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Abstract

‘Bigger the better’ has been the predominant001
trend in recent Large Language Models (LLMs)002
development. However, LLMs do not suit well003
for scenarios that require on-device process-004
ing, energy efficiency, low memory footprint,005
and response efficiency. These requisites are006
crucial for privacy, security, and sustainable007
deployment. This paper explores the ‘less is008
more’ paradigm by addressing the challenge009
of designing accurate yet efficient Small Lan-010
guage Models (SLMs) for resource constrained011
devices. Our primary contribution is the in-012
troduction of an accurate and fully transpar-013
ent open-source 0.5 billion (0.5B) parameter014
SLM, named MobiLlama, catering to the spe-015
cific needs of resource-constrained computing016
with an emphasis on enhanced performance017
with reduced resource demands. MobiLlama018
is a SLM design that initiates from a larger019
model and applies a careful parameter sharing020
scheme to reduce both the pre-training and the021
deployment cost. Our work strives to not only022
bridge the gap in open-source SLMs but also023
ensures full transparency, where complete train-024
ing data pipeline, training code, model weights,025
and over 300 checkpoints along with evaluation026
codes will be publicly released.027

1 Introduction028

Recent years have witnessed a tremendous surge029

in the development of Large Language Models030

(LLMs) with the emergence of prominent closed-031

source commercial models such as ChatGPT, Bard,032

and Claude. These LLMs exhibit surprising ca-033

pabilities, typically called emergent abilities, to-034

wards solving complex tasks. Most existing pop-035

ular LLMs follow a similar trend that bigger is al-036

ways better, where scaling model size or data size037

typically provides improved model capacity and038

performance on downstream tasks. For instance,039

the recent Llama-2 70 billion (70B) model (Tou-040

vron et al., 2023) is considered more favorable041

in different chat applications due to its effective- 042

ness towards handling dialogues, logical reason- 043

ing, coding, compared to its 7B counterpart which 044

is typically better suited for basic tasks such as 045

categorization or summaries. While these LLMs 046

demonstrate impressive performance in handling 047

complex language tasks, a key limitation is their 048

size and computational requirements. For instance, 049

the large-scale Falcon (Almazrouei et al., 2023) 050

180B model was trained using 4096 A100 GPUs 051

and requires large memory and compute for deploy- 052

ment with dedicated high-performance servers and 053

scalable storage systems. 054

Recently, Small Language Models (SLMs) have 055

shown potential in terms of providing decent perfor- 056

mance with emergent abilities achieved at a signifi- 057

cantly smaller scale compared to their large-scale 058

LLM counterparts. Modern SLMs like Microsoft’s 059

Phi-2 2.7 billion (Li et al., 2023b) highlight the 060

growing focus in the community on achieving more 061

with less. SLMs offer advantages in terms of effi- 062

ciency, cost, flexibility, and customizability. With 063

fewer parameters, SLMs offer significant compu- 064

tational efficiency in terms of fast pre-training and 065

inference with reduced memory and storage re- 066

quirements. This is critical in real-world applica- 067

tions where efficient resource utilization is highly 068

desired. It particularly opens up possibilities in 069

resource-constrained computing, where the models 070

are required to be memory efficient to operate on 071

low-powered devices (e.g., edge). SLMs support 072

on-device processing that enhances privacy, secu- 073

rity, response time, and personalization. Such an 074

integration can lead to advanced personal assistants, 075

cloud-independent applications, and improved en- 076

ergy efficiency with a reduced carbon footprint. 077

The landscape of language models, especially 078

SLMs, is currently marked by a notable lack of 079

open-source availability. While LLMs have gar- 080

nered significant attention, the proprietary nature of 081

most models has led to limited transparency and ac- 082
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cessibility, particularly in the realm of SLMs. This083

gap hinders the scientific and technological explo-084

ration of these more efficient, compact and perfor-085

mant models. Recognizing this, there’s a growing086

need in the community for fully transparent open-087

source SLMs, which would facilitate a deeper un-088

derstanding of their capabilities and limitations and089

spur innovation by allowing broader community ac-090

cess to their architecture and reproducible training091

methodologies. We argue that bridging this gap is092

crucial for democratizing access to collaborative ad-093

vancement for SLMs. Therefore, we investigate the094

problem of designing accurate yet efficient SLMs095

from scratch with the intention to provide full trans-096

parency in the form of access to entire training data097

pipeline and code, model weights, more than 300098

checkpoints along with evaluation codes.099

When designing a SLM from scratch it is de-100

sired that the resulting model is accurate, while101

maintaining efficiency in terms of pre-training and102

deployment. A straightforward way is to scale-103

down a larger LLM design to the desired model104

size (e.g., 0.5B) by reducing either the size of the105

hidden dimension layers or the number of layers.106

We empirically observe both these design strategies107

to provide inferior performance. This motivates us108

to look into an alternative way of designing a SLM109

from scratch that is accurate yet maintains the effi-110

ciency, while offering full transparency.111

Contributions: We introduce a SLM framework,112

named MobiLlama, with an aim to develop accurate113

SLMs by alleviating the redundancy in the trans-114

former blocks. Different to the conventional SLM115

design where dedicated feed forward layers (FFN)116

are typically allocated to each transformer block,117

we propose to employ a shared FFN design for all118

the transformer blocks within SLM. Our MobiL-119

lama leveraging a shared FFN-based SLM design120

is accurate and maintains efficiency, while offering121

full transparency in terms of data pipeline, training122

code, model weights and extensive intermediate123

checkpoints along with evaluation codes.124

We empirically show that our MobiLlama per-125

forms favorably compared to conventional SLMs126

design schemes when performing pre-training from127

scratch. Our MobiLlama 0.5B model outperforms128

existing SLMs of similar size on nine different129

benchmarks. MobiLlama 0.5B achieves a gain130

of 2.4% in terms of average performance on nine131

benchmarks, compared to the best existing 0.5B132

SLM in the literature. We further develop a 0.8B133

SLM that originates from our 0.5B model by uti-134

Figure 1: Comparison of our MobiLlama 0.5B and 0.8B
models with recent OLMo-1.17B (Groeneveld et al.,
2024) and TinyLlama-1.1B (Zhang et al., 2024a) in
terms of pre-training tokens, pre-training time and mem-
ory, model parameters, overall accuracy across nine
benchmarks and on-device efficiency (average battery
consumption and average token/second on a PC with
RTX2080Ti). Our MobiLlama achieves comparable ac-
curacy while requiring significantly fewer pre-training
data (1.2T tokens vs. 3T tokens), lesser pre-training
time and GPU memory along with being efficient in
terms of deployment on a resource constrained device.

lizing a wider shared-FFN scheme in transformer 135

blocks, achieving top performance among existing 136

SLMs falling under less than 1B parameters cate- 137

gory. Lastly, we build multimodal models on top of 138

our SLM to showcase visual perception and reason- 139

ing capabilities. Fig. 1 shows a comparison of our 140

MobiLlama with recent fully transparent relatively 141

larger SLMs in terms of accuracy, pre-training com- 142

plexity and on-board deployment cost. 143

2 Related Work 144

LLMs have become immensely popular but face 145

challenges with size and computational demands 146

during training and deployment, with limited avail- 147

ability of fully open-source models that provide 148

complete transparency (Zhao et al., 2023). Modern 149

efforts to enhance efficiency focus on optimizing 150

components like the attention mechanism (Dao, 151

2023) and employing strategies such as sparsifica- 152

tion (Ashkboos et al., 2024) and quantization (Hoe- 153

fler et al., 2021; Zhu et al., 2023; Xiao et al., 154

2023). Recently, the development of Small Lan- 155

guage Models (SLMs) has been emphasized for 156

use in resource-limited environments, aiming for 157

on-device processing to improve security and ef- 158

ficiency (Biderman et al., 2023; Wu et al., 2023; 159

Zhang et al., 2024a; Li et al., 2023a; Lin et al., 160

2021b; Shoeybi et al., 2019; Zhang et al., 2022). 161

Our work extends these efforts by focusing on re- 162
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Model #Params Training Time GPU Hours GPU memory No. of layers Hidden dim size Avg Accuracy

baseline1 0.54B 7.5 days 28.8K 3.2 GB 22 1024 32.97
baseline2 0.52B 7 days 26.9K 3 GB 8 2048 32.57
baseline3 0.22B 4.1 days 11.8K 3 GB 22 2048 21.78
large-base 1.2B 12 days 46.1K 1 GB 22 2048 36.08
MobiLlama 0.52B 7 days 26.6K 3 GB 22 2048 35.55

Table 1: Comparison of our MobiLlama with the two baselines and the large-base model. We show the comparison
in terms of total number of parameters, training time, total GPU hours, GPU memory, number of transformer layers
and the hidden dimension size in each layer. The numbers are computed on A100 GPUs with 80 GB memory
each. Compared to large-base, our MobiLlama reduces the GPU training hours by 42% along with a significant
reduction in GPU memory with the same design configuration (number of layers and hidden dimension size etc.).
Further, our MobiLlama possesses increased model capacity in terms of number of layers and hidden dimension size
while maintaining comparable training cost and parameters, compared to baseline1 and baseline2. Additionally,
MobiLlama demonstrates superior performance to baseline3 with similar capacity and enhanced efficiency due to its
full transformer block sharing.

ducing redundancy in SLMs through sharing mech-163

anisms in MLP blocks (Frantar et al., 2022; Gho-164

lami et al., 2022; Pires et al., 2023; Pan et al., 2023;165

Bhojanapalli et al., 2021).166

Recent studies have investigated the effects of167

reducing layers in neural architectures on capturing168

complex linguistic structures, with specific focus169

on the efficiency and necessity of attention mech-170

anisms (Voita et al., 2019; Michel et al., 2019).171

(Michel et al., 2019) highlights the critical roles172

of intermediate layers, while (Ma et al., 2023) ex-173

plores structural pruning to maintain performance174

post-training. Building upon these insights, our175

MobiLlama model enhances the interaction be-176

tween layers through a shared FeedForward Net-177

work (FFN), optimizing both the structural effi-178

ciency and the processing capability of the model.179

3 Method180

3.1 Baseline SLM Design181

We first describe our baseline 0.5B SLM architec-182

ture that is adapted from recent TinyLlama (Zhang183

et al., 2024a) and Llama-2 (Touvron et al., 2023).184

We consider two different design choices when con-185

structing a 0.5B model from scratch. In first design186

choice, named baseline1, the number of layer is187

set to N = 22 and hidden size of each layer is set188

to M = 1024. In second design choice, named189

baseline2, we set the number of layer to N = 8190

and hidden size of each layer is set to M = 2048.191

Additionally, We also experiment similar to the one192

in (Gao et al., 2022) by considering full transformer193

block sharing across all layers of the LLM referred194

to as baseline3 with N = 22 and M = 2048.195

We note that the aforementioned baseline de-196

signs struggle to strike an optimal balance between197

accuracy and efficiency. While a reduced size of198

hidden dimensions (1024) in case of baseline1 199

aids in computational efficiency, it can likely ham- 200

per the model’s capacity to capture complex pat- 201

terns within the data. Such a reduction in dimen- 202

sion can potentially lead to a bottleneck effect, 203

where the model’s ability to represent intricate re- 204

lationships and nuances in the data is constrained, 205

thereby affecting the overall accuracy. On the other 206

hand, reducing the number of hidden layers (22 to 207

8), as in the baseline2, affects the model’s depth 208

that in turn hampers its ability to learn hierarchical 209

representations of the language. Furthermore, by 210

sharing the entire transformer block across all lay- 211

ers as in the baseline3, limits the model capacity 212

by constraining all layers to learn identical features, 213

thereby reducing the model’s expressiveness and 214

flexibility to capture complex data variations. This 215

design can lead to overfitting specific training pat- 216

terns and impair learning dynamics due to shared 217

gradients. Moreover, such sharing hinders scal- 218

ability in larger models as diverse layer-specific 219

needs cannot be effectively addressed (Raganato 220

and Tiedemann, 2018). 221

Achieving superior performance on tasks requir- 222

ing deeper linguistic comprehension and contextual 223

analysis likely requires combining the advantages 224

of the two aforementioned designes (baseline1 and 225

baseline2). However, increasing the model capac- 226

ity of baseline1 and baseline2 into a single model 227

(22 layers and hidden dimension size of 2048) re- 228

sults in a significantly larger parameterized model 229

of 1.2B with increased training cost (see Tab. 1). 230

We name this larger model as large-base. Next, we 231

present our proposed MobiLlama 0.5B model de- 232

sign with the capacity of both the models baseline1 233

and baseline2, while maintaining a comparable 234

training efficiency (see Tab. 1). 235
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(self_attn1):LlamaAttention(q,k,v,o,rotary_embd)

(mlp1): LlamaMLP(
(gate_proj): Linear(in_feat=1024, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=1024)
(up_proj): Linear(in_feat=1024, out_feat=5632)
(act_fn): NewGELUActivation() )

(self_attn22): LlamaAttention(q,k,v,o,rotary_embd)

(mlp22): LlamaMLP(
(gate_proj): Linear(in_feat=1024, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=1024)
(up_proj): Linear(in_feat=1024, out_feat=5632)
(act_fn): NewGELUActivation() )

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒1(n_layers=22, hidden_dims=1024)

(self_attn1):LlamaAttention(q,k,v,o,rotary_embd)

(mlp1): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

(self_attn8): LlamaAttention(q,k,v,o,rotary_embd)

(mlp8): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒2(n_layers=8, hidden_dims=2048)

(self_attn1):LlamaAttention(q,k,v,o,rotary_embd)

(mlp): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

(self_attn22): LlamaAttention(q,k,v,o,rotary_embd)

(mlp): LlamaMLP(
(gate_proj): Linear(in_feat=2048, out_feat=5632)
(down_proj): Linear(in_feat=5632, out_feat=2048)
(up_proj): Linear(in_feat=2048, out_feat=5632)
(act_fn): NewGELUActivation() )

𝑴𝒐𝒃𝒊𝑳𝒍𝒂𝒎𝒂(n_layers=22, hidden_dims=2048)

Figure 2: Illustrative comparison of our MobiLlama with the two baselines. For each case, we show two transformer
blocks denoted by different self-attention layers. In the case of both baseline1 and baseline2, a dedicated MLP
block comprising three FFN layers is utilized for each transformer layer. In contrast, our MobiLlama utilizes a
single MLP block (highlighted by the same color) that is shared across different transformer layers. This enables to
increase the capacity of the network in terms of layers and hidden dimension size without any significant increase in
the total number of trainable parameters.

3.2 Proposed SLM Design: MobiLlama236

The proposed approach, MobiLlama, constructs a237

SLM of desired sizes (e.g., 0.5B model) by first238

initiating from a larger model size design, large-239

base. Then, we employ a careful parameter sharing240

scheme to reduce the model size to a pre-defined241

model configuration, thereby significantly reducing242

the training cost. Generally, both SLMs and LLMs243

typically utilize a dedicated multilayer perceptron244

(MLP) block comprising multiple feed forward net-245

work (FFN) layers within each transformer block.246

In such a configuration (e.g., large-base), the FFN247

layers account for a substantial 65% of the total248

trainable parameters, with attention mechanisms249

and heads contributing 30% and 5%, respectively.250

As a consequence, a significant number of parame-251

ters are concentrated within the FFN layers, thereby252

posing challenges during pre-training with respect253

to computational cost and the model’s ability to254

achieve faster convergence. To address these issues,255

we propose to use a sharing scheme where the FFN256

parameters are shared across all transformer layers257

within the SLM. This enables us to significantly258

reduce the overall trainable parameters by 60% in259

our MobiLlama, compared to the large-base. Such260

a significant parameter reduction also enables us261

to increase the model capacity in terms of number262

of layers and hidden dimension size without any263

substantial increase in the training cost (see Tab. 1).264

Fig. 2 compares our architecture design with two265

baselines. In case of both baselines, a dedicated266

MLP block that consists of multiple FFN layers267

is used in each transformer layer. Instead, our ef-268

ficient MobiLlama design utilizes a single MLP 269

block which is shared across different layers of 270

transformer within the SLM. This helps in increas- 271

ing the model capacity without any increase in the 272

total number of trainable parameters in the model. 273

3.3 Towards Fully Transparent MobiLlama 274

As discussed earlier, fully transparent open-source 275

SLM development is desired to foster a more inclu- 276

sive, data/model provenance, and reproducible col- 277

laborative SLM research development environment. 278

To this end, we present here pre-training dataset 279

and processing details, architecture design configu- 280

ration with training details, evaluation benchmarks 281

and metrics. In addition, we will publicly release 282

complete training and evaluation codes along with 283

intermediate model checkpoints. 284

Pre-training Dataset and Processing: For pre- 285

training, we use 1.2T tokens from LLM360 Amber 286

dataset (Liu et al., 2023b). The Amber dataset pro- 287

vides a rich and varied linguistic landscape having 288

different text types, topics, and styles. 289

Subset Tokens (Billion)

Arxiv 30.00
Book 28.86
C4 197.67
Refined-Web 665.01
StarCoder 291.92
StackExchange 21.75
Wikipedia 23.90

Total 1259.13

Table 2: Data mix in Amber-Dataset.
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Model Name #Params HellaSwag Truthfulqa MMLU Arc_C CrowsPairs piqa race siqa winogrande Average

gpt-neo-125m 0.15B 30.26 45.58 25.97 22.95 61.55 62.46 27.56 40.33 51.78 40.93
tiny-starcoder 0.17B 28.17 47.68 26.79 20.99 49.68 52.55 25.45 38.28 51.22 37.86
cerebras-gpt-256m 0.26B 28.99 45.98 26.83 22.01 60.52 61.42 27.46 40.53 52.49 40.69
opt-350m 0.35b 36.73 40.83 26.02 23.55 64.12 64.74 29.85 41.55 52.64 42.22
megatron-gpt2-345m 0.38B 39.18 41.51 24.32 24.23 64.82 66.87 31.19 40.28 52.96 42.81
LiteLlama 0.46B 38.47 41.59 26.17 24.91 62.90 67.73 28.42 40.27 49.88 42.26
gpt-sw3-356m 0.47B 37.05 42.55 25.93 23.63 61.59 64.85 32.15 41.56 53.04 42.48
pythia-410m 0.51B 40.85 41.22 27.25 26.19 64.20 67.19 30.71 41.40 53.12 43.57
xglm-564m 0.56B 34.64 40.43 25.18 24.57 62.25 64.85 29.28 42.68 53.03 41.87
Lamini-GPT-LM 0.59B 31.55 40.72 25.53 24.23 63.09 63.87 29.95 40.78 47.75 40.83
MobiLlama (Ours) 0.5B 52.52 38.05 26.45 29.52 64.03 72.03 33.68 40.22 57.53 46.00

Lamini-GPT-LM 0.77B 43.83 40.25 26.24 27.55 66.12 69.31 37.12 42.47 56.59 45.49
MobiLlama (Ours) 0.8B 54.09 38.48 26.92 30.20 64.82 73.17 33.37 41.60 57.45 46.67

Table 3: State-of-the-art comparisons with existing < 1B params models on nine benchmarks. In case of around
0.5B model series, our MobiLlama achieves a substantial gain of 2.4% in terms of average performance on nine
benchmarks. Further, our MobiLlama 0.8B model achieves an average score of 46.67.

Table 2 represents the data mix from Am-290

ber Dataset gathered from various sources. The291

dataset’s comprehensive nature supports the292

model’s ability to grasp subtle distinction of lan-293

guage, enhancing its performance on a variety294

of tasks, from language understanding to content295

generation. From the above-mentioned subsets,296

Arxiv, Book, C4, StackExchange and Wikipedia297

are sourced from RedPajama-v1 (Computer, 2023).298

The Amber dataset uses RefinedWeb (Penedo et al.,299

2023) data to replace common_crawl subset of300

RedPajama-v1. These subsets amount to 1259.13301

billion tokens.302

Initially, raw data sourced from the above303

sources is tokenized using Huggingface LLaMA to-304

kenizer (Touvron et al., 2023). Subsequently, these305

tokens are organized into sequences with each con-306

taining 2048 tokens. To manage data, these se-307

quences are merged to the token sequences and308

divided the amalgamated dataset into 360 distinct309

segments. Each data segment, structured as a jsonl310

file, carries an array of token IDs along with a311

source identifier that denotes the originating dataset.312

Each data sample is designed to have 2049 tokens.313

Architecture Design: Tab. 4 presents details of314

our model configuration. We utilize RoPE (Rotary315

Positional Embedding) (Su et al., 2024) to encode316

positional information in our MobiLlama. Similar317

to (Zhang et al., 2024a), we employ a combination318

of Swish and Gated Linear Units together as ac-319

tivation functions. We also derive a 0.8B version320

from our MobiLlama by widening the shared FFN321

design. Compared to the 0.5B model, our 0.8B322

design increases the hidden dimension size to 2532323

and the intermediate size to 11,080 while the rest324

of the configuration is maintained same.325

Hyperparameter Value

Number Parameters 0.5B
Hidden Size 2048
Intermediate Size (in MLPs) 5632
Number of Attention Heads 32
Number of Hidden Layers 22
RMSNorm ϵ 1e−6

Max Seq Length 2048
Vocab Size 32000

Table 4: MobiLlama architecture & hyperparameters.

For pre-training of our MobiLlama, we use a 326

public cluster having 20 GPU nodes each equipped 327

with 8 NVIDIA A100 GPUs with 80 GB mem- 328

ory each and 800 Gbps interconnect for model 329

training. Each GPU is interconnected through 8 330

NVLink links, complemented by a cross-node con- 331

nection configuration of 2 port 200 Gb/sec (4× 332

HDR) InfiniBand, optimizing the model’s training 333

process. To further enhance the training efficiency, 334

we employ flash-attention mechanism and follow 335

the pre-training hyper-parameters established by 336

the LLaMA (Touvron et al., 2023) model. Our 337

MobiLlama model’s training is performed using 338

the AdamW optimizer, leveraging hyperparameters 339

β1 = 0.9, β2 = 0.95, with an initial learning rate 340

of η = 3e−4. This rate follows a cosine learning 341

rate schedule, tapering to a final rate of η = 3e−5. 342

We further incorporate a weight decay of 0.1 and 343

apply gradient clipping at 1.0 with a warm-up pe- 344

riod over 2, 000 steps. Adapting to our hardware 345

configuration of 20 GPU nodes, we optimize the 346

pre-training batch size to 800 (160× 5), achieving 347

a throughput of approximately 14k-15k tokens per 348

second on a single GPU. During our model pre- 349

training, we save intermediate checkpoints after 350

every 3.3B tokens which will be publicly released. 351
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Evaluation Benchmarks and Metrics: For a com-352

prehensive performance evaluation, we use nine353

different benchmarks from the Open LLM Leader-354

board1. HellaSwag (Zellers et al., 2019) assesses355

the model’s ability to predict the correct ending356

to a scenario from a set of possible continuations,357

thereby testing common sense reasoning. Truth-358

fulQA (Lin et al., 2021a) evaluates the model to359

provide truthful answers, focusing on its under-360

standing of facts and its ability to avoid decep-361

tion. MMLU (Hendrycks et al., 2020) measures362

the model’s broad knowledge across numerous sub-363

jects such as, humanities, science, technology, engi-364

neering and management. ARC_Challenge (Clark365

et al., 2018) tests complex reasoning with science366

questions. CrowsPairs (Nangia et al., 2020) evalu-367

ates the model’s biases by comparing sentences that368

differ only by the demographic group mentioned,369

aiming for fairness. PIQA (Bisk et al., 2020) eval-370

uates the model’s physical commonsense knowl-371

edge, requiring understanding of everyday physical372

processes. Race (Lai et al., 2017) assesses read-373

ing comprehension through multiple-choice ques-374

tions based on passages. SIQA (Sap et al., 2019)375

focuses on the model’s social commonsense rea-376

soning and its understanding of social dynamics.377

Winogrande (Sakaguchi et al., 2021) evaluates the378

model’s ability to resolve ambiguities in text, test-379

ing its commonsense reasoning.380

Following the Analysis-360 framework (Liu381

et al., 2023b) that is built on llm-harness (Gao382

et al., 2023), we conduct extensive evaluations un-383

der the standard settings. Following the standard384

evaluation protocol, our evaluation setting consists385

of 10, 25, 5 and 5 shot evaluation for Hellaswag,386

ARC_Challenge, Winogrande and MMLU, while387

zero-shot for rest of the benchmarks.388

4 Results389

Baseline Comparison: We first present a com-390

parison with the two baselines in Tab. 5). For the391

baseline evaluation, we pre-train all the models392

on the same 120B tokens from the Amber dataset393

and report the results on four benchmarks: Hel-394

laSwag, TruthfulQA, MMLU, and Arc_C. Our395

MobiLlama achieves favourable performance com-396

pared to baseline1 and baseline2 and significantly397

outperform baseline3 by achieving an average398

score of 35.55 over the four benchmarks. We399

note that this performance improvement is achieved400

1
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Model HellaSwag Truthfulqa MMLU Arc_C Average

baseline1 42.44 38.16 25.12 26.18 32.97
baseline2 43.66 38.54 25.76 26.32 33.57
baseline3 28.41 25.02 16.68 17.01 21.78
MobiLlama 48.42 39.36 26.56 27.88 35.55

Table 5: Baseline comparison on four benchmarks.
Here, both the baselines and our MobiLlama comprise
the same parameters (0.5B) and are pre-trained on 120B
tokens from Amber. Our MobiLlama achieves favorable
performance compared to the three baselines, while op-
erating on a similar training budget.

without any significant increase in the training cost 401

(see Tab. 1), highlighting the merits of the proposed 402

SLM design. 403

State-of-the-art Comparison: We compare our 404

MobiLlama 0.5B and 0.8B with existing SLMs 405

having comparable (less than 1B) parameters: gpt- 406

neo (Black et al., 2021), tiny-starcoder (Li et al., 407

2023a), cerebras-gpt (Dey et al., 2023), opt (Zhang 408

et al., 2022), megatron-gpt-2 (Shoeybi et al., 2019), 409

LiteLlama, gpt-sw3, pythia (Biderman et al., 2023), 410

xglm (Lin et al., 2021b), Lamini-LM (Wu et al., 411

2023). Among existing methods falling around 412

0.5B model series category, pythia-410m achieves 413

an average score of 43.57. Our MobiLlama 0.5B 414

model achieves superior performance with an av- 415

erage score of 46.0, outperforming pythia-410m 416

by 2.4% in terms of average performance on nine 417

benchmarks. Notably, MobiLlama achieves su- 418

perior performance on the HellaSwag benchmark 419

which is designed to evaluate the model’s capabili- 420

ties in the NLP text completion task. Further, Mo- 421

biLlama also performs favorably on commonsense 422

reasoning tasks with superior results on piqa and 423

winogrande benchmarks. Further, our MobiLlama 424

0.8B model achieves an average score of 49.06. 425

Efficiency Comparison: We present the compar- 426

ison of our model in terms of efficiency and re- 427

source consumption on various low-end hardware 428

platforms: a PC with RTX-2080Ti GPU, a laptop 429

with i7 CPU, and a smartphone with Snapdragon- 430

685 processor. Tab. 6 shows the comparison of our 431

MobiLlama 0.5B with large-base 1.2B, Llama2- 432

7B (Touvron et al., 2023) and Phi2-2.7B (Li et al., 433

2023b) model, in terms of the average processing 434

speed in tokens per second (Average Tokens/Sec), 435

average memory consumption (Avg Memory Con- 436

sumption) in megabytes (MB), and the average 437

battery consumption (Average Battery Consump- 438

tion/1000 Tokens) in milliampere-hours (mAH). 439

Our MobiLlama performs favorably in terms of 440

efficiency across different hardware platforms. 441
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Platform Model
#Params

Precision
Avg Tokens/Sec Avg Memory Avg Battery Consumption CPU

(↓) (↑) Consumption (↓) /1k Tokens (↓) Utilization (↓)
R

T
X

20
80

Ti

Llama2 7B bf16 14.85 27793 MB 135.51 mAH 31.62%
Phi2 2.7B bf16 32.19 12071 MB 59.13 mAH 24.73%
large-base 1.2B bf16 50.61 6254 MB 18.91 mAH 18.25%
MobiLlama 0.5B bf16 63.38 3046 MB 8.19 mAH 14.79%

C
PU

-i
7

Llama2 7B 4bit 5.96 4188 MB 73.5 mAH 49.16%
Phi2 2.7B 4bit 22.14 1972 MB 27.36 mAH 34.92%
large-base 1.2B 4bit 29.23 1163 MB 10.81 mAH 30.84%
MobiLlama 0.5B 4bit 36.32 799 MB 4.86 mAH 24.64%

Sn
ap

dr
ag

on
-6

85 Llama2 7B 4bit 1.193 4287 MB 10.07 mAH 77.41%
Phi2 2.7B 4bit 2.882 1893 MB 14.61 mAH 56.82%
large-base 1.2B 4bit 6.687 780 MB 6.00 mAH 17.15%
MobiLlama 0.5B 4bit 7.021 770 MB 5.32 mAH 13.02%

Table 6: Comparison in terms of efficiency and resource consumption on different low-end hardware devices. We
show the comparison on: a PC with RTX-2080Ti GPU, a laptop with i7 CPU and a smartphone with Snapdragon-685
processor. In addition to our large-base model, we also present the comparison with Llama2 7B and Phi2 2.7B. In
case of CPU and smartphone, we use 4-bit GGUF format of the corresponding models, whereas the original models
are deployed and tested on PC with RTX-2080Ti GPU. The different metrics measure the model’s operational
efficiency, model’s footprint in the device’s RAM and the energy efficiency of processing 1,000 tokens. Our
MobiLlama performs favorably in terms of efficiency on these low-end hardware devices. We note that both Phi2
and Llama2 are not fully transparent in that the complete data pipeline for pre-training is not publicly available.

Model #Slice #Params HellaS Arc_C piqa wino Average

OPT-1.3B 30% 0.91B 39.81 25.77 60.77 54.7 45.26
OPT-6.7B 30% 4.69B 54.56 29.01 68.61 60.69 53.21
Llama-2-7B 30% 4.9B 49.62 31.23 63.55 61.33 51.43
Phi2-2.7B 30% 1.89B 47.56 30.29 65.94 63.14 51.73

Dense 0.5B 52.52 29.52 72.03 57.53 52.90MobiLlama
Dense 0.8B 54.09 30.20 73.17 57.45 53.72

Table 7: Comparison on 4 open LLM benchmarks when
parameters are sliced down to 30% using Wiki2Text
dataset, following (Ashkboos et al., 2024).

Model GQA SQA TextQA MME

MobiLlama-V 58.5 53.1 41.4 1191.9

Table 8: Quantitative performance of our multimodal
design, MobiLlama-V 0.8B, on different benchmarks.

We further perform an efficiency comparison to442

a recent post-training sparsification scheme (Ashk-443

boos et al., 2024), where each weight matrix is sub-444

stituted with a smaller (dense) matrix, thereby re-445

ducing dimensions of the embeddings in the model.446

In such a scheme, the parameters of the original447

LLM are reduced significantly up to 70% followed448

by post-slicing fine-tuning using a dataset such as449

WikiText-2 (Merity et al., 2016). Tab. 7 shows the450

comparison of our MobiLlama with existing LLMs451

(e.g., Llama-2-7B, OPT-6.7B) on four benchmarks452

following (Ashkboos et al., 2024). Our MobiL-453

lama 0.5B and 0.8B models perform favorably454

against representative LLMs, with an average score455

of 53.72 computed over four benchmarks. These re-456

sults highlight the potential of designing new fully457

transparent SLMs that can achieve comparable ca- 458

pabilities of their larger sliced model counterparts. 459

Multimodal MobiLlama: We further build a mul- 460

timodal model on top of our MobiLlama by combin- 461

ing it with a vision encoder to develop a general- 462

purpose visual assistant having visual reasoning 463

capabilities. Our multimodal model, MobiLlama- 464

V , is trained by bridging the visual encoder of 465

CLIP (Radford et al., 2021) with the language 466

decoder of our MobiLlama, and fine-tuning it in 467

an end-to-end fashion on a 665k vision-language 468

instruction set (Liu et al., 2023a). We conduct 469

evaluation on GQA (Hudson and Manning, 2019), 470

SQA (Lu et al., 2022), TextQA (Singh et al., 2019), 471

and MME (Fu et al., 2023). Tab. 8 shows the per- 472

formance of MobiLlama-V 0.8B model. 473

Evaluating Large-base Model: As discussed ear- 474

lier, we strive to develop fully transparent mod- 475

els for democratization of SLMs and fostering fu- 476

ture research. To this end, we compare our large- 477

base 1.2B with existing fully transparent SLMs 478

falling within the less than 2B category. These 479

existing SLMs are: Boomer, pythia (Biderman 480

et al., 2023), Falcon-RW (Penedo et al., 2023), 481

TinyLlama (Zhang et al., 2024b), OLMo (Groen- 482

eveld et al., 2024), cerebras-gpt (Dey et al., 2023), 483

Lamini-LM (Wu et al., 2023), opt (Zhang et al., 484

2022) and gpt-neo (Black et al., 2021). Tab. 9 485

shows that compared to recent OLMo and TinyL- 486

lama that are pre-trained on a larger dataset of 3T 487
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Model #Params HellaSwag Truthfulqa MMLU Arc_C CrowsPairs piqa race siqa winogrande Average

Boomer 1B 31.62 39.42 25.42 22.26 61.26 57.99 28.99 40.32 50.98 39.80
Pythia-Dedup 1B 49.63 38.92 24.29 29.09 67.11 70.23 32.44 42.63 53.98 45.36
Falcon-RW 1B 63.12 35.96 25.36 35.06 69.04 74.10 36.07 40.23 61.88 48.98
TinyLlama 1.1B 60.22 37.59 26.11 33.61 70.60 73.28 36.45 41.65 59.18 48.74
OLMo 1.2B 62.50 32.94 25.86 34.45 69.59 73.70 36.74 41.14 58.90 48.42
Cerebras-GPT 1.3B 38.51 42.70 26.66 26.10 63.67 66.75 30.33 42.42 53.59 43.41
Lamini 1.3B 38.05 36.43 28.47 26.62 64.62 67.89 33.39 43.19 50.59 43.25
OPT 1.3B 54.50 38.67 24.63 29.6 70.70 72.47 34.16 42.47 59.74 47.43
GPT-NEO 1.3B 48.49 39.61 24.82 31.31 65.67 71.05 34.06 41.81 57.06 45.98
Pythia-Deduped 1.4B 55.00 38.63 25.45 32.59 67.33 72.68 34.64 42.68 56.90 47.32
large-base 1.2B 62.99 35.90 24.79 34.55 68.49 75.57 35.31 41.96 62.03 49.06

Table 9: Comprehensive comparisons with existing < 2B params fully open-source LLM models on 9 benchmarks.
Our 1.2B large-base model pre-trained on 1.2T tokens achieves superior performance compared to both the recent
OLMo 1.17B model (Groeneveld et al., 2024) and TinyLlama 1.1B model (Zhang et al., 2024a), which are pre-
trained on a substantially larger data of 3T tokens.

Model #Params Training GPU GPU
Time Hours Memory

MobiLlama-0.5B 0.52B 0.58 days 2.20 K 3.0 GB
large-base-1.2B 1.2B 1.7 days 4.92 K 6.2 GB

Table 10: Training comparison of our MobiLlama-0.5B
vs. standard non-shared SLM large-base pre-trained on
120B tokens from Amber dataset.

Model Load (ms) Init (ms) Forward-Pass (ms)

large-base-1.2B 52 1896 15.7
MobiLlama-0.5B 27 642 9.3

Table 11: Latency analysis of our MobiLlama-0.5B
vs. large-base using a profiler at inference time on
RTX2080Ti.

tokens, our large-base 1.2B model pre-trained on488

1.2T tokens achieves favourable results with an av-489

erage score of 49.06 over nine benchmarks. We490

hope that our large-base model will serve as a solid491

baseline and help ease future research in SLM.492

Why proposed FFN Sharing Works?: Our Mo-493

biLlama model utilizes a shared FeedForward Net-494

work (FFN) across all transformer layers to signif-495

icantly enhance the efficiency of Small Language496

Models (SLMs). This approach reduces the to-497

tal number of unique parameters, thereby lower-498

ing memory usage and accelerating the training499

process. By employing the same FFN unit across500

different layers, MobiLlama optimizes neural pro-501

cessing uniformity, enhancing the model’s ability502

to generalize across various contexts. This not only503

saves computational resources during extensive504

pre-training but also sustains high performance,505

essential for deployment on resource-limited de-506

vices. During pre-training, gradient computation507

and backpropagation occur once per FFN instead508

of repeatedly across layers, streamlining the learn-509

ing process as shown in Tab. 10. Moreover, during 510

inference, MobiLlama’s architecture avoids the fre- 511

quent weight switching of FFN blocks between con- 512

secutive layers, leading to faster processing speeds 513

and improved latency as demonstrated in Tab. 11. 514

This highlights the operational benefits and advan- 515

tages of our shared FFN design. 516

5 Conclusion 517

We present a fully transparent SLM, MobiLlama, 518

that alleviates redundancy in the transformer block. 519

Within MobiLlama, we propose to utilize a shared 520

FFN design for all the blocks within the SLM. Our 521

MobiLlama is accurate yet efficient in terms of 522

training cost, on-device memory and storage effi- 523

ciency. We evaluate MobiLlama on nine bench- 524

marks, achieving favourable results compared to 525

existing methods falling under less than 1B cate- 526

gory. We also build a multimodal model on top 527

of MobiLlama SLM to demonstrate visual reason- 528

ing capabilities. We hope that our MobiLlama will 529

help accelerate research efforts towards building 530

fully-transparent, accurate yet efficient SLMs that 531

bridge the gap with their resource hungry LLM 532

counterparts. 533

Limitation and Future Direction: A potential 534

direction is to further improve MobiLlama for en- 535

hanced context comprehension and understanding 536

subtlety of linguistic nuances. Domain-specific 537

expertise of the model can also be explored (e.g., 538

healthcare). While MobiLlama offers a fully trans- 539

parent SLM framework, a follow-up study to under- 540

stand any misrepresentations and biases is desired 541

to improve model’s robustness. While MobiLlama 542

marks a significant stride in the development of 543

lightweight, efficient language models, it is not 544

without limitations. 545
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A Appendix 825

Qualitative Analysis: Fig. 3 shows example re- 826

sponses obtained when interacting with MobiLlama 827

0.5B with conversation capabilities. We show ex- 828

amples covering different tasks such as, text com- 829

pletion, code generation and conversation capabil- 830

ities. Our model generates faithful responses to 831

these diverse interactions such as, asking to gener- 832

ate specific code snippet, cooking recipe and gen- 833

erating a poem about a specific topic (e.g., climate 834

change). Fig. 4 shows examples demonstrating 835

visual reasoning capabilities of our multimodal 836

MobiLlama-V . For instance, MobiLlama-V ac- 837

curately describes the atypical aspects of the image 838

when asked to describe the given image. 839

More on Experimental Comparisons: Our 840

work strives towards achieving two objectives: 841

(i) improved accuracy while maintaining similar 842

pre-training cost (pre-training time, GPU hours 843

and GPU memory), (ii) better trade-off at infer- 844

ence/deployment in terms of accuracy and speed. 845

To achieve the first objective, we empirically show 846

in Tab. 5 that the proposed MobiLLama 0.5B model 847

achieves superior accuracy compared to the two 848

baseline 0.5B models of similar parameters un- 849

der identical pre-training settings in terms of pre- 850

training data (120B tokens), number of iterations, 851

and hyper-parameters. Further, Tab. 1 in our paper 852

shows that the proposed MobiLLama 0.5B model 853

requires comparable pre-training cost compared to 854

the two baseline 0.5B models. The comparable 855

pre-training time between our MobiLLama 0.5B 856

and the two baseline 0.5B models is likely due to 857

identical unique trainable parameters. In the table 858

below, we summarize the comparison between our 859

MobiLLama 0.5B and the two baseline 0.5B mod- 860

els in terms of pre-training cost and accuracy under 861

identical pre-training settings. 862

More on Pre-training Dataset: Arxiv (30 Billion 863

Tokens) subset is drawn from the repository of sci- 864

entific papers, provides complex, domain-specific 865

language and technical terminology, enriching the 866

understanding of academic prose. Book (28.9 Bil- 867

lion Tokens) subset comprises tokens from a broad 868

range of literature with diverse narrative styles, 869

cultural contexts, and rich vocabulary, deepening 870

the grasp of storytelling and language nuances. 871

C4 (197.7 Billion Tokens) is the Colossal Clean 872

Crawled Corpus (C4) that offers a vast and cleaned 873

selection of web text, providing a broad linguistic 874

foundation that includes various registers, styles, 875
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On a bright sunny day ...

10 years ago, I was standing in the
middle of my backyard with an empty
beer bottle and some old magazines. I
had just finished reading “The Artist’s
Way” by Julia Cameron when she said
something that stuck to me for many
months afterward: The artist is not
always right; he or her may even have
been wrong at one time but has since
changed his mind about .....

Write a Python function that calculates 
the factorial of a given number.

Sure, here's a Python function that
calculates the factorial of a given
number:
```python
def factorial(n):

if n == 0:
return 1

else:
return n * factorial(n-1)

```

Explain the economic factors contributing 
to the rise or fall of a country's currency.

Some of the factors that contribute to 
the rise or fall of a country's currency 
includes : 
1. Interest rates: The interest rates in 

a country's currency can affect …….
2. Exchange rates: The exchange 

rates between the currency of a …..
3. Central Bank policies: The policies 

of the central …..
4. Political instability: Political 

instability can ……

Write steps on how to cook a pizza?

Sure! Here are the steps:
1. Preheat the oven to 400°F (200°C) 
and line a baking sheet with parchment 
paper.
2. Spread the pizza dough with a thin 
layer of tomato sauce, mozzarella 
cheese, and basil.
3. Bake the pizza for 10-12 minutes, or 
until the cheese is melted and the crust 
is golden brown. ……..

Figure 3: Example responses from our MobiLlama across a variety of tasks, including creative storytelling, coding
exercises, economic analysis, and cooking instructions. The responses highlight the models’ ability to engage with
both abstract concepts and practical, step-by-step processes, demonstrating its broad applicability and sophisticated
language processing capabilities.

Input 
Image

Human : Describe this image in detail.

MobiLlama :

The image depicts a group of people walking
through a rocky, hilly terrain, likely on a mountain
trail. There are at least 13 people in the scene,
with some of them carrying backpacks. The group
is spread out along the trail, with some people
walking closer to the camera and others further in
the background. The people appear to be
enjoying their walk, possibly exploring the area or
taking a break from their journey.

Input 
Image

Human : What does the provided image contain ?

MobiLlama :
The image shows a tray with a variety of food
items, including a sandwich, fruit, vegetables,
and a sauce. There are also napkins and a plate
with a small meal.

Input 
Image

Human : What are people in image doing ?

MobiLlama :
These people in the image are performing a trick
where they are in mid-air, balancing on their
toes. They are all jumping together, showcasing
their athleticism and skill in balancing and
performing tricks. They are all in the air, with
their feet hanging off the ground, demonstrating
their ability to maintain balance and control
during the performance.

Input 
Image

Human : Write a suitable poem for this scene.

MobiLlama :

As the night falls,
The bridge stands tall,

A medieval wonder,
A sight to behold,

In the midst of the forest,
A bridge that holds the heart,

Of those who pass by,
And those who walk on it,
A bridge that transcends,
The world, and the time.

Human : How to prepare the food shown in an 
image ?
MobiLLama :
To make this food, you would need to prepare a
sandwich, which typically involves spreading a
sauce on …..

Figure 4: Example responses of MobiLlama-V in responding to visual stimuli across a range of scenarios. From
describing a group’s mountainous trek to poetic reflections on a scene, MobiLlama demonstrates a nuanced
understanding of both the physical and emotive layers present in images. These qualitative responses highlight
MobiLlama’s capacity for detailed observation, creative interpretation, and generating contextually relevant textual
content, affirming its potential in bridging the gap between visual perception and linguistic expression..

and topics. Refined-Web (665 Billion Tokens) sub-876

set is a curated web crawl and offers the model877

exposure to contemporary, informal, and varied878

internet language, enhancing the relevance and ap-879

plicability to modern communication. StarCoder880

(291.9 Billion Tokens) subset is a vast collection881

used for code understanding featuring 783GB of882

code across 86 programming languages. It includes883

GitHub issues, Jupyter notebooks, and commits, to-884

taling approximately 250 billion tokens. These are885

meticulously cleaned and de-duplicated for train-886

ing efficiency. StackExchange (21.8 Billion Tokens)887

is from the network of Q&A websites, this sub-888

set aids the model in learning question-answering889

formats and technical discussions across diverse890

topics. Wikipedia (23.9 Billion Tokens) is an en-891

cyclopedia collection, it offers well-structured and892

factual content that helps the model to learn ency-893

clopedic knowledge and formal writing styles.894
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