Under review as a conference paper at ICLR 2026

FINE-GRAINED GRAPH GENERATION THROUGH LA-
TENT MIXTURE SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Structure aware graph generation aims to generate graphs that satisfy given topo-
logical properties. It has applications in domains such as drug discovery, social
network modeling, and knowledge graph construction. Unlike existing methods
that only provide coarse control over graph properties, we introduce a novel con-
ditional variational autoencoder for fine-grained structural control in graph gen-
eration. The approach refines the decoder’s latent space by dynamically aligning
graph- and property-driven representations to improve both graph fidelity and con-
trol satisfaction. Specifically, the approach implements a mixture scheduler that
progressively integrates graph and control priors. Experiments on five real-world
datasets show the efficacy of the proposed model compared to recent baselines,
achieving high generation quality while maintaining high controllability.

1 INTRODUCTION

Graph generation is a fundamental task in machine learning for modeling real-world networks such
as molecular structures and social networks. Traditional models focus on producing graphs that
follow general structural patterns (e.g. power-law distribution in node degree) (Erdos and Rényi,
1959; Barabasi and Albert, [1999; You et al., 2018). However, many real world applications require
controlled graph generation, where generated graphs must satisfy specific topological properties
or attributes (Zahirnia et al.| 2024; Martinkus et al.l [2022). This is particularly crucial in domains
such as drug discovery (generating new molecules that satisfy certain chemical properties) (Jin
et al., 2018 Shi et al., [2019; Jin et al.l 20205 |Luo et al.| 2021} |Popova et al., [2019; |Shi et al.| 2020;
Liu et al.|, 2021} Zang and Wang] [2020; De Cao and Kipfl 2018)), synthetic material design (Wang
et al., 2022; [Sanchez-Lengeling and Aspuru-Guzikl [2018)), social and information networks (Pitas},
2016} [Zhou et al., [2020; |Zeno et al., 2021), knowledge graphs (Melnyk et al.l 2022; Zhou et al.,
2023} |Cao et al., [2023)), and programming languages (generating program graphs from source
codes) (Allamanis et al., [2018).

Despite significant progress in graph generation, existing controlled graph generation methods are
limited in scope, often restricting control to basic graph attributes such as node and edge counts as
opposed to more fine-grained structural constraints, and lack a principled way to balance the struc-
tural generation process and attribute-based constraints. For example, EDGE |Chen et al.| (2023)) is
a discrete diffusion model that explicitly focuses on node degrees to control graph generation; Di-
Gress|Vignac et al.|(2023) also builds on discrete diffusion techniques to incorporate properties such
as planarity or acyclicity for generating graphs; Spectre Martinkus et al.| (2022) is a generative ad-
versarial network that control graph generation by focusing on eigenvalues and eigenvectors, which
provide abstract control over topological properties; and GenStat Zahirnia et al.| (2024) is a varia-
tional autoencoder that learns a latent adjacency matrix from attributes such as number of edges,
triangles, and k-hop neighbors histogram. Other works such as (Yang et al., [2019; |Ommi et al.,
2022) uses class labels and other class information as a condition to generate graphs where as (Liu
et al., [2024; [Mercatali et al.,|2024) focuses on molecule generation tasks.

We propose TOPOGEN, a novel conditional variational autoencoder for controlled graph generation
based on fine-grained topological attributes. TOPOGEN uses both the adjacency matrix and desired
topological attributes during training for better latent space alignment and improved decoder tun-
ing, while relying only on attributes during inference. We propose a novel scheduling mechanism
(MIXTURE-SCHEDULER) that progressively integrates structure- and attribute-driven latent repre-

Under review as a conference paper at ICLR 2026

Training
A L Mixture Scheduter
G e 0] Graph ¢ \ = Bl Z,‘(l-Bﬂlllz
—] —y| Encoder PN
e [90(Zl6) , “F
o7 |
. // 7.~ s \ g
JRX o ———>| EnCOCiEr Attribute
| Attributes € |Pg(Z,|c) < Decoder
o L "=

v D m

.\ 7™ Attributes ¢
L
e et

.........

Figure 1: TOPOGEN uses both graph attributes and adjacency matrix during training for improved
decoder tuning. It implements a novel scheduling technique to effectively integrate attributes and
graph distributions to provide fine-grained topological control in generation. At test and inference
times, it only relies on desired attributes to generate graphs.

sentations for adaptive and precise control over generated graphs. TOPOGEN provides flexibility in
graph generation by generalizing to any number of fine-grained control attributes.

The contributions of this work are:

* TOPOGEN: a novel conditional variational autoencoder that enables fine-grained topo-
logical control using both graph adjacency matrices and attribute vectors during training,
while relying only on attributes during inference for precise graph generation.

* MIXTURE-SCHEDULER: a latent space integration technique to dynamically balance
adjacency matrix and attribute representations for generation.

We compare TOPOGEN against current models for controlled graph generation on several datasets
and generation tasks. Our key findings are as follows: (1) Joint adjacency-attribute integration
improves generation quality, aligning graphs with specific attribute constraints more effectively
than prior models; (2) Gradual incorporation of prior information (from attribute via MIXTURE-
SCHEDULER) during training improves controlled graph generation; (3) Increasing the number of
control attributes improves generation precision, which confirms that fine-grained constraints help
generate structurally valid graphs. Our code and data will be released.

2 CONTROLLED GRAPH GENERATION

Problem Definition Given a vector c that represents the fine-grained topological attributes of a
target graph G, our goal is to generate a graph G whose structure satisfies the attributes c.

Solution Overview We formulated the above problem as a “learning to generate” task. During
training, TOPOGEN uses the adjacency matrix A of the target graph G= (V, F') and its correspond-
ing attribute vector c to learn the joint distribution of graphs and their attribute vectors for controlled
graph generation. As Figure [T| shows, TOPOGEN encodes the structural representation Zg from
adjacency matrix A to parameterize the posterior distribution g4, and the attribute representation Z
from the attribute vector c to define the prior distribution py. These representations are combined
using MIXTURE-SCHEDULER to balance structural and attribute information in the latent represen-
tation Z. The MIXTURE-SCHEDULER aims to align g4 and py, as they both represent graphs with
the same topological structure. The decoder then learns the likelihood distribution p,, from Z to

generate a graph G that satisfies the specified attributes c. At inference time, TOPOGEN generates
graphs using only the prior pg and the likelihood p,,, conditioned solely on the attribute vector c.

Under review as a conference paper at ICLR 2026

Control Attributes We provide a list of structural attributes for explicit and precise control over
the graph generation process. These include number of nodes & edges, which define the scale
of the target graph; number of local bridges, which is the number of edges that are not part of a
triangle in the graph, these “bridges” transfer information between different graph regions; graph
density, which is the fraction of possible edges in the graph, computed as e/v(v — 1), where e
is the number of edges and v is the number of nodes in the graph; edge connectivity, which is
the minimum number of edges that must be removed to disconnect the graph; node connectivity,
which is the minimum number of nodes that must be removed to disconnect the graph; number
of maximum cliques, which is the number of maximal complete subgraphs in the graph; graph
diameter, which is the length of the shortest path between the most distanced nodes in a graph;
treewidth min degree, which is an integer quantifying how much the graph deviates from a tree;
closeness centrality, which is the average distance of a node to all other nodes in its corresponding
connected component, averaged across all nodes; clustering coefficient, which is the fraction of
triangles within a node’s immediate neighbors, averaged across all nodes; and transitivity, which is
the fraction of all possible triangles present in a graph, computed as 3 X |triangles|/|triads|, where
a “triad” is a set of three nodes connected by at least two edges.

Importance: These attributes enable precise control over graph generation and make it possible to
generate graphs that satisfy diverse and complex structural requirements. Attributes such as transitiv-
ity and graph density can be adjusted to manage the connectivity of graphs. For example, increasing
graph density can improve the robustness of local area networks in terms of reliable communica-
tion, fine-tuning transitivity can help model molecular structures with specific bonding properties,
or adjusting transitivity can help simulate disease spread patterns in human contact networks in epi-
demiology. Granular control over these attributes allows for generating graphs that satisfy specific
needs across various applications. This includes creating balanced graph datasets with controlled
structural diversity; augmenting small-scale datasets by generating similar yet distinct subgraphs,
especially in fields like medicine, where obtaining large-scale real-world data is expensive or infea-
sible; and finding novel structures in fields such as chemistry and molecular biology. For example, in
drug discovery, the generation of graphs that represent potential compounds with desired properties
can accelerate the search for and discovery of new therapeutics.

2.1 GRAPH ENCODING THROUGH MIXTURE SCHEDULING

We introduce a new approach to graph encoding by gradually balancing structural (i.e. adjacency
matrix) and attribute-based representations during training. Unlike conventional methods that rely
on direct sampling or divergence minimization (e.g., Wasserstein distance or KL divergence), our
approach dynamically controls the contribution of structural and attribute representations using a
smooth scheduling function. This allows for flexible and adaptive representation learning, where
generated graphs preserve topological properties as well as align with desired attribute constraints.

Graph Encoder TOPOGEN’s encoder uses a convolution neural network (CNN) to encode the
structural information of graph G into a latent representation Zg using s channels, and parameterize
the posterior distribution g4. This distribution is defined as:

15 (ZclG) = N(Zgluy =h(G), T =1 (G)), (D

where N is a Gaussian distribution with mean vector yis = h (G) and covariance matrix X, =
K (@), both obtained from the CNN with parameters ¢, where h(G) computes the mean vector
using features from the first half (s/2) of CNN channels and h'(G) computes covariance matrix
from the second half (s/2) of the CNN channels. The partitioning is similar to how variational
autoencoders (VAEs) separate their latent space into a mean and variance to generate diverse sam-
ples while preserving meaningful structure. It allows different parts of the CNN to capture distinct
statistical properties of the latent space, explicitly control uncertainty and variability, and encode
well-structured representations. While TOPOGEN is compatible with GNNs, we focus on CNNs
due to better performance in our experiments. Other frameworks have used Multilayer Perceptron
(MLP) layers|Zahirnia et al.|(2024)); |Vignac et al.[(2023)); Jo et al.|(2024)) or a combination of LSTM,
MLP and message passing|Chen et al.|(2023)) as graph encoder.

Under review as a conference paper at ICLR 2026

Attribute Encoder To control graph generation, the attribute encoder in Figure [1|learns the rep-
resentation of the attribute c, and the parameters for the prior distribution py are learned as follows:

po (Zelc) = N (Zelpo = f(c),Se=1), 2)

where f(c) is a non-linear transformation of the attribute vector from a feed forward neural network
to capture interaction between the features of the attribute representation, and Xy is the unit variance.

Mixture Scheduler Unlike conventional approaches that align prior and posterior distributions
using Wasserstein distance (Kantorovich, |1960) or divergence techniques (Kullback and Leibler,
1951), we introduce MIXTURE-SCHEDULER, a principled approach that gradually integrates the
prior pg and posterior g4 to learn effective representations that satisfy desired attribute c. Instead
of abrupt transitions, MIXTURE-SCHEDULER enables a smooth and adaptive interpolation between
structural and attribute-based latent representations. We define the final latent representation as:

Z=pt)Zc+(1-p() Za, 3)

where ((t) is the inclusion factor at epoch t, which controls the gradual incorporation of the prior
Z. during training. To derive a general form of 3(t), we assume that the rate by which the prior Z,
is incorporated is uniformly distributed over the remaining training time:

dst) 1-58()
d 1—-t "’ @

where ¢ € [0, 1] is normalized training progress, with ¢ = 1 when Z, is fully incorporated. Solving
this differential Equation, we obtain:

1 1
[=50 = [7o,)

which results in 5(t) = 1 — exp(c)(1 — t) for some constant c. Setting the initial inclusion value
as 5(0) (att = 0) and 3(1) = 1, we obtain a linear scheduler:

B(t) =min (1,1 — (1 - B(0))(1 —1)). ©6)

We modify the linear scheduler to allow for adaptive control over the rate at which Z. is incorporated
at different training stages. This results in the generalized inclusion function:

1

B(t) = min (7, (1= (L= B0) (A - 1)*). ™
where v € [0, 1] controls the maximum possible inclu- Mixture-Scheduler
sion from prior pg; o > 0 determines the rate at which FOL
the prior is integrated during training, see Figure [2} o8y /./'
t represents the current epoch; and 5(0) is the initial o061 e
inclusion value. The intuition behind developing (7)) is to R gal! /.//
provide flexible control over the contributions of the prior i —f
and posterior and allow for smooth and gradual transition o2 /./ ----- a=10
between them; see Figure 2] By gradually increasing oo L———— 70!
the influence of Z., the learned representations retain ¢ 200 400 oo 800 000
meaningful graph topology while aligning with the Figure 2: The parameter « controls the
desired attribute constraints. inclusion factor, (5(15)) in ' It speci-

The MIXTURE-SCHEDULER can be understood as a soft fies how quickly the prior is integrated
optimization constraint that enables smooth interpolation QUrlng training. A small_er « results
between probability distributions. It dynamically tran- 0 less inclusion of py during the early
sitions the latent representation Z from the structura] Taining epochs, with gradual inclusion
posterior ¢4(Zg|G) to the attribute-conditioned prior increasing toward the end of training.
po(Zc|c) during training. The scheduler implicitly minimizes the Wasserstein distance (1) be-
tween the structural and attribute-driven distributions controlled by the scheduling parameters a and
v, to govern the transition dynamics: a smaller « results in a slow transition, i.e. prioritizing struc-
tural learning before enforcing attribute constraints; a larger « causes a faster shift towards Zc, i.e.
aligning graphs with attributes earlier but risking instability; and ~ controls the final alignment of Z
with Z.. Higher v enforces stronger attribute constraints but may distort structural properties.

Under review as a conference paper at ICLR 2026

2.2 ATTRIBUTE-GUIDED GRAPH GENERATION

TOPOGEN introduces a novel attribute-guided graph generation framework. Unlike conventional
methods that rely solely on structural embeddings, our framework incorporates graph attributes
as constraints to enable precise controlled graph generation. Using a Bernoulli-based likelihood
model, we allow flexible edge prediction while maintaining topological consistency. In addition, we
introduce a distance-regularized objective function to enforce smooth transitions between prior and
posterior distributions to balance structural fidelity with attribute adherence.

Graph Generation We model graph generation using a Bernoulli distribution Murphy|(2012)) to
determine edge probabilities between node pairs and generate the adjacency matrix A. The graph
decoder learns the likelihood distribution py, from Z to maximize the probability of generating
graphs that satisfy the attribute constraints c:

py (G|Z, c) ~ Bernoulli (Dgraph (Z)) , (8)

where Z represents the latent representation processed by the decoder Dg,qpn to obtain the
parameters of the Bernoulli distribution. Here, a value of 1 from the Bernoulli distribution indicates
an edge between a node pair.

Training Objective We develop the following objective function to learn model parameters:

L(¢767w|G7C> = 9
Eq,z|c) logpy(GlZ,)] =Aa - D (95(Zc|G), po(Zelc)) +Ac - Epy(z.1e) [(C — Dw(Z0))?|,
graph—reconstruction distance— function attribute—reconstruction

where the first term is the reconstruction loss, which encourages generating graphs that are struc-
turally similar to the given graph G, conditioned on the latent representation Z and attributes c. The
second term (D) is a general distance function for probability distributions; it regularizes the objec-
tive by computing the difference between the approximate posterior g4(z|G) and the prior py(z|c)
to explicitly enforce alignment between learned graph structures and attribute-driven representa-
tions. We note that MIXTURE-SCHEDULER implicitly aligns the posterior (Zg) and prior (Z.).
Without explicit regularization, Zg and Z. may remain disjoint, and result in poor attribute-guided
graph generation. The second term provides an explicit constraint for smoother transitions, pre-
vents posterior drift, and stabilizes training by enforcing gradual alignment between structural and
attribute-driven latent spaces. The distance function, D, can be chosen based on application needs.
We used the Wasserstein distance due to its symmetric property. However, other distance functions
can also be used. The third term encourages accurate reconstruction of the attribute vector c, using
a neural network based attribute decoder D, (), described below. \; and \. are hyperparameters
to balance these terms.

Attribute Decoder During training, we use a feedforward neural network as the attribute decoder
to reconstruct attributes from latent representation Z.. To guide accurate graph generation that
aligns with the specified control attributes, we minimize the mean square error (MSE) between
the ground truth and predicted attribute vectors and effectively guide the model toward attribute-
consistent generation; see the third term in (9).

Inference Process During inference, the model generates a graph conditioned on the desired at-
tribute vector ¢ using the prior distribution pg, as illustrated in Figure [I] The prior is first used to
create a latent representation, which encodes attribute-driven structural properties. This representa-
tion is then passed to the decoder to parameterize the p,; distribution to sample and generate a graph
that satisfies the specified attributes. Unlike training, inference relies only on the prior, so that graph
generation is fully controlled by the desired attributes without requiring reference graphs.

3 EXPERIMENTS

Datasets We use several datasets for experiments: WordNet (Miller,|1995): a large lexical dataset
of English, where words are grouped into synonym groups (synsets) and are connected by linguistic

Under review as a conference paper at ICLR 2026

relationships. We construct four distinct WordNet graphs Table 1: Dataset statistics in terms of
using hypernyms, hyponyms, meronyms, and holonyms re- number of graphs.

lations. Ogbn-arxiv (Hu et al., [2020): The Open Graph Dataset Train Val Test
Benchmark dataset includes a citation network of computer WordNet 52,675 2926 2,927
science papers from arXiv, with nodes as papers and edges Citeseer 1,406 78 79
represent citations among papers. Each paper carries anem- Arxiv 47,538 2,641 2,641
bedding derived from its title and abstract. Citeseer (Kipff MUTAG 169 10 9

and Welling), 2017): a citation network of scientific arti- ~MOLBACE 1323 74 74

cles, where nodes are papers and edges indicate citations

between them. MUTAG (Morris et al 2020): a molecular dataset where each graph represents
a chemical compound labeled based on its mutagenic effect on specific gram negative bacterium.
MOLBACE (Hu et al, 2020): a molecular dataset where each graph represents a chemical com-
pound. We create several datasets of graphs by extracting k-hop neighbors, k& = {2, 3}, around
each node in the above graphs to create training, validation and test data splits for controlled graph
generation. TabldI|shows the statistics of these datasets.

Evaluation Metrics We compute the difference between predicted and ground truth graphs
to compare models in controlled graph generation using two metrics: Graph Edit Distance
(GED)) Sanfeliu and Fu| (1983)): is a structural similarity (or dissimilarity) measure that quantifies
the minimum number of edit operations (node/edge insertions, deletions, or substitutions) required
to transform one graph into another. It provides a fine-grained comparison by explicitly capturing
structural differences. However, GED is computationally expensive, as finding the exact edit dis-
tance between two graphs is NP-hard Zeng et al.|(2009). Therefore, it is often used to determine
structural similarity among small graphs. Spectral Difference (SDJ) (Jo et al., [2024): a widely
used approach for comparing structural properties of graphs. It uses the sorted eigenvalues of the
Laplacian matrix, which encode global structural properties such as connectivity, clustering tenden-
cies, and diffusion dynamics. Unlike node-to-node matching methods like GED, SD is invariant
to node ordering, robust to small local perturbations, and computationally efficient. For fair and
meaningful comparison between predicted and ground truth graphs of different sizes, we align their
eigenvalue () distributions by zero-padding the smaller graph’s eigenvalues to match the size of
the larger graph, and report average spectral difference, SD = 1/n X || Agroundtruth — Apredl|2
for each dataset. We chose SD and GED as evaluation metrics to specifically focus on fine-grained
attribute fidelity and node-to-node alignment, which are most directly influenced by different mod-
els’ attribute-conditioning objectives. Maximum Mean Discrepancy (MMD/) (You et al., 2018;
Vignac et al.l [2023) is widely used for distribution-level comparison; however, they do not provide
fine-grained evaluation on individual attributes. MMD results are reported in Appendix.

Baselines We compare TOPOGEN against several recent baselines. For a fair comparison, we
incorporate our control attributes into all models that support conditioning. The exception is
GraphRNN, which is a free (non-controlled) generative model and provides a point of comparison
for evaluating the benefits of attribute conditioning. GraphRNN (You et al.,[2018): generates graph
iteratively by training on a representative set of graphs using breath first search of nodes and edges
and implements node and edge RNNs to generate target graphs. GraphRNN is not a controlled gen-
eration approach. EDGE (Chen et al.|[2023): is a diffusion based generative model which iteratively
removes edges to create a completely disconnected graph and uses decoder to iteratively reconstruct
the original graph. It explicitly uses adjacency matrix to satisfy the statistics of the generated graphs
during training. GenStat (Zahirnia et al.| 2024): learns the latent adjacency matrix conditioned on
graph level attributes, and decodes it to recreate attribute statistics and use them to generate graphs.
DiGress (Vignac et al.|[2023): learns to generate graphs by discrete denoising diffusion model with
categorical nodes and edge attributes and by incorporating graph-theoretic features. GruM (Jo
et al.}2024): is a graph generation framework which captures the topology of the graph and predicts
the graph using mixture of endpoint-conditioned diffusion processes.

3.1 MAIN RESULTS

Table 2] shows the overall performance of models across datasets. TOPOGEN consistently achieves
the lowest SD across all datasets and the lowest GED across 3 out of 5 datasets, which indicate
more accurate structural alignment and better controlled graph generation. DiGress achieves the

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison across multiple datasets. We evaluate models using Spectral
Difference (SD) (left) and Graph Edit Distance (GED) (right), where lower scores indicate better

performance. All models are optimized using the same set of attribute constraints described in
WordNet Citeseer Ogbn-Arxiv. MUTAG MOLBACE | WordNet Citeseer Ogbn-Arxiv. MUTAG MOLBACE

SD (1) | GED (|)
GraphRNN 0.31 0.42 046 0.21 0.13 ‘ 32.58 54.83 5243 15.77 41.52
GenStat 0.32 0.40 0.47 0.21 0.11 37.01 58.69 63.77 34.66 61.32
EDGE 0.32 0.44 047 0.27 0.14 35.16 59.58 59.70 29.77 72.93
DiGress 0.37 0.85 0.73 0.88 091 31.32 45.16 47.24 32.66 61.64
GruM 0.40 0.43 0.50 0.52 0.69 29.68 55.06 51.87 27.00 65.27
TOPOGEN 0.44 0.27 0.40 0.10 0.09 \ 26.79 45.62 49.68 12.88 28.90

Table 3: Graph visualization across datasets. Examples are taken from test splits of datasets.
‘Wordnet Citeseer Ogbn-Arxiv Mutag Molbace

1 %R
+- N

Test

SD TOPOGEN

S T K
N
%% @%KY

¥ © %
® O
%éw//

SD GruM

best GED on Citeseer and Ogbn-Arxiv, but struggles in SD and underperforms on domain specific
datasets like MUTAG and MOLBACE. GruM has competitive SD scores in WordNet, Citeseer, and
Ogbn-Arxiv, but performs worse in GED.

The high GED performance of DiGress on citation networks (Citeseer and Ogbn-Arxiv) is perhaps
because DiGress is optimized for handling dense and scale-free networks, whereas TOPOGEN is
designed for fine-grained attribute control and may not explicitly prioritize preserving connectivity
hubs. In addition, DiGress likely preserves local citation patterns better than TOPOGEN, leading to
lower GED scores. In addition, GraphRNN achieves lower SD and GED scores on MUTAG and
MOLBACE compared to most baselines. Unlike citation or social networks, molecular graphs have
high local dependencies—atoms must be connected in precise ways to form valid molecules, where
certain structures appear frequently (e.g., benzene rings, carbon chains). The sequential approach
of GraphRNN perhaps better learns these recurring patterns, which makes it effective for generating
realistic molecular graphs. Other baselines (DiGress and GruM) underperform on capturing the
fine-grained rules that govern molecular connectivity.

Table [3]shows examples of different graphs generated by TOPOGEN and GruM across datasets; see
Appendix [5.4] Table[6]for outputs of other models. As evident from the Table, TOPOGEN generates
graph that are more similar to the target graphs compared to other baseline models. We attribute
this improvement to TOPOGEN’s ability to perform fine-grained controlled generation using graph
attributes. Generation error for each attribute is detailed in Appendix [5.5]

3.2 MODEL INTROSPECTION

We conduct several ablation studies to understand the effectiveness of TOPOGEN in controlled graph
generation. We analyze scalability to larger number of nodes; provide insights on generating graphs
by masking fundamental attributes like number of nodes and edges, while providing all other fine-
grained attributes; and provide a detailed study on MIXTURE-SCHEDULER, to analyze the effects
of limiting the inclusion factor and varying the rate of inclusion. In addition, we conduct ablation
study of MIXTURE-SCHEDULER to answer following questions: (RQ1) Does including the prior
distribution py help? (RQ2) How does the rate of inclusion affect model’s performance? (RQ3)
How much of the prior should be included?

Contribution of control attributes Graph attributes determine the required structural prop-
erties of generated graphs. Figure [3| shows the effect of independently removing one at-

Under review as a conference paper at ICLR 2026

Table 4: Effect of removing individual components from the objective function of TOPOGEN. Bold

indicates the highest error, marking the most influential component.
WordNet Citeseer Ogbn-Arxivn MUTAG MOLBACE

SD(})
ToPOGEN w GNN as Graph encoder 0.32 0.50 0.57 0.18 0.15
ToPOGEN w/o Distance Function 0.69 0.45 1.36 0.49 0.99
ToOPOGEN w/o Attribute Reconstruction 1.12 0.28 0.40 0.14 0.15
TOPOGEN w/0o MIXTURE-SCHEDULER 4.66 0.26 0.40 0.16 0.13
TOPOGEN w/o Adjacency matrices during training 0.62 0.53 0.55 0.17 0.17
TOPOGEN 0.44 0.27 0.40 0.10 0.09

tribute at a time for each training run. Removing either density, closeness centrality or
transitivity results in increase in error compared to the number of nodes, average cluster-
ing or number of local bridges. This suggests that TOPOGEN learns more detailed struc-
tural patterns and generates more accurate graphs when guided by a more set of attributes.
In fact, introducing more restrictive constraints than

basic attributes—those such as density or closeness 0.30
centrality—further refines the generation process and
results in graphs that better preserve the intended

structural properties. Here, NC (node connectivity), a

EC (edge connectivity), TWMD (tree width min de- 0-271

gree), Avg Clust (average clustering), LB (number oz NN EREEEEREE
of local bridge), Clique (number of cliques). 025

density -
edges
nodes 4
NC {
Avg Clust
cC
LB
EC
Cliques |

Transitivity 4
TWMD
Diameter

Generation without number of nodes and edges
Figure4(a)|compares the performance of TOPOGEN
when trained with and without the number of nodes
and edges as explicit control attributes. The results Figure 3: Plot shows increase in generation
show that the model achieves similar performance error of the specific attribute when not in-
even without these basic attributes, which suggests cluded in training. Blue line indicates includ-
that TOPOGEN can infer the number of nodes and ing all attributes.

edges with minimal error using other fine-grained

structural attributes. This demonstrates the model’s ability to capture graph properties and generate
structurally consistent graphs without relying on direct node and edge count supervision, which are
commonly used by other models.

Attribute removed

Contribution Analysis of components from TOPOGEN Table[d reports an ablation study of the
TOPOGEN objective function across five datasets highlighting the effective components. In Word-
Net, removing the MIXTURE-SCHEDULER causes a sharp error increase (4.66 vs. 0.44), making
it the most critical, followed by attribute reconstruction (1.12). In Citeseer, using adjacency ma-
trix increases error to (0.53) and use of GNN as a graph encoder to (0.50), underscoring the role
of both attribute learning and type of structural encoding. For Ogbn-Arxiv, GNN as a graph en-
coder increases the error to (0.57) and the distance function to (1.36) which is the key for aligning
prior pg and posterior gy distributions. In Mutag and Molbace, the distance function (0.49, 0.99)
and using adjacency matrices (0.17, 0.17) guide TOPOGEN towards lower error. Finally, replacing
CNN with a GNN encoder [Xu et al.|(2019) consistently degrades performance. We hypothesize that
this is due to over-smoothing, making GNN struggle to precisely reconstruct the graph structures.
These results confirm that each component contributes to the reduction of the generation error, with
MIXTURE-SCHEDULER and the distance function being the most influential overall.

RQ1: Does including the prior distribution py help? We consider three scenarios: (i) when
the model only learns from g, distribution (3(¢) = 0), (ii) when the model gradually combine pg
and ¢ as training progresses (5(t) — <), and (iii) when the model combines both pg and g, with
constant influence factor 8(t) = 7. As shown in Figure combining representations from
both distributions py and g4 helps generate better graphs compared to using only representations
from ¢,4. Also, gradual increase in influence factor 3(t) — ~ performs better compared to keeping

Under review as a conference paper at ICLR 2026

0.6 0.6 0.5
=== Without Nodes and Edges Attributes — B(t)=0
me== With Nodes and Edges Attributes

— a=0.1
— B(t) —y m— a=10

0.5 05| B(O) =y 0.4 W= a=1
0.4 o.a

0.3

Qo.3 So.3 2

0.2
0.2 0.2

0.1
0.1 0.1 .
o.0 0.0 0.0°¢

Cit Mutag Arxiv "7 Citeseer Mutag Molbace Arxiv Wordnet it Mutag Arxiv
Dataset Dataset Dataset

(a) Performance w/o using num- (b) Effect of inclusion factors on (c) Effect of « on error in gener-
ber of nodes & edges as controls. generation error across datasets. ating graphs across datasets.

Figure 4: Ablation Analysis

it constant 5(t). We conclude relying only on graph representation from ¢, without considering
attribute representation from pg results in higher SD error and lower performance.

RQ2: How does the rate of inclusion affect 0.6 - Mutas =
model’s performance? We analyze different rates v Molbace e
. -+~ Wordne a ke J

of inclusion. As Figure (c)|shows, a slow inclusion A N

rate (o = 0.1) often helps model in learning better 04 T

representations compared faster inclusion rates, e.g. 8

(a=10). This result suggests that initially focusing 03

on the ¢4 and gradually incorporating the py yields o2 i

better latent representations. a - T
0.1{ gt T

RQ3: How much of the prior should be included? 00 O eontrel intusion of o disuibution

We vary the influence of prior distribution by adjust- Figure 5: Relation between the maximum
ing the maximum inclusion rate, 7 € [0,1], where inclusion rate v and SD error. MIXTURE-
7 =0 excludes py entirely, and v = 1 excludes the SCHEDULER reduces SD error by combining

posterior qg. Figure [5] shows that smaller values jnformation from both distributions.
of ~ result in lower error, suggesting that limited

inclusion of py improves graph generation by better 0.40 — —
. . . . = : without noise EEN with noise
balancing both distributions. g-::
0.25 118 -
[]
3.3 DE-NOISING GRAPH ATTRIBUTES @ gi‘s’
, . 0.10
We evaluate TOPOGEN’s robustness to noisy at- 0.05
tributes by masking one attribute at a time during 0.00 SITEREI N ELY
. . . . = Huw
inference. Using the best trained model with frozen @ -§‘§ z g ©- 2 §-§ g
. . [- =
parameters, we run 12 inference passes, each time o <§’ g © "g
setting one attribute to zero across all test graphs. =

. . . Attribut ked
Figure |§| shows the results, with the dotted line as ribute maske

the baseline SD error without masking. TOPOGEN
remains resilient, often generating accurate graphs
despite missing controls. The largest error increases
occur when edges, local bridges, or cliques are
masked, confirming their critical role in structural fidelity, whereas masking clustering coefficient,
transitivity, or diameter yields only minor changes, indicating they refine finer structural details.

Figure 6: Bars indicate SD on Citeseer with
one attribute masked (set to zero) at a time.
The dotted line marks TOPOGEN’s perfor-
mance without masking.

4 CONCLUSION AND FUTURE WORK

We presented TOPOGEN, a novel controlled graph generation model that generates graphs sat-
isfying fine-grained topological attributes. It includes a novel distribution scheduler, MIXTURE-
SCHEDULER, to combines attribute and adjacency matrix representations for learning accurate la-
tent structures. TOPOGEN enables precise control-even without explicitly specifying basic prop-
erties such as node and edge counts—and achieves lower generation error by gradually integrating
multiple control attributes. In future, we plan to extend TOPOGEN to dynamic or temporal graphs for
applications such as in social network analysis, traffic prediction, and temporal knowledge graphs.

Under review as a conference paper at ICLR 2026

REFERENCES

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to Represent
Programs with Graphs. In International Conference on Learning Representations. https:
//openreview.net/pdf?id=BJOFETxR-

Albert-Laszl6 Barabdsi and Réka Albert. 1999. Emergence of scaling in random networks. sci-
ence 286, 5439 (1999), 509-512. https://www.science.org/doi/full/10.1126/
science.286.5439.509

Pengfei Cao, Yupu Hao, Yubo Chen, Kang Liu, Jiexin Xu, Huaijun Li, Xiaojian Jiang, and Jun
Zhao. 2023. Event Ontology Completion with Hierarchical Structure Evolution Networks. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali
(Eds.). Association for Computational Linguistics, 306-320. |https://aclanthology.
org/2023.emnlp-main.21

Xiaohui Chen, Jiaxing He, Xu Han, and Liping Liu. 2023. Efficient and Degree-Guided
Graph Generation via Discrete Diffusion Modeling. In International Conference on Machine
Learning. PMLR, 4585-4610. https://proceedings.mlr.press/v202/chen23k/
chen23k.pdf

Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model for small molecular
graphs. ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative
Models (2018). https://arxiv.org/pdf/1805.11973

P Erdos and A Rényi. 1959. 2017-10-20T13:47:06.000+0200. Publicationes Mathematicae Debre-
cen 6 (1959), 290-297. https://publi.math.unideb.hu/load_doi.php?pdoi=
10_5486_PMD_1959 6_3_4 12

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure, dynamics, and
function using NetworkX. Technical Report. Los Alamos National Lab.(LANL), Los Alamos, NM
(United States). https://www.researchgate.net/publication/236407765_
Exploring_ Network_Structure_Dynamics_and_Function_Using NetworkX

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems 33
(2020), 22118-22133. |https://proceedings.neurips.cc/paper/2020/hash/
fbe60d41llabcbb72b2e7d3527cfc84fd0-Abstract.html

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2018. Junction tree variational autoencoder
for molecular graph generation. In International conference on machine learning. PMLR, 2323—
2332. http://proceedings.mlr.press/v80/jinl8a/jinl8a.pdf

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2020. Hierarchical generation of molecular
graphs using structural motifs. In International conference on machine learning. PMLR, 4839—
4848. https://proceedings.mlr.press/v119/jin20a/jin20a.pdf

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. 2024. Graph Generation with Diffusion Mixture.
In Forty-first International Conference on Machine Learning. https://openreview.net/
pdf?id=cZTFxktg23s

L. V. Kantorovich. 1960. Mathematical Methods of Organizing and Planning Production. Manage-
ment Science 6, 4 (1960), 366-422. http://www. jstor.org/stable/2627082

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convo-
lutional Networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=SJU4ayYgl

S Kullback and RA Leibler. 1951. On information and sufficiency. The annals of mathematical
statistics 22, 1 (1951), 79-86. https://www. jstor.org/stable/2236703

10

https://openreview.net/pdf?id=BJOFETxR-
https://openreview.net/pdf?id=BJOFETxR-
https://www.science.org/doi/full/10.1126/science.286.5439.509
https://www.science.org/doi/full/10.1126/science.286.5439.509
https://aclanthology.org/2023.emnlp-main.21
https://aclanthology.org/2023.emnlp-main.21
https://proceedings.mlr.press/v202/chen23k/chen23k.pdf
https://proceedings.mlr.press/v202/chen23k/chen23k.pdf
https://arxiv.org/pdf/1805.11973
https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_1959_6_3_4_12
https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_1959_6_3_4_12
https://www.researchgate.net/publication/236407765_Exploring_Network_Structure_Dynamics_and_Function_Using_NetworkX
https://www.researchgate.net/publication/236407765_Exploring_Network_Structure_Dynamics_and_Function_Using_NetworkX
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
http://proceedings.mlr.press/v80/jin18a/jin18a.pdf
https://proceedings.mlr.press/v119/jin20a/jin20a.pdf
https://openreview.net/pdf?id=cZTFxktg23s
https://openreview.net/pdf?id=cZTFxktg23s
http://www.jstor.org/stable/2627082
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://www.jstor.org/stable/2236703

Under review as a conference paper at ICLR 2026

Gang Liu, Jiaxin Xu, Tengfei Luo, and Meng Jiang. 2024. Graph diffusion transformers for multi-
conditional molecular generation. Advances in Neural Information Processing Systems 37 (2024),
8065-8092.

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. 2021. GraphEBM: Molecular Graph Gen-
eration with Energy-Based Models. In Energy Based Models Workshop - ICLR 2021. https:
//openreview.net/forum?id=Gc51PtL_zYw

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. 2021. Graphdf: A discrete low model for molec-
ular graph generation. In International Conference on Machine Learning. PMLR, 7192-7203.
https://proceedings.mlr.press/v139/1uo2la.html

Karolis Martinkus, Andreas Loukas, Nathanaél Perraudin, and Roger Wattenhofer. 2022. Spec-
tre: Spectral conditioning helps to overcome the expressivity limits of one-shot graph gen-
erators. In International Conference on Machine Learning. PMLR, 15159-15179. https:
//proceedings.mlr.press/v162/martinkus22a/martinkus22a.pdf

Igor Melnyk, Pierre Dognin, and Payel Das. 2022. Knowledge Graph Generation From Text. In
Findings of the Association for Computational Linguistics: EMNLP 2022, Yoav Goldberg, Zor-
nitsa Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi,
United Arab Emirates, 1610-1622.|d0i:10.18653/v1/2022.findings—emnlp.116

Giangiacomo Mercatali, Yogesh Verma, Andre Freitas, and Vikas Garg. 2024. Diffusion twigs
with loop guidance for conditional graph generation. Advances in Neural Information Processing
Systems 37 (2024), 137741-137767.

George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM 38, 11 (1995),
39-41. https://dl.acm.org/doi/pdf/10.1145/219717.219748

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. 2020. TUDataset: A collection of benchmark datasets for learning with graphs. CoRR
abs/2007.08663 (2020). arXiv:2007.08663 https://arxiv.org/abs/2007.08663

Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT Press.

Yassaman Ommi, Matin Yousefabadi, Faezeh Faez, Amirmojtaba Sabour, Mahdieh Soley-
mani Baghshah, and Hamid R Rabiee. 2022. Ccgg: A deep autoregressive model for class-
conditional graph generation. In Companion Proceedings of the Web Conference 2022. 1092—
1098.

Ioannis Pitas. 2016. Graph-based social media analysis. CRC Press.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. 2019. MolecularRNN: Gen-
erating realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372
(2019). https://arxiv.org/pdf/1905.13372

Benjamin Sanchez-Lengeling and Aldn Aspuru-Guzik. 2018. Inverse molecular design using ma-
chine learning: Generative models for matter engineering. Science 361, 6400 (2018), 360-365.
https://www.science.org/doi/10.1126/science.aat2663

Alberto Sanfeliu and King-Sun Fu. 1983. A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics SMC-13, 3 (1983),
353-362./d01:10.1109/TSMC.1983.6313167

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. 2019.
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. In Interna-
tional Conference on Learning Representations. https://openreview.net/pdf?id=
SlesMkHYPr

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. 2020.
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. In Interna-
tional Conference on Learning Representations. |https://openreview.net/forum?id=
SlesMkHYPr

11

https://openreview.net/forum?id=Gc51PtL_zYw
https://openreview.net/forum?id=Gc51PtL_zYw
https://proceedings.mlr.press/v139/luo21a.html
https://proceedings.mlr.press/v162/martinkus22a/martinkus22a.pdf
https://proceedings.mlr.press/v162/martinkus22a/martinkus22a.pdf
https://doi.org/10.18653/v1/2022.findings-emnlp.116
https://dl.acm.org/doi/pdf/10.1145/219717.219748
https://arxiv.org/abs/2007.08663
https://arxiv.org/pdf/1905.13372
https://www.science.org/doi/10.1126/science.aat2663
https://doi.org/10.1109/TSMC.1983.6313167
https://openreview.net/pdf?id=S1esMkHYPr
https://openreview.net/pdf?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr

Under review as a conference paper at ICLR 2026

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. 2023. DiGress: Discrete Denoising diffusion for graph generation. In The Eleventh In-
ternational Conference on Learning Representations. https://openreview.net/pdf?
id=UaAD-Nu86WX

Shiyu Wang, Xiaojie Guo, and Liang Zhao. 2022. Deep generative model for pe-
riodic graphs. Advances in Neural Information Processing Systems 35 (2022).
https://proceedings.neurips.cc/paper_files/paper/2022/file/
e89e8f84626197942b36a82e524c2529-Paper—-Conference.pdf

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful Are Graph
Neural Networks?. In International Conference on Learning Representations (ICLR).

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. 2019. Conditional structure generation
through graph variational generative adversarial nets. Advances in neural information processing
systems 32 (2019).

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018. GraphRNN: Gen-
erating Realistic Graphs with Deep Auto-regressive Models. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80),
Jennifer Dy and Andreas Krause (Eds.). PMLR, 5708-5717. https://proceedings.mlr.
press/v80/youl8a.html

Kiarash Zahirnia, Yaochen Hu, Mark Coates, and Oliver Schulte. 2024. Neural Graph Gen-
eration from Graph Statistics. Advances in Neural Information Processing Systems 36
(2024). https://proceedings.neurips.cc/paper_files/paper/2023/file/
72153267883 fbcafdb6ed662382696c5-Paper—-Conference.pdf

Chengxi Zang and Fei Wang. 2020. Moflow: an invertible flow model for generating molecular
graphs. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discov-
ery & data mining. 617-626. |https://dl.acm.org/doi/pdf/10.1145/3394486.
3403104

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. 2009. Comparing
stars: On approximating graph edit distance. Proceedings of the VLDB Endowment 2, 1 (2009),
25-36.

Giselle Zeno, Timothy La Fond, and Jennifer Neville. 2021. Dymond: Dynamic motif-nodes
network generative model. In Proceedings of the Web Conference 2021. 718-729. https:
//arxiv.orqg/pdf/2308.00770

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. 2020. A data-driven graph generative
model for temporal interaction networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 401-411. |https://dl.acm.org/
doi/pdf/10.1145/3394486.3403082

Wentao Zhou, Jun Zhao, Tao Gui, Qi Zhang, and Xuanjing Huang. 2023. Inductive Relation In-
ference of Knowledge Graph Enhanced by Ontology Information. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, Houda
Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, 6491—
6502. https://aclanthology.org/2023.findings—emnlp.431

5 APPENDIX

5.1 SCALABILITY TO FINE-GRAINED CONDITIONALLY GENERATE LARGE GRAPHS

We analyze the effect of increasing the maximum number of nodes, |V'|, on TOPOGEN’s SD perfor-
mance. Table [5]shows that SD increases as the maximum number of nodes grows up to 200 nodes.
This is because larger graphs have greater structural complexity, with more potential edges and re-
lationships that are harder to generate accurately. This makes it challenging for the model to capture
both local and global topological properties, and potentially leads to cumulative errors in matching

12

https://openreview.net/pdf?id=UaAD-Nu86WX
https://openreview.net/pdf?id=UaAD-Nu86WX
https://proceedings.neurips.cc/paper_files/paper/2022/file/e89e8f84626197942b36a82e524c2529-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e89e8f84626197942b36a82e524c2529-Paper-Conference.pdf
https://proceedings.mlr.press/v80/you18a.html
https://proceedings.mlr.press/v80/you18a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/72153267883fbcafdb6e4662382696c5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72153267883fbcafdb6e4662382696c5-Paper-Conference.pdf
https://dl.acm.org/doi/pdf/10.1145/3394486.3403104
https://dl.acm.org/doi/pdf/10.1145/3394486.3403104
https://arxiv.org/pdf/2308.00770
https://arxiv.org/pdf/2308.00770
https://dl.acm.org/doi/pdf/10.1145/3394486.3403082
https://dl.acm.org/doi/pdf/10.1145/3394486.3403082
https://aclanthology.org/2023.findings-emnlp.431

Under review as a conference paper at ICLR 2026

node-specific attributes such as degrees and centrality. In addition, larger graphs often contain more
variability and sparsity, which further complicates satisfying the desired structural attributes and
result in higher deviations between the generated and target graphs.

Table 5: Generation performance degrades as the target number of nodes increases.
#Nodes SD(|)

50 0.40
60 0.60
80 0.74
100 0.82
200 0.83

5.2 LIMITATION

TOPOGEN performs significantly well compared to recent baselines to generate graphs from given
fine-grained control attributes. However, the performance degrades as we aim to generate larger
graphs because of two factors: increased complexity in aligning multiple fine-grained attribute con-
straints as graph size grows, and the use of less expressive encoders (such as convolutional encoders)
for capturing long-range dependencies in large graphs.

5.3 SETTINGS

Following previous works (De Cao and Kipf, |2018}; |[Zahirnia et al., 2024), we set the maximum
number of nodes to V' = 50 in experiments. This threshold is appropriate, given the common
practice of sampling 1-2 hop subgraphs for nodes. We set the number of hops to £k = 2 for all
datasets except for Citeseer, for which we use £ = 3 due to its smaller size. In addition, we extract
graph attributes using Networkx (Hagberg et al., |2008). We consider a maximum number of 1000
training iterations for Citeseer and 200 iterations for other datasets, which is sufficiently large for
convergence. For the CNN encoder, we use two convolutional layers with kernel size of 5, and 32
and 64 channels respectively for all datasets. For the decoder, we used two convolutional layers with
64,32 channels respectively. The model requires approximately 260M FLOPs for the graph encoder,
260M for the graph decoder, 231M for the attribute encoder, and 231M for the attribute decoder.
In total, it contains about 116M trainable parameters, consisting of roughly 100k from the CNN
components and 115M from the MLP with a hidden dimension size of 1024. For hyperparameters,
we set the maximum possible inclusion from prior pyg () to 0.3 for Mutag, 0.1 for Molbace, Citeseer,
and arxiv; and 0.2 for Wordnet. We consider a batch-size of 1,028 and run all our experiments on a
single A100 40GB GPU.

5.4 GRAPH VISUALIZATION

Table[6]shows examples of different graphs generated by baselines across datasets.

5.5 ATTRIBUTE-WISE ERROR ANALYSIS

Table [/| shows the absolute mean error between the ground truth value and predicted value for each
attribute. We use mean absolute difference (MADJ]) metric for evaluation. MAD computes the
absolute difference between the attributes of predicted graphs and their corresponding target graphs.
We average these differences for each dataset. Abbreviations NC (node connectivity), EC (edge
connectivity), TWMD (tree width min degree), Avg Clust (average clustering), LB (number of local
bridge), Clique (number of cliques).

5.6 DIFFERENT GRAPH ENCODER

To study the importance of using different graph encoders, we use Graph Neural Network (GNN)
Xu et al|(2019) instead of CNN in TOPOGEN. As shown in Table [TT) MAD error increases.

13

Under review as a conference paper at ICLR 2026

Table 6: Graph visualization across datasets. Examples are taken from test splits of datasets.
Wordnet Citeseer Ogbn-Arxiv Mutag Molbace

ST KRR S R Y

K

o

)

93 0.65 0.50 0.81 0.61 0.88 0.86 0.78 0.77 0.79 0.96
2 %% | %ﬁ ? %é % 7/ / |

2

@)

9: 0.52 0.97 0.78 0.69 0.48 0.21 0.33 0.65 0.54 0.48
=

)

6]

93 0.36 048 0.48 0.49 0.69 0.55 0.36 0.16 0.19 0.04
@)

(=)

m

9: 0.53 0.20 0.92 0.83 0.55 0.14 0.16 0.53 0.21 0.10

Table 7: Performance of TOPOGEN for each attribute across all datasets. We report the mean abso-

lute Difference from target attributes; lower is better (MADJ is the average over attributes).
Attributes Citeseer WordNet Mutag Molbace Ogbn-Arxiv

Density 0.05 0.05 0.01 0.01 0.06
Edges 5.44 4.34 2.77 4.43 6.85
Nodes 1.89 3.73 0.00 2.98 3.68
NC 0.03 0.00 0.00 0.00 0.01
Avg Clust 0.16 0.17 0.03 0.07 0.19
CC 0.06 0.06 0.06 0.04 0.09
LB 4.16 7.11 2.33 6.89 4.14
Transitivity 0.13 0.12 0.04 0.09 0.10
EC 0.03 0.00 0.00 0.01 0.02
Cliques 6.08 3.73 2.00 4.16 7.19
TWMD 1.26 0.83 0.77 0.67 1.15
Diameter 1.71 1.53 2.77 3.47 222
MAD 1.71 1.80 1.00 1.90 2.14

5.7 NOVELTY OF GENERATED GRAPHS

To assess the novelty of the generated graphs, we quantified the extent to which the generated graphs
are structurally distinct from those seen during training. Table] reports the fraction of graphs
generated that are not isomorphic to any of the training graphs. This shows that our model generates

structurally novel graphs that differ from the training distribution.

5.8 OUT OF DISTRIBUTION CONTROL ATTRIBUTES FOR GRAPH GENERATION

TOPOGEN uses graph reconstruction during training only to learn the conditional mapping from
attributes to valid graph structures. At inference time, it relies only on the desired attributes to gen-

14

Under review as a conference paper at ICLR 2026

Table 8: Performance of TOPOGEN for each attribute for Ogbn-Arxiv dataset. Average mean abso-
lute difference, MAD(J), is the average of absolute mean error in satisfying target attributes.
WordNet Citeseer Ogbn-Arxivn MUTAG MOLBACE

MAD
GraphRNN (ou et a1 J2013] 3.26 5.05 4.80 1.71 3.81
GenStat (zahimia et al |2024] 4.11 5.34 5.53 4.14 3.05
EDGE (Chen et a1 o023 391 4.97 5.52 2.62 3.07
DiGress (vignac etal.[2023 523 6.63 6.67 5.39 9.96
GruM {jo et a1 J2024 375 5.37 5.42 3.80 10.8
TOPOGEN 1.80 171 2.14 1.00 1.90

Table 9: Novelty(%) of generated graphs generated from TOPOGEN

Dataset Novelty (%)
Ogbn-Arxiv 96.02
Citeseer 100.0
MOLBACE 100.0
MUTAG 100.0
WordNet 86.84

erate graphs. However, to assess generalization, we perform experiments to quantify if the trained
model can accurately generate graphs from unseen out-of-distribution attributes—those that were
not derived from the dataset used during training. To generate out-of-distribution attributes, we
generated 25 random graphs through Barabdsi—Albert|Barabasi and Albert (1999)) graph generation
method and at the inference time used their attributes as the input to our model and report the gen-
eration error, SD (].), in Table [T0} It shows that the model maintains low generation error even on
out-of-distribution attributes, demonstrating generalization beyond the training attribute distribution.

Table 10: Generation error, SD (J.) of TOPOGEN across datasets on out of distribution attributes.
Model Trained on SD (])

Citeseer 0.37
MOLBACE 0.48
MUTAG 0.36
Ogbn-Arxiv 0.36
WordNet 0.32

5.9 ORDER-INVARIANCE

To analyze and mitigate the effect of order invariance, we re-ran our experiments using a consistent
node ordering through BFS (as opposed to the random ordering in the paper) to reduce the overall
number of sequences to be considered. The results in Table@show, averaged across all the datasets,
that SD error slightly reduces when BFS node ordering is considered. This is because BFS preserves
locality by placing structurally related nodes close to each other in the adjacency matrix. Such lo-
cality creates coherent spatial patterns that align with CNN kernels. This suggests that incorporating
a more structured traversal order could improve stability by reducing sensitivity to arbitrary node
permutations. In addition, our ablation study in Table d]indicates that there is negligible increase in
error when using GNNSs as encoder.

5.10 MMD
Table 13} [T3] [T4] shows the MMD error across each attribute. Abbreviations NC (node connectiv-

ity), EC (edge connectivity), TWMD (tree width min degree), Avg Clust (average clustering), LB
(number of local bridge), CC (Closeness Centrality).

15

Under review as a conference paper at ICLR 2026

Table 11: Performance of TOPOGEN using GNN as a graph encoder compared with CNN as an
encoder. Average mean absolute difference, MAD(]), is the average of absolute mean error in
satisfying target attributes.

WordNet Citeseer Ogbn-Arxiv MUTAG MOLBACE

MAD
TOPOGEN w GNN 5.49 7.37 5.72 1.84 542
TOPOGEN 1.80 1.71 2.14 1.00 1.90

Table 12: Generation error showing comparison between BFS node ordering and random node
ordering.

Dataset SD (BFS node ordering, |) SD (random node ordering, |)

Arxiv 0.26 0.40
Citeseer 0.21 0.27
Molbace 0.15 0.09
Mutag 0.14 0.10
Wordnet 0.18 0.44
Average 0.19 0.26

Table 13: MMD Results on Citeseer and MUTAG (lower is better, best in bold)

Dataset TOPOGEN GenStat EDGE GruM DiGress GraphRNN
Density 0.000 0.000 0.026 0.076 0.866 0.000
Edges 0.000 0.000 0.117 0.000 0.878 0.090
Nodes 0.000 0.000 0.085 0.000 0910 0.015
NC 0.036 0.000 0.000 0.000 0.451 0.000
Avg Clust 0.262 0.025 0.397 0.170 0.880 0.401
cC 0.000 0.000 0.000 0.132 0.897 0.081

Citeseer LB 0.274 0.071 0314 0.168 0973 0.100
Transitivity 0.139 0.137 0.233 0.076 0.845 0.370
EC 0.036 0.036 0.000 0.000 0.451 0.010
LC 0.074 0.000 0.000 0.000 0.790 0.000
TD 0.160 0.000 0.165 0.000 0.850 0.314
Diameter 0.239 0.000 0.209 0.202 1.116 0.146
Density 0.000 0.000 0.000 0.970 1.139 0.063
Edges 0.000 0.021 0.113 1.029 1.198 0.387
Nodes 0.000 0.000 0.000 0.980 1.181 0.242
NC 0.000 0.000 0.000 0.000 0.000 0.000
Avg Clust 0.594 0.000 1.158 0.000 0.000 0.000
cC 0.307 0.110 0.000 0.805 1.169 0.087

MUTAG LB 0.000 0.089 0.000 0.127 0.771 0.365
Transitivity 0.580 0.000 1.185 0.000 0.000 0.000
EC 0.000 0.000 0.000 0.000 0.000 0.000
LC 0.000 0.021 0.179 1.029 1.198 0.387
TD 0.477 0.370 0.263 0.963 1.096 0.561
Diameter 0.411 0.000 0.191 0.718 1.069 0.000

16

Under review as a conference paper at ICLR 2026

Table 14: MMD Results on MOLBACE and WordNet (lower is better, best in bold)

Dataset TOPOGEN GenStat EDGE GruM DiGress GraphRNN
Density 0.149 0.018 0.314 0.928 1.161 0.269
Edges 0.000 0.000 0.000 1.206 1.204 0.454
Nodes 0.000 0.000 0.099 1.194 1.190 0.371
NC 0.000 0.000 0.000 0.604 0.000 0.000
Avg Clust 0.724 0.000 0.806 0.065 0.067 0.000
CcC 0.297 0.030 0.577 0.960 1.223 0.000

MOLBACE LB 0.182 0.100 0.372 0.989 0.894 0.318
Transitivity 0.747 0.000 0.875 0.064 0.064 0.000
EC 0.000 0.000 0.000 0.604 0.000 0.000
LC 0.074 0.000 0.305 1.164 1.201 0.450
TWMD 0.592 0.000 0.714 1.122 1.099 0.544
Diameter 0.290 0.036 0.568 1.192 1.197 0.000
Density 0.194 0.000 0.144 0407 1.119 0.224
Edges 0.108 0.000 0.125 0.382 0.899 0.224
Nodes 0.120 0.000 0.130 0414 0.894 0.214
NC 0.002 0.000 0.004 0.065 0.026 0.000
Avg Clust 0.602 0.000 0.038 0.169 0.216 0.153
CC 0.380 0.000 0.110 0.345 1.045 0.164

WordNet LB 0.283 0.000 0.129 0.434 0.885 0.179
Transitivity 0.679 0.000 0.080 0.203 0.180 0.128
EC 0.004 0.000 0.004 0.065 0.026 0.000
LC 0.085 0.000 0.134 0.403 0.888 0.209
TWMD 0.613 0.000 0.008 0.143 0.324 0.207
Diameter 0.549 0.014 0.072 0.098 0.612 0.017

Table 15: MMD Results on ArXiv (lower is better, best in bold)

Dataset ToPOGEN GenStat EDGE GruM Dliress GraphRNN
Density 0.069 0.012 0.092 0.224 1.004 0.073
Edges 0.046 0.011 0.091 0.190 0.834 0.137
Nodes 0.040 0.019 0.072 0.000 0.905 0.096
NC 0.000 0.000 0.001 0.009 0.158 0.003
Avg Clust 0.476 0.000 0.198 0.852 0.850 0.355
CC 0.343 0.000 0.150 0.328 1.030 0.097

Ogbn-Arxiv LB 0.169 0.000 0.213 0397 0.872 0.061
Transitivity 0.100 0.000 0.136 0.772 0.771 0.287
EC 0.000 0.000 0.006 0.011 0.158 0.005
LC 0.067 0.018 0.075 0.066 0.839 0.077
TWMD 0.125 0.023 0.071 0.696 0.747 0.231
Diameter 0.598 0.014 0.324 0.017 0.990 0.205

17

	Introduction
	Controlled Graph Generation
	Graph Encoding through Mixture Scheduling
	Attribute-Guided Graph Generation

	Experiments
	Main Results
	Model Introspection
	De-noising graph attributes

	Conclusion and Future Work
	Appendix
	Scalability to fine-grained conditionally generate large graphs
	Limitation
	Settings
	Graph Visualization
	Attribute-Wise Error Analysis
	Different Graph Encoder
	Novelty of Generated Graphs
	Out Of Distribution control attributes for Graph Generation
	blueOrder-Invariance
	MMD

