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ABSTRACT

This study aims to distill history events that have essential information for pre-
dicting subsequent events with counterfactual analysis. The problem is named
Counterfactual History Distillation (CHD). CHD distills a minimum set of events
from history, based on which the distribution provided by a trained MTPP model
fits the events observed later, and the distribution based on the remaining events in
history cannot. It can help understand what event marks may have more influence
on the occurrence of future events and what events in history may have a causal
relationship with the events observed later. This study proposes a robust solution for
CHD, called MTPP-based Counterfactual History Distiller (MTPP-CHD). MTPP-
CHD learns to select the optimal event combination from history for the events
observed later. Experiment results demonstrate the superiority of MTPP-CHD by
outperforming baselines in terms of distillation quality and processing speed.

1 INTRODUCTION

The Marked Temporal Point Process (MTPP) (Daley & Vere-Jones, 2003) is a well-defined stochastic
process that maps historical event sequences to a probability distribution which can be used to predict
future events. Learning MTPP by neural networks has been well investigated (Du et al., 2016; Mei &
Eisner, 2017; Omi et al., 2019; Zhang et al., 2020a; Zuo et al., 2020; Shchur et al., 2020; Mei et al.,
2022; Zhang et al., 2023b; Zhou & Yu, 2023; Liidke et al., 2023). These algorithms, belonging to the
Neural Marked Temporal Point Process (NMTPP) family, enable people to train and use MTPP in
high-stake real-world applications like the fake news mitigation (Farajtabar et al., 2017; Zhang et al.,
2021b; 2022b) and recommendation systems (Hosseini et al., 2017; Cai et al., 2018).

Counterfactual analysis, also known as counterfactual reasoning, is one of the basic cognitive
reasoning approaches. Counterfactual analysis reveals casual relations by searching for the smallest
modification to the input that could completely change the output (Tan et al., 2021). For example,
to investigate why one piece of disinformation becomes viral on Twitter by counterfactual analysis,
we search for the answer by removing retweets of some accounts from the retweet history and then
feeding the modified history to an existing model to emulate whether the disinformation still goes
viral. If it stopped going viral after we removed retweets of multiple accounts and became viral again
when we added them back, we would conclude that these accounts might be the culprits.

Recently, Noorbakhsh & Rodriguez (2022), Zhang et al. (2022b), and Hizli et al. (2023) investigate
how the prediction of an MTPP model changes with handcrafted modifications of history with
counterfactual analysis. Unlike these studies, we aim to distill a minimum subset of history events
with the essential information for predicting the following events using an MTPP model with
counterfactual analysis. If the history is modified by removing the minimum subset of events, the
accuracy of MTPP model will drop significantly. The problem is named Counterfactual History
Distillation (CHD). It can help understand what event marks may have more influence on the
occurrence of subsequent events and what events in history may have a causal relationship with the
events observed later.

While CHD with conventional counterfactual analysis works in concept, the distilled events are not
always satisfactory. It is expected that distilled events have the essential information and the events
left in history have trivial information for predicting the subsequent events. However, our study shows
this is not true in many scenarios as the prediction accuracy of the MTPP model based on the distilled



Under review as a conference paper at ICLR 2025

events is worse than that based on the events left in history. This means the result of CHD with
conventional counterfactual analysis sometimes can be faulty (See Section 2.2 for more information).
To address this issue, we refine CHD by adding one more constraint to enforce that distilled events
are informative. Without loss of generality, perplexity (Moore & Lewis, 2010) is applied to evaluate
prediction accuracy, i.e., how well the distribution of the next events produced by the MTPP model fits
the subsequent events observed. CHD is a combinatorial problem. Inspired by the rationalization (Lei
et al., 2016), we propose a solution for CHD, named MTPP-based Counterfactual History Distiller
(MTPP-CHD), which probes various combinations of events in history with the support of Gumbel-
softmax trick (Bengio et al., 2013; Maddison et al., 2017). We show that MTPP-CHD outperforms
baseline models in terms of efficiency and distillation quality. We also demonstrate that distilled
events can help understand the influence of different marks on the occurrence of future events. In
summary, the contributions of this study are threefold:

1. To the best of our knowledge, this study is the first to distill a minimum subset of history
events with the essential information for predicting the subsequent events using an MTPP
model. We name the problem Counterfactual History Distillation (CHD).

2. This study demonstrates the issues when solving Counterfactual History Distillation (CHD)
by conventional counterfactual analysis and refines it with one more constraint to ensure
that the distilled events are desirable.

3. This study proposes a robust solution MTPP-CHD for CHD, which learns to select the
optimal event combination from history by leveraging Gumbel-softmax trick. Experiment
results demonstrate the superiority of MTPP-CHD by outperforming baselines in terms of
distillation optimization and processing speed. We also demonstrate that distilled events can
help understand the influence of different marks on the occurrence of future events.

2 PROBLEM DEFINITION

2.1 MARKED TEMPORAL POINT PROCESS

The Marked Temporal Point Process (MTPP) describes a random process of an event sequence
x = (x1,x9, -+ ,2,). Each event x; = (m;,t;) comprises a categorical mark m; € M =
{k1,ka, -+ ,kar} and its occurrence time ¢;. This paper considers the simple MTPP, which only
allows at most one event at every time, thus ¢; < ¢; if ¢ < j. Let {, denote the history up to(include)
the time ¢; when the most recent event happened and H._ denote the history up to(exclude) the
current time ¢. Given #;_, the conditional intensity function A*(m, t) is the probability that an event
with mark m will happen at time ¢ (Daley & Vere-Jones, 2003)':

N (mot) = lim LMt E G A[H)
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With A*(m, t), we can define the joint probability distribution p*(m, t) of the next event whose mark
is m and the time to occur is ¢.
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The Negative Log-Likelihood (NLL) loss on x observed in a time interval [tg, T'] is
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Equation (3) is the training loss of many MTPP models (Du et al., 2016; Mei & Eisner, 2017; Omi
et al., 2019; Zhang et al., 2020a; Zuo et al., 2020; Shchur et al., 2020; Mei et al., 2022).

2.2 PROBLEM STATEMENT AND FORMULATION

A dataset D contains event sequences. Suppose an MTPP model has been trained on D. For any
subsequence (z1,- - ,%j,Tj41, " ,Tn—1,Ln) Of an event sequence in D, the first part (x1, - - - , z;),

'The asterisk reminds that this function conditions on history.
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Table 1: When solving CHD with conventional counterfactual analysis, the percentage of H4s that
have less information than the corresponding H;s.

StackOverflow Retweet Yelp
(|xo] = 15, [Hys| =40) (Jxo| =10, [Hs| =25) (|x0| = 10, |H | = 25)
19.068 % 0.4627 % 1.0114 %
denoted as H 7, is the history relative to the second part (xjH, “++ ,Xp_1,Ip), denoted as x,. The

second part consists of events observed after the first part.

For each z; € x,, the MTPP model can be used to produce the distribution of the next event p(z|#)
where ‘H includes the previous events before x; in the subsequence. We can evaluate how well the
distribution fits x; by using p(x;|#). The high p(z;|H) indicates fitting well. # consists of events
in H ¢ and events in x, before x;. We aim to search for a subset of the events in ‘H ;. For different
subsets, the events in x,, before x; are same. To make the presentation simple in the rest of the paper,
7 represents the events in ‘H ; and ignores the events in x,. To judge if x, fits p(x,|H), we use
perplexity, denoted as ppl(p(x,|H)). Its definition is:

1
ppl(p(z,|H)) = exp (wlog 1T p(ﬂ%l*ﬂ) - )
° T;EX,

A lower perplexity indicates p(x,|?H) better fitting «,. Perplexity has been widely used to select
in-domain data from non-specific-domain datasets (Moore & Lewis, 2010; Toral et al., 2015; Feng

et al., 2022) and evaluation of Large Language Models (LLMs) (Brown et al., 2020; Du et al., 2022;
Zhang et al., 2022a; Zeng et al., 2022).

Counterfactual History Distillation (CHD) aims to distill essential events in H ¢ that enable the MTPP
model to generate p(x,|H f) fitting x,. Following conventional counterfactual analysis, the problem
is to identify the minimum subset H4 C H  so that p(x,|H ¢) fits z,, but p(x,|H; = Hs — Ha)
does not. The formal definition is:

min |H4|
HaCH;

pol(p(zolHy)) _ ®)
ppl(p(x,|Hi))
where €; € (0, 1) is a threshold to ensure the information in H; about x, is trivial.

However, our study shows that the result of the conventional counterfactual analysis is problematic in
many scenarios. Table 1 shows the percentage of subsequences in three real-world datasets where
ppl(p(x,|#Ha)) is greater than ppl(p(x,|H;)) by solving the optimization problem in Equation (5)*.
This means H,; sometimes contains more information about x, than # 4, which is undesirable. To
address this issue, we refine CHD by adding one more constraint to enforce that the information in
H 4 is significantly more than ‘H, for predicting x,,.
min | H4|
HiCHy

ppl(p(zo|Hy))

< €, (6)
ppl(p(o|Hy))
ppl(p(xo|Hy))
= > €q.
ppl(p(xo| Ha))

where ¢4 € (0, 1) is another threshold to ensure the information in # 4 about x,, is sufficient. ;5 > €.
For the ease of computation, we apply logarithm to the constraints in Equation (6):

S.t.

min |H,|
HaCH;

s.t. logppl(p(xo|Hy)) — log ppl(p(x.|H:)) < loge, 0
log ppl(p(xo|Hy)) — log ppl(p(x,|Ha)) = logeq.

Here, we solve the optimization problem by training a MTPP-CHD with L,, and L;. See Section 3 for
definitions of MTPP-CHD, L, and L;.



Under review as a conference paper at ICLR 2025

P(ylao, Hy))

Fully-connected Layer

1
Nx ‘ Encoder }—»‘ Decoder ‘ XN

History Distiller

P(ylzo, Hy))

History Historical
Distiller event picker

Figure 1: Architecture of MTPP-CHD.

The perplexity of p(x,|H) is tricky if H is an empty set &. In this case, we have p(x,|@) =
p(x,, @)/p(2) where p(&) = 0. Due to division by 0, p(x,|2) is undefined. Intuitively, when we
continuously remove events from #, the information in ‘H decreases so that p(x,|#) approaches
zero. So, we define p(x,|@) an infinitesimal number, which induces ppl(p(z,|2)) — +oc. We
have the following proposition (proven in Appendix A.1):

Proposition 1. Counterfactual History Distillation (CHD) defined in Equation (7) always has a
solution for any €, € (0,1), ¢4 € (0,1), and €4 > €.

3 MTPP-BASED COUNTERFACTUAL HISTORY DISTILLER (MTPP-CHD)

The proposed CHD solution, MTPP-based Counterfactual History Distiller (MTPP-CHD), is sketched
in Figure 1. MTPP-CHD consists of three components. The first component, history distiller,
processes H ; and x,, using an encoder-decoder transformer, then pushes the resultant representations
into a fully connected layer. The output is p(y|H,x,). Here, y is a mask vector of size |H ¢|,
each for one event in H . For y; € y, if y; = 0, the corresponding element x; € H goes to
H,;. If y; = 1, the corresponding element x; € H ¢ goes to H4. All trainable parameters are in
the first component. The second component, historical event picker, derives H; and ‘H 4 based on
p(y|H s, o). The third component, training loss, employs a trained MTPP model to evaluate the
derived ‘H,; and H 4 for training MTPP-CHD. The third component only exists during training.

3.1 TRAINING OF MTPP-CHD

Training MTPP-CHD begins by initializing the parameters of
the history distiller. Given history H ¢ and x,, the history
distiller processes them using an encoder-decoder transformer
to represent each event in ‘H ; so that it is aware of other events

Algorithm 1 Historical event picker
during training.

Input: # ¢ and p(y|xo., Hy);

in H; and events in x,. Then, the representations of events
in H; are fed to a fully connected layer and the output is
p(y|Hy, z,), the distribution of mask vector y. For y; € y,
p(yi|H s, o) is a categorical distribution of two categories, i.e.,
{0,1}. If p(y; = O|H s, z,) is larger, the corresponding event
is more likely to go to ;. If p(y; = 1|y, ,) is larger, the
corresponding event is more likely to go to H. 4.

Next, the historical event picker samples masks from
p(y|H s, x,) and obtains the corresponding Hq and H,; for
multiple times. Algorithm 1 shows how a sample, denoted as

Output: H; and Ha;
Hi=9,H, =T,

¥y <« sampling p(y|x., Hs) with
Gumbel-softmax trick;

for z; € Hy do

if j; == 1 then
Hg «— Hq Uz
else
H — Hi Uz
end if
end for
return H;, Hgq;

¥, is drawn and processed to return H 4 and ‘H; during training.
Specially, a sample is drawn by sampling categorical distribution p(y;|H s, «,) for each element
yi € y. If 95 = 0, the corresponding element in H ; goes to H;. If yj; = 1, the corresponding
element in 7 s goes to H,4. To draw sample from p(y;|H s, x,) in a differentiable way, we use the
Gumbel-softmax trick (Bengio et al., 2013; Maddison et al., 2017). After the sample ¥ is drawn, the
distilled events form H 4 and the remaining events constitute ;. In natural language processing,
a similar method has been used for rationalization (Lei et al., 2016) to search a document for an
optimal combination of sentences related to a claim.

The third component evaluates H 4 and H,; for the loss. According to Equation (7), the loss function
of MTPP-CHD comprises two aspects: L. for enforcing perplexity-based constraints and L,, for
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minimizing the length of H 4. With H 4 and H; derived from sample ¥y, we enforce perplexity-based
constraints in a differentiable way by using two surrogate hinge losses, inspired by (Mothilal et al.,
2020; Tan et al., 2021):

Li(y) = max(log ppl(p(o|H)) — log ppl(p(@o[H1)) — log e, 0).
La(y) = max(log ppl(p(zo|Ha)) — log ppl(p(@o[H 1)) + log €4, 0).
Reducing loss L; will increase log ppl(p(x,|#;)) until its gap to log ppl(p(x,|H ¢)) is larger than

€. Reducing loss Ly will decrease log ppl(p(a,|#4)) until its gap to log ppl(p(x,|H f)) is smaller
than log €4. The loss L. is based on N samples from p(y|# s, ,), where y; refers to the i-th sample:

Le=Egp(y#;.2.)(Li(¥) + La(¥))

1
~ N D (Li(33) + La(§:).

i=1
We use a trained MTPP model to estimate the conditional probability distribution p(z,|#) in
Equation (8). Any MTPP models outputting p*(m, t) defined in Equation (2) should work. The only
requirement is that the MTPP model is differentiable, so MTPP-CHD obtains the gradient VL, to
enable training. In this paper, the trained MTPP model is FullyNN (Omi et al., 2019). Details about

FullyNN and how we train FullyNN on D are available in Appendix B.2.

®)

€))

The loss L,, aims to minimize the length of H 4, i.e., the number of distilled events. Because H,4 is
derived from ¥, minimizing the length of # 4 equals to maximizing £°-norm of ¥, i.e., the number of
nonzero elements in 3. However, the ¢°-norm is not differentiable. As a workaround, some studies
optimize the differentiable /!-norm (Tan et al., 2021). However, optimizing ¢!-norm of a vector
a € R? has limited effects on optimizing #°-norm because there is no consistent relation between
them. /°-norm can decrease, stay unchanged, or even increase when £!-norm decreases. Interestingly,
¢*-norm of y has a consistent relation with £°-norm of ¥ because ¥ only contains 0 and 1. This means
that ¢°-norm is always equal to #'-norm for y. This means optimizing ¥’s £'-norm is equivalent to
optimizing y’s £°-norm. We define L,, as the normalized /'-norm by dividing the length of y:

r, - ¥l (10)

M

With L, and L,, properly defined, the training loss L of MTPP-CHD is the sum of L,, and L.. We
use two hyperparameters « and [ to balance the number of distilled events and the perplexity gap.

L =aL, + L. Y

3.2 INFERENCE OF MTPP-CHD

Counterfactual history distillation with the learned MTPP-CHD Algorithm 2 Historical event picker
consists of the trained history distiller and an inference-specific  quring inference.

historical event picker. The inference process is presented in
Algorithm 2. The history distiller takes in history #; and
x, for p(y|#H s, x,). During inference, the historical event H  sort H; in descending order
picker returns the optimal H, based on p(y|H s, x,). To do off;(yilmm 7{;);

that, elements y; € y are sorted in descending order based on Ho=02,H =Hy;

p(y; = 1|Hy,x,). Initially, Hq is empty and & = 1. The for z; in #} do

Input: ¢ and p(y|xo, Hy);
Output: Hg;

top-k element is moved to H 4 and H; includes the remaining if H 4, H,; satisfy the constraints
elements. With the trained MTPP model, ppl(p(x,|#;)) and in Equation (7) then
ppl(p(xo|Ha)) are calculated. If the constraints in Equation (7) break;
are satisfied, H 4 is returned. If not, k = k£ + 1 and the same end if
process is taken until the constraints in Equation (7) are satisfied Ha—HaUzis
and H,, is returned. Hi—Hi—ai

end for

return Hg;

4 EXPERIMENTS

This section evaluates the effectiveness of MTPP-CHD by answering following questions: (i) Does
solving CHD in Equation (7) lead to better distillation compared with Equation (5)? (ii) Does the



Under review as a conference paper at ICLR 2025

proposed MTPP-CHD solve CHD with L,, and L. with good distillation quality and efficiency? ,
and (iii) What statistical features or knowledge can be exploited from the H ;?

4.1 EXPERIMENT SETTINGS

The same experiments are run 3 times with different random seeds, and their mean and standard
deviation (1-sigma) are reported. More details are available in Appendix B.2 including the hardware
and software for the experiments, the hyperparameters of MTPP-CHD, the setting of ¢; and €4, and a
brief introduction of FullyNN.

Baseline Models To our knowledge, no previous studies investigated CHD in the context of MTPP.
This means we do not have baselines from existing studies to compare with. Brute force is infeasible
because solving a combinatorial problem like CHD is NP-hard (Karp, 1972). We notice some studies
applying counterfactual analysis in recommender systems. They greedily search for the smallest
subset of history that the recommendation would change with the subset removed (Ghazimatin et al.,
2020; Tran et al., 2021; Zhong & Negre, 2022). This motivates us to adopt a Greedy Search (GS)
baseline. It solves CHD by incrementally selecting from H ; the event that increases the gap between
log ppl(x,|H,;) and log ppl(x,|H ) the most and inserting it to H 4 until the two constraints are
satisfied. We also take a Random Distillation (RD) baseline to show the difficulty of CHD. RD
randomly moves @) events from H ¢ to Hq and calculates the gap between log ppl(x,|H ¢) and
log ppl(x,|#,;). This is repeated multiple times and the average of these gaps is recorded. () starts
from 0. RD stops and returns () when the average gaps satisfy the two constraints in Equation (7);
otherwise, increase ) by 1 and repeat the previous process.

Evaluation Metrics We are concerned to which extent the optimization objective of CHD is achieved,
i.e., minimizing |H 4| while two constraints are satisfied. For all (# 7, x,) pairs in the test dataset T,
we calculate the average length of H 4 provided by a CHD approach.

- 1
Hal= = > [Hdl- (12)

|T‘ (H ET
fHr%o

Lower \7—Zd| indicates the CHD approach obtains shorter H 4 that meets the constraints in Equation (7),
thus better.

Datasets We test MTPP-CHD and baselines on three real-world datasets: Retweet (Zhao et al.,
2015), StackOverflow (Leskovec & Krevl, 2014) and Yelp. Retweet contains 2.6 million events,
StackOverflow 480K events, and Yelp 400K events. All subsequences with n = |H | + |x,| events
are extracted from these datasets. Further, each subsequence is split into ¢ and x,. Each dataset
has 5 different | | and |, | settings. More details are presented in Appendix B.

4.2 EXPERIMENT RESULTS

4.2.1 EFFECTIVENESS OF COUNTERFACTUAL ANALYSIS REFINEMENT

CHD can be tackled by working out the optimization problem defined in Equation (5). This method
is based on counterfactual analysis but is problematic as pointed out in Section 2.2. To prevent such
undesirable results, we refine the counterfactual analysis with a new constraint on H, as defined
in Equation (7). To investigate the impact of the new constraint, we compare MTPP-CHD, our
solution of CHD based on the counterfactual analysis with 4 constraint, against MTPP-CHD
without refinement, based on counterfactual analysis without H, constraint. Figure 2 presents
the distribution of log ppl(p(x,|H;)) — log ppl(p(xo|Ha)) of our MTPP-CHD and the MTPP-
CHD without refinement. If H, has less information than #,, the value of log ppl(p(x,|#;)) —
log ppl(p(x,|Ha)) is less than zero; otherwise greater than 0. Our MTPP-CHD demonstrates the
resultant 4, always has more information than the corresponding ;. In contrast, MTPP-CHD
without refinement may lead to some resultant H 4s having less information than corresponding H,;s.
Such an undesirable situation is significant on StackOverflow.
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Figure 2: The distribution of log ppl(p(x,|H,;)) — log ppl(p(x,|Ha)) of our MTPP-CHD and the
MTPP-CHD without refinement.

4.2.2 DISTILLATION QUALITY

We solve CHD by working out the optimization problem defined in Equation (7), where the opti-
mization objective is to identify H4 with the minimum number of events under two constraints.
The resultant 74 with fewer events indicates a better solution. Table 2 reports |# 4| using our
MTPP-CHD and baselines. First, GS outperforms RD by a consistent and noticeable margin on all
datasets. It demonstrates that CHD is a difficult task that cannot be properly solved with a simple
solution like RD. Second, our MTPP-CHD demonstrates the performance better than both baselines.
With GS, it repeatedly identifies the individual event that affects L. the most and moves it from H ¢
to ‘H4. However, this method cannot capture the effect of event combinations in 7 ; and may lead to
suboptimal solutions. In contrast, our MTPP-CHD overcomes the weakness of GS by searching for
optimal event combinations and therefore demonstrates better performance.

Table 2: The average length of H 4 returned by MTPP-CHD and baselines (the standard deviation of
GS is 0 because GS is deterministic).

|xo| [Hf| MTPP-CHD GS RD
= 15 40  21.484+0.0073  23.681+00000 36.424+0.0033
< 15 45 23.700+0.0802  25.700+0.0000  40.582+0.0042
g 15 50 26.115+05226  27.699+0.0000  44.693+0.0015
3 20 50 27.416+0.0974  28.927+0.0000  44.898-+0.0046
A 25 50 27.811+02973  29.636+0.0000  45.159+0.0011
10 25 12.281+02001  14.722+0.0000  24.004+0.0004
§ 10 30 13.297+0.2264  16.511+0.0000  28.620-0.0003
Z 10 35 14.390+o0.0899  18.053+00000  33.207+0.0018
& 15 35 20.632+0.5377  24.875+00000  34.532+0.0008
20 35 28.140+1.4211  29.990+0.0000  34.894-+0.0006
10 25 9.6412t0.0148  11.640+00000 23.112+05788
o 10 30 9.8174+0.0808  12.587+0.0000 27.396+0.7311
E 10 35 10.008+0.2310  13.508+0.0000 31.600+09164

15 35 13.422+0.0436  18.237+0.0000 33.257+0.6701
20 35 18.160+04387  22.562+00000 34.114+0.4259

4.2.3 EFFECTIVENESS OF L., AND L,,

Training MTPP-CHD is achieved by minimizing loss L. and L,,. Minimizing L. is applied to force
MTPP-CHD to move more events from H ; to H 4 so that the two constraints in MTPP-CHD are
satisfied. On the other hand, minimizing L,, is applied to encourage MTPP-CHD to move fewer
events from H s to H4 so that |# 4| is minimized. To verify that, Figure 3 (a) report the number of
events in H 4 returned by the MTPP-CHD trained by minimizing L. only on dataset StackOverflow,
and Figure 3 (b) report the number of events in H 4 returned by the MTPP-CHD trained by minimizing
L,, only on dataset StackOverflow. As expected, all events in |# | are moved to |H 4| in the former
while no events in |# ¢| are moved to |H4| in the latter. The same results can be observed on other
datasets in Appendix C.2).
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Table 3: Total time used to solve all CHD tasks in test data (first three columns) and time used for
MTPP-CHD training (last column).

MTPP-CHD GS RD MTPP-CHD(Training)

StackOverflow (|x.| = 15,[#| = 40) 2.86h  33.4h 27.2h 24.3h
Retweet (|xo| = 10, |Hs| = 25) 9.09h 67.0h  83.8h 29.7h
Yelp (|xo| = 10, |H ;| = 25) 1.81h 13.5h  17.0h 14.3h

4.2.4 MODEL EFFICIENCY

This section reports the performance of MTPP-CHD and baselines regarding time efficiency. For
MTPP-CHD, it must be trained first to learn model parameters using training data and then solve
CHD. For GS and RD, they are directly applied to solve CHD because they have no parameter to
train. In Table 3, the first three columns report the total time of the trained MTPP-CHD and baselines
to solve CHD on all (# ¢, x,) pairs in three test datasets. More results are available in Appendix
Table 9. The results tell that MTPP-CHD is significantly faster than baselines. The reason is that GS
and RD have to interact with the MTPP model multiple times for one H 4. On the other hand, the
trained MTPP-CHD does not need to interact with MTPP model because it already learned which
event should be distilled from MTPP during training. To have a better understanding of the time
efficiency for MTPP-CHD, the last column of Table 3 reports the time used by MTPP-CHD for
training (see Table 6 for training data size). It is comparable with the time consumed by GS and RD.
Since MTPP-CHD only needs to be trained once, it is much more efficient compared with GS and
RD.

50 50 50 50
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(a) The number of event in H4 returned by MTPP-CHD trained by minimizing L. only.
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Figure 3: Effectiveness of L, and L,, (from left to right: (|x,|, |H f|) = (15,40), (15, 45), (15, 50),
(20,50), (25, 50)).

4.3  ANALYSIS OF DISTILLED EVENTS

The resultant 74 is a minimum subset of events in ? ; that represents the essential information in
history from the perspective of the underlying MTPP model. Specifically, the accuracy of MTPP
model based on H is close to H f, and the accuracy of MTPP based on H,; is significantly lower
than H ;. Investigating the events in 4 may disclose interesting insights.

Given a dataset, the events with particular marks may influence the occurrence of the subsequent
events more, for example, a retweet by famous users in Retweet. To verify it, we compare H 4
returned using MTPP-CHD against H, using RD on the test data of Retweet in terms of mark
percentage. The mark percentage is calculated as the ratio of the number of events for that mark in
H 4s to the number of events for the same mark in H ;s within the test data. RD randomly selects
events from H  to constitute H4. In contrast, 4 returned using MTPP-CHD has the essential
information for predicting the next events. If a mark has more influence on the occurrence of the
subsequent events, the mark is expected to be more frequent in ‘H 4 returned using MTPP-CHD than
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using RD. From Figure 4, Mark 2 refers to famous users. We can observe that Mark 2 is consistently
more frequent in H 4 returned using MTPP-CHD while other marks are not. The result tells that the
retweets by famous users have more influence on the occurrence of the subsequent retweets.
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Figure 4: The percentage of events for different marks in H 4 returned by MTPP-CHD and Random
Distillation (RD) on test date of Retweet (from left to right: (|x,|, |Hs|) = (10,25), (10, 30),
(10,35), (15,35), (20, 35)). All results pass the significance test with p-value 0.

5 RELATED WORKS

5.1 COUNTERFACTUAL ANALYSIS

Counterfactual analysis on MTPP models Recently, Noorbakhsh & Rodriguez (2022), Zhang
et al. (2022b) and Hizli et al. (2023) used counterfactual analysis to investigate how the prediction
of an MTPP model changes with handcrafted modifications of history. Noorbakhsh & Rodriguez
(2022) successfully perform counterfactual analysis on the Hawkes process, an instance of MTPP, by
deterministically accepting or rejecting the future events generated by the thinning algorithm (Ogata,
1981). Zhang et al. (2022b) use counterfactual analysis to estimate the influence of fake news
engagements. By comparing the intensity function with manually modified history, they discover
that users tend to behave differently if they recently engaged in misinformation. Hizli et al. (2023)
use counterfactual analysis to evaluate the effect of medical treatments by checking how the blood
glucose dynamics changes with and without a specific treatment.

CHD differs from existing counterfactual analysis related to MTPP models (Noorbakhsh & Rodriguez,
2022; Zhang et al., 2022b; Hizli et al., 2023). They investigate how a predefined modification to
history would change the prediction of MTPP models. In contrast, CHD aims to find a minimal
modification ‘H4 so that the MTPP model can generate a distribution fitting x, based on H4 but
cannot based on H;. In summary, the methods in these studies cannot solve CHD.

Counterfactual analysis on Classifiers Some researchers use counterfactual analysis to analyze
how binary and multi-class classifiers make decisions and name the task Counterfactual Explanations
(CFE) (Verma et al., 2020). The definition of CFE involves a classifier f, an input feature x, and
an expected output y. We expect a counterfactual input x’ by solving the following optimization
problem:

d(x,x")
f) =y

where d(x, x’) refers to the distance between x and x’. Equation (13) means the expected x’ should
be similar to x while still changes the classification result from y to ’. Usually, the similarity
between x and x’ means we should change as few features as possible, but sometimes it means the
overall modification to x should be as small as possible (Verma et al., 2020). CFE generation is a
well-investigated task with many existing works (Wachter et al., 2017; Dhurandhar et al., 2018; 2019;
Joshi et al., 2019; Kanamori et al., 2020; Mothilal et al., 2020; Ramakrishnan et al., 2020; Parmentier
& Vidal, 2021; Chen et al., 2022).

arg min
x (13)
S.t.

CHD is fundamentally different from CFE. CFE modifies the continuous input that would change
the discrete output of a classifier (Verma et al., 2020). However, CHD manipulates the discrete
input sequence that would change the continuous output of the MTPP model, i.e., the accuracy for
predicting the events observed later.
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Counterfactual analysis on Recommendation Systems The recommendation system community
has used counterfactual analysis to investigate how user behaviors and item features affect recommen-
dation results (Mehrotra et al., 2018; Wang et al., 2020; Ghazimatin et al., 2020; Yang et al., 2021;
Tran et al., 2021; Wang et al., 2021; Xu et al., 2021; Wang et al., 2022b; Zhong & Negre, 2022; Zhang
et al., 2022b; Mu et al., 2022; Zhang et al., 2023a). Ghazimatin et al. (2020) proposed PRINCE, the
first approach explaining recommendations concerning users’ activities in Heterogeneous Information
Networks(HIN). By greedily removing as few events as possible from the historical user event
sequence that could replace the current recommendation with a different item, PRINCE identifies
which interactions are responsible for model decisions. PRINCE heavily relies on the structure of
HIN to efficiently find the solution, which limits its general use. To solve this, Tran et al. (2021)
proposed ACCENT. It greedily searches for the smallest subset of history that the recommendation
would change after training a new system with the subset removed. Zhong & Negre (2022) discuss
applying SHAP(SHapley Additive exPlanations) (Lundberg & Lee, 2017) to greedily select features
as the recommendation explanation. Zhang et al. (2023a) proposed PaGE-LINK. This graph-based
explanation algorithm exploits the complete graph information from a learned GNN recommender to
explain the recommendation results.

Besides, counterfactual analysis has been applied to understand how the reinforcement learning agent
behaves in different environment states (Atrey et al., 2020; Wang et al., 2019; Li et al., 2021a; Zhou
et al., 2022; Ji et al., 2023). Some researchers realize that they can detect and mitigate the bias in
pretrained computer vision and language models by counterfactual analysis (Huang et al., 2020;
Abbasnejad et al., 2020; Zhang et al., 2020c; Niu et al., 2021; Qian et al., 2021; Wang et al., 2022a).

5.2 LoGICc POINT PROCESSES

Besides counterfactual analysis, researchers have developed other ways to find causal relations
between events on continuous time. One of the favorites is the Granger causality (Xu et al., 2016;
Zhang et al., 2020b; Marcinkevics & Vogt, 2021; Zhu et al., 2022; Jalaldoust et al., 2022). Granger
causality explores mutual relations across different marks, checking which mark helps the event
forecast on other marks. Other works exploit logic rules from the temporal relation between different
events, e.g., one event happens before another event, then construct the conditional intensity function
based on these relations (Li et al., 2021b; Yang et al., 2024; Song et al., 2024). Shi et al. (2023) use
logic rules extracted by LLMs to improve the accuracy of next-event prediction. Zhang et al. (2021a)
report an unsupervised approach to pick out exogenous events from a given sequence, called TPP-
Select. TPP-Select separates all observed events into two types: endogenous events and exogenous
events. Endogenous events occur because of historical influence, while exogenous events exist
because of unknown external factors. By removing exogenous events from the dataset, TPP-Select
can improve MTPP model training performance.

CHD differs from these works. CHD discloses causal relations between history and events observed
later, while Granger causality (Idé€ et al., 2021; Wu et al., 2024) explores mutual relations across
different marks to find which mark helps the event forecast on other marks. Other works (Li et al.,
2020; Song et al., 2024) exploit logic rules between different events, e.g., one event happens before
another event, then construct the conditional intensity function based on these rules. In summary, the
methods in these studies cannot solve CHD.

6 CONCLUSIONS

This study investigates Counterfactual History Distillation (CHD) to distill the essential events in
history that can influence the occurrence of the subsequent events. This study demonstrates the
issue of solving Counterfactual History Distillation (CHD) by conventional counterfactual analysis
and refines the definition to ensure the distilled events are informative. With deliberate methods
including Gumbel-softmax trick, the proposed solution MTPP-based Counterfactual History Distiller
(MTPP-CHD) learns by effectively probing various event combinations. Its superiority has been
observed in distillation optimization and processing speed in tests on real-world datasets. This study
demonstrates analyzing the distilled events may disclose insights into the causal relation between
events and event marks in continuous-time event sequences.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. CHD defined in Equation (7) has two constraints. For the first constraint, we have:

log ppl(p(x,|Hy)) < log ppl(p(xo|Hi)) + log e (14)
For the second constraint, we have:
log ppl(p(xo|Hy)) = log ppl(p(x,|Ha)) + logeq (15)

By connecting Equation (14) and Equation (15), we get:

ppl(p(@o|Hi)) _ €a
ppl(p(x,|Ha)) = €

For any ¢; € (0,1) and ¢4 € (0,1) where e > ¢;, we can always move more events from # ¢ to
‘H 4 so that Equation (16) is satisfied. In the extreme case that ‘E—‘j is an any large number, all events
in H y can be moved to H4 so that H; = &; then we have ppl(p(x,|H;)) — +oo that can always
guarantee the inequation in Equation (16) held. [

(16)

B EXPERIMENT DETAILS

B.1 DATASETS

Table 4 reports the basic information of three real-world datasets, Retweet, StackOverflow, and Yelp.
Table 5 shows different settings of |# | and |z, | for the subsequences (H s, z,) in experiments.
Table 6 reports the number of events in training, validation, and test datasets for different settings of
|H f| and |x,|. Table 7 presents the hyperparameters used for training the MTPP-CHD model on
Retweet, StackOverflow, and Yelp. Because generating 4 and ‘H,; from 7 ; runs faster on the CPU,
we train and evaluate all CHD approaches on Xeon Gold 6132 CPUs instead of GPUs.

Retweet (Zhao et al., 2015) records when users retweet a particular message on Twitter. The mark of
this dataset distinguishes all users into 3 different types. Mark O refers to the normal user, whose
follower count is lower than the overall median. Mark 1 refers to the influential user, whose follower
count is higher than the median but lower than the top-5% of the entire user base. Mark 2 refers to
the famous user, whose follower count is in the top-5% of the entire user base.

StackOverflow (Leskovec & Krevl, 2014) was collected from Stackoverflow?, a popular question-
answering website about various topics. Users providing decent answers will receive different badges
as rewards. We have 22 marks in this dataset, representing 22 different badges that users can receive
for their answers.

Yelp”* contains the reviews of restaurants, shopping centers, and stores in the US on Yelp. We
categorize these reviews into three groups based on the reviewers. Mark 0 refers to the normal
reviewer. The number of reviews a normal reviewer has is lower than the overall median, which is 5
reviews in our case. Mark 1 refers to the influential reviewers. These reviewers write more reviews
than normal reviewers but less than the top-5% reviewers. Mark 2 refers to the famous reviewers, the
top-5% reviewers who write more than 92 reviews.

B.2 MTPP MODEL

MTPP-CHD can work with any MTPP models that provide p*(m, t). Without loss of generality, this
study uses FullyNN (Omi et al., 2019). Table 8 presents the hyperparameters used for training the
FullyNN on Retweet, StackOverflow, and Yelp.

*https://stackoverflow.com
*nttps://www.yelp.com
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Table 4: The basic information of datasets where the number of sequences, events, and marks are in
the first three columns, 7 and o (7) are the mean and standard deviation of the time intervals between
adjacent events, to and T are the earliest start time and the latest end time of all sequences.

Sequences  Events  Marks T o(T) to T
Retweet 24000 2610102 3 2574 16 302 0 604799
StackOverflow 6633 480414 22 0.8747 1.2091 1324 1390
Yelp 4022 409946 3 7.2644 13.410 0 751

Table 5: Settings of |# | and |x,| in experiments for each dataset.

(# of events in @,, # of events in H 5)

Retweet (10, 25), (10, 30), (10, 35), (15, 35), (20, 35)
StackOverflow (15, 40), (15, 45), (15, 50), (20, 50), (25, 50)
Yelp (10, 25), (10, 30), (10, 35), (15, 35), (20, 35)

Table 6: The number of events in training, validation, and test dataset for different setting of |H |
and |x,|.

(xo,Hy)  training  validation test

(10,25) 1476116 145521 148 465
(10,30) 1376116 135521 135521
Retweet (10,35) 1276116 125521 128465
(15,35) 1176383 115551 118497
(20,35) 1081289 106 047 108970

(15, 40) 99791 10826 29232
(15, 45) 87623 9451 25824
StackOverflow (15, 50) 77341 8307 22951
(20, 50) 68 635 7350 20504
(25, 50) 61254 6512 18385

(10, 25) 213677 25937 29562
(10, 30) 197622 23952 27492
Yelp (10, 35) 181567 21967 25422
(15, 35) 165587 19996 23359
(20, 35) 150 640 18157 21406

Table 7: Hyperparamters settings for training MTPP-CHD.

Retweet StackOverflow Yelp
Training Steps 100000 100000 100000
Warmup Steps 5000 5000 5000
Batch Size 256 128 128
Hidden Vector 64 64 64
Input Vector 32 32 32
QK V 32 32 32
Head 4 4 4
N 4 4 4
M 4 4 4
Learning Rate 0.001 0.001 0.001
€ 0.5 0.5 0.6
€d 0.9 0.9 0.9
o 1.0 1.0 1.0
Jé] 1.0 1.0 1.0

FullyNN estimates the integral of conditional intensity functions A*(m,t) = fti A*(m, T)dT and
calculates the value of the intensity function at time ¢ from the gradient of A*(m, t):
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¢
A*(m,t) = / X (m, 7)dr = FullyNN(m, t) (17)
ty
. _ OA*(m,t)  OFullyNN(m,t)
A*(m,t) = Y = 5 (18)
p*(m,t) = A*(m,t) exp (—A*(t)) (19)
HFullyNN (m, ¢
- ya—t(m) exp (— %:ﬂmuyNN(m t)) (20)

This helps FullyNN elude calculating A*(m, t) by numerical integration methods, such as Monte
Carlo integration, to predict MTPP faster and more accurately. The FullyNN is trained on NVIDIA
A100 GPUs.

Table 8: Hyperparamters settings for training MTPP Models.

Retweet StackOverflow Yelp
Training Steps 400000 200000 200000
Warmup Steps 80000 40000 40000
Batch Size 32 32 32
History Embedding 32 32 32
Optimizer AdamW AdamW AdamW
Intensity Vector 16 32 16
Learning Rate 0.002 0.002 0.002
Layers 4 2 4

C ADDITIONAL EXPERIMENT RESULTS
Additional experiment results in Section 4.2 are reported here.

C.1 EFFECTIVENESS OF COUNTERFACTUAL ANALYSIS REFINEMENT

Figure 5 demonstrates the distribution of log ppl(p(x,|H;)) — log ppl(p(x,|H4)) on StackOverflow,
Retweet, and Yelp at various settings of |# f| and |x,| using MTPP-CHD with and without refinement,
respectively. The results further support the conclusion in Section 4.2.1 that the resultant H 4s have
more information than the corresponding H;s for predicting the following events |x,| using MTPP-
CHD with refinement. In contrast, MTPP-CHD without refinement may lead to the resultant H ;s
having less information than the corresponding H,;s.

C.2 EFFECTIVENESS OF L., AND L,,

Section 4.2.3 demonstrate that minimizing loss L. leads to H 4 with fewer events and minimizing
loss L,, leads to ‘H 4 with more events, respectively, on StackOverflow. The results on Retweet and
Yelp are reported in Figure 6 and Figure 7, respectively. They are consistent with the results in
Section 4.2.3.

C.3 MODEL EFFICIENCY

Table 9 presents the total time of the trained MTPP-CHD and baselines to solve CHD on three
real-world datasets at more settings of | | and |x,| in the first three columns, and the time used by
MTPP-CHD for training on these datasets in the last column. The results futher demonstrate that
MTPP-CHD solves CHD more efficiently than baselines.

C.4 ANALYSIS OF DISTILLED EVENTS

In Figure 8 and Figure 9, we present the percentage of different marks in H 4 returned by MTPP-CHD
and RD on the test data of StackOverflow and Yelp. For StackOverflow, the results demonstrate some
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marks have more information but others have less information for predicting the following events.

For Yelp, all marks seemingly have the similar information about x,,.

Density

Density

Density

Density

Figure 5: The distribution of log ppl(p(a,|H,)) —
MTPP-CHD without refinement.
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(b) The number of event in H4 returned by MTPP-CHD trained by minimizing L, only.

Figure 6: Effectiveness of L. and L, on Retweet (from left to right: (|x,|, |Hs|) = (15,40),
(15,45), (15,50), (20,50), (25, 50)).
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(b) The number of event in H4 returned by MTPP-CHD trained by minimizing L,, only.

Figure 7: Effectiveness of L. and L,, on Yelp (from left to right: (|z,|, |#Hs|) = (15, 40), (15,45),
(15,50, (20, 50), (25, 50)).

Table 9: Total time used to solve all CHD tasks in test data (first three columns) and time used for
MTPP-CHD training (last column).

MTPP-CHD GS RD MTPP-CHD(Training)

StackOverflow ([x,| = 15,|H| = 45) 2.83h 263h  36.6h 24.0h
StackOverflow (|x,| = 15,|H | = 50) 2.86h 26.7h  41.1h 25.3h
StackOverflow (|x,| = 20,|H | = 50) 2.58h 24.0h  36.9h 29.5h
StackOverflow (|xo| = 25,|H | = 50) 2.35h 21.7h  33.4h 31.8h
Retweet (|x,| = 10, |H| = 30) 9.93h 93.5h  89.0h 29.0h
Retweet (|x,| = 10, |Hs| = 35) 10.8h 102h  111h 33.4h
Retweet (|x.| = 15, |Hs| = 35) 10.1h 93.8h  103h 37.5h
Retweet (|x,| = 20, |H ;| = 35) 9.38h 87.5h  94.9h 36.8h
Yelp (|x,| = 10, |H| = 30) 2.01h 18.8h  17.6h 14.8h
Yelp (/x| = 10, |H¢| = 35) 2.16h 203h  22.1h 15.4h
Yelp (|xo| = 15, |H| = 35) 2.00h 18.7h  20.5h 15.5h
Yelp (|xo| = 20, |H¢| = 35) 1.87h 17.2h  18.9h 15.2h
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Figure 8: The percentage of events for different marks in H 4 returned by MTPP-CHD and Random
Distillation (RD) on test date of StackOverflow (from left to right: (|z,|, [#f|) = (10,25), (10, 30),
(10,35), (15, 35), (20,35)). The results pass the significance test with p-values smaller than o =
0.005 for most marks.
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Figure 9: The percentage of events for different marks in H 4 returned by MTPP-CHD and Random
Distillation (RD) on test date of Yelp (from left to right: (|, |, |Hs|) = (10, 25), (10, 30), (10, 35),
(15, 35), (20, 35)). The results pass the significance test with p-values smaller than o = 0.005.
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