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ABSTRACT

Feature engineering remains a critical bottleneck in machine learning, often re-
quiring significant manual effort and domain expertise. While end-to-end deep
learning models can automate this process by learning latent representations, they
do so at the cost of interpretability. We propose a gray-box paradigm for au-
tomated feature engineering that leverages Large Language Models for program
synthesis. Our framework treats the LLM as a meta-learner that, given a high-
level problem description for constraint optimization, generates executable Python
scripts that function as interpretable feature extractors. These scripts construct
symbolic graph representations and calculate structural properties, combining the
generative power of LLMs with the transparency of classical features. We validate
our approach on algorithm selection across 227 combinatorial problem classes.
Our synthesized feature extractors achieve 58.8% accuracy, significantly outper-
forming the 48.6 % of human-engineered extractors, establishing program synthe-
sis as an effective approach to automating the ML pipeline.

1 INTRODUCTION

Understanding the structure of combinatorial optimization problems is fundamental to solving them
efficiently. This structure manifests through various characteristics—the density, the modularity, the
nature of their relationships, connectivity patterns, and the presence of known structural motifs. By
identifying these characteristics as features, we can classify problems, predict their computational
hardness, and most importantly, select the most suitable algorithmic approaches to solve them. Since
the 1970s, algorithm selection has emerged as a cornerstone technique in machine learning (ML)
and optimization, promising to match each problem instance with its most effective solver from a
portfolio of complementary algorithms (Rice, 1976).

Yet despite decades of progress (Kerschke et al., 2019; Hoos et al., 2021; Kotthoff, 2016), a critical
bottleneck remains: designing effective feature extractors. Creating a tool that compiles a problem
instance into a succinct and representative set of features requires deep domain expertise, intimate
knowledge of which features matter for algorithmic performance, and efficient extraction methods
that do not consume excessive computational resources. This challenge becomes particularly acute
when facing new problem domains. Research groups and companies encountering novel combina-
torial problems find themselves unable to leverage powerful techniques like algorithm selection and
algorithm configuration, simply because no feature extractor exists for their specific problem.

The conventional workaround—translating the problem into another formalism for which extrac-
tors exist—often proves inadequate. When we compile a high-level problem description into a
flat constraint representation, we lose crucial structural information that was explicit in the origi-
nal formulation. Global properties and graphical relationships that are immediately apparent in the
high-level description become obscured or entirely invisible once the problem is flattened. This loss
of information directly impacts the quality of algorithm selection, as the features extracted from
the flat representation fail to capture characteristics that truly differentiate easy instances from hard
ones.

Our Approach: Automating Feature Extraction via LLMs In this paper, we present a novel ap-
proach that fundamentally changes how feature extractors are created. Rather than requiring manual
engineering by domain experts, we introduce an LLM-based framework that automatically generates
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executable Python scripts serving as feature extractors. Our key insight is a two-level process. We
first use a Large Language Model via an agentic error correcting workflow to generate an executable
program. This program then serves as the feature extractor, capturing the essential characteristics of
the problem.

Our approach operates on high-level problem descriptions written in MiniZinc (Stuckey et al., 2014;
Marriott et al., 2008), a declarative modeling language for constraint satisfaction and optimization
problems. This choice is deliberate: rich, expressive formalisms enable more compact problem
representations, making it easier for the LLM to identify and exploit structural patterns. The LLM
agent analyzes the MiniZinc model and generates a complete Python script that, when executed on a
problem instance, produces a graph representation of the problem instance, which in turn gives rise
to a vector of interpretable features.

Critically, our framework produces explicit, interpretable features rather than opaque neural em-
beddings. While recent work has explored using deep learning to create latent representations of
problems (Pellegrino et al., 2025; Zhang et al., 2024; Loreggia et al., 2016), such approaches sacri-
fice transparency for automation. In contrast, our generated extractors produce features that domain
experts can understand, validate, and refine: characteristics like graph density, variable clustering
coefficients, constraint tightness, and statistical properties of the data. This “gray box” approach
ensures that the automated extraction process remains accessible to human understanding and im-
provement.

Two Complementary Frameworks We develop two distinct but complementary frameworks for
feature extraction.

The problem-specific framework generates tailored extractors for individual problem types, ana-
lyzing the particular structure and semantics of problems like vehicle routing problem (VRP) or
car sequencing (CS). In this framework, the LLM agent is provided with the high-level problem
description, instance data, and schema information. From these inputs, it generates a specialized
Python script that extracts, via the construction of a custom graphical representation of the instance,
approximately 50 characteristics relevant to algorithm selection for that particular problem.

The problem-generic framework takes a more ambitious approach: applying a universal feature
extractor to any constraint satisfaction problem. The key innovation here is the use of a universal
intermediate graph representation (in contrast to a custom one in the problem-specific framework).
The LLM-generated script first converts any problem instance into a standardized bipartite graph,
with nodes representing variables, constraints, and resources, and weighted edges encoding their
relationships. From this graph representation, we extract a uniform set of structural features using
standard graph analysis algorithms. This two-level approach, where the LLM generates a script
that converts the problem into a graph, from which features are then extracted, preserves high-level
structural information while enabling consistent feature extraction across diverse problem types.

Empirical Validation and Surprising Results To validate our approach, we conducted experi-
ments in algorithm selection scenarios using a portfolio of five leading solvers: Gurobi, CPLEX,
SCIP, Gecode, and OR-Tools. For the problem-specific framework, we evaluated performance on
three distinct problem types with sufficient instance diversity. For the problem-generic framework,
we used a benchmark of over 2000 instances spanning 227 different problems from two decades of
MiniZinc Challenges (2008-2025).

Our automatically-generated extractors consistently and substantially outperform mzn2feat, the es-
tablished feature extractor for MiniZinc problems (Amadini et al., 2013; 2014). Algorithm selectors
trained on our features achieved 58.8% accuracy on the generic benchmark suite, compared to 48.6%
for those using mzn2feat features, a notable improvement that held across different ML models and
problem types. This performance gain stems from our extractors’ ability to capture high-level struc-
tural properties that remain hidden in flat representations.

Contributions and Significance This work makes several significant contributions to combinato-
rial optimization and algorithm selection:

1. We demonstrate that LLMs can effectively reason about combinatorial problem structure
and generate functional feature extractors wth minimal human guidance. This automation
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democratizes access to advanced algorithm selection techniques, enabling their application
to new problem domains where manual feature engineering would be prohibitively expen-
sive.

2. We introduce the novel approach of using LLM-generated scripts as an intermediate repre-
sentation, preserving interpretability while achieving automation. Unlike end-to-end neural
approaches, our framework produces extractors that humans can understand, validate, and
improve upon, facilitating human-AI collaboration in algorithm design.

3. Through comprehensive empirical evaluation, we show that automatically generated ex-
tractors can surpass carefully engineered alternatives, suggesting that LLMs can identify
subtle structural patterns that human experts might overlook. This finding has immediate
practical implications for building better algorithm portfolios and improving the efficiency
of combinatorial problem solving.

4. Our framework operates within reasonable computational budgets, making it accessible to
researchers and practitioners without extensive resources. The generated extractors them-
selves are lightweight, adding minimal overhead to the algorithm selection pipeline.

Paper Organization The paper is organized as follows: we first introduce preliminaries for our
problems, and then present the two frameworks. Next, we discuss the experimental results and
analyses; finally, we conclude the paper and give promising further directions.

2 PRELIMINARIES

Definition 1 The Algorithm Selection Problem (AS) (Kerschke et al., 2019)) is the optimization
problem which accepts as input a portfolio P of algorithms A ∈ P , a set of instances I , a Perfor-
mance Metric PM(A, I) which measures the performance of A on the set of instances I , and an
execution budget B (time limits, memory limits, etc). The objective of the optimization is to find,
without exceeding the resources indicated by B, an algorithm A ∈ P that maximizes the expected
performance of A over the set of instances I . Note that in the whole paper, we use instance to refer
to a problem instance instead of a sample point in the ML domain.

Definition 2 The Single Best Solver (SB) is the algorithm ASB ∈ P that achieves the best overall
performance with respect to the performance metric PM across the entire set of instances I , i.e.,

ASB = argmax
A∈P

PM(A, I).

The Single Best Solver strategy corresponds to selecting the Single Best Solver for all instances.

Definition 3 The Virtual Best Solver (VBS) is the (hypothetical) per-instance selector that, for each
instance i ∈ I , chooses the algorithm A ∈ P that achieves the best performance on that instance
with respect to PM . Formally, its performance is defined as

PM(VBS, I) =
∑
i∈I

max
A∈P

PM(A, {i}).

The VBS serves as an upper bound on the achievable performance of any AS strategy, assuming
perfect knowledge of per-instance performance.

Definition 4 A Large Language Model agent, LLM-agent (Yao et al., 2023) is a tuple A =
(L, T,M, π,E), where L is a large language model used for reasoning and generation, T is a
set of external tools or APIs accessible by the agent, M is the memory module (short-term and/or
long-term), π is the prompting policy that maps observations and history to model inputs, E is the
environment with which the agent interacts via observations and actions.

The LLM-agent agent operates in a loop: ot
π−→ pt

L−→ at
T,E−−→ ot+1 where ot is the observation

at time t, pt is the constructed prompt, at is the action (e.g., tool call, output), and ot+1 is the new
observation.

Definition 5 MiniZinc (Nethercote et al., 2007) is a high-level, declarative modeling language used
to describe constraint satisfaction and optimization problems in a solver-independent way.

3
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A MiniZinc model file (.mzn) defines the problem: it includes variables, constraints, and optionally
an objective (e.g., to minimize or maximize something).

A MiniZinc data file (.dzn) provides input data for the model, i.e., specific values for parameters
declared in the model file.

3 ALGORITHM FRAMEWORKS

In this section, we present the frameworks for our two LLM-based agents, which are inspired by the
recent agentic framework bridging LLM and CSP solving (Szeider, 2025). Our LLM-agent system
takes a problem instance (including a .mzn and a .dzn file) in the MiniZinc language as input and
outputs a Python script that extracts relevant features from the input problem instances.

3.1 PROBLEM-SPECIFIC LLM-BASED AGENT

For the specific-problem framework, the inputs of the agent problem-related files (minizinc model
file .mzn and problem instance file .dzn) and a data schema that can provide the LLM with a detailed
understanding of the input data structure. Meanwhile, we have two prompts: (script system prompt
and mzn-tuning) controlling the generation of feature extractors (a Python program) in an efficient
way.

Problem Data
(.MZN, .DZN)

JSON
Schema

Clear Insert Check/Fix Verify

LLM Agent Pipeline

Problem-Specific Extractors

Figure 1: The workflow of generating problem-specific feature extractors

script system prompt is a general-purpose Python script providing behavioral instructions for LLM
agents to generate complete, executable Python scripts through a tool-based environment. It de-
fines a strict workflow, technical requirements, and available resources. The example of the general
Python script template structure is in the appendix. The general-purpose script generation prompt
follows a structured tool-based workflow, and its procedure follows Figure 1:

1. Clear: Clearing all previous content in the Python script.

2. Insert: Creating complete Python script.

3. Check/Fix: Verifying the syntax and requirements from the prompts; Addressing valida-
tion errors if needed.

4. Execute: Running the Python script and capturing and validating the output

The mzn-tuning prompt contains specialized instructions for LLM agents to generate constraint op-
timization feature extraction scripts. Unlike the general script system prompt, this is highly domain-
specific for AS, guiding the agent to generate Python scripts that extract standardized instance fea-
tures from constraint programming problems to train algorithm selectors for optimal solvers. The
feature extractor template specifically for the Minizinc instance is in the appendix. The specialized
prompt follows a research-oriented feature extraction workflow:

1. Template Substitution: Replace placeholders ${INSTANCE} (.dzn file), ${SCHEMA}
(the prompt helping LLM understand the .mzn model file), ${MODEL} (.mzn file),
${PROBLEM} (problem name).

2. Mandatory Imports: Exact import requirements for framework integration

3. Data Access: Use input data() - no file I/O operations
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4. Feature Analysis: Extract 50 standardized features

5. Testing: execute script() validation required

6. Output: Standardized format for algorithm selector training

3.2 PROBLEM-GENERIC LLM-BASED AGENT

In a further step, we design a generic workflow working on multiple cross-domain problems at the
same time. The framework is a generic problem-generic pipeline where the output Python scripts
include not only a parser and a feature extractor, like the problem-specific pipeline, but also a generic
graph builder. After the parser handles and processes the input data, the generic graph builder
constructs a graph with different types of nodes (like variables, constraints, and so on), and weighted
edges representing their relationships. Based on the generic graph, the feature extractor applies
graph analysis to extract structural features in a uniform way, obtaining the same features for diverse
CP problems. The Figure 2 shows a monolithic architecture of the problem-generic pipeline for
generating feature extractors. It has a similar overall framework to the problem-specific one, but we
use a subagent to generate Python scripts (converters), integrating graph builders.

Problem1
(.MZN + .DZN)

Problem2
(.MZN + .DZN)

Problem3
(.MZN + .DZN)

...

LLM
Subagent)

Parsing → Generic Graph Builder1 → Uniformed Extractor

Parsing → Generic Graph Builder2 → Uniformed Extractor

Parsing → Generic Graph Builder3 → Uniformed Extractor

...

Structural Features
(26-46 dimensions)

LLM Subagent Pipeline

Generated Converting Pipelines

Figure 2: The workflow of generating problem-generic feature extractors

4 EXPERIMENTAL ANALYSES

4.1 EXPERIMENTAL SETTINGS

In an AS problem, the goal is to select the most suitable (best) solver from a pool of candidates
to solve a given MiniZinc instance, which consists of a model file and a corresponding data file.
The pool P of solvers is composed of the best performing solvers in the Minizinc challenge 1:
Gurobi (12.0.3), CPLEX (22.1.2), SCIP (9.2.3), Gecode (6.2.0), and OR-Tools (9.3.10497). The set
of instances I includes minimization/maximization problems, where the best solver means achiev-
ing the lowest/highest objective values after the timeout, and decision problems, where the best
solver means the shortest solving time to get the results. In particular, for the experiments of the
problem-specific framework, we extract features and train algorithm selectors on three problems:
VRP (Queiroga et al., 2021), CS (Pellegrino et al., 2025), and fixed-length error correcting codes
(FLECC) (Pellegrino et al., 2025), where we can get enough instances for training and testing fairly.
In the experiments of the problem-generic framework, we comprehensively collect all MiniZinc
Challenges (Stuckey et al., 2014) 2 from 2008 to 2025, where we have more than 2000 instances
spanning 227 problems of combinatorial optimization after filtering out the problems with fewer
than three instances. For both scenarios, problem-specific and problem-generic frameworks, we
split the instances randomly into train and test sets by 7 : 3 ratio. To keep each pair of comparisons
fair, we use the same split of training and test sets.

We run solvers with a 20 mintues timeout to get the evaluation. We run the LLM pipeline to generate
with LLM2feat extractors with a 1 minute timeout. We run all the instances on all solvers on a
compute cluster with nodes equipped with two AMD 7403 processors (24 cores at 2.8 GHz) and
32 GB of RAM per core. The performance metric is PM(A, I) where A is the solver and I is the
set of instances, and PM(A, I) is the number of instances for which solver A is the best solver.

1https://www.minizinc.org/challenge/2025/results/
2https://www.minizinc.org/challenge/
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Accordingly, we have two metrics: the ratio of selecting the best solver (Acc), and the average
ranking of selected solvers (Rank) for problem-specific evaluation. Additional Borda score from the
competition 3 is used for cross-problem evaluation on the problem-generic framework. It generally
means how many other solvers a solver can outperform.

For the selection of LLM models, we use OpenAI o4-mini-2025-04-16 and Anthropic claude-
sonnet-4-20250514 in the problem-specific and problem-generic framework, respectively. Details
about the LLM model sensitivity and selection refer to the Appendix.

4.2 RELATED TOOLS FOR ALGORITHM SELECTION

The input to the AS tools includes a feature table where there are problem instances with their
corresponding features generated by feature extractors, and a performance table, which includes the
instances and different solvers’ performance metrics when solving the instances. To get the features
of the instances we use as feature extractors, our LLM-based frameworks (LLM2feat) and mzn2feat.

In particular, we use the following AS tools in our experimental analysis:

Multiclass classification models for predicting the best solver. We use Random Forest (referred to
as RF) in the standard way (Kerschke et al., 2019), and AutoSklearn (Feurer et al., 2015; 2020)
(referred to as AutoSK). Their corresponding parameter settings are listed in the Appendix. We use
two loss functions: accuracy, Acc, and average ranking, Rank, during training. By accuracy, we
mean the ratio of times the model predicts the actual best solver, and by average ranking, we mean
the average rank of the solver the model predicts. For all training, we use the cross-validation with
5 folds.

AutoFolio (Lindauer et al., 2015) (referred to as AF) and LLAMMA (Kotthoff, 2013) (referred to as
LLAMMA), which are the best performing AS tools as reported in surveys (Kerschke et al., 2019)
and competition 4. For these tools, only the accuracy loss function is used for training, because we
just use the tools in their default settings.

The combination of the above AS tools and feature extractors yields the following list of AS ap-
proaches: mzn2feat+AF; mzn2feat+RF; mzn2feat+LLAMMA; mzn2feat+AutoSK; LLM2feat+AF;
LLM2feat+RF; LLM2feat+LLAMMA; LLM2feat+AutoSK.

4.3 GOALS OF THE EXPERIMENTAL ANALYSES

We want to answer the following questions by extensive experiments:

• Q1: How diverse are features generated by LLM2feat? Ideal features in the same set are
expected to be informatively diverse. Highly correlated features provide overlapping infor-
mation, reducing the effective dimensionality of the feature space. Diverse features enable
ML models to possibly capture complementary problem features and different aspects of
problem complexity with fewer parameters.

• Q2: How efficiently does each feature contribute to the algorithm selection models? By an-
alyzing the importance of features, we can generally understand the quality of the features
and know the potential for reducing the redundant feature sets.

• Q3: How accurate are the AS models using LLM2feat and mzn2feat features? Applying
the feature sets to AS models can directly validate how useful the features are for AS.

4.4 PROBLEM-SPECIFIC FEATURE EXTRACTOR

For our problem-specific feature extractors, on the three different problems, we analyze feature sets
extracted by mzn2feat and LLM2feat extractors by an extensive series of experiments. Firstly, we
check the correlation between the features in both sets and the general diversity of the feature sets;
then we check the features’ importance and quality of the features generated by mzn2feat and our
LLM2feat; Finally, we verify the effectiveness by training algorithm selectors with mzn2feat-based
and LLM2feat-based features and compare their corresponding accuracy.

3https://www.minizinc.org/challenge/2025/
4https://www.coseal.net/open-algorithm-selection-challenge-2017-oasc/
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4.4.1 FEATURE CORRELATION ANALYSIS

Given a feature set, we can train a standard algorithm selector using random forests as described
in 4.1. Consequently, we obtain two algorithm selectors, mzn2feat + RF and LLM2feat + RF, from
which we can get the top 20 features of the node that contribute the most to the classification de-
cision. This approach ensures our correlation analysis focuses on algorithm-selection relevant fea-
tures rather than examining all features indiscriminately. For each feature set, we computed Pearson
correlation matrices (Guyon & Elisseeff, 2003) and analyzed both the distribution of correlation
coefficients (r) and their statistical properties. We show the heatmap figures of correlation coeffi-
cients from two feature sets on VRP problems (The results of FLECC and CS problems are in the
subsection of the Appendix). LLM features show the most substantial diversity advantage with an
average correlation magnitude of |r| = 0.221 compared to mzn2feat’s |r| = 0.429. For the other two
problems, the tendency is also the same: these results demonstrate that LLM-generated features cap-
ture more diverse aspects of problem structure, reducing information redundancy and enabling more
efficient representation of constraint optimization characteristics with fewer overlapping features.

mzn2feat (Avg |r| = 0.429) LLM (Avg |r| = 0.221)
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Figure 3: Feature correlation analysis for VRP problem (feature names removed for clarity). LLM
features exhibit the largest diversity advantage with 48.5% lower average correlation (|r| = 0.221)
compared to mzn2feat (|r| = 0.429).

4.4.2 FEATURE UTILIZATION EFFICIENCY

Beyond correlation analysis, we analyze how important each feature is in feature sets. This analysis
addresses Q2 by evaluating the distribution of feature importance across all available features in
each dataset.

0-0
.00

1

0.0
01

-0.
00

5

0.0
05

-0.
01

0.0
1-0

.02

0.0
2-0

.05
>0.0

5

Feature Importance Range

0.0

0.2

0.4

Ra
tio

 o
f F

ea
tu

re
sFeature Importance Distribution Comparison

mzn2feat
LLM

(a) FLECC Problem
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(b) CS Problem
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(c) VRP Problem

Figure 4: Feature importance distribution analysis across three constraint optimization problems.
Consistent patterns show LLM features achieve better distribution across importance ranges.
We analyzed feature utilization efficiency using a comprehensive approach that examines the com-
plete feature set rather than focusing solely on top-performing features. For both mzn2feat+RF and
LLM2feat+RF, we extracted feature importance scores for all features and applied a significance
threshold of 0.001 to identify “effectively utilized” features. This threshold ensures we capture fea-
tures that contribute meaningfully to algorithm selection decisions while filtering out noise. Our
analysis encompassed all 95 human-crafted features of mzn2feat and 50 LLM2feat-based features.
The problem-specific framework produced features that demonstrate consistently superior utiliza-
tion efficiency across all three problems. From Figure 4, for example, on the VRP problem, LLM
achieves 96% utilization efficiency compared to mzn2feat’s 56.8%, representing a 69% improve-
ment in effective feature usage. On FLECC, LLM reaches 58% efficiency versus mzn2feat’s 23.2%;
On CS problem, LLM attains 84% efficiency compared to mzn2feat’s 45.1%.
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4.4.3 ACCURACY ANALYSIS

To directly evaluate the practical impact of our feature extraction approaches, we conducted a com-
prehensive accuracy analysis that addresses Q3. This analysis examines algorithm selection perfor-
mance as a function of feature set size, providing insights into both the effectiveness and efficiency
of LLM-generated versus traditional features.
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(a) FLECC Problem
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Figure 5: Accuracy analysis across three constraint optimization problems demonstrating consistent
LLM superiority in algorithm selection performance and feature efficiency.
We implemented a systematic feature scaling analysis that evaluates algorithm selection accuracy
using incrementally expanding feature sets. Starting with the single most important feature from
each extraction method, we progressively added features in the order of decreasing importance,
testing every other feature count from 1 to 50 features for computational efficiency. For each feature
subset size, we selected top−N features based on Random Forest feature importance rankings, and
retrained algorithm selectors using only the selected features. Finally, we evaluated performance on
both training and testing sets. From Figure 6, we can see LLM-based features reach near-optimal
performance with greater accuracy with different numbers of features. Meanwhile, LLM2feat-based
algorithm selectors have higher chances to improve the accuracy when more features are given, like
on the VRP problem, when there are more than 10 features, mzn2feat-based features do not help for
further improvement (the accuracy is always around 81%), but LLM2feat-based features can reach
the highest values when more than 20 features are given.

To verify that LLM2feat provides more informative structural features than mzn2feat, we also use
respective features for training the algorithm selector with other ML tools (AF, LLAMMA, and Au-
toSK) besides RF for the three problems. From Table 1, we can see that, except when features are
fed to AF, which always gets the same results as SB, the algorithm selectors based on LLM2feat al-
ways get higher accuracy and better ranking (lower ranking means better) on the test set. Therefore,
LLM2feat can always get more informative problem feature sets for ML tools to utilize to select
better solvers. In the Appendix, we also have the results on the training set with Acc as the loss
function, and the results on the training and test sets with Rank as the loss function.

Loss function=Acc
(Testing) VRP CS FLECC Suite (227 problems)

Acc Rank Acc Rank Acc Rank Acc Rank Borda
SB 79.5% 1.221 49.0% 1.616 78.2% 1.420 27.0% 2.667 0.694
mzn2feat+AF 79.5% 1.221 49.0% 1.616 78.2% 1.420 27.0% 2.667 0.694
mzn2feat+RF 83.0% 1.184 58.5% 1.680 79.5% 1.391 47.4% 1.419 1.323
mzn2feat+LLAMMA 82.9% 1.184 59.4% 1.798 78.7% 1.397 × × ×
mzn2feat+AutoSK 84.4% 1.166 62.1% 1.787 79.4% 1.394 48.6% 1.464 1.320
LLM2feat+AF 79.5% 1.221 49.0% 1.616 78.2% 1.420 27.0% 2.667 0.694
LLM2feat+RF 85.7% 1.155 61.3% 1.681 83.5% 1.338 58.3% 1.340 1.426
LLM2feat+LLAMMA 85.8% 1.157 61.0% 1.773 84.2% 1.306 × × ×
LLM2feat+AutoSK 85.4% 1.160 64.0% 1.738 84.6% 1.310 58.8% 1.390 1.421

Table 1: The accuracy and the average ranking results of mzn2feat features (95) and LLM2feat
features (50) trained with different models on the testing set (loss function= Acc). Note: the results
of the problem-generic framework on the problem suite, including 227 problems, are also listed here,
and they will be discussed later. LLAMMA is not applicable to cross-problem algorithm selection,
so it is masked.
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4.5 PROBLEM-GENERIC FEATURE EXTRACTOR

For the more general framework, the problem-generic framework, we test them in a more systematic
way on 227 problems. We also analyze the feature correlation, feature utilization efficiency, and
accuracy analysis as we do for the problem-specific framework. The outperformance of the features
generated by LLM2feat is even more significant compared with that generated by mzn2feat.
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Figure 6: Accuracy analysis across 227 constraint optimization problems demonstrating consistent
LLM superiority in algorithm selection performance, and informative features obtained by LLM
than mzn2feat
For feature correlation, LLM features show significantly lower average correlation (|r| = 0.141)
compared to mzn2feat (|r| = 0.245), demonstrating the improvement in feature diversity (The
heapmap figure is in the Appendix). From the feature importance distribution comparison in Fig-
ure 6, the feature utilization of LLM-based features is more efficient as LLM2feat generates more
features with higher importance than mzn2feat. On the test accuracy with the top important features,
the LLM2feat-based RF always gets higher accuracy than the mzn2feat-based RF, which means
given the same number of important features from respective feature sets, LLM2feat-based features
are more informative for training algorithm selectors. For example, with around 15 top features,
LLm2feat-based RF can get 60% on the test set, which is much higher than the accuracy (49%)
obtained by mzn2feat-based RF.

From Table 1, we have the results of different metrics obtained by various LLM2feat and mzn2feat-
based algorithm selectors: LLM-based algorithm selectors can achieve at least 10% higher accuracy,
and better ranking. Moreover, we add another evaluative metric, Borda scores, which also indicates
LLM2feat-based algorithm selectors can also get higher scores than their competitors.

5 CONCLUSION AND FUTURE WORK

To the best of our knowledge, we have introduced the first framework for the automatic construction
of feature extractors for combinatorial problems. The framework is grounded in the use of LLM
agents, which are parametrically instructed to accommodate potentially diverse representation for-
malisms. The extractors are generated as Python scripts that can subsequently be refined by human
experts in a “gray-box” manner. The construction process is computationally efficient and can there-
fore be employed in an on-demand fashion for dynamic scenarios. Moreover, we have demonstrated
the effectiveness of these extractors in a representative ML task—algorithm selection—showing
that they can achieve competitive performance even in domains where human-engineered feature
extractors are already available.
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REPRODUCIBILITY STATEMENT

We took several steps to make our results easy to reproduce.

Code and artifacts. We release an anonymized supplement for review containing: (i) the full
training/evaluation pipeline for all selectors, (ii) the LLM prompting templates and the exact prompts
used, (iii) all LLM-generated feature-extractor scripts (with content hashes).

Data and benchmarks. All experiments use public MiniZinc Challenge benchmarks
(2008–2025). We provide scripts to download the models and instances, and a manifest listing
the subset used after filtering problems with fewer than 3 instances. We include our fixed train/test
split (70/30) as instance lists to ensure identical data partitions across runs.

Solvers and versions. We report and pin solver versions in all runs: Gurobi 12.0.3, CPLEX 22.1.2,
SCIP 9.2.3, Gecode 6.2.0, OR-Tools 9.3.10497. We provide wrapper scripts that uniformly handle
time limits, seeds, and logging. Proprietary solvers (Gurobi/CPLEX) are optional; our scripts fall
back to open-source solvers (SCIP, Gecode, OR-Tools).

LLM configurations. For problem-specific extractors we used OpenAI
o4-mini-2025-04-16; for the problem-generic pipeline we used Anthropic
claude-sonnet-4-20250514. We release: (a) the system and task prompts, (b) the
template files, (c) the top-level orchestration script, and (d) the raw generated extractors. We cap
extractor generation to 60 s per script and keep all retries; each artifact is identified by a SHA-256
hash.

Learning pipelines and hyperparameters. We evaluate Random Forest (RF), AutoSklearn (Au-
toSK), AutoFolio (AF), and LLAMA with default settings unless specified.

Evaluation protocol. For each instance we run all portfolio solvers with a 20-minute wall-clock
limit and parse outcomes into a unified performance table. Selector models are trained on the train-
ing split only; metrics are reported on the fixed test split. We report: (i) selector accuracy (fraction
of instances where the predicted solver is best), (ii) average rank (lower is better), and for the cross-
problem suite also the MiniZinc Borda score. Scripts regenerate all tables/plots from logs.

Hardware. Experiments were run on a cluster with nodes equipped with two AMD 7403 pro-
cessors (24 cores @ 2.8 GHz) and 32 GB RAM per core. We provide the job scripts used on our
scheduler; the pipeline also runs on a single workstation (with longer runtimes) using the provided
Docker image.

Determinism and seeds. Where components are nondeterministic, we set seeds (42) and docu-
ment any remaining sources of variability (e.g., parallel tree building, AutoSklearn’s ensembling).
All reported numbers are from a single, fixed split; we include scripts to rerun with new splits and
to aggregate across folds if desired.

Availability. The anonymized reproduction package includes: code, configs, prompts, generated
extractors, and figure/table notebooks.
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A APPENDIX

A.1 GENERAL PYTHON SCRIPT TEMPLATE GUIDED BY SCRIPT-SYSTEM-PROMPT.MD

1 # Required script structure
2 import necessary_modules
3 # Constants and configuration
4 CONSTANTS = values
5 # Function definitions
6 def helper_functions():
7 pass
8 # Main execution logic
9 if __name__ == "__main__":

10 # Processing logic here
11 result_dict = {"key": "value", "results": data}
12 # MANDATORY: Output results
13 output_results(result_dict) # Must be final line

Listing 1: General Script Template Structure

A.2 MINIZINC INSTANCE FEATURE EXTRACTION TEMPLATE GUIDED BY
MZN-TUNING-PROMPT.MD

1 # MANDATORY imports (exact format required)
2 from lmtune_helpers import input_data, output_results
3 import networkx as nx
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4 import numpy as np
5 def main():
6 # Get instance data (no file I/O allowed)
7 instance_data = input_data()
8 # Initialize standardized results structure
9 results = {

10 "README": "˜200 word methodology description",
11 "characteristic_1": 0.0, # Problem size metrics
12 "characteristic_2": 0.0, # Graph properties
13 # ... (extract exactly 50 characteristics)
14 "characteristic_50": 0.0 # Structural complexity
15 }
16 # Analyze constraint optimization instance
17 # Extract solver-relevant characteristics:
18 # - Problem size (variables, constraints)
19 # - Graph properties (density, clustering, centrality)
20 # - Data distribution (statistical properties)
21 # - Structural complexity (symmetries, sparsity)
22 # MANDATORY: Return standardized results
23 output_results(results)
24 if __name__ == "__main__":
25 main()

Listing 2: MiniZinc Instance Feature Extraction Template

A.3 PARAMETER SETTINGS FOR DIFFERENT ALGORITHM SELECTORS

This section lists the details on parameter settings for different algorithm selectors. The follow-
ing setting has been applied to both random forest training and LLAMMA with the random forest
classification mode.

Parameter Value Discription
n estimators 300 More trees for better performance on complex constraint patterns
max depth 20 Deeper trees to capture complex constraint programming relationships
min samples split 5
min samples leaf 2
resampling strategy ‘cv’
resampling strategy arguments {‘folds’: 5}
max features ‘sqrt’ Standard dimensionality reduction for tree diversity
class weight ‘balanced’ Handle solver class imbalance in dataset
random state 42

Table 2: Random Forest Hyperparameters

Parameter Value
time left for this task User-specified (300-3600s)
per run time limit time budget // 30 s
initial configurations via metalearning 25
ensemble size 50
resampling strategy ‘cv’
resampling strategy arguments {‘folds’: 5}
scoring functions [accuracy/ranking/Borda]
memory limit 3072 MB
tmp folder Auto-generated
delete tmp folder after terminate False
random state 42

Table 3: AutoSklearn Standard Configuration
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A.4 EXPERIMENTAL RESULTS ON FEATURE ANALYSIS
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Figure 7: Feature correlation analysis for FLECC problem. LLM features show lower average
correlation (|r| = 0.306) compared to mzn2feat (|r| = 0.330), indicating more diverse features.
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Figure 8: Feature correlation analysis for CS problem. LLM features show significantly lower aver-
age correlation (|r| = 0.551) compared to mzn2feat (|r| = 0.725), demonstrating 24%improvement
in feature diversity.

A.5 CORRELATION ANALYSIS ON PROBLEM-GENERIC EXTRACTORS AND mzn2feat
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Figure 9: Feature correlation analysis for multiple problems. LLM features show significantly lower
average correlation (|r| = 0.141) compared to mzn2feat (|r| = 0.245), demonstrating the improve-
ment in feature diversity.
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A.6 TOP FEATURES DISTRIBUTION ANALYSIS ON PROBLEM-GENERIC EXTRACTORS AND
mzn2feat
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Figure 10: For LLM-based generic features and mzn2feat-based features, we compare the instance
distribution on different single top features (Top-6 features). We can see that for LLM-based fea-
tures, the instances are distributed more evenly according to the different values of the features,
which potentially gives more useful information to the algorithm selectors for classification.

A.7 EXPERIMENTAL RESULTS OF PROBLEM-GENERIC FEATURE EXTRACTOR AND
mzn2feat-BASED ALGORITHM SELECTORS ON TRAINING SETS WITH Acc AS LOSS
FUNCTIONS.

Here we also show the results of mzn2feat and LLM2feat-based algorithm selectors’ performance
on training sets.

Loss function=Acc
Training VRP CS FLECC Suite (200+Problems)

Acc Rank Acc Rank Acc Rank Acc Rank Borda
SB 78.7% 1.237 49.4% 1.601 80.6% 1.377 27.0% 2.667 0.694
mzn2feat+AF 78.7% 1.237 49.4% 1.601 80.6% 1.377 27.0% 2.667 0.694
mzn2feat+RF 91.7% 1.091 83.5% 1.231 88.3% 1.232 81.0% 1.186 1.491
mzn2feat+LLAMMA 92.0% 1.089 87.5% 1.248 91.5% 1.167 × × ×
mzn2feat+AutoSK 87.2% 1.138 65.0% 1.723 85.0% 1.296 64.3% 1.322 1.402
LLM2feat+RF 97.1% 1.032 87.9% 1.164 95.9% 1.083 97.9% 1.016 1.653
LLM2feat+LLAMMA 97.8% 1.025 89.9% 1.164 98.3% 1.039 × × ×
LLM2feat+AutoSK 87.8% 1.133 68.9% 1.618 95.1% 1.103 89.8% 1.078 1.608

Table 4: Experimental results of problem-specific and problem-generic feature extractors and
mzn2feat-based algorithm selectors on training sets with Acc as loss functions.
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A.8 EXPERIMENTAL RESULTS OF PROBLEM-SPECIFIC FEATURE EXTRACTOR AND
mzn2feat-BASED ALGORITHM SELECTORS ON TEST SETS WITH Rank AS LOSS
FUNCTIONS.

Here we also show the results of mzn2feat and LLM2feat-based algorithm selectors’ performance
on testing sets with Rank as the loss function.

Loss function=Rank
(Testing) VRP CS FLECC

Acc Rank Acc Rank Acc Rank
SB 79.5% 1.221 49.0% 1.616 78.2% 1.420
mzn2feat+RF 83.0% 1.184 58.5% 1.680 79.5% 1.391
mzn2feat+AutoSK 84.4% 1.166 62.1% 1.787 79.4% 1.394
LLM2feat+RF 85.7% 1.155 61.3% 1.681 83.5% 1.338
LLM2feat+AutoSK 85.4% 1.160 64.0% 1.738 84.6% 1.310

Table 5: Experimental results of problem-specific feature extractor and mzn2feat-based algorithm
selectors on test sets with Rank as loss functions.

A.9 EXPERIMENTAL RESULTS OF PROBLEM-SPECIFIC FEATURE EXTRACTOR AND
mzn2feat-BASED ALGORITHM SELECTORS ON TRAINING SETS WITH Rank AS LOSS
FUNCTIONS.

Here we also show the results of mzn2feat and LLM2feat-based algorithm selectors’ performance
on training sets with Rank as the loss function.

Loss function=Rank
Training VRP CS FLECC

Acc Rank Acc Rank Acc Rank
SB 78.7% 1.237 49.4% 1.601 80.6% 1.377
mzn2feat+RF 91.7% 1.091 83.5% 1.231 88.3% 1.232
mzn2feat+AutoSK 87.2% 1.138 65.0% 1.723 85.0% 1.296
LLM2feat+RF 97.1% 1.032 87.9% 1.164 95.9% 1.083
LLM2feat+AutoSK 87.8% 1.133 68.9% 1.618 95.1% 1.103

Table 6: Experimental results of problem-specific feature extractor and mzn2feat-based algorithm
selectors on training sets with Rank as loss functions.

A.10 LLM MODEL SELECTION AND SENSITIVITY ANALYSIS OF LLM2feat EXTRACTORS

In general, we can use all LLM models as the backend of the agent. But we find our framework is
not sensitive to the potential hallucination of LLM. To analyze the sensitivity, we select OpenAI o4-
mini-2025-04-16 for the problem-specific framework, and generate three different feature extractors
for each problem, and use the most classical tool chain, RF, and the most advanced tool chain,
AutoSK, for algorithm selector training. As we can see in the following tables, in each table, we
have three different LLM-based feature extractors (LLM-timestamp) for the same training setting.
The accuracy and the average ranking of their algorithm selectors fluctuate in a quite small range
(usually less than 2%).

Meanwhile, we also compare the Acc and Rank obtained by different algorithm selectors based on
mzn2feat and all three LLM2feat extractors. We can see that all LLM2feat-based algorithm selectors
can always get better performance than mzn2feat-based algorithm selectors on different metrics
(Acc and Rank).

Regarding the selection of LLM models in the problem-generic framework, we use Anthropic
claude-sonnet-4-20250514. Here we have to deal with 227 problems extractor generation, which
is conveniently tackled with the subagent functionality of Claude.
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Table 7: LLM2feat+RF Performance for FLECC Problem

Feature Extractor Loss Function Train Acc Test Acc Train Rank Test Rank

Single Best (gecode) 0.806 0.782 1.377 1.420

mzn2feat accuracy 0.959 0.764 1.063 1.426
mzn2feat ranking 0.883 0.795 1.232 1.391

LLM-20250908123730 accuracy 0.981 0.847 1.029 1.286
LLM-20250908123925 accuracy 0.996 0.818 1.008 1.353
LLM-20250908124149 accuracy 0.994 0.836 1.011 1.315
LLM-20250908123730 ranking 0.959 0.835 1.083 1.338
LLM-20250908123925 ranking 0.935 0.809 1.121 1.384
LLM-20250908124149 ranking 0.952 0.826 1.095 1.358

Table 8: LLM2feat+RF Performance for CS Problem

Feature Extractor Loss Function Train Acc Test Acc Train Rank Test Rank

Single Best (cplex) 0.494 0.490 1.601 1.616

mzn2feat accuracy 0.857 0.547 1.339 1.943
mzn2feat ranking 0.835 0.585 1.231 1.680

LLM-20250908123608 accuracy 0.903 0.577 1.193 1.874
LLM-20250908123905 accuracy 0.913 0.578 1.181 1.861
LLM-20250908124041 accuracy 0.906 0.581 1.202 1.862
LLM-20250908123608 ranking 0.868 0.607 1.179 1.700
LLM-20250908123905 ranking 0.879 0.613 1.165 1.681
LLM-20250908124041 ranking 0.875 0.606 1.171 1.704

Table 9: LLM2feat+RF Performance for VRP Problem

Feature Extractor Loss Function Train Acc Test Acc Train Rank Test Rank

Single Best (scip) 0.787 0.795 1.237 1.221

mzn2feat accuracy 0.947 0.824 1.057 1.195
mzn2feat ranking 0.916 0.830 1.091 1.184

LLM-20250908115627 accuracy 0.993 0.850 1.008 1.169
LLM-20250908121942 accuracy 0.994 0.848 1.007 1.170
LLM-20250908123205 accuracy 0.985 0.853 1.016 1.165
LLM-20250908115627 ranking 0.971 0.852 1.032 1.163
LLM-20250908121942 ranking 0.972 0.857 1.032 1.155
LLM-20250908123205 ranking 0.970 0.852 1.034 1.163

Table 10: LLM2feat+AutoSK Performance for FLECC Problem

Feature Extractor Loss Function Train Acc Test Acc Train Rank Test Rank

Single Best (gecode) 0.806 0.782 1.377 1.420

mzn2feat accuracy 0.850 0.792 1.295 1.396
mzn2feat ranking 0.850 0.794 1.296 1.394

LLM-20250908124149 accuracy 0.952 0.844 1.101 1.308
LLM-20250908123730 accuracy 0.951 0.846 1.104 1.310
LLM-20250908123925 accuracy 0.908 0.831 1.187 1.342
LLM-20250908124149 ranking 0.951 0.845 1.103 1.308
LLM-20250908123730 ranking 0.951 0.846 1.104 1.310
LLM-20250908123925 ranking 0.911 0.836 1.183 1.322
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Table 11: LLM2feat+AutoSK Performance for CS Problem

Feature Extractor Loss Function Train Acc Test Acc Train Rank Test Rank

Single Best (cplex) 0.494 0.490 1.601 1.616

mzn2feat accuracy 0.650 0.621 1.723 1.787
mzn2feat ranking 0.650 0.621 1.723 1.787

LLM-20250908124041 accuracy 0.671 0.640 1.646 1.735
LLM-20250908123905 accuracy 0.679 0.634 1.667 1.781
LLM-20250908123608 accuracy 0.686 0.635 1.652 1.782
LLM-20250908124041 ranking 0.670 0.640 1.655 1.738
LLM-20250908123905 ranking 0.675 0.638 1.655 1.766
LLM-20250908123608 ranking 0.689 0.639 1.618 1.743

Table 12: LLM2feat+AutoSK Performance for VRP Problem

Feature Extractor Loss Function Train Acc Test Acc Train Rank Test Rank

Single Best (scip) 0.787 0.795 1.237 1.221

mzn2feat accuracy 0.872 0.844 1.138 1.166
mzn2feat ranking 0.872 0.844 1.138 1.166

LLM-20250908121942 accuracy 0.851 0.852 1.161 1.162
LLM-20250908123205 accuracy 0.880 0.857 1.131 1.157
LLM-20250908115627 accuracy 0.872 0.854 1.138 1.160
LLM-20250908121942 ranking 0.851 0.852 1.161 1.162
LLM-20250908123205 ranking 0.878 0.854 1.133 1.160
LLM-20250908115627 ranking 0.859 0.850 1.152 1.162
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