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ABSTRACT

We investigate the optimization of multilayer perceptrons on symmetric data. We
compare the strategy of constraining the architecture to be equivariant to that of
using augmentation. We show that, under natural assumptions on the loss and
non-linearities, the sets of equivariant stationary points are identical for the two
strategies, and that the set of equivariant layers is invariant under the gradient flow
for augmented models. Finally, we show that stationary points may be unstable for
augmented training although they are stable for the equivariant models.

1 INTRODUCTION

In machine learning, the general goal is to find ’hidden’ patterns in data. However, there are sometimes
symmetries in the data that are known a priori. Incorporating these manually should, heuristically,
reduce the complexity of the learning task. In this paper, we are concerned with training networks,
more specifically multilayer perceptrons (MLPs) as defined below, on data exhibiting symmetries that
can be formulated as equivariance under a group action. A standard example is the case of translation
invariance in image classification.

More specifically, we want to theoretically study the connections between two general approaches to
incorporating symmetries in MLPs. The first approach is to construct equivariant models by means
of architectural design. This framework, known as Geometric Deep Learning Bronstein et al. (2017;
2021), exploits the geometric origin of the group G of symmetry transformations by choosing the
linear MLP layers and nonlinearities to be equivariant (or invariant) with respect to the action of G. In
other words, the symmetry transformations commute with each linear (or affine) map in the network,
which results in an architecture which manifestly respects the symmetry G of the problem. One
prominent example is the spatial weight sharing of convolutional neural networks (CNNs) which are
equivariant under translations. Group equivariant convolution networks (GCNNs) Cohen and Welling
(2016); Weiler et al. (2018); Kondor and Trivedi (2018) extends this principle to an exact equivariance
under more general symmetry groups. The second approach is agnostic to model architecture, and
instead attempts to achieve equivariance during training via data augmentation, which refers to the
process of extending the training to include synthetic samples obtained by subjecting training data to
random symmetry transformations.

Both approaches have their benefits and drawbacks. Equivariant models use parameters efficiently
through weight sharing along the orbits of the symmetry group, but are difficult to implement and
computationally expensive to evaluate in general, since they entail numerical integration over the
symmetry group (see, e.g., Kondor and Trivedi (2018)). Data augmentation, on the other hand,
is agnostic to the model structure and easy to adapt to different symmetry groups. However, the
augmentation strategy is by no means guaranteed to achieve a model which is exactly equivariant: the
hope is that model will ’automatically’ infer invariances from the data, but there are few theoretical
guarantees. Also, augmentation in general entails an inefficient use of parameters and an increase in
model complexity and training required.

In this paper, we study equivariant MLPs, which can be characterized by their weights lying in
a special subspace E of the entire parameter space L (both formally defined below). We use
representation theory to compare and analyze the dynamics of gradient flow training of MLPs
adhering to either the equivariant or augmented strategy. In particular, we study their stationary
points, i.e., the potential limit points of the training, in E . The equivariant models (of course) have
optima for their gradient flow there and so are guaranteed to produce a trained model which respects
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the symmetry. However, the dynamics under augmented training has previously not been exhaustively
explored.

Our main contributions are as follows: First, we provide a technical statement (Lemma 4) about the
augmented risk: We show that it can be expressed as the nominal risk averaged over the symmetry
group acting on the layers of the MLP. Using this formulation of the augmented risk, we apply
standard methods from the analysis of dynamical systems to show:

(i) The subspace E is invariant under the gradient flow of the augmented model (Corollary 1).
In other words, if the augmented model is equivariantly initialized, it will remain equivariant
during training.

(ii) The set of stationary points in E for the augmented model is identical to that of the equivariant
model (Corollary 2). In other words, compared to the equivariant approach, augmentation
introduces no new equivariant stationary points, nor does it exclude existing ones.

(iii) The set of strict local minima in E for the augmented model is a subset of the corresponding set
for the equivariant model. (Proposition 3). In other words, the existence of a stable equivariant
minimum is not guaranteed by augmentation.

In addition, we perform experiments on different learning tasks, with different symmetry groups, and
discuss the results in the context of our theoretical developments.

2 RELATED WORK

The group theory based model for group augmentation we use here is heavily inspired by the
framework developed in Chen et al. (2020). Augmentation and manifest invariance/equivariance
have been studied from this perspective in a number of papers Lyle et al. (2019; 2020); Mei et al.
(2021); Elesedy and Zaidi (2021). More general models for data augmentation have also been
considered Dao et al. (2019). Previous work has mostly mostly been concerned with so-called kernel
and feature-averaged models (see Remark 2 below), and in particular, fully general MLPs as we
treat them here have not been considered. The works have furthermore mostly been concerned with
proving statistical properties of the models, and not study their dynamic at training. An exception
is Lyle et al. (2020), in which it is proven that in linear scenarios, the equivariant models are optimal,
but little is known about more involved models.

The dynamics of training linear equivariant networks (i.e., MLPs without nonlinearities) has been
given some attention in the literature. Linear networks is a simplified, but nonetheless popular
theoretical model for analysing neural networks Bah et al. (2022). In (Lawrence et al., 2022),
the authors analyse the implicit bias of training a linear neural network with one fully connected
layer on top of an equivariant backbone using gradient descent. They also provide some numerical
results for non-linear models, but no comparison to data augmentation is made. In Chen and Zhu
(2023), completely equivariant linear networks are considered, and an equivalence result between
augmentation and restriction is proven for binary classification tasks. However, more realistic MLPs
involving non-linearities are not treated at all.

Empirical comparisons of training equivariant and augmented non-equivariant models are common
in the literature. Most often, the augmented models are considered as baselines for the evaluation
of the equivariant models. More systemic investigations include Gandikota et al. (2021); Müller
et al. (2021); Gerken et al. (2022). Compared to previous work, our formulation differs in that the
parameter of the augmented and equivariant models are defined on the same vector spaces, which
allows us to make a stringent mathematical comparison.

3 MATHEMATICAL FRAMEWORK

Let us begin by setting up the framework. We let X and Y be vector spaces and D(x, y) be a joint
distribution on X × Y . We are concerned with training an MLP ΦA : X → Y so that y ≈ ΦA(x).
The MLP has the form

x0 = x, xi+1 = σi(Aixi), i ∈ [L] = {0, . . . , L− 1}, ΦA(x) = xL, (1)
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where Ai : Xi → Xi+1 are linear maps (layers) between (hidden) vector spaces Xi with X = X0

and Y = XL, and σi : Xi+1 → Xi+1 are non-linearities.1 Note that A = (Ai)i∈[L] parameterizes
the network since the non-linearities are assumed to be fixed. We denote the vector space of possible
linear layers with L =

⊕
i∈[L] Hom(Xi, Xi+1), where Hom(Xi, Xi+1) is the space of linear maps

Xi → Xi+1. To train the MLP, we optimize the nominal risk

R(A) = ED(ℓ(ΦA(x), y)), (2)

where ℓ : Y × Y → R is a loss function, using gradient descent. In fact, to simplify the analysis, we
will mainly study the gradient flow of the model, i.e., set the learning rate to be infinitesimal.

3.1 REPRESENTATION THEORY AND EQUIVARIANCE

Throughout the paper, we aim to make the MLP equivariant towards a group of symmetry trans-
formations of the space X × Y . That is, we consider a group G acting on the vector spaces X and
Y through representations ρX and ρY , respectively. A representation ρ of a group G on a vector
space V is a map from the group G to the group of invertible linear maps GL(V ) on V that respects
the group operation, i.e. ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G. The representation ρ is unitary if
ρ(g) is unitary for all g ∈ G. A function f : X → Y is called equivariant with respect to G if
f ◦ ρX(g) = ρY (g) ◦ f for all g ∈ G. We denote the space of equivariant linear maps U → V by
HomG(U, V ).

Let us recall some important examples that will be used throughout the paper.

Example 1. A simple, but important, representation is the trivial one, ρtriv(g) = id for all g ∈ G. If
we equip Y with the trivial representation, the equivariant functions f : X → Y are the invariant
ones.

Example 2. Z2
N acts through translations on images x ∈ RN,N : (ρtr(k, ℓ)x)i,j = xi−k,j−ℓ.

Further examples related to the experiments in subsequent sections are provided in Appendix B.

3.2 TRAINING EQUIVARIANT MODELS

In order to obtain a model ΦA which respects the symmetries of a group G acting on X × Y , we
should incorporate them in our model or training strategy. Note that the distribution D(x, y) of
training data is typically not symmetric in the sense (x, y) ∼ (ρX(g)x, ρY (g)y). Instead, in the
context we consider, symmetries are usually inferred from, e.g., domain knowledge of X × Y . We
now formally describe two strategies for training MLPs which respect equivariance under G.

Strategy 1: Manifest equivariance The first method of enforcing equivariance is to constrain the
layers to be manifestly equivariant. That is, we assume that G is acting also on all hidden spaces
Xi through representations ρi, where ρ0 = ρX and ρL = ρY , and constrain each layer Li to be
equivariant. In other words, we choose the layers L ∈ L in the equivariant subspace

E =
⊕
i∈[L]

HomG(Xi, Xi+1) (3)

If we in addition assume that all non-linearities σi are equivariant, it is straight-forward to show that
ΦA is exactly equivariant under G (see also Lemma 3). We will refer to these models as equivariant.
The set E has been extensively studied in the setting of geometric deep learning and explicitly
characterized in many important cases Maron et al. (2019a); Cohen et al. (2019); Kondor and Trivedi
(2018); Weiler and Cesa (2019); Maron et al. (2019b); Aronsson (2022). In Finzi et al. (2021), a
general method for determining E numerically directly from the ρi and the structure of the group G
is described.

Defining ΠE : L → E as the orthogonal projection onto E , a convenient formulation of the strategy,
which is the one we will use, is to optimize the equivariant risk

Reqv(A) = R(ΠEA). (4)
1Bias terms can also be included via the standard trick to write affine maps as linear – see Appendix F.
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Strategy 2: Data augmentation The second method we consider is to augment the training data. To
this end, we define a new distribution on X × Y by drawing samples (x, y) from D and subsequently
augmenting them by applying the action of a randomly drawn group element g ∈ G on both data x
and label y. Training on this augmented distribution can be formulated as optimizing the augmented
risk

Raug(A) =

∫
G

ED(ℓ(ΦA(ρX(g)x), ρY (g)y)) dµ(g) (5)

Here, µ is the (normalised) Haar measure on the group Krantz and Parks (2008), which is defined
through its invariance with respect to the action of G on itself; if h is distributed according to µ then
so is gh for all g ∈ G. This property of the Haar measure will be crucial in our analysis. Choosing
another measure would cause the augmentation to be biased towards certain group elements, and
is not considered here. Note that if the data D already is symmetric in the sense that (x, y) ∼
(ρX(g)x, ρY (g)y), the augmentation acts trivially.
Remark 1. (5) is a simplification – in practice, the actual function that is optimized is an empirical
approximation of Raug formed by sampling of the group G. Our results are hence about an ’infinite-
augmentation limit’ that still should have high relevance at least in the ’high-augmentation region’
due to the law of large numbers. To properly analyse this transition carefully is important, but beyond
the scope of this work.

In our analysis, we want to compare the two strategies when training the same model. We will make
three global assumptions.
Assumption 1. The group G is acting on all hidden spaces Xi through unitary representations ρi.
Assumption 2. The non-linearities σi : Xi+1 → Xi+1 are equivariant.
Assumption 3. The loss ℓ is invariant, i.e. ℓ(ρY (g)y, ρY (g)y′) = ℓ(y, y′), y, y′ ∈ Y , g ∈ G.

Let us briefly comment on these assumptions. The first assumption is needed for the restriction
strategy to be well defined. The technical part – the unitarity – is not a true restriction: As long as all
Xi are finite-dimensional and G is compact, we can redefine the inner products on Xi to ensure that
all ρi become unitary. The second assumption is required for the equivariant strategy to be sound – if
the σi are not equivariant, they will explicitly break equivariance of ΦA even if A ∈ E . The third
assumption guarantees that the loss-landscape is ’unbiased’ towards group transformations, which is
certainly required to train any model respecting the symmetry group.

We also note that all assumptions are in many settings quite weak – we already commented on
Assumption 1. As for Assumption 2, note that e.g. any non-linearity acting pixel-wise on an image
will be equivariant to both translations and rotations by multiples of π/2. In the same way, any loss
comparing images pixel by pixel will be, so that Assumption 3 is satisfied. Furthermore, if we are
trying to learn an invariant function the final representation ρY is trivial and Assumption 3 is trivially
satisfied.
Remark 2. Before proceeding, let us mention a different strategy to build equivariant models: feature
averaging Lyle et al. (2019). This strategy refers to altering the model by averaging it over the group:

ΦFA
A (x) :=

∫
G

ρY (g)
−1ΦA(ρX(g)x) dµ(g). (6)

In words, the value of the feature averaged network at a datapoint x is obtained by calculating the
outputs of the original model ΦA on transformed versions of x, and averaging the re-adjusted outputs
over G. Note that the modification of an MLP here does not rely on explicitly controlling the weights.
It is not hard to prove (see e.g. (Lyle et al., 2020, Prop. 2)) that under the invariance assumption on ℓ,

Raug(A) = E(ℓ(ΦFA
A (x), y)). (7)

3.3 LIFTED REPRESENTATIONS AND THEIR PROPERTIES

We can lift the representations ρi to representations ρi of G on Hom(Xi, Xi+1) through

ρi(g)Ai = ρi+1(g)Aiρi(g)
−1, (8)

and from that derive a representation ρ on L according to (ρ(g)A)i = ρi(g)Ai. Since the ρi are
unitary, with respect to the appropriate canonical inner products, so are ρi and ρ.
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Before proceeding we establish some simple, but crucial facts, concerning the lifted representation ρ
and the way it appears in the general framework. We will need the following two well-known lemmas.
Proofs are presented in Appendix A.
Lemma 1. A ∈ E if and only if ρ(g)A = A for all g ∈ G.
Lemma 2. For any A ∈ L the orthogonal projection ΠE is given by

ΠEA =

∫
G

ρ(g)Adµ(g). (9)

We now prove a relation between transforming the input and transforming the layers of an MLP.
Lemma 3. Under Assumption 2, for any A ∈ L and g ∈ G we have

ΦA(ρX(g)x) = ρY (g)Φρ(g)−1A(x). (10)

In particular, ΦA is equivariant for every A ∈ E .

Proof. The in particular part follows from ρ(g)−1A = A for A ∈ E . To prove the main statement,
we use the notation (1): xi denotes the outputs of each layer of ΦA when it acts on the input x ∈ X .
Also, for g ∈ G, let xg

i denote the outputs of each layer of the network Φρ(g)−1A when acting on the
input ρX(g)−1x. If we show that ρi(g)x

g
i = xi for i = [L + 1], the claim follows. We do so via

induction. The case i = 0 is clear: ρX(g)xg
0 = ρX(g)ρX(g)−1x = x = x0. As for the induction

step, we have

ρi+1(g)x
g
i+1 = ρi+1(g)σi(ρi(g)

−1Aix
g
i ) = ρi+1(g)σi(ρi+1(g)

−1Aiρi(g)x
g
i ) (11)

= σi(ρi+1(g)ρi+1(g)
−1Aiρi(g)x

g
i ) = σi(Aiρi(g)x

g
i ) = σi(Axi) = xi+1 ,

where in the second step, we have used the definition of ρi, in the third, Assumption (2), and the fifth
step follows from the induction assumption.

The above formula has an immediate consequence for the augmented loss.
Lemma 4. Under Assumptions 2 and 3, the augmented risk can be expressed as

Raug(A) =

∫
G

R(ρ(g)A) dµ(g). (12)

Proof. From Lemma 3 and Assumption (3), it follows that for any g ∈ G we have
ℓ(Φρ(g)−1A(x), y) = ℓ(ρY (g)

−1ΦA(ρX(g)x), y) = ℓ(ΦA(ρX(g)x), ρY (g)y). Taking the expec-
tation with respect to the distribution D, and then integrating over g ∈ G yields

Raug(A) =

∫
G

R(ρ(g)−1A) dµ(g) =

∫
G

R(ρ(g−1)A) dµ(g) . (13)

Using the fact that the Haar measure is invariant under inversion proves the statement.

We note the likeness of (12) to (7): In both equations, we are averaging risks of transformed models
over the group. However, in (7), we average over transformations of the input data, whereas in (12),
we average over transformations of the layers. The latter fact is crucial – it will allow us analyse the
dynamics of gradient flow.

Before moving on, let us introduce one more notion. When considering the dynamics of training we
will encounter elements of the tensor product L⊗ L, which also carries a representation ρ⊗2 of G
lifted by ρ according to

ρ⊗2(g)(A⊗B) = (ρ(g)A)⊗ (ρ(g)B) . (14)

We refer to the vector space of elements invariant under this action as E⊗2, and the orthogonal
projection onto it as ΠE⊗2 . As for L, the induced representation on L⊗ L can be used to express the
orthogonal projection.
Lemma 5. For any A,B ∈ L the orthogonal projection ΠE⊗2 is given by

ΠE⊗2(A⊗B) =

∫
G

ρ⊗2(g)(A⊗B) dµ(g). (15)
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The space E⊗2 consists bilinear forms on L. Importantly, if we represent them as matrices with
respect to an ONB which can be subdivided into an ONB of E and one of E⊥, it will be block
diagonal. This can be formulated as follows:
Lemma 6. For any M ∈ L ⊗ L, A ∈ E and B ∈ E⊥ we have

(i) (ΠE⊗2M) [A,A] = M [A,A] , (16)
(ii) (ΠE⊗2M) [A,B] = 0 . (17)

4 DYNAMICS OF THE GRADIENT FLOW

We have now established the framework of optimization for symmetric models that we need to
investigate the gradient flow for the equivariant and augmented models. In particular, we want to
compare the gradient flow dynamics of the two models as it pertains to the equivariance with respect
to the symmetry group G during training. To this end, we consider the gradient flows of the nominal,
equivariant and augmented risks

Ȧ = −∇R(A) , Ȧ = −∇Reqv(A) , Ȧ = −∇Raug(A) , A ∈ L . (18)

4.1 EQUIVARIANT STATIONARY POINTS

We first establish the relation between the gradients of the equivariant and augmented models for an
initial condition A ∈ E .
Proposition 1. For A ∈ E we have ∇Raug(A) = ΠE∇R(A) = ∇Reqv(A).

Proof. Taking the derivative of (12) the chain rule yields

⟨∇Raug(A), B⟩ =
∫
G

⟨ρ(g)−1∇R(ρ(g)A), B⟩dµ(g) =
∫
G

⟨∇R(ρ(g)A), ρ(g)B⟩dµ(g) , (19)

where B ∈ L is arbitrary and we have used the unitarity of ρ. Using that ρ(g)A = A for every A ∈ E
(Lemma 2), we see that the last integral equals∫

G

⟨∇R(A), ρ(g)B⟩dµ(g) = ⟨∇R(A),ΠEB⟩ = ⟨ΠE∇R(A), B⟩ , (20)

where we have used orthogonality of ΠE in the final step, which establishes the first equality of the
proposition.

The second equality follows immediately from the chain rule applied to (4)

∇Reqv(A) = ΠE∇R(ΠEA) = ΠE∇R(A) , (21)

where we have used that ΠE is self-adjoint and ΠEA = A for every A ∈ E in the last step.

A direct consequence of Proposition 1 is that for any A ∈ E we have ∇Raug(A) ∈ E for the gradient,
which establishes the following important result.
Corollary 1. The equivariant subspace E is invariant under the gradient flow of Raug.

A further immediate consequence of Proposition 1 is the fact that if the initialization of the networks
is equivariant, the gradient flow dynamics of the augmented and equivariant models will be identical.
In particular, we have the following result.
Corollary 2. A∗ ∈ E is a stationary point of the gradient flow of Raug if and only if it is a stationary
point of the gradient flow of Reqv.

4.2 STABILITY OF THE EQUIVARIANT STATIONARY POINTS

We now consider the stability of equivariant stationary points, and more generally of the equivariant
subspace E , under the augmented gradient flow of Raug. Of course, E is manifestly stable under the
equivariant gradient flow of Reqv. To make statements about the stability we establish the connection
between the Hessians of R, Reqv and Raug, which can be considered as bilinear forms on L, i.e. as
elements of the tensor product space L ⊗ L.
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Proposition 2. For A ∈ E we have ∇2Raug(A) = ΠE⊗2∇2R(A) and ∇2Reqv(A) = Π⊗2
E ∇2R(A).

Proof. Taking the second derivative of (12) yields

∇2Raug(A)[B,C] =

∫
G

∇2R(ρ(g)A)[ρ(g)B, ρ(g)C] dµ(g) =

∫
G

ρ⊗2(g)∇2R(A)[B,C] dµ(g) ,

(22)

where B,C ∈ L are arbitrary and we have used ρ(g)A = A for g ∈ G and A ∈ E and the definition
of ρ⊗2. Lemma 5 then yields the first equality.

The second statement again follows directly from the chain rule twice applied to (4)

∇2Reqv(A) = Π⊗2
E ∇2R(ΠEA) = Π⊗2

E ∇2R(A) , (23)

where we have used ΠEA = A for A ∈ E and the fact that ΠE is self-adjoint.

Proposition 3. For A∗ ∈ E the following implications hold:

i) If A∗ is a strict local minimum of R, it is a strict local minimum of Raug.

ii) If A∗ is a strict local minimum of Raug, it is a strict local minimum of Reqv.

Proof. i) Assume ∇R(A∗) = 0 and ∇2R(A∗) positive definite. From Proposition 1 we then have
∇Raug(A∗) = ΠE∇R(A∗) = 0. Furthermore, for B ̸= 0 Proposition 2 implies

∇2Raug(A∗)[B,B] = ΠE⊗2∇2R(A∗)[B,B] =

∫
G

∇2R(A∗)[ρ(g)B, ρ(g)B] dµ(g) > 0 , (24)

where in the last step we have used the fact that the integrand is positive since ρ(g)B ̸= 0 for any
g ∈ G and B ̸= 0, and ∇2R(A∗)[B,B] > 0 for B ̸= 0.

ii) Assume ∇Raug(A∗) = 0 and ∇2Raug(A∗) positive definite. From Proposition 1 we have
∇Reqv(A∗) = ∇Raug(A∗) = 0. Proposition 2 implies that ∇2Reqv(A∗)[B,B] equals

∇2R(A∗)[ΠEB,ΠEB] = ΠE⊗2∇2R(A∗)[ΠEB,ΠEB] = ∇2Raug(A∗)[ΠEB,ΠEB] , (25)

where we used that ΠEB ∈ E , together with the first part of Lemma 6. Consequently,
∇2Reqv(A∗)[B,B] > 0 for ΠEB ̸= 0 which completes the proof.

The converse of Proposition 3 is not true. A a concrete counterexample is provided in Appendix C.

Finally, let us remark an interesting property of the dynamics of the augmented gradient flow of Raug

near E . Decomposing A near E as A = x+ y, with x ∈ E and y ∈ E⊥, with y ≈ 0, and linearising
in the deviation y from the equivariant subspace E yields

ẋ+ ẏ = −∇Raug(x)− y∗∇2Raug(x) +O(∥y∥2). (26)

From Proposition 1 we have ∇Raug(x) ∈ E , and Proposition 2 (ii) together with Lemma 6 implies
that y∗∇2Raug(x) ∈ E⊥. Consequently, the dynamics approximately decouple:{

ẋ = −∇Raug(x) +O(∥y∥2)
ẏ = −y∗∇2Raug(x) +O(∥y∥2) . (27)

We observe that Proposition 1 now implies that the dynamics restricted to E is identical to that of
the equivariant gradient flow, and that the stability of E is completely determined by the spectrum of
∇2Raug restricted to E⊥. Furthermore, as long the parameters are close to E , the dynamics of the
part of A in E for the two models are almost equal.

In terms of training augmented models with equivariant initialization, these observations imply
that while the augmented gradient flow restricted to E will converge to the local minima of the
corresponding equivariant model, it may diverge from the equivariant subspace E due to noise
and numerical errors as soon as ∇2Raug(x) restricted to E⊥ has negative eigenvalues. This could
potentially be mitigated by introducing a penalty proportional to ∥AE⊥∥2 in the augmented risk. We
leave it to future work to analyse this further.
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5 EXPERIMENTS

We perform some simple experiments to study the dynamics of the gradient flow near the equivariant
subspace E . From our theoretical results, we expect the following.

(i) The set E is invariant, but not necessarily stable, under the gradient flow of Raug.
(ii) The dynamics in E⊥ for Raug should (initially) be much ’slower’ than in E , in particular

compared to the nominal gradient flow of R.

We consider three different learning tasks, with different symmetry groups and data sets:

PERM Permutation invariant graph classification (using small synthetically generated graphs)
TRANS Translation invariant image classification (on a subsampled version of MNIST Lecun et al.

(1998))
ROT Rotation equivariant image segmentation (on synthetic images of simple shapes).

The general setup is as follows: We consider a group G acting on vector spaces (Xi)
L
i=0. We

construct a multilayered perceptron ΦA : X0 → XL as above. The non-linearities are always chosen
as non-linear functions R → R applied elementwise, and are therefore equivariant under the actions
we consider. To mitigate the vanishing gradient problem, we use layer normalization Ba et al. (2016)
which can be accommodated as an equivariant nonlinearity σi. We build our models with PyTorch
Paszke et al. (2019). Detailed descriptions of e.g. the choice of hidden spaces, non-linearities and
data, are provided in Appendix D. In the interest of reproducibility, we also provide the code in the
supplementary material.

We initialize ΦA with equivariant layers A0 ∈ E by drawing matrices randomly from a standard
Gaussian distribution, and then projecting them orthogonally onto E . We train the network on (finite)
datasets D using gradient descent in three different ways.

NOM A gradient descent, with gradient accumulated over the entire dataset (to emulate the ’non-
empirical’ risk R as we have defined it here): Data is fed forward through the MLP in
mini-batches as usual, but gradients are calculated by taking the averages over mini-batches.

AUG As NOM , but with Naug passes over data where each mini-batch is augmented using a
randomly sampled group element g ∼ µ. The gradient is again averaged over all passes, to
model the augmented risk Raug as closely as possible.

EQUI As NOM , but the gradient is projected onto E before the gradient step is taken. This
corresponds to the equivariant risk Reqv and produces networks which are manifestly
equivariant.

The learning rate τ is equal to 5 · 10−5 in all three experiments. In the limit τ → 0 and Naug → ∞,
this exactly corresponds to letting the layers evolve according to gradient flow with respect to R,
Raug and Reqv, respectively. For each task, we train the networks for 50 epochs. After each epoch
we record ∥A−A0∥, i.e. the distance from the starting position A0, and ∥AE⊥∥, i.e. the distance
from E or equivalently the ’non-equivariance’. Each experiment is repeated 30 times, with random
initialisations.

5.1 RESULTS

In Figure 1, we plot the evolution of the values ∥AE⊥∥ against the evolution of ∥A − A0∥. The
opaque line in each plot is formed by the average values for all thirty runs, whereas the fainter lines
are the 30 individual runs.

In short, the experiments are consistent with our theoretical results. In particular, we observe that
the equivariant submanifold is consistently unstable (i) in our repeated augmented experiments.
In PERM and TRANS, we also observe the hypothesized ’stabilising effect’ (ii) on the equivariant
subspace: the AUG model stays much closer to E than the NOM model – the shift orthogonal to E is
smaller by several orders of magnitude. For ROT, the AUG and NOM models are much closer to each
other, but note that also here, the actual shifts orthogonal to E are very small compared to the total
shifts ∥A−A0∥ – on the order 10−7 compared to 10−3.
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Figure 1: Results of the experiments: ∥AE⊥∥ is plotted versus ∥A−A0∥. Opaque lines are to mean
values, transparent lines are individual experiments. For PERM and TRANS , the two plots depict the
same data with different scales on the ∥AE⊥∥-axis.

The reason for the different behaviour in the rotation experiment cannot be deduced from our theory.
Our hypothesis is that it is the different symmetry groups, or rather different spaces E , plays a role
here. Proposition 1 tells us that the difference between gradients of the NOM and AUG models are
given by the component orthogonal to E of ∇R. Hence, if E is of low dimension, it can be assumed
that a lot of the gradient energy disappears. A good proxy for the size is the relation between dim E
and dimL. In Appendix E.1, we calculate these fractions and find it to be much larger for ROT than
in the other experiments. This is in agreement with the augmented ROT model staying closer to its
NOM counterpart than the other cases. In Appendix E.2, we investigate this further (empirically) by
repeating the TRANS experiment for other groups. The trend continues: The lower dim E/ dimL,
the closer the augmented model stays to E . Needless to say, this argument is purely heuristic. Finding
a proper theoretical explaination for this is however beyond the scope of this paper.

6 CONCLUSION

In this paper we investigated the dynamics of gradient descent for augmented and equivariant models,
and how they are related. In particular, we showed that the models have the same set of equivariant
stationary points, but that the stability of these points may differ. Furthermore, when initialized to the
equivariant subspace E , the dynamics of the augmented model is identical to that of the equivariant
one. In a first order approximation, dynamics on E and E⊥ even decouple for the augmented models.

These findings have important practical implications for the two strategies for incorporating sym-
metries in the learning problem. The fact that their equivariant stationary points agree implies that
there are no equivariant configurations that cannot be found using manifest equivariance. Hence, the
more efficient parametrisation of the equivariant models neither introduces nor excludes equivariant
stationary points compared to the less restrictive augmented approach. Conversely, if we can control
the potential instability of the non-equivariant subspace E⊥ in the augmented gradient flow, it will
find the same equivariant minima as its equivariant counterpart. One way to accomplish the latter
would be to introduce a penalty proportional to ∥AE⊥∥2 in the augmented risk.

This work is a first step towards properly understanding the effects of augmentation on the dynamics
of gradient flows, but more research is needed. For instance, although we showed that the dynamics
on E is identical for the augmented and equivariant models, and understand their behaviour near E ,
our results say nothing about the dynamics away from E for the augmented model. Indeed, there
is nothing stopping the augmented gradient flow from leaving E – although initialized very near it
– or from coming back again. To analyse the global properties of the augmented gradient flow, in
particular to calculate the spectra of ∇2Raug in concrete cases of interest, is an important direction
for future research.
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