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Abstract

We present and release MIDI-GPT, a generative system
based on the Transformer architecture that is designed for
computer-assisted music composition workflows. MIDI-GPT
supports the infilling of musical material at the track and bar
level, and can condition generation on attributes including:
instrument type, musical style, note density, polyphony level,
and note duration. In order to integrate these features, we em-
ploy an alternative representation for musical material, creat-
ing a time-ordered sequence of musical events for each track
and concatenating several tracks into a single sequence, rather
than using a single time-ordered sequence where the musical
events corresponding to different tracks are interleaved. We
also propose a variation of our representation allowing for
expressiveness. We present experimental results that demon-
strate that MIDI-GPT is able to consistently avoid duplicating
the musical material it was trained on, generate music that is
stylistically similar to the training dataset, and that attribute
controls allow enforcing various constraints on the generated
material. We also outline several real-world applications of
MIDI-GPT, including collaborations with industry partners
that explore the integration and evaluation of MIDI-GPT into
commercial products, as well as several artistic works pro-
duced using it.

1 Introduction
Recent research on generative music systems (Huang et al.
2019; Huang and Yang 2020; Briot, Hadjeres, and Pachet
2019; Fradet et al. 2023a,b) has mainly focused on modeling
musical material as an end-goal, rather than on their affor-
dance in practical scenarios (Sturm et al. 2019). Although
these works pave the way for efficient generative methods
for music, their usability in real-world co-creative condi-
tions remains limited. As a result, while we have seen a wide
adoption of generative models for language and vision tasks,
this has not occurred to the same extent for symbolic music
composition. In contrast, artists recently expressed their con-
cerns about the misuse of artificial intelligence in the music
field (Artist Rights Alliance 2024). If we want musicians to
adopt generative systems, we must work on making models
controllable, able to generate content that the user will ap-
propriate as theirs, and integrated into their existing work-
flows.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Motivated by these considerations, we introduce MIDI-
GPT, a style-agnostic generative model that builds on an
alternative representation for multi-track musical material
(Ens and Pasquier 2020), resulting in an expressive and
steerable generative system. We outline the ongoing real-
world usage of MIDI-GPT and provide quantitative evi-
dence to support our claim that MIDI-GPT rarely duplicates
the training data as the length of the generated material in-
creases; generates musical material that retains the stylistic
characteristics of the training data; and that attribute control
methods are an effective way to steer generation.

2 Background
Considering our interest in developing a system that is well
suited to practical and interactive computer-assisted compo-
sition applications, we must identify the factors that enhance
the real-world usability of generative music systems. Our
first design decision is to use the General MIDI format as
input and output given that it is the most supported symbolic
music encoding standard. We consider two main categories:
I/O specifications, which place restrictions on the musical
material that can be processed and generated by the sys-
tem; and generation methods, favoring using existing mu-
sical content as prompt vs. unconditioned generation.

2.1 Input/Output Specification
We first define a track (tinst), which is a distinct set of mu-
sical material (i.e. notes) played by an instrument (inst).
In some cases, a track may be distinguished by its musical
purpose (ex. tmelody) rather than its instrument. For exam-
ple, MusicVAE (Roberts et al. 2018) aggregates all melodies
into a single track type, rather than distinguishing between
melodies based on their instrumentation (piano, synth, sax-
ophone, etc.). In what follows, tminst, tpinst and tdrum denote
a monophonic track, a polyphonic track, and a drum track,
respectively. For example, tmbass denotes a monophonic bass
track.

A generated excerpt can be described by a list of
track types (ex. [tmbass, t

p
piano]), and thus, we can de-

fine the output specification (O⋆) for an arbitrary gen-
erative music system as a set of track lists (ex. O⋆ =
{[tmbass, t

p
piano], [t

p
piano, t

p
synth]}) . We consider a system to

have a fixed schema when O⋆ contains a single tracklist. For
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example, CoCoNet (Roberts et al. 2018) has a fixed schema,
as O⋆ = {[tmsoprano, tmalto, tmtenor, tmbass]}, meaning that the
system is only capable of generating 4 track music contain-
ing soprano, alto, tenor and bass tracks.

In Table 1, we describe the following features of symbolic
music generation systems: the number of tracks, the number
of instruments, whether a fixed schema of instruments is as-
sumed, support for drum tracks, and support for polyphony
at the track-level. Clearly, reducing the restrictions on a sys-
tem’s output increases the usability of a system, as it can
accommodate a greater number of practices and user work-
flows. We leave aside style-specific generative systems (Ren
et al. 2020; Collins and Barthet 2023; Wu and Yang 2020;
Liu et al. 2022; Huang and Yang 2020; Hsiao et al. 2021), as
we aim for a style-agnostic system that can accommodate as
many users as possible.

As shown in Table 1, most systems either support a sin-
gle track or require a fixed schema of instruments. One
exception is MuseNet (Payne 2019), which supports up
to 10 tracks and any subset of the 10 available instru-
ments. However, there are significant differences between
MuseNet and MIDI-GPT. MuseNet uses separate NOTE ON
and NOTE OFF tokens for each pitch on each track, plac-
ing inherent limitations on the number of tracks that can
be represented, as the token vocabulary size cannot grow
unbounded(Fradet et al. 2023a). Considering that MuseNet
is currently the largest model in terms of the number
of weights, the number of tracks is unlikely to be in-
creased without altering the representation. Instead, we de-
couple track information from NOTE ON, NOTE DUR, and
NOTE POS tokens, allowing the use of the same tokens for
each track. Although this is a relatively small change, it
enables us to accommodate all 128 General MIDI instru-
ments. Furthermore, there is no inherent limit on the num-
ber of tracks, as long as the entire n-bar multi-track sequence
can be encoded using less than 2048 tokens. Practically, this
means more than 10 tracks can be generated at once depend-
ing on their content. Note that the upper limit of 2048 tokens
is not a limitation of the representation itself, but rather the
size of the model, and this limitation could be addressed with
larger and more memory-intensive models. Both MuseNet
and MIDI-GPT do not require a fixed instrument schema,
however, MuseNet treats instrument selections as a sugges-
tion, while MIDI-GPT guarantees a particular instrument
will be used.

2.2 Generation Tasks
We consider four different generation tasks: unconditional
generation, continuation, infilling, and attribute control. Un-
conditional generation produces music from scratch. Be-
sides changing the data that the model is trained on, the user
has limited control over the output of the model. Continu-
ation involves conditioning the model with musical mate-
rial temporally preceding the music that is to be generated.
Since both unconditional generation and continuation come
for free with any auto-regressive model trained on a tem-
porally ordered sequence of musical events, all systems are
capable of generating musical material in this manner. Infill-
ing conditions generation on a subset of musical material,
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Figure 1: The Multitrack (A) and Bar-Fill (B) tokenizations.
The grey <BAR>, <TRACK> and <CONTROL> placeholders
correspond token subsequences of complete bars, complete
tracks, and attribute controls, respectively.

asking the model to fill in the blanks, so to speak. Although
the terms infilling and inpainting are often used interchange-
ably, some important distinctions must be made in our con-
text. In contrast to inpainting a section of an image, where
the exact location and number of pixels to be inpainted are
defined before generation, when infilling a section of music
the number of tokens to be generated is unknown. Further-
more, in the context of multi-track music that is represented
using a single time-ordered sequence where tracks are inter-
leaved, the location of tokens to be added is unknown. This
makes bar-level and track-level infilling quite complex, di-
rectly motivating the representation we describe in Section
3. With tracks ordered sequentially, the location of the to-
kens to be infilled is then known. Infilling can occur at differ-
ent levels (i.e. note-level, bar-level, track-level). Track-level
infilling is the most coarse and allows a set of n-tracks to be
generated that are conditioned on a set of k existing tracks,
resulting in a composition with k+n tracks. Bar-level infill-
ing allows for n-bars selected across one or more tracks to
be re-generated, and conditioned on the remaining content -
past, current, and future - both on the track(s), and all other
tracks.

3 Proposed Music Tokenization
In this section, we introduce two tokenizations to inter-
pret musical compositions: the Multi-Track representation
and the Bar-Fill representation. In contrast to other sys-
tems (Oore et al. 2020; Huang et al. 2019), which use
NOTE ON, NOTE OFF and TIME DELTA tokens, we rep-
resent musical material using an approach which was previ-
ously employed for the Pop Music Transformer (Huang and
Yang 2020). In our Multi-Track representation, each bar of
music is represented by a sequence of tokens, which include:
• 128 NOTE ON tokens: These represent the pitch of each

note in the bar.
• 96 TIME POSITION tokens: These represent the abso-

lute start time (the time elapsed since the beginning of the
bar, as opposed to the time elapsed since the last event)
of each note within the bar.
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I/O Specifications Generation Tasks

System Number
of Tracks

Number of
Instruments

Fixed
Schema Drums Track-Level

Polyphony Infilling Attribute
Control

MIDI-GPT Any 128 no yes yes yes yes
FIGARO (von Rütte et al. 2023) 128 128 no yes yes no no

MMT (Dong et al. 2023) 64 64 yes yes yes no no
MuseNet (Payne 2019) 10 10 no yes yes no yes

MuseGAN (Hong et al. 2019) 4 4 yes yes yes no no
LahkNES (Donahue et al. 2019) 4 4 yes yes no no no

CoCoNet (Huang et al. 2018) 4 4 yes no no yes no
MusicVAE (Roberts et al. 2018) 3 3 yes yes no no no

MusIAC (Guo et al. 2022) 3 3 yes no yes yes yes
SketchNet (Chen et al. 2020) 1 no yes no no yes yes

(Pati, Lerch, and Hadjeres 2019),(Mittal et al. 2021) 1 no yes no no yes no
(Chang, Lee, and Yang 2021),(Chi et al. 2020) 1 no yes no yes yes no

(TAN and Herremans 2020),(Wang and Xia 2021),
(Wang et al. 2020) 1 no yes no yes no yes

(Haki et al. 2022), (Nuttall, Haki, and Jorda 2021) 1 no yes yes yes no no
(Huang et al. 2019) 1 no yes no yes no no

Table 1: A summary of the I/O specifications and generation tasks of recently published generative music systems.

• 96 DURATION tokens: These represent the duration of
each note. Both the DURATION and TIME POSITION
tokens range from a sixteenth-note triplet to a double
whole note in sixteenth-note triplet increments.

We delimit a bar with BAR START and BAR END tokens.
A sequence of bars makes up a track, which is delimited by
TRACK START and TRACK END tokens. At the beginning
of each track, one of 128 INSTRUMENT token specifies its
MIDI program. Tokens that condition the generation of each
track on various musical attributes follow the INSTRUMENT
token, and will be discussed in Section 4. The tracks are
then nested within a multi-track piece, which begins with
a START token. Note that all tracks are played simultane-
ously, not sequentially. This process of nesting bars within
a track and tracks within a piece is illustrated in Figure 1A.
Notably, we do not use an END token, as we can simply sam-
ple until we reach the nth TRACK END token if we wish to
generate n tracks. This tokenization is implemented in Mid-
iTok (Fradet et al. 2021) for ease of use.

The Multi-Track representation allows the model to con-
dition the generation of each track on the tracks that precede
it, which allows for a subset of the musical material to be
fixed while generating additional tracks. However, this rep-
resentation doesn’t provide control at the bar level, except
in cases where the model is asked to complete the remain-
ing bars of a track. In other words, the model cannot fill in
bars that are in the middle of a track. To generate a specific
bar in a track conditioned on the other bars, we introduce
the Bar-Fill representation. In this representation, bars to be
predicted are replaced by a FILL IN token. These bars are
then placed/generated at the end of the piece after the last
track token, and each bar is delimited by FILL START and
FILL END tokens (instead of BAR START and BAR END
tokens).

Note that during training, the bars with FILL IN tokens
appear in the same order as they appeared in the original
Multi-Track representation, shown in Figure 1B. By order-

ing the bars consistently, the model learns to always out-
put tokens in the same order as the bars that are marked
for generation. The Bar-Fill representation begins with a
START FILL token instead of a START token. The Multi-
Track representation is simply a special case of the Bar-Fill
representation, where no bars are selected for infilling.

3.1 Adding Interpretation Expressiveness
Multiple attempts at generating expressive symbolic music
have been made either as an independent process (Gillick
et al. 2019; Cancino-Chacón and Grachten 2016; Malik and
Ek 2017; Maezawa, Yamamoto, and Fujishima 2019) or a
simultaneous process with the musical content generation
(Oore et al. 2020; Huang et al. 2019; Hawthorne et al. 2018;
Huang and Yang 2020; Wu et al. 2022). None, however, al-
low for expressive multitrack generation. Here, we focus on
velocy, as a proxy for dynamics, and microtiming, as the
two main aspects of expressive music interpretation. We im-
plement two extensions to our current tokenisation allow-
ing the simultaneous generation of expressive MIDI. This
allows us to leverage the 31% of MIDI files in GigaMIDI
that have been marked as expressive (varying velocity, and
non-quantized micro-timing).

Firstly, we include 128 VELOCITY tokens that encode
every possible velocity level of a MIDI note, as velocity is
a proxi for dynamics and an important aspect of expressive-
ness in musical performances.

Secondly, we include new tokens to represent micro-
timing. Our current tokenization allows for 96 different
TIME POSITION tokens within a bar. Therefore, this level
of quantization occurs in the model which does not capture
microtiming. Intuitively, a solution to this problem would
be to increase the vocabulary and time resolution of the
TIME POSITION tokens. However, to maintain the possi-
bility of using the current downsampled and non-expressive
tokenization while allowing the possibility to add expres-
siveness, we introduce a new token DELTA which encodes
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Figure 2: Adding expressivity to the token sequence

the time difference of the original MIDI note onset ts from
the quantized token onset tk, illustrated in Figure 2a. The
DELTA tokens encode the offset in increments of 1/160th
of a sixteenth-note triplet. We consider 80 additional tokens
because the maximal absolute time difference is half of a
sixteenth-note triplet, and we use a DELTA -1 token when
this time difference is negative. This resolution allows for
a small addition to the vocabulary, yet is enough to encode
99% of the expressive tracks of GigaMIDI. The use of ex-
pressive tokens is illustrated in Figure 2b.

4 Controlling Music Generation
The premise behind attribute controls is that given a musical
excerpt x, and a measurable musical attribute a for which
we can compute a categorical or ordinal value from x (i.e.
a(x)), the model will learn the conditional relationship be-
tween tokens representing a(x) and the musical material on
a track, provided these tokens precede the musical material.
Practically, this is accomplished by inserting one or more
CONTROL tokens which specify the level of a particular mu-
sical attribute a(x) immediately after the INSTRUMENT to-
ken (see Figure 1), and before the tokens which specify the
musical material. As a result, our approach is most certainly
not limited to the specific musical attributes we discuss be-
low, and can be applied to control any musical feature that
can be measured. We employ three approaches to control
musical attributes of the generated material: categorical con-
trols, which condition generation on one of n different cate-
gories; value controls, which condition generation on one of
n different ordinal values; and range controls, which condi-
tion the system to generate music wherein a particular mu-
sical attribute has values that fall within a specified range.

Instrument control is an example of a categorical control,
as one of 128 different instrument types can be selected. We
use a value control for note density, however, the density cat-
egories are determined relative to the instrument type, as av-
erage note density varies significantly between instruments.
For each of the 128 general MIDI instruments, we calculate
the number of note onsets for each bar in the dataset. We
divide the distribution for each instrument σ into 10 regions
with the range [P10i(σ), P10(i+1)(σ)) for 0 ≤ i < 10, where
Pn(σ) denotes the nth percentile of the distribution σ. Each
region corresponds to a different note density level for a par-
ticular instrument.

We choose to apply range controls to note duration and
polyphony. Each note duration (d) is quantized as ⌊log2(d)⌋.

The quantization process groups note durations into 5 dif-
ferent bins [ 1

32 ,
1
16 ), [

1
16 ,

1
8 ), [

1
8 ,

1
4 ), [

1
4 ,

1
2 ), and [ 12 ,

1
1 ), which

we will refer to as note duration levels. Then the 15th and
85th percentiles of a distribution containing all note dura-
tion levels within a track are used to condition generation.
Polyphony levels follow a similar approach. The number of
notes simultaneously sounding (i.e. polyphony level) at each
timestep is calculated (a timestep is one 16th note triplet).
Then we use the 15th and 85th percentiles of a distribu-
tion containing all polyphony levels within a track. For both
these controls, we use two tokens, one to specify the lower
bound and another for the upper bound. Admittedly, this is
fuzzy range control, as strict range control would typically
use the smallest and largest values in the distribution (0th
and 100th percentiles respectively). We elected to use the
15th and 85th percentiles in order to mitigate the effect of
outliers within the distribution, decreasing the probability of
exposing the model to ranges in which values are heavily
skewed to one side of the range.

5 Training MIDI-GPT
We use the new GigaMIDI (Lee et al. 2024) dataset, which
builds on the MetaMIDI dataset (Ens and Pasquier 2021),
to train with a split of: ptrain = 80%, pvalid = 10%, and
ptest = 10%. Our model is built on the GPT2 architecture
(Radford et al. 2019), implemented using the HuggingFace
Transformers library (Wolf et al. 2020). The configuration
of this model includes 8 attention heads and 6 layers, utiliz-
ing an embedding size of 512 and an attention window en-
compassing 2048 tokens. This results in approximately 20
million parameters.

For each batch, we pick 32 random MIDI files (batch
size) from the respective split of the dataset (train, test,
valid) and pick random 4 or 8-bar multi-track segments
from each MIDI file. For a segment with n tracks, we pick
k tracks randomly selecting a value for k on the range
[2,min(n, 12)]. With 75% probability, we do bar infilling on
a segment where we mask up to 75% of the bars. The num-
ber of bars is selected uniformly from values on the range
[0, ⌊ntracks ∗ nbars ∗ 0.75⌋]. Then, we randomly transpose
the musical pitches (except for the drum track, of course)
with a value for the range [−6, 5]. Each time we select a n-
bar segment during training, we randomly order the tracks
so that the model learns each possible conditional ordering
between different types of tracks. The model is trained to
predict bar, track, and instrument tokens. As a result, when
generating a new track, the model can select a sensible in-
strument to accompany the pre-existing tracks, thus learning
instrumentation.

We train with the Adam optimizer, a learning rate of 10−4,
without dropout. Training to convergence typically takes 2-3
days using 4 V100 GPUs. We pick the model with the best
validation loss.

6 Sampling with MIDI-GPT
To achieve syntactically valid outputs from the system (with
respect to the tokenization used), we incorporate specific
masking constraints. More precisely, we mask select tokens
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(a) Hamming distance

(b) Jaccard Index

Figure 3: The percentage of generated excerpts (gi) with a
Hamming distance (resp. Jaccard Index J (oi, gi)) between
any excerpt oi from the training dataset and gi on the range
[a,b). A Hamming distance (resp. Jaccard Index) of distance
0 (resp. of 1) indicates two excerpts are identical, while 1
(resp. 0) indicates they are very different.

during various stages of the model’s inference process to
preserve the sequence necessary for encoding, decoding,
and prediction tasks. For example, a scenario in which a
BAR END token appears after a NOTE ON token token is not
feasible, given that the DURATION and NOTE POSITION
have yet to be determined. In such instances, we mask the
BAR END to prevent its sampling. Subsequently, we sam-
ple among the remaining unmasked tokens. This rule-based
sampling approach ensures that the model maintains a logi-
cal structure throughout its operations.

7 Release, Evaluation, and Applications
MIDI-GPT has been released1 and is seeing real-world us-
age in several contexts, which directly supports our asser-
tion that MIDI-GPT is a practical model for computer-
assisted composition. There are ongoing collaborations for
the integration of MIDI-GPT into synthesizers, like the OP-
Z by Teenage Engineering2, and game music composition
software by Elias. MIDI-GPT has been integrated into the
Cubase3 digital audio workstation, the Calliope4 web appli-
cation, and an Ableton5 plugin has been developed. MIDI-
GPT has been used to compose music6, including two en-
tries to the 2022 and 2023 AI Song contests, four albums
(two by Philip Tremble, one by Monobor, and one by a se-
lection of American and Canadian composers). It has been
used to compose adaptive music for games(Plut et al. 2022),
and a yearly artistic residency7 with French composers is

1https://www.metacreation.net/projects/mmm links to models
and various examples of generations.

2https://www.metacreation.net/projects/opz-mmm
3www.metacreation.net/projects/mmm-cubase
4https://www.metacreation.net/projects/calliope
5https://www.metacreation.net/projects/mmm4live
6https://www.metacreation.net/projects/mmm-music
7https://vancouver.consulfrance.org/Artificial-Muse-

residency-Vancouver

ongoing.
A user study (Bougueng Tchemeube et al. 2023) was con-

ducted to evaluate the integration of a previous version of
MIDI-GPT into a popular digital audio workstation. The
study measured usability, user experience, and technology
acceptance for two groups of experienced composers: hob-
byists and professionals with convincing results. Since we
have already conducted a comprehensive user study, we do
not repeat a listening study here. Instead, our experiments
are designed to address other aspects that impact the usabil-
ity of the system in real-world settings.

In the following, our evaluation of MIDI-GPT gauges the
performance of the system by addressing the following re-
search questions:

1. Originality: Does MIDI-GPT generate original varia-
tions or simply duplicate material from the dataset?

2. Stylistic Similarity: Does MIDI-GPT generate musical
material that is stylistically similar to the dataset (i.e.,
well-formed music)?

3. Attribute Controls: How effective are density level,
polyphony range, and note duration range controls?

7.1 Evaluating the Originality of Generated
Material
Intra-Dataset Originality It is increasingly important to
quantify the frequency with which a generative system is
producing musical material that is nearly identical to the
training dataset, given potential legal issues that may arise
when these systems are deployed into the real world, and
the difficulty of guaranteeing that a generative system does
not engage in this type of behavior (Papadopoulos, Roy, and
Pachet 2014). To accomplish this, we represent musical ma-
terial in each track as a piano roll and use hamming distance
to calculate the distance between two piano rolls. A piano
roll is a T × 128 boolean matrix specifying when partic-
ular pitches are sounding, where T is the number of time-
steps. Note that when we calculate Hamming distance be-
tween two piano rolls, we normalize the distance by the size
of the piano roll. Therefore, the distance between maximally
different piano rolls would be 1.

Since the dataset contains hundreds of thousands of
unique MIDI files, we are faced with a time complexity is-
sue, and must employ some heuristics to speed this process
up. First, rather than searching nearly identical n-bar piano
rolls, we search using single-bar piano rolls, and aggregate
the results of n search processes. Note that this means that
if n − 1 of the bars have a match in the dataset, but one of
the bars does not, the n-bar excerpt will not be considered to
have a match in the dataset. However, since we are interested
in identifying nearly identical matches, this is unlikely to
cause much of an issue. To filter out highly dissimilar candi-
date matches efficiently, we compute the Hamming distance
between compressed piano rolls first. Given a 48×128 piano
roll x that represents a single 4/4 bar of musical material, we
discard notes outside the range [21, 109) and take the maxi-
mum value over each consecutive set of 6 time-steps (equiv-
alent to one 1/8 note) on the first axis, producing a 8 × 88
matrix x. We calculate the Hamming distance between the

1478



compressed piano rolls, discarding any candidate matches
that have a distance greater than 0.25, and then compute
Hamming distance on the full-sized piano rolls for the re-
maining candidate matches. Even with these optimizations,
the search is executed in parallel on a 32-core machine and
takes an average of 83 seconds to complete a search for a
single 4-bar excerpt. In the worst case, it can take up to an
hour for a single query. Although we would have preferred
to use Jaccard index rather than Hamming distance, as we do
in the next sub-section, the nature of the heuristics employed
to increase computation speed prohibited this option.

We compute 100 trials where we randomly select a 4-
track 8-bar musical segment from the test split of the dataset,
blank out n consecutive bars on a single track, and generate
(i.e. infill) a new set of bars (gi). Given a Hamming distance
threshold, we determine if gi is nearly identical to any n-bar
excerpt in the training split of the dataset, using the method
described above. In Figure 3a we present the percentage of
trials for which the Hamming distance between any excerpts
in the training dataset and gi is on the specified range. Un-
surprisingly, as the number of bars increases, the percent-
age of instances where MIDI-GPT duplicates the training
data decreases significantly. This correlation was expected
as shorter generations are more constrained by the surround-
ing musical content. There are not that many one-track, one-
bar musical excerpts that are not already in the data set.

Infilling Originality We ought to also measure the data
reproduction for the infilling task, which may occur when
the model predicts the exact segment that a user wants to
infill, resulting in no change and inevitable frustration from
the user. To measure the frequency with which this occurs,
we randomly select a 4 track 8 bar musical segment from
the test split of the dataset, blank out n consecutive bars on
a single track (oi), and generate a new set of n bars (gi) to
replace (oi). Then, we measure the Jaccard index between
piano roll representations of oi and gi. We repeat this pro-
cess 250 times for each number of bars (n = 1, 2, 4, 8) and
report the results in Figure 3b. On the whole, as the num-
ber of bars increases, the frequency with which the origi-
nal material is duplicated decreases. Taken collectively, the
results in this section indicate that MIDI-GPT can reliably
produce original variations when generating 4 or more bars.
In practice, when deployed in products, it always does as
we actually test that the material generated is different from
what is being replaced, and regenerate otherwise. We also
re-generate tracks or bar infilling resulting in silence, which
the user never intends.

7.2 Quantifying Stylistic Similarity
It is also important that the variations generated by the sys-
tem are stylistically similar to the dataset. To be clear, we
define musical style as the stylistic characteristics delineated
by a set of musical data. As a result, when we claim to
measure stylistic similarity to the training data, we are mea-
suring similarity to the style that is delineated by this set
of data. Consequently, we avoid having to make subjective
decisions about what constitutes a particular musical style,
while maintaining an evaluation framework that is generic

Figure 4: The percentage of trials where
SC⋆

50

Ô⋆
25,Ĝ⋆

25

(Ô⋆
25, C⋆

50) ≤ SC⋆
50

Ô⋆
25,Ĝ⋆

25

(Ĝ⋆
25, C⋆

50). Hatching
indicates that the binomial test was insignificant, indicating
that Ô⋆ is not more similar to C than Ĝ⋆.

Figure 5: The percentage for each absolute difference be-
tween requested and actual note density.

enough to handle any arbitrary set of data.
We use StyleRank (Ens and Pasquier 2019) to measure

the stylistic similarity of generated material. StyleRank is
designed to measure the similarity of two or more groups of
musical excerpts (G1, ...,Gk) relative to a style delineated by
a collection of ground truth musical excerpts (C). Each mu-
sical excerpt is represented using a set of features, described
in detail in the original paper, and a Random Forest classifier
is trained to discriminate between G1, ...,Gk and C. Using an
embedding space constructed from the trained Random For-
est classifier, the average similarity between Gi and C can be
computed for each i. In what follows, let SC

G1,...,Gk
(a, b) de-

note the median similarity between a and b, calculated using
a StyleRank instance trained on G1, ...,Gk and C.

For this experiment, we use the same musical excerpts
from Section 7.1 (O = {o1, ..., o250},G = {g1, ..., g250}),
however, we remove each pair (oi, gi) where J (oi, gi) ≥
0.75, producing Ô and Ĝ. This ensures that we do not
bias our measurements by including generated material that
is nearly identical to the original preexisting material (oi)
from the dataset. We also assemble a set of 1000 n-bar
segments (C) from the dataset. For each trial, we compute
SC⋆

50

Ô⋆
25,Ĝ⋆

25

(Ô⋆
25, C⋆

50) ≤ SC⋆
50

Ô⋆
25,Ĝ⋆

25

(Ĝ⋆
25, C⋆

50), where X⋆
n de-

notes a subset of X containing n elements, which are se-
lected randomly for each trial. In other words, for each trial,
we determine if the median similarity between two subsets
of the corpus is less than or equal to the median similarity
between a subset of the corpus and a set of generated ex-
cerpts. We collect the results for 100 trials and compute a bi-
nomial test. If there is no significant difference between the
count of trials for which the condition is true and the count
of trials for which the condition is false, we can conclude
that there is not a significant difference between the gener-
ated material and the corpus with respect to the similarity
metric we are using. We report the results of this test using
different numbers of bars and temperatures in Figure 4.
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(a) Note durations

(b) Polyphony levels

Figure 6: The percentage of note durations (a) and
polyphony levels (b) within the range shown for 100 trials.

The results indicate that when generating with a tempera-
ture of 1.0, infilled generations are equivalent to the original
preexisting material in terms of musical style (as quantified
by StyleRank). Our results also show that when the temper-
ature is greater than 1.0, the generated material is more fre-
quently considered less similar to the dataset (C) than Ô,
an effect that increases along with the number of generated
bars. This demonstrates that our measurement instrument is
sensitive enough to detect small increases in the entropy of
the music generated by the model, which are the byproduct
of slightly changing the temperature.

This result does not only serve as an analytical evaluation
of the model (as human evaluations are covered elsewhere
(Bougueng Tchemeube et al. 2023)), but future work is to
replicate these when conditioning on a set of files represent-
ing a given musical style. MIDI-GPT includes a categori-
cal style control based on the style metadata extracted from
the MetaMIDI dataset (a subset of GigaMIDI) and aligned
to the MusicMap (Crauwels 2022) ontology (Disco, Rock,
Jazz, ...).

7.3 Evaluating the Effectiveness of Attribute
Controls
MIDI-GPT allows the user to condition generation not only
on the existing musical content at the time of generation,
but also on various control attributes such as the instrument,
musical style, note density, polyphony level, and note du-
ration. To evaluate how effective these control mechanisms
are, we focus on the three last ones for brevity. We conduct
100 trials where we generate 8-bar segments from scratch
using a particular attribute control method, and measure the
difference between the anticipated outcome and the actual
outcome. For note density control, we measure the absolute
difference between the density level the generation was con-
ditioned on and the density level of the generated material.
For polyphony level and note duration, we compute the dis-
tribution of values (either polyphony level or note duration
level) from the generated material, and count the percent-
age of values that fall within the specified range. If attribute
control is successful, we would expect at least 70% of the
values to be within this range, as we used the 15th and 85th

percentiles while training.
The results for note density, shown in Figure 5, demon-

strate that the majority of times the absolute difference be-
tween the anticipated and actual density level is most of-
ten 0, and rarely exceeds 1. This indicates that this control
method is effective. The results for Note Duration, shown
in Figure 6a demonstrate that this attribute control method
is quite effective, as the median outcome (in terms of per-
centage of note durations within the specified range) is at or
above 70% in all cases except for [ 14 ,

1
2 ), [

1
4 ,

1
1 ) and [ 12 ,

1
1 ). In

contrast, the Polyphony Level control is less effective, with
the median outcome lying below the 70% threshold in many
cases. Calculating polyphony level at a single time-step is
inherently more difficult than note duration, as the former
requires knowledge of where multiple notes start and end,
while the latter only requires knowing where one note starts
and ends. This difference in difficulty seems to be reflected
in the results, as MIDI-GPT is better at controlling note du-
ration than polyphony.

In addition to these “soft controls”, we can also imple-
ment hard controls through rule-based sampling. This in-
volves some bookkeeping. For example, for practical rea-
sons, we also provide a hard polyphony limit lpoly . In places
where it would otherwise be valid for a note to be inserted
in the token sequence, we first check that the size of the set
of currently sounding pitches npitch satisfies npitch < lpoly .
If npitch = lpoly , we mask note tokens.

8 Conclusion
We present MIDI-GPT, a style-agnostic generative system
released as an Open RAIL-M licenced MMM model (Ens
and Pasquier 2020). MIDI-GPT builds on an alternative
approach to representing musical material, resulting in in-
creased control over the generated output. We provided ex-
perimental evidence demonstrating the effectiveness of the
system and outlined several ongoing real-world applica-
tions. The system runs on most personal computer with an
attention window of 2048 tokens, coresponding to 8-16 bars
depending on the number of tracks and their density. How-
ever, using an auto-regressive approach, and sliding win-
dows, longer parts can be generated by repeatedly condi-
tioning on portions of preexisting along with newly gener-
ated material. Future work involves: optimizing the model
for real-time generation in musical agents, training larger
models to expand the model attention window and attend
to larger musical structures, expanding the set of attribute
controls, and continuing integration of MIDI-GPT into real-
world products and practices.

Ethical Statement
While MIDI-GPT is style-agnostic, and does include more
musical styles and content than any human can know, it still
inherits from the dataset’s bias, which only encompasses the
musical styles afforded by the MIDI notation and available
online. Arguably, there are still many musical styles under-
represented (mostly non-western styles) or even absent from
the dataset (i.e. not representable or available in MIDI) and
therefore the model (although some suspecting users have
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noticed its generalization capabilities). Conversely, some
musical styles are over-represented (e.g., pop). Further work
is needed to qualify and quantify these biases.

Regarding copyright and intellectual property, MetaMIDI
and GigaMIDI were acquired under the Fair Dealing law
of Canada, which limits thei use to research and non-
commercial use. We abide by these limitations.

Regarding MIDI-GPT : at the time of writing, it is un-
clear what the legal status of such a model is, as it does not
contain the data itself, and produces original content for any
non-over-constrained request (as shown above). So far, we
restricted its use to non-commercial use. It is either released
as-free-for use (Calliope), used for research purposes with
collaborating companies, or used for research-creation pur-
poses with selected artists. The ethical or legal implications
of current creative use by other artists, and the potential use
of the released model (under an Open RAIL-M licence) for
commercial purposes by other parties does not rest with the
authors of this research. We thus decline any responsibility
for misuse.
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