (+1) value loss clipping (+2) Log
stdev of action distribution LinearAnneal(-0.7,-1.6)
(+1) ADAM LR annealing (+1) reward scaling (+2)
reward clip (+2) post-normalization observation
clip.

SAC 2018 22 Stable Baselines documentation. (+10) inherited
from A3C (+1) ADAM (+1) number of epochs
(+1) reward scaling (+2) reward clip + (+2) post-
normalization observation clip + +1) entropy co-
efficient step-size (+1) target entropy (+2) action
Gaussian noise (+1) polyak update.

Tabular
Dyna

1991 4 (+1) ϵ-greedy, (+1) discount factor, (+1) number of
planning steps, (1) stepsize

Tabular
Dyna+

1991 5 (+1) ϵ-greedy, (+1) discount factor, (+1) number
of planning steps, (1) stepsize (+1) planning explo-
ration reward bonus

Linear
Dyna

2012 7 (+1) ϵ-greedy, (+1) discount factor, (+1) number
of planning steps, (3) stepsizes (papers uses one
stepsize but there it is used for transition matrix, ex-
pected reward vector, and value function estimate

DreamerV1 2020 26 Paper. (+1) number random seed episodes (+1)
number of update steps (+1) buffer size (+1) batch
size (+1) batch length (+1) imagination horizon
(+1) λ (+1) actor step-size (+1) critic step-size (+3)
ADAM (+1) RSSM units (+1) discount factor (+1)
entropy coefficient (+1) target network update (+1)
action model tanh scale factor (+1) step-size for
world model (+1) gradient clipping (+1) KL reg-
ularizer clipping (+2) action Gaussian noise (+1)
action repeat (+3) discrete action ϵ-greedy linear
decay over first 200k steps.

DreamerV2 2022 28 Modification summary. (+1) number of discrete la-
tents (+1) KL balancing (+1) actor gradient mixing
(+1) weight decay (-2) removed action Gaussian
noise.

DreamerV3 2023 41 Hyperparameter table from paper. Modification
summary. (+1) World model loss clipping (+1)
actor unimix random exploration (+3) advantage
percentile scaling (2 percentiles, decay rate, lower
bound) (+2) two additional β terms in world model
loss (+1) Critic EMA decay (+1) Critic EMA regu-
larizer coefficient (+2) Adaptive Gradient Clipping
(+1) Critic replay loss scale (+1) Critic loss scale
(+1) Actor loss scale (+1) latent unimix (-2) same
step-size for all.

Table 1: This table reports counts of hyperparameters (excluding those relating to neural network
architecture) from a sampling of prominent algorithms proposed over the last decade. When possible,
we tried to use hyperparameter tables listed in the original papers. Otherwise, we used documentation
from popular implementations. The comments column contains links to sources used.
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Algorithm Variant Size 1 Subsets Size 2 Subsets Size 3 Subsets
PPO λ τ , λ τ , λ, αw
Observation symlog λ τ , λ τ , λ, αw
Observation zero-mean normalization λ τ , λ τ , λ, αθ

Advantage percentile scaling αw λ, αw λ, αθ , αw
Advantage lower bounded percentile
scaling

αw λ, αw λ, αθ , αw

Advantage per-minibatch zero-mean
normalization

λ λ, αw τ , λ, αw

Value target symlog αθ τ , λ τ , λ, αw

Table 2: The subsets of hyperparameters that were found to be most impactful to tune per environment
as measured when creating Figure 6.

Environment 	
Tuned Performance

Sensitivity

Advantage 		

lower bounded 		

percentile scaling	

Advantage 		

per-minibatch 		

zero-mean	

normalization	

Advantage 	 		

percentile scaling	

Value target	

symlog 

PPO

Observation 	

zero-mean	

normalization

Observation	

symlog

Advantage 		

lower bounded 		

percentile scaling	

Advantage 		

per-minibatch 		

zero-mean	

normalization	

Advantage 	 		

percentile scaling	

Value target	

symlog 

PPO

Observation 	

zero-mean	

normalization
Observation	

symlog

Advantage 		

lower bounded 		

percentile scaling	

Advantage 		

per-minibatch 		

zero-mean	

normalization	 Advantage 	 		

percentile scaling	

Value target	

symlog 

PPO

Observation 	

zero-mean	

normalization
Observation	

symlog

Observation 	

zero-mean	

normalization

PPO

Advantage 	 		

percentile scaling	

Value target	

symlog 

Observation	

symlog

Advantage 		

lower bounded 		

percentile scaling	

Advantage 		

per-minibatch 		

zero-mean	

normalization	

Advantage 		

lower bounded 		

percentile scaling	

Advantage 		

per-minibatch 		

zero-mean	

normalization	
Advantage 	 		

percentile scaling	

Value target	

symlog 

PPO

Observation 	

zero-mean	

normalization

Observation	

symlog

Figure 7: Performance-sensitivity planes shown are formed by leaving out each of the five environ-
ments. Error bars are 95% confidence intervals obtained from 1000 sample bootstraps.

D Additional Figures

The sensitivity metric is ultimately tied to a distribution of environments, and our findings are thus
limited to Brax Mujoco environments tested. Claims cannot be about environments outside the
evaluated environment set. One may wonder about the stability of the results if the environment
distribution changes on a small scale. In Figure 7, we repeat the sensitivity metric for each of
the five environment subsets that can be obtained by dropping a single environment. Leaving out
environments does shift the reference point, and the position of the variants shifts somewhat relative
to the reference point. However, the regional position of the variants relative to the reference point is
mostly consistent.

In Figure 8, we also include results with final performance, i.e., the sum of rewards obtained over
the final 1000 timesteps of learning (the truncation length). The performance of reinforcement
learning agents does not monotonically increase. In many cases, with specific hyperparameters, it
may collapse in the middle or end of learning. Therefore, this metric is noisy, and it is difficult to
reason about where algorithms lie according to it on the performance sensitivity curve.
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Algorithm Variant Environment λ τ αθ αw Mean of
Returns

Standard
Deviation
of Returns

Advantage percentile scaling ant 0.9 0.001 0.0001 0.0001 34.64 8.54
Advantage percentile scaling halfcheetah 0.3 0.001 0.0001 0.001 2220.81 179.74
Advantage percentile scaling hopper 0.9 0.001 0.00001 0.001 1005.48 41.22
Advantage percentile scaling swimmer 0.9 0.01 0.01 0.001 35.34 5.83
Advantage percentile scaling walker2d 0.9 0.01 0.0001 0.001 846.72 94.99
Advantage lower bounded
percentile scaling

ant 0.7 0.001 0.0001 0.0001 35.53 11.22

Advantage lower bounded
percentile scaling

halfcheetah 0.3 0.001 0.0001 0.001 2216.12 176.56

Advantage lower bounded
percentile scaling

hopper 0.9 0.01 0.00001 0.001 1003.62 46.69

Advantage lower bounded
percentile scaling

swimmer 0.9 0.001 0.01 0.0001 41.24 23.59

Advantage lower bounded
percentile scaling

walker2d 0.9 0.001 0.0001 0.001 831.81 140.81

Advantage per-minibatch
zero-mean normalization

ant 0.7 0.01 0.0001 0.0001 36.98 10.37

Advantage per-minibatch
zero-mean normalization

halfcheetah 0.3 0.001 0.0001 0.001 2369.19 169.13

Advantage per-minibatch
zero-mean normalization

hopper 0.9 0.001 0.00001 0.001 1006.39 30.88

Advantage per-minibatch
zero-mean normalization

swimmer 0.5 0.01 0.0001 0.00001 41.11 3.29

Advantage per-minibatch
zero-mean normalization

walker2d 0.7 0.01 0.0001 0.001 824.87 96.69

PPO ant 0.7 0.01 0.0001 0.001 38.95 9.94
PPO halfcheetah 0.5 0.01 0.0001 0.001 2311.89 172.22
PPO hopper 0.9 0.001 0.00001 0.001 1002.97 71.25
PPO swimmer 0.9 0.001 0.0001 0.0001 33.41 9.41
PPO walker2d 0.9 0.1 0.0001 0.001 761.36 92.23
Observation zero-mean nor-
malization

ant 0.7 0.01 0.0001 0.001 39.78 9.85

Observation zero-mean nor-
malization

halfcheetah 0.5 0.01 0.0001 0.001 2306.22 161.09

Observation zero-mean nor-
malization

hopper 0.9 0.001 0.00001 0.001 1004.47 68.99

Observation zero-mean nor-
malization

swimmer 0.9 0.01 0.01 0.0001 33.63 2.14

Observation zero-mean nor-
malization

walker2d 0.9 0.1 0.0001 0.001 755.25 88.62

Value target symlog ant 0.1 0.001 0.0001 0.0001 8.57 2.48
Value target symlog halfcheetah 0.7 0.01 0.0001 0.0001 1731.16 149.42
Value target symlog hopper 0.9 0.1 0.00001 0.001 1067.40 57.11
Value target symlog swimmer 0.5 0.001 0.0001 0.00001 34.67 1.00
Value target symlog walker2d 0.9 0.1 0.0001 0.001 698.09 85.97
Observation symlog ant 0.7 0.01 0.0001 0.001 39.57 11.15
Observation symlog halfcheetah 0.5 0.01 0.0001 0.001 2321.00 147.05
Observation symlog hopper 0.9 0.01 0.00001 0.001 1007.13 69.63
Observation symlog swimmer 0.9 0.001 0.0001 0.0001 32.90 9.60
Observation symlog walker2d 0.9 0.1 0.0001 0.001 767.30 77.60

Table 3: This table reports means and standard deviations across seeds of the average return observed
during learning for a subset of the different hyperparameter settings, algorithm variants, and environ-
ments.
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Advantage 	 		
percentile scaling	

Value target	
symlog 

Advantage 		
per-minibatch 		
zero-mean	
normalization	

PPO

Advantage 		
lower bounded 		
percentile scaling	

Observation 	
zero-mean	
normalization

Observation	
symlog

Figure 8: Performance-sensitivity plane with final return as the performance metric. Variants of
PPO plotted. The x-axis indicates hyperparameter sensitivity as defined in equation 2. The y-axis
represents the per-environment tuned score (first term in the sensitivity calculation of equation 2).
Error bars are 95% confidence intervals from a 1000 sample bootstrap.
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