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Abstract

Diffusion bridges are a promising class of deep-learning methods for sampling
from unnormalized distributions. Recent works show that the Log Variance (LV)
loss consistently outperforms the reverse Kullback-Leibler (rKL) loss when using
the reparametrization trick to compute rKL-gradients. While the on-policy LV loss
yields identical gradients to the rKL loss when combined with the log-derivative
trick for diffusion samplers with non-learnable forward processes, this equivalence
does not hold for diffusion bridges or when diffusion coefficients are learned.
Based on this insight we argue that for diffusion bridges the LV loss does not
represent an optimization objective that can be motivated like the rKL loss via the
data processing inequality. Our analysis shows that employing the rKL loss with
the log-derivative trick (rKL-LD) does not only avoid these conceptual problems
but also consistently outperforms the LV loss. Experimental results with different
types of diffusion bridges on challenging benchmarks show that samplers trained
with the rKL-LD loss achieve better performance. From a practical perspective
we find that rKL-LD requires significantly less hyperparameter optimization and
yields more stable training behavior

1 Introduction

We consider the task of learning to generate samples X € R™Y from an unnormalized target distribu-

tion:
exp (-€(X))
Z

where Z denotes the partition function and € : R — R is the energy function. In this setting, it is
assumed that the energy function £ of the target distribution can be evaluated and Z is unknown and
computationally intractable. Importantly, there are no available samples from my. Sampling prob-
lems of this kind represent fundamental challenges in computational physics and chemistry and in
Bayesian inference [Noé¢ and Wu, 2018} |Wu et al.,[2019,|Shih and Ermon| [2020]]. Recent approaches
have focused on training probability distributions parameterized by neural networks to approximate
target distributions. Early deep learning-based methods explored exact likelihood models such as
normalizing flows [Noé and Wul |2018| and autoregressive models [Wu et al., [2019, [Nicoli et al.,
2020], while more recent work has turned to approximate likelihood models like diffusion models
in continuous [[Zhang and Chenl 2022, Berner et al., 2022 and discrete domains [Sanokowski et al.}

mo(X) = with Z:fRNexp(—é’(X))dX, (1)
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2024, 2025]). In the continuous domain, initial research explored these so-called diffusion samplers
that aim at reversing the forward time evolution processes that are given by the variance-preserving
and variance-exploding stochastic differential equations (SDEs) [Zhang and Chen), [2022] |Vargas
et al 2023 Berner et al.| 2022]. More recently, diffusion samplers based on diffusion bridges em-
ploy learnable forward processes and have established a new state-of-the-art in the field [Richter and
Berner, 2024/, [Vargas et al. 2024, Blessing et al.l [2025]. These models are typically trained using
either (i) the reverse Kullback-Leibler divergence loss with gradients from the reparameterization
trick (rKL-R) or (ii) the Log Variance (LV) loss where backpropagation through an expectation is
not necessary [Richter and Berner, 2024]. However, diffusion bridge samplers face significant prac-
tical challenges. The rKL-R loss is susceptible to vanishing and exploding gradient problems when
employing numerous diffusion steps [Zhang and Chen, [2022, |Vargas et al.,2023]] and has been em-
pirically shown to underperform compared to the LV loss. Conversely, diffusion bridge samplers
trained with the LV loss are prone to training instabilities and thus need extensive hyperparameter
tuning.

In this work, we make three key contributions to address these limitations of diffusion bridge sam-
plers. (i) We identify crucial problems in the application of the popular Log Variance (LV) loss in
diffusion bridges. While the gradients of the LV loss and the gradients of the reverse KL divergence,
when optimized with the log-derivative trick (rKL-LD), are identical when only the reverse diffusion
control is learned, this equivalence does not hold in the context of diffusion bridge samplers or when
diffusion coefficients are learned. We demonstrate, in this case, the LV loss suffers from training
instabilities and is based on a divergence that does not satisfy the data processing inequality which
represents an important theoretical criterion for losses of latent variable models. (ii) Instead of using
the LV loss, we advocate for training diffusion bridge samplers with the rKL-LD loss and show
that it consistently outperforms diffusion samplers trained with LV and rKL-R losses. Additionally,
we find that it is significantly less sensitive to hyperparameter tuning. (iii) In addition to the usual
learned drift terms of SDEs we motivate learnable diffusion terms that enable dynamic adaptation
of the exploration-exploitation trade-off and show that combined with the rKL-LD loss they yield
significantly improved performance when applied to hitherto state-of-the-art samplers that build on
diffusion bridges.

2 Problem Description

2.1 Diffusion Bridges

Diffusion models are generative models that learn to transport samples X7 € RY from a simple
prior distribution 77 to samples that are distributed according to a target distribution Xy ~ 7g.
This transport map is defined by the reverse diffusion process, whose parameters are learned with
the objective of inverting a forward diffusion process. The parameters of the corresponding for-
ward SDE are either learned or predefined. Examples for later case are the variance-exploding or
variance-preserving SDEs |Song et al.| [2021]]. For these predefined forward SDEs the selection of
parameters—particularly diffusion coefficients must be carefully adjusted since they determine the
stochastic process which the diffusion model needs to revert in order to transport from 77 to mp. In
diffusion bridges, however, also the forward SDE is learnable. These models are thus equipped with
the flexibility to freely learn which transport path to use between 7 to my. Due to this flexibility
diffusion bridges have recently attracted increased research interest and represent the state-of-the-art
in a wide range of applications, including the data generation and pairing problem [De Bortoli et al.,
2021}, [2024] or the problem of sampling from unnormalized distributions, which is the focus of this
paper.
In diffusion bridges, the forward diffusion process is defined by the following SDE:

dX =f¢(Xt,t) dt + o, dW; where te¢ [O,T], XO ~ T, )

where W, € RY is a Brownian motion, i.e. dW; = Wyog — Wi ~ N (0, In dt) which is multiplied
with diffusion coefficients o, € RY, and ¢ are the learnable parameters of the forward diffusion
control fs(X,t) € RV, The reverse process is defined as:

dX; =7, (X, 7)dr + 0, dW, where 7€[0,T], X,-0~ 7T, 3)

with learnable reverse control 7, (X, 7) € R™. Here o denotes learnable parameters of the reverse
diffusion process, which evolves in the opposite time direction ¢ =T — 7.



In practice, the reverse process is often simulated via Euler-Maruyama integration with step size
AT = At > 0 for T steps so that the reverse SDE generation process is given by:

Goa(Xr 67, 7) = X1 = X +170(X-, 7) AT + 0V AT € )
The conditional probability for a step in the reverse direction is then given by:
Qo (X1 X)) = N(Xio1; Xy + 1o ( Xy, t) At, 02 AL) (5)
and for a step in the forward direction by:
Po(Xe|Xio1) = N (X3 Xio1 + f5(Xio1,t = 1) At, 07 At). (6)

2.2 Parameterization of Diffusion Bridge Samplers

In the following, we will introduce two common parameterizations of diffusion bridge samplers
with a focus on the distinction between SDE parameters that are shared or non-shared between the
forward and reverse processes. These considerations will reveal the conceptual problem of the LV
loss and motivate the introduction of diffusion sampler training via rKL-LD. For this purpose we
denote with ¢ and « the parameters of the forward and reverse process, respectively, that are non-
shared between the two processes. The parameters that are shared are denoted via v. We denote the
entirety of the parameters of a diffusion bridge as 6 = («, ¢, V). This formulation encompasses two
popular diffusion bridge samplers: Denoising Bridge Samplers (DBS) and Controlled Monte Carlo
Diffusion (CMCD).

Denoising Bridge Samplers: DBS, introduced by [Richter and Berner [2024]], uses separate neural
networks for reverse drift r,, and forward drift f; with non-shared parameters. In the underdamped
DBS variant proposed in Blessing et al.[[2025] additional SDE-related parameters including diffu-
sion coefficients are learned, resulting in v #+ &.

Controlled Monte Carlo Diffusion: CMCD, introduced by |Vargas et al.| [2024]], parameterizes
both reverse and forward diffusion processes with the same parameterized control w., with shared
parameters v. In CMCD, all learnable parameters are shared, i.e. ¢ = a = &. The control terms of the
forward and reverse diffusion processes are guided by the score V x log (X)) of an interpolation
between the forward and reverse process: m;(X;) = mo(X;)"® wp (X)) where () € [0,1]
is a learned monotonically decreasing function with 7(0) = 1 and n(T") = 0 (see App. for more
details). The control of the reverse diffusion processes in Eq. [3]is then defined by:

2
or
2

and the control of the forward diffusion process in Eq. 2] by:

2
o
fy (X t) = évxt log i (X¢) = uqy (X3, 1).

T»Y(X.”T) = Vx, IOgWT(X‘r)"—u’Y(XﬁT)

CMCD is initialized such that u. (X;,t) = 0, which ensures that before training, the simulation of
the reverse diffusion process Eq. []is equivalent to the Unadjusted Langevin Annealing. Intuitively,
CMCD learns to modify unadjusted Langevin dynamics with an additive control term so that the
resulting process efficiently transports samples from the prior to the target distribution within a
limited number of diffusion steps 7. In CMCD, the parameter structure can be represented by
v = (v,{nt,01 }+=1,... ) when also diffusion coefficients are learned.

2.3 Training of Diffusion Samplers

The loss to train diffusion models is typically based on a divergence between the underlying marginal
distribution ¢, ., (Xo) induced by the reverse diffusion process and the target distribution my(Xo).
In this context, f-divergences are a popular choice [Csiszar, [1967]:
P(X)
DAPElQ0) - [ Qu0r (G )ax.

! Q(X)
where f is a convex function satisfying f(1) = 0 and P and @ are two probability distributions
satisfying P << @, i.e. P is absolutely continuous with respect to ). The choice of f significantly
influences the learning dynamics in terms of mode-seeking vs. mass-covering properties.



Reverse KL Divergence: The rKL corresponds to f(t) = —log(t) and is given by:

qa,u(X)] .

7
mo(X) @

D r(gaw(X) ||m0(X)) =Exoq. ,(x) [log
The rKL divergence is a convenient choice for learning to sample from unnormalized target distri-
butions as the expectations are calculated over model samples X ~ ¢, (X). However, the rKL
exhibits a mode-seeking behavior, i.e. g, tends to focus on the high-density regions of the target
distribution 7, potentially ignoring low-density regions or modes with smaller probability mass
which leads to a bias between the target and variational distribution that cannot be corrected with
Neural Importance Sampling or Neural Markov-Chain-Monte-Carlo [Nicoli et al., 2020].

Forward KL Divergence: The fKL corresponds to f(¢) = tlog(¢) and is given by:

7T0(X)] . ®
o (X)

In contrast to the rKL it is mass-covering, i.e. ¢, tends to cover the entire support of 7, even at the
cost of placing high probability in low-density regions. While this mass covering property is useful
for sampling applications, because it enables asymptotically unbiased estimates of observables it
comes at the cost of sample efficiency, and the fKL divergence cannot be straightforwardly used
as a loss function as samples from X ~ mo(X) are not available. This problem can, however, be
mitigated by either rewriting the expectation with respect to samples from 7y (X) to an expectation
over samples from ¢, (X ) by incorporating self-normalized importance weights as done in Miiller
et al. [2019]], Jing et al.[[2022], Midgley et al.| [2023]], |Sanokowski et al.| [2025].

Jeffrey Distance: Another possible choice is the Jeffrey distance which corresponds to f(t) =
(t-1)log(t). This yields:

DJeH(WO(X)7Qa,V(X)) = DKL(WO(X) ||Qa,u(X)) + DKL(QQ,V(X) ||7TO(X)) (9)

This divergence is a sum of the rKL and fKL and is therefore a trade-off between the mode-seeking
and mass-covering behavior of the rKL and fKL divergence. In the context of sampling this loss is
for example used in|Noé and Wu|[2018]].

D (70(X) | g (X)) = Exom [mg

Data Processing Inequality: For expressive latent variable models like diffusion samplers, the
marginal variational distribution g, , (Xo) is typically intractable. Therefore, losses for diffusion
models are in practice often motivated by the data processing inequality for f-divergences that sat-
isfy the following monotonicity relation [Zhang and Chen, 2022} [Vargas et al.| [2023| [Sanokowski
et al., [2024] Blessing et al., 2025]:

D¢(m0(Xo) | ga,n(Xo0)) < D Py, (Xor) || gaw (Xor))- (10)

The right-hand side of this inequality is (up to a normalization constant) tractable for diffusion
bridges as it is based on joint distributions of the diffusion paths Xo.r. Using Eq.[5]and Eq. [6] the
corresponding joint probability distributions can be efficiently calculated with:

T T
Pov(Xor) = 70(Xo) [ [ o (Xe|Xec1)s o (Xor) = 70 (X1) [ | daw (Xe-1|Xe).
t=1 t=1
The parameters («, ¢, ) of the diffusion bridge (Sec. are optimized with the objective of min-
imizing the right-hand side of Eq.[I0] This training objective corresponds to maximizing the Ev-
idence Lower Bound (ELBO) in latent variable models [Blessing et al., 2024]. Eq. states ex-
plicitly that any reduction of the right-hand side leads to a tighter bound on the divergence between
the intractable marginals on the left-hand side. In fact it is well known in generative modeling that
diffusion losses that are based on properly bounded objectives yield better sample likelihoods [Song
et al.L[2021]]. We therefore argue that the data processing inequality is an essential property for losses
in sampling setting and that losses that do not provide such a conceptual footing might be practically

problematic (see Sec. [2.3.1).

2.3.1 Log Variance Loss

Richter et al.| [2020] propose the LV loss as a convenient replacement of the rKL-based loss func-
tions in Bayesian variational inference and it has since then been frequently used to train diffusion



samplers [Richter and Berner, 2024} |Vargas et al.| [2024, [Sendera et al. 2024} |Chen et al., 2024a,
Blessing et al.| 2024] He et al.,[2025]. In the context of GflowNets Bengio et al.| [2021] this loss is
also known as the Trajectory Balance loss. For diffusion bridges, i.e. when both the reverse process
o, and the forward process py.,, involve learnable parameters the LV takes the following form:

( ( )” ( )) EX ~ lo 4’11( : ) b (11)
vV \4a,r ‘-il):l &,V ';(1):1 T ~W a,o,v )
L q y p , 2 0: g ,V()r : ) NoR

(Ioc,u(XO:T)
p(f),u(XU:T)
the support of ¢, and py , (Xo.r) the LV loss is zero if and only if g, . (Xo:r) = po (Xor).
In the simplest case w = stop_gradient(q,,,) := ¢, ,, for which we will refer to as the on-policy
Log Variance (OP-LV) loss. For diffusion samplers, the general LV loss and the OP-LV loss were
recently proposed in [Richter and Berner| [2024]], however, as also noted in Malkin et al.|[2022] the
LV loss is not an f-divergence and we show via the following simple counter-example that the LV
loss does not satisfy the data processing inequality.

where w is a suitable proposal distribution and by, , , = Ex;~w [log ] If w contains

Violation of the Data Processing Inequality by the Log Variance Loss

Consider the following distributions on the unit square Q = [0, 1]*:

* p(x,y) =1 (uniform distribution over (2),
2n

. _ el lf .’E+y<1
an(z,9) {nil if v+y>1,

where n € R,y determines the ratio between the amount of probability mass lo-

cated below and above the diagonal. For this choice, both Varg.,, [log q;((;))] and

Var(; yy~q [log %] can be computed analytically (see App. .

As illustrated below, these calculations show that for n < 1072 the Log Variance loss does
not satisfy the data processing inequality (DPI):

ar o0e @) [ v op (@ Y)
Vor[lon 55 ¢ Vo [lon 28 |

where the joint distribution g, (z,y) is absolutely continuous with respect to p(z,y), and

vice versa.
R an(x.y)
0.4 — Joint: Varg,[log 5X.7) 1
A Gn(x)
— Marginal: Varg,[log 71
DPI violated region
0.3 DPI satisfi .
o satisfied region DPI Satisfied
]
c
o
= 0.2
>
DPI Violated
0.1
0.0+

1006 105 10* 10°3 102 1071 100

Consequently, we argue that its application to latent variable models is potentially problematic since
it conflicts with the rationale of diffusion sampler training based on divergences of joint probabilities
motivated by the data processing inequality (see Sec.[2.3). We provide an additional counter example
in discrete state spaces is proved in App.



3 Method

3.1 Reverse KL Loss with Log-derivative Trick and Control Variate

One way to compute the gradient of the rKL loss is to use the reparametrization trick [Kingma and
Welling| 2014] as explained in more detail in App.[A.T] In diffusion samplers, the repeated appli-
cation of the reparametrization trick is, however, likely to give rise to the vanishing or exploding
gradient problem, which might explain the suboptimal behavior of rKL loss when minimized with
the usage of the reparametrization trick [Zhang and Chenl 2022| |Vargas et al., [2023]]. Several re-
cent works demonstrate that the LV loss outperforms the rKL loss with the reparametrization trick
[Richter and Berner, [2024} |Vargas et al.,2024] |(Chen et al., [20244a]]. It is argued that this is due to the
mode-seeking tendency associated with the rKL objective which results in mode collapse. While the
aforementioned works applied the reparametrization trick in conjunction with the rKL objective we
investigate the rKL objective with the log-derivative gradient estimator. The gradients corresponding
to the rKL-LD with respect to the parameters («, ¢, ) read (App. :

qOAV(XOZT) q
V(];D’qa'VDKL(qO«V p ~V) =Exgr~ a,v |:(10g — Y N baa'yu “Va IOg qa,u(XO:T)
|| é, 0:7~qa, p¢,u(XO:T) P,

Vo Drr(qaw |Pow) = ~Exorrge., [Vologpe, (Xor)] (12)

Qo (XoT) L qa.
VIED’qu)VDKL(qO‘vV ||p¢v’/) = ]EXO:TNqa,u [(log L - bi qb u) V. log qoz,u(XO:T):|
pop(Xor)
- ]:EXO!TNq(R,V [VU Ingtb,V(XO:T)» ]
where VGLD"”” is an operator that computes the gradient of parameters § with respect the expectation

over a distribution wy by applying the log-derivative trick and by reducing the variance with a control
variate b, as defined in App.

3.2 Gradient of the Log Variance Loss

The corresponding gradients of the LV loss with respect to bridge parameters («, ¢, v) are given by

(see App.[A.3):

ExXqpmw [(log % - b:,qﬁ,y) “Valog q(l,V(XOIT)]

Va
w o,V X: W
(V¢) Dy (ga,wsPow) = | ~Exgrmw Ebg Mixzi; - ba,¢,y; Vo logpqhu(XO:T)] (13)

Vv do,v(XoT) W qa,v(Xo:T)
Ps,v (Xor) a,¢,v -V log P¢,V(X0:T):|

The gradient of the LV loss is related to well-known f-divergences in the following way. With the
choice w = stop_gradient(ga,. ) =t g, , one obtains:

EXO:T"‘W log

VaDiy” (GawsPow) = VEP 9" Dic (o | Po),

Hence, for non-shared parameters of the reverse diffusion process « the gradient estimator of the
LV loss coincides with the gradient of the rKL divergence computed with the log-derivative trick.

When the off-policy distribution is w = stop_gradient(pe ) = Py, the gradient with respect of ¢
is given by:

P v LD.pg,.
V¢DL<)/ (QQ,V>p¢,V) = V¢ bo. DKL(de,V ||Qa,u)

and therefore exactly the same as the gradient of the forward KL divergence with log-derivative
trick. For the OP-LV loss, however, we have at initialization |p;l, - q,,| >> 0 and therefore

V¢Di§7’,’” (qa,vsPg,v) can be seen as a biased estimate of V(I;D’pq&’”DKL(p@V | go,n ) as it can al-
ternatively be estimated with the usage of Neural Importance Sampling in the following way:

LD

o,V Xo: .
Ve D (Do o) = ~ExXoreaa [w(XO:T) (log daw(Xor) pie

a.b.v -V Ing ,V(XO:T)
p¢,y(XO:T) % ) ¢ ¢

N Pov(Xor) _ » _ N pov(Xor,i)
Q qo,v (Xo:T) with © = Zi:l qa,v (Xo:T,i)
ized importance weights. However, as ¢, approximates p ,, and therefore w(Xo.r) — 1, this bias
is continually reduced.

where (with abuse of notation) w(Xo.r) = are self normal-



For parameters that are shared between the forward and backward diffusion process v we have for
OP-LV at optimality when p} , = q;, ,,

Phu LD,py.. * N *
VDL (o Pow) = Vi P Dicr (o || 4,0) + V0% Dic (oo [195,,)

where the right-hand side is related to the gradient of the Jeffrey distance with a stop_gradient
operation in the second argument of each KL divergence. Therefore, at initialization when |p;7y -
47,1 >> 0 the gradient is biased as w(Xo.r) # 1 and additionally there is a difference to the gradient
of the Jeffrey distance due to the stop_gradient operations.

A comparison of these gradients with the gradients of the rKL-LD loss in Eq. |12|shows that when
¢ = v = @ the gradients of the OP-LV loss and rKL-LD loss are identical. Conversely, when
w # stop_gradient(gy), these two losses yield, in general, different gradients. Similarly, when
¢ + @, v # @, the gradients with respect to these parameters are different, in which case an evaluation
of the rKL-LD loss has not been considered in recent literature. These considerations and the fact
that the LV loss violates the data processing inequality put the validity of the LV loss for diffusion
bridge samplers in question and in fact we observe in our experiments that the LV loss often exhibits
unstable behavior and requires hyperparameters to be carefully tuned (see Sec.[3)). Additionally, we
provide in Sec. 5] a detailed comparison between the LV and rKL-LD loss for DBS and CMCD,
where we observe that rKL-LD yields better diffusion bridge samplers than the LV loss.

3.3 Learning of SDE parameters

SDEs in diffusion samplers are governed by diffusion coefficients that significantly influence their
sampling performance. While previous work has predominantly focused on non-learned diffusion
coefficients, the choice of these parameters involves nuanced considerations that can strongly affect
the model’s ability to capture complex distributions. In this section, we motivate why it is beneficial
to learn these coefficients.

By the chain rule for Shannon entropies [Shannon| |1948]], we obtain the following upper bound on
the entropy of the marginal distribution:

H(Qa,u(XO)) < H(Qa,l/(XO:T))' (14)
For diffusion bridges as defined in Sec. the entropy of the joint distribution is given by

(App.[A23):

T N
H (4o (Xor)) = H(rp) + 5 30| N+ 3 log(2mo,0) |. (15)
t=1 i=1
This inequality establishes an important constraint: to properly approximate a target distribution
with potentially high entropy, the diffusion bridge sampler must be capable of generating a joint
distribution ¢, (Xo.r) with sufficient entropy, which reveals a fundamental trade-off in selecting
appropriate diffusion coefficients. On one hand, the diffusion coefficients o; must be large enough
to ensure that H(q,,.(Xo)) > H(m9(Xo)), allowing the model to cover the entire support of the
target distribution. On the other hand, excessively large diffusion coefficients diminish the signal-
to-noise ratio, potentially degrading performance by obscuring important structural information of
the target distribution. This trade-off motivates the introduction of learnable diffusion coefficients.
The optimal magnitude of noise injection varies across different problems and even across different
dimensions of the same problem, suggesting that adaptively learning these parameters can lead to
more efficient approximations [Blessing et al.,[2025]. In our experiments in Sec.[5} we demonstrate
that diffusion coefficient learning yields significantly better performance in combination with the
rKL-LD loss. While we observe that diffusion coefficient learning consistently improves results
with rKL-LD it tends to worsen performance and increases hyperparameter sensitivity when using
the LV loss, highlighting the benefit of rKL-LD.

4 Related Work

For continuous diffusion samplers, the rKL loss is typically used with the reparametrization trick
[Vargas et al.,|2023| |Berner et al., 2022]]. More recently, Richter and Berner| [2024]] proposed the LV
loss as an alternative and showed that it outperforms the rKL loss with the reparametrization trick.
The corresponding experiments are performed with the Path Integral Sampler [Zhang and Chen,



2022] and the Time-Reversed Diffusion Sampler [Berner et al.,2022]], in which the forward diffusion
process is not learned. However, they report that the application of LV to diffusion bridges results
in poor performance and numerical instabilities. In|Vargas et al.|[2024], |Chen et al. [2024a]] the LV
loss is employed in conjunction with diffusion bridges and both works report that it outperforms the
rKL loss with the parametrization trick. Frequently, the mode-collapse tendency of rKL is given as
an explanation for its inferior performance in the context of diffusion samplers [Richter and Berner,
2024]]. The rKL with log-derivative trick has recently been successfully applied to diffusion samplers
in discrete domains. Examples of such problems arise in combinatorial optimization and statistical
physics of spin lattices [[Sanokowski et alll 2024} 2023]. Some of the considerations in Sec. [3.2]are
also made in the context of GflowNets in Malkin et al.| [2022].
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Figure 1: Models with fixed o4;g are marked with x. Left: Training curves on the Brownian task of
CMCD trained with LV loss and rKL-LD loss. Middle: Plot of the learned o4;¢ in ascending order
of the CMCD-rKL-LD run from the left figure. Right: Training curves on the Seeds task, where
CMCD-rKL-LD 04 init is compared to CMCD-rKL-LD * og4ig ini¢ at different initializations of
Odiff-

ELBO (1) Seeds (26d) Sonar (61d) Credit (25d) Brownian (32d) LGCP (1600d)
CMCD: rKL-R * —74.37+0.01 —109.69=0.063 —504.99=0.016 —0.30+0.018 471.91:0.201
CMCD: LV « -74.13:0.01 —109.53x0.062 —504.910.002 —0.0540.002 460.84+0.099
CMCD: LV —73.53+0.01 —109.66+0.015 —628.39+32.907 T —6.05z0.028 T 447.74+0.0 T
CMCD: rKL-LD * —74.10+0.01 —109.25+0.007 —504.880.003 0.36=0.001 466.73<0.027
CMCD: rKL-LD —73.45+0.01 —108.830.005 —504.58.0.001 1.06:0.0 465.80+0.02
DBS: rKL-R * —75.09:0.113  —119.58+1.388 —528.15=0.06 —3.1340.037 461.09:0.112
DBS: LV « -74.12:0.005  —110.66+0.013 —506.21+0.109 —9.39:0.028 T 460.48+1.408
DBS: LV —74.14+0.014 1t  -111.1420.022 —573.23:0.37a T —9.39:0.035 T 455.49+4.308 T
DBS: rKL-LD * —74.03+0.002 -109.41+0.013 —534.17+0.427 —0.16+0.016 469.73+0.038
DBS: rKL-LD —73.50+0.0 —108.88-0.005 —504.71+0.017 0.850.006 469.89-0.039

Table 1: Results on Bayesian learning benchmarks. The ELBO (the higher the better) is reported
for various methods and tasks. * denotes that o4;g is not learned during training. Divergent runs are
denoted with .

S Experiments

Task GMM-40 (50d) MoS-10 (50d)

Metric Sinkhorn (|) ELBO (1) EMC (1) MMD(]) Sinkhorn (}) ELBO (1) EMC (1) MMD ()
Ground Truth 875.21486.023 0. 1. 0.07:0.001  449.06+104.87 0. 1. 0.07=0.001
CMCD: rKL-R 50830.16+3103.552 —37.37=0.10  0.490:0.201  1.77x0.001  1605.24+23.120 —19.88:016  0.628:0.048  0.58=0.006
CMCD: LV = 2559.20+121.211 —37.37=010 0.996:0.000  0.12:0.0  1263.78:50.713  —52.52:0.70  0.971x0.001  0.35:0.002
CMCD: LV 2627.96+130.8 —45.85:017  0.996:0.000  0.13:0.0  1181.82:53.802 —43.63:051  0.994:0.001  0.36:0.002

CMCD: rKL-LD ~ 2362.47+106.694 —26.78z0.05  0.997:0.000  0.09:0.001 915.91:74.8 -34.93:0.25  0.981:0.004 0.29:0.003
CMCD: rKL-LD 2301.16193.118 —21.94:0.10  0.997:0.000  0.08:0.0 915.52174.62 -34.93:0.25  0.981:0.004  0.29:0.003

DBS: rKL-R * 2569.60+159.869  —80.49+0.703  0.997:0.000  0.12:0.001  1908.32:97.02  —-33.87:0.321  0.42440.032  0.43:0.002
DBS: LV » 2073.09164.554 —35.45.0.020 0.998:0.000 0.12:00  1220.27.47.066 —57.49:0.375  0.980:0.005 0.36:0.001
DBS: LV 2067.56163.623 —42.27:0.054  0.998:0.000 0.12:0.0  1284.95.54.832  —58.22:0.308  0.961:0.005  0.36:0.002
DBS: rKL-LD * 2128.99:69.267 —33.97:0.035 0.998:0.000 0.12:0.0 1052.31ss0.521 —43.67:0.45 0.993:0.001 0.33:0.004
DBS: rKL-LD 2133.50+70.093 —30.44:0.007  0.998:0.000 0.11:00 1051.34:50.545 —43.66:0.448 0.993:0.001  0.33:0.004

Table 2: Results on GMM-40 (50d) and MoS-10 (50d). Arrow | denotes that lower values of the
metric are better, and 1 denotes that the higher values are the better. x denotes that o4;¢ is not learned
during training. Runs that diverge after reaching the reported value marked with .



Benchmarks: Follow- Task Funnel (10d) Many Well (5d)
ing |Chen et al.|[2024a], we

Metric Sinkhorn () ELBO({)  Sinkhorn (J)  ELBO (1)
evaluate our model on two G -
types of tasks: In Tab. E] round Truth 64.77+0.71 0. 0.12+0.0 -0.54
we evaluate on Bayesian CMCD: rKL-R * 113.38+0.77 —2.46+0.35 2.05z0.052 —4.14+0.001

. CMCD: LV * 95.90+2.58 —0.67=0.00 0.13:0.0 —1.02x0.001
learnlng problems, where CMCD: LV 102.9413.04 T —0.46:0.01 T 0.13z0.0 T -1.40z0.0 T
we report the ELBO due  cMCD:rKL-LD «  94.04s2230 054001 0.12s00  —0.75:0.003
to the absence of data sam-  CMCD: rKL-LD 94.1642.55 -0.23:0.01 0.12:0.0 ~0.74+0.003
PleS (see APP- - In Tab. DBS: rKL-R * 111.12+2.908 —0.69+0.004 0.42+0.001 —7.21x0.005
and Tab. we evaluate DBS: LV * 335.12:33.757  —2.66:0.053  0.15:0.006 T —6.27+1.246 T
Synthetic targets where DBS: LV 151.834s8.647 —2.32+0.111 0.20z0.0 —2.9210.012

o DBS: rKL-LD * 105.97+2.377 —0.50+0.003 0.12:0.0 —0.65+0.032
we report the  Sinkhorn DBS: rKL-LD 108.88+3.44 —0.35:0.001 0.12:0.0 —0.65+0.032

distance, Entropic Mode
Coverage (EMC) [Blessing Table 3: Results on Funnel (10d) and Many Well (5d). Arrow | de-
et al| [2024] and Maxi- notes that lower values of the metric are better, and 1 denotes that the
mum Mean Discrepancy higher values are the better. * denotes that oq;g is not learned during
(MMD), which are all training. Divergent runs are marked with a t.

based on samples from the

diffusion sampler and samples from the target distribution (see App. [C). On multimodal tasks, a
combination of high ELBO and EMC values and low Sinkhorn and MMD distances indicate good
performance. Detailed descriptions of all problem types are provided in App. [C.I] To obtain a
comprehensive evaluation of the compared loss functions, we assess their performance using both
diffusion bridge sampling methods CMCD and DBS. Due to different parameter counts between
the two methods, we do not aim for a fair comparison between CMCD and DBS. Our experimental
setup mirrors |Chen et al| [2024a], i.e. training all methods for 40.000 training iterations with a
batch size of 2.000 on all tasks besides LGCP with a batch size of 300. Models are trained using
128 diffusion steps. We use a commonly used diffusion sampler architecture for all diffusion-based
methods as described in App.[D.3] In our experiments, we compare different variations of CMCD
and DBS trained with different loss functions, denoted as rKL-R (Eq. [I7), rKL-LD (Eq.[12), and
LV (Eq.[13). We provide a pseudoalgorithm for each loss in App. For each loss, we report the
results of a variation, where the diffusion coefficients oq;g of the underlying SDE are not learned.
Whenever diffusion coefficients are not learned we denote it with a x. For rKL-LD and LV we
also report the results of the method when o4;g is learned. For each setting, we perform a grid
search over the learning rates, the initial oqig and the initial variance of a prior distribution o pior as
described in App. D}

Ablation on Learnable Diffusion Coefficients and Divergent Behavior of Log Variance Loss:
We first investigate the impact of learnable ogig € RY when combined with the rKL-LD loss, as
shown in Fig. [1| (Ieft and right). For simplicity we chose oq;g to be constant across time and leave
time dependent o4; up for future work. In Fig. [T] (left) we evaluate CMCD under several config-
urations on the Brownian Bayesian learning task (see App. [C.I). Our baseline comparison is with
LV loss, where oqi are not updated during training. The LV loss is highly sensitive to the initial
choices of o,i0r and ogig and often exhibits unstable behavior. When training o4;g with the LV
loss, we observe divergent behavior across all hyperparameter choices. For comparison, we study
our proposed loss function in two variants, with trainable and frozen oq;¢. For the frozen version
we performed hyperparameter tuning on the initial value of og4;g. The experimental results demon-
strate that the rKL-LD loss consistently outperforms the LV loss across all tested configurations
and that incorporating learnable diffusion coefficients further enhances model performance when
using the rKL-LD loss. In Fig.[I] (middle), we analyze the learned oq;g across dimensions, showing
their values in ascending order along with standard deviations computed from three independent
seeds. The results reveal that og;g systematically adopts different scales across dimensions while
maintaining consistency between seeds. To test the hypothesis, whether different values of o4;¢ in
each dimension are indeed beneficial, we additionally train a diffusion sampler with the rKL-LD
loss with frozen sigma parameters initialized at the average oq;g of the best previously trained run
(CMCD: rKL-LD * 04ig avrg in Fig. [1'] (left)). The results show that this uniform choice of ogig
across dimensions yields inferior results.
Fig. |1] (right) shows how the initial value of o4;¢ affects performance by comparing CMCD: rKL-
LD with and without learned diffusion coefficients on the Seeds dataset. We track the convergence
using AELBO, defined as [ELBO,p; — ELBO|, where we estimate ELBO,,; = —73nats to en-



able visualization on a logarithmic scale. The results demonstrate that when CMCD learns og;g,
it achieves much lower ELBO values regardless of the initial parameter choice. Without learned
diffusion parameters, the model struggles to achieve low ELBO values.

Results on Bayesian and Synthetic Targets: Overall, the results in Tab. [} [2} and Tab. [3| indicate
that the divergent behavior when using the LV loss is present on most investigated benchmarks.
Our results further show that on Bayesian tasks in Tab. [T, when using the rKL-LD loss CMCD
with frozen og;g significantly outperforms its counterpart trained with LV loss on all tasks, and the
version trained with rKL-R on 4 out of 5 tasks. Similarly, DBS with frozen o4;g in combination with
rKL-LD significantly outperforms DBS variants trained with other losses in 4 out of 5 cases. If we
additionally train oq;g, we observe that CMCD improves on 4 out of 5 tasks and DBS on all tasks
when trained with rKL-LD. In contrast, we observe that learning o4;¢ in combination with the LV
loss deteriorates the performance of CMCD and of DBS in 4 out of 5 cases. In fact, learning oq;g
with the LV loss often leads to unstable learning dynamics as the runs diverge in 3 out of 5 cases for
CMCD and in 4 out of 5 cases for DBS. On synthetic tasks in Tab. 2] and 3] CMCD with rKL-LD
achieves the best Sinkhorn distance on MoS-10 (50d) and GMM-40 (50d) by a significant margin,
and insignificantly better Sinkhorn distance than CMCD: LV % on Funnel. In terms of MMD, using
the rKL-LD loss for CMCD significantly outperforms training with the other losses in all cases. In
terms of ELBO, training CMCD with rKL-LD achieves better results than with LV on all 4 synthetic
tasks. For DBS we observe that rKL-LD x outperforms all variants of LV and rKL-R in terms of
Sinkhorn in 3 out of 4 cases, in terms of ELBO in all 4 cases and in terms of MMD in 1 out of
2 cases. On synthetic targets training oq;g with DBS improves the method only significantly on
GMM-40 (50d) in terms of ELBO and MMD, and on Funnel in terms of ELBO. However, learning
oq4ife never detoriates the performance of DBS when trained with rKL-LD which is not the case
for the LV loss. All methods except samplers trained with rKL-R % achieve on MoS-10 (50d) and
GMM-40 (50d) an EMC value close to 1., indicating that all modes are covered. Furthermore, we
extend experiments on GMM-40 and MoS-10 to a higher-dimensional setting and results in Tables 4]
and [5] support our previous findings.

6 Conclusion and Limitations

In this study, we advocate for the training of diffusion bridge-based samplers using gradients of the
reverse Kullback-Leibler divergence, estimated with the log-derivative trick (rKL-LD). Our analysis
reveals an important insight: while the Log Variance (LV) loss and reverse KL loss are equivalent
when training solely the reverse diffusion process, this equivalence does not hold when dealing with
diffusion bridge samplers or learning diffusion coefficients. Furthermore, we show that the LV loss
does not, in general, satisfy the data processing inequality, raising questions about its suitability for
diffusion bridge samplers. Empirical results highlight the superiority of the proposed rKL-LD loss
over the LV loss. Notably, employing the rKL-LD loss allows for further improvement of diffusion
bridges by learning the diffusion coefficients, which also diminishes sensitivity to hyperparameter
choices. We find that in contrast to the rKL-LD loss the LV loss frequently yields unstable training
in particular when diffusion coefficients are learned. While the rKL-LD loss outperforms the LV
loss and rKL loss with parametrization trick on a wide range of challenging sampling benchmarks,
it remains susceptible to mode collapse when hyperparameters, particularly learning rates, are not
sufficiently well tuned. Future research aimed at reducing the mode-collapsing tendency of rKL-
based losses presents an interesting direction for further investigation. The LV loss has recently
been combined with an off-policy sample buffer that incorporates MCMC updates and resampling
strategies, which improves its stability [Sendera et al., 2024} |Chen et al., 2024a]. A comprehensive
comparison between the LV loss and rKL-LD loss in such a setting remains an important direction
for future work.

7 Acknowledgements

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by
the Federal State Upper Austria. We thank the projects FWF AIRI FG 9-N (10.55776/FG9),
Al4GreenHeatingGrids (FFG- 899943), Stars4Waters (HORIZON-CL6-2021-CLIMATE-01-01),
FWF Bilateral Artificial Intelligence (10.55776/COE12). We thank NXAI GmbH, Audi AG, Sil-

10



icon Austria Labs (SAL), Merck Healthcare KGaA, GLS (Univ. Waterloo), TUV Holding GmbH,
Software Competence Center Hagenberg GmbH, dSPACE GmbH, TRUMPF SE + Co. KG.

11



References

Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport monte carlo. In
International Conference on Machine Learning, pages 318-330. PMLR, 2021.

Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. CoRR, abs/2111.09266, 2021. URL https://arxiv.org/abs/2111.
09266.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. arXiv preprint arXiv:2211.01364, 2022.

Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, and Gerhard Neumann. Be-
yond elbos: A large-scale evaluation of variational methods for sampling. arXiv preprint
arXiv:2406.07423, 2024.

Denis Blessing, Julius Berner, Lorenz Richter, and Gerhard Neumann. Underdamped diffusion
bridges with applications to sampling. In The Thirteenth International Conference on Learning
Representations, 2025.

Junhua Chen, Lorenz Richter, Julius Berner, Denis Blessing, Gerhard Neumann, and Anima Anand-
kumar. Sequential controlled langevin diffusions. arXiv preprint arXiv:2412.07081, 2024a.

Wenlin Chen, Mingtian Zhang, Brooks Paige, José Miguel Hernandez-Lobato, and David Barber.
Diffusive gibbs sampling. In Proceedings of the 41st International Conference on Machine Learn-
ing, pages 7731-7747, 2024b.

Imre Csiszdr. On information-type measure of difference of probability distributions and indirect
observations. Studia Sci. Math. Hungar., 2:299-318, 1967.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal transport tools (ott): A jax toolbox for all things wasserstein. arXiv preprint
arXiv:2201.12324,2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrodinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695-17709, 2021.

Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrodinger bridge flow
for unpaired data translation. Advances in Neural Information Processing Systems, 37:103384—
103441, 2024.

Tomas Geffner and Justin Domke. Langevin diffusion variational inference. In International Con-
ference on Artificial Intelligence and Statistics, pages 576-593. PMLR, 2023.

P Glasserman. Monte carlo methods in financial engineering, 2004.

Jiajun He, Yuanqi Du, Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang, Carla
Gomes, and José Miguel Herndndez-Lobato. No trick, no treat: Pursuits and challenges towards
simulation-free training of neural samplers. arXiv preprint arXiv:2502.06685, 2025.

Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet. Controlled sequential
monte carlo. The Annals of Statistics, 48(5):2904-2929, 2020.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional dif-
fusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240-24253, 2022.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014. URL https://arxiv.org/abs/1312.6114,

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/forum?id=rkgz2aEKDr,

12


https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=rkgz2aEKDr

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. Gflownets and variational inference. arXiv preprint arXiv:2210.00580, 2022.

Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schoélkopf, and
José Miguel Herndndez-Lobato. Flow annealed importance sampling bootstrap. In The Eleventh
International Conference on Learning Representations, 2023. URL lhttps://openreview.
net/forum?id=XCTVFJwS9LJ.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient esti-
mation in machine learning. Journal of Machine Learning Research, 21(132):1-62, 2020.

Jesper Mgller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log gaussian cox
processes. Scandinavian journal of statistics, 25(3):451-482, 1998.

Thomas Miiller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novak. Neural im-
portance sampling. ACM Trans. Graph., 38(5):145:1-145:19, 2019. doi: 10.1145/3341156. URL
https://doi.org/10.1145/3341156,

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705-767, 2003.

Kim A. Nicoli, Shinichi Nakajima, Nils Strodthoff, Wojciech Samek, Klaus-Robert Miiller, and Pan
Kessel. Asymptotically unbiased estimation of physical observables with neural samplers. Phys.
Rev. E, 101:023304, Feb 2020. doi: 10.1103/PhysRevE.101.023304. URL https://link.aps.
org/doi/10.1103/PhysRevE.101.023304.

Frank Noé and Hao Wu. Boltzmann generators - sampling equilibrium states of many-body systems
with deep learning. CoRR, abs/1812.01729,2018. URL http://arxiv.org/abs/1812.01729.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate in-
ference in deep generative models. In International Conference on Machine Learning (ICML),
2014.

Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
fmPpbbPjQb.

Lorenz Richter, Ayman Boustati, Nikolas Niisken, Francisco Ruiz, and Omer Deniz Akyildiz. Var-
grad: a low-variance gradient estimator for variational inference. Advances in Neural Information
Processing Systems, 33:13481-13492, 2020.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework
for unsupervised neural combinatorial optimization. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 43346-43367. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.press/v235/

sanokowski24a.html.

Sebastian Sanokowski, Wilhelm Berghammer, Martin Ennemoser, Haoyu Peter Wang, Sepp Hochre-
iter, and Sebastian Lehner. Scalable discrete diffusion samplers: Combinatorial optimization
and statistical physics. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=peNgxpbdxB.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. In The Thirty-Eighth Annual Conference on Neural Information Processing Systems,
pages 1-30. ACM, 2024.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
Jjournal, 27(3):379-423, 1948.

Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete graphical
models. Advances in neural information processing systems, 33:4635-4646, 2020.

13


https://openreview.net/forum?id=XCTVFJwS9LJ
https://openreview.net/forum?id=XCTVFJwS9LJ
https://doi.org/10.1145/3341156
https://link.aps.org/doi/10.1103/PhysRevE.101.023304
https://link.aps.org/doi/10.1103/PhysRevE.101.023304
http://arxiv.org/abs/1812.01729
https://openreview.net/forum?id=fmPpbbPjQb
https://openreview.net/forum?id=fmPpbbPjQb
https://proceedings.mlr.press/v235/sanokowski24a.html
https://proceedings.mlr.press/v235/sanokowski24a.html
https://openreview.net/forum?id=peNgxpbdxB

Yang Song, Conor Durkan, Tain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415—
1428, 2021.

Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. arXiv
preprint arXiv:2302.13834, 2023.

Francisco Vargas, Shreyas Padhy, Denis Blessing, and N Niisken. Transport meets variational in-
ference: Controlled monte carlo diffusions. In The Twelfth International Conference on Learning
Representations, 2024.

Dian Wu, Lei Wang, and Pan Zhang. Solving statistical mechanics using variational autoregressive
networks. Phys. Rev. Lett., 122:080602, Feb 2019. doi: 10.1103/PhysRevLett.122.080602. URL
https://link.aps.org/doi/10.1103/PhysRevLett.122.080602!

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for sam-
pling. In Proceedings of the International Conference on Learning Representations (ICLR), 2022.
URL https://openreview.net/forum?id=_uCb2ynRu7Y.

14


https://link.aps.org/doi/10.1103/PhysRevLett.122.080602
https://openreview.net/forum?id=_uCb2ynRu7Y

A Derivations and Proofs

A.1 Reverse KL Divergence with Reparametrization Trick

A popular choice for training diffusion bridges is the rKL objective [Richter and Berner, 2024,
Vargas et al., 2024, (Chen et al., [2024al |Blessing et al., [2024} |[He et al., 2025} |Blessing et al., [2025]]
which is given by:

QQ,V(XO:T)] (16)

D a,v X: v X: =Ex .~ . 1
KL(Gaw (Xor) [Pow (Xoir)) = Ex.r qa‘u(Xo.T)[Ogm,V(XO:T)

This loss involves an expectation over the variational distribution g, ,. This is a typical use case
for the reparameterization trick [Glasserman, [2004]. This method gained popularity as a gradient
estimator for training generative models [Kingma and Welling, 2014, Rezende et al., 2014]]. This
technique frequently yields a lower variance than the log-derivative trick (see[Mohamed et al.|[2020]]
for a discussion). In the context of diffusion samplers, the reparameterization trick was introduced
in [Zhang and Chen| 2022]. In this method the trajectories of the reverse process Xo.r ~ go.. (Xo:1)
are reparameterized as a function f, , (€0:7) = [ga,v,05 -+» §a,v,7-1] Of independent Gaussian noise
e; ~ N(0,1) and the model parameters (,v). Samples X, at time step ¢ are successively gen-
erated via the Euler-Maruyama update function g, ¢ = X1 = ga, (X4, ¢, € ), which is used to
numerically integrate the reverse process Eq.[3] Substituting this reparameterization into the rKL
loss yields, with slight abuse of notation:

: 17
p@”(fa,u(ﬁoq*)) (17)

DKL(qa,u(Eo:T) ||p¢,u(€0:T)) = EeO;wN(O,I) log

This expression highlights that the gradients of the loss with respect to («,v) can propagate into
the expectation of the deterministic function f, ., enabling direct gradient calculation. In diffu-
sion samplers the frequent iterative application of g, is likely to contribute to the vanishing or
exploding gradient problem, which might explain the suboptimal behavior of rKL loss when min-
imized with usage of the reparametrization trick [Zhang and Chen| [2022]. Moreover, [Vargas et al.
[2023]] demonstrates that applying a stop-gradient operation to the Langevin parametrization term
in the PISgradNet architecture (see App.[D.3) enhances the stability of the reparametrization trick in
diffusion samplers. Without this modification, the direct application of the reparametrization trick
through the gradient of the energy function is unstable, though the stop-gradient approach introduces
an additional bias into the gradient.

A.2 Definition of VﬁD’w" Operator

Let wy(X) be a variational probability distribution parameterized by 6 and let Oy (X ') be a function

that depends on these parameters. We want to define the ng,o.m operator based on the gradient of

the expectation of the observable with respect to samples X ~ wp(X) given by (O(X)) ., (x)-

The VgD’we is then defined in the following way:

VEPH (00(X)) ) = Ex a0y [(00(X) =5) ulogn(X)] + B 0 [VaOs (X)),

where by? = Ex..,[log “;f((XX)) ]. When applying the Vg Dywe operator we often use that in the case

of O(X) =logws(X) we have Ex...., (x) [Vologwy(X)]=0.

A.3 Gradient of the Log Variance Loss

In the following, we derive the gradient of the log variance loss, where we consider a reverse and
forward diffusion process with shared parameters 6:
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2
qQ(XO:T)])
VoD% ,0)=VeEx. ~u||lo -Ex, nw |log ———=
0 LV(QQ p) 05 Xo.1 l( gpQ(XO:T) XoT [ gp@(XO:T)

g0 (Xo:r) [ g0 (Xo:r) ]) ( q0(Xo:1) [
=Ex, . ~o|2|log——= -Ex, ..o [log——= ||| Volog ———= —Ex, ..~ | Vo lo
or [ ( S XKor) T [ e (Xor) ]\ e Koy T [T
q0(Xo:1) [ QO(XO:T)]) QO(XO:T)]
=Ex o2 |log————= -Ex, oo |log——= || Vg log ——=
Koz [ ( gpe(XO:T) Yo gpe(XO:T) ¢ gpe(XO:T)

Where we have used that

Xo-
EXqpow [2 (log M

pe(Xo:T)
since E x,,;~w [Vg log 40(Xo:r)
tion.

~ Bt [logpe(Xo:T)]) (EXO:TNW [Wl gpe(XO:T)])] "

o (Xor) ] does not depend on X(.7 and can be pulled out of the first expecta-

We can recover the gradients in Eq. |13| with respect to « by setting 0 - «, go(Xo:1) = ¢o(Xo:1)
and pg(Xo.7r) = p(Xo.r). Likewise we can recover gradient with respect to ¢ with gg(Xo.1) —
q¢(Xor) and po(Xor) — ps(Xor) and with respect to v with go(Xo.r) — ¢, (Xor) and
po(Xo.r) = puv(Xor).

A.4 Gradient of the Reverse Kullback-Leibler Divergence Loss

In the following the gradient of the rKL divergence is derived, when it is optimized with the usage
of the log-derivative trick:

pé‘(XO:T)

qa(XO:T)
pG(XO:T)

VoDrr(q9(Xor) [|po(Xo1)) = VoExq1mqo [log

QO(XO:T) ]

QG(XO:T)
po(Xor)

QO(XO:T) QH(XO:T) ]
=E ~gy |log ———=Vy L Xo. E . log ———=
Hor~as L o8 pe(Xo:T)ve que( O.T)] EXoreao [Ve o8 pe(XO:T)_
q0(Xo1) q0(XoT) ]
= Exg.r~q0 -(log pG(X():T) ~Exg.r~q [log pG(X(]:T) Vo logqe (XO:T)_ +Exqrngo | Vo log
[ q@(XO:T) q@(XO:T) ]
= EXO:T"‘QG (IOg pa(XO:T) - EXO:Tqu I:IOg pG(XO:T) Ve IOg q9(X0=T)‘ - EXO:TNQ(-} [VG lnge(X();T)]

where we use in lines two to three the fact that bEx, ;.~q, [Volog go(Xo:r)] = 0 and that b =

Exo.r~qo [log %] is a baseline that leads to gradient updates with lower variance. In line

three to four we have used that Ex,,.~q, [Vologgo(Xo:r)] = Exypnge [mvaq@(Xo:T)] =
[ Vogo(Xo.r)d Xo.r = Vo [ qo(Xor) dXor =0

We can recover the gradients in Eq. |12] with respect to « by setting 0 - «, go(Xo.1) = ¢o(Xo1)
and pg(Xo.r) = p(Xo.r). Likewise we can recover gradient with respect to ¢ with gg(Xo.1) —
q(Xor) and pp(Xor) = pe(Xor) and with respect to v with go(Xo.r) = ¢ (Xor) and
po(Xo.r) = pu(Xor).

A.5 Entropy Bound on Reverse Diffusion Process

In the following, we derive that:

1 T N
H(qo.,(Xor)) = H(T7) + 3 YN+ log(2ma , At)
t=1 =1

To show this, we compute
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H(qo,u (Xe-11Xt)) = “Ex,_ynga, (X1 1x0) [108(da,0 (Xi-1]X2)) ] (18)

by using qa, (Xi-1|Xt) = N(Xi-1; Xt +70,, (X)), 07 At) and with the usage of the parametrization
trick X;_1 = X; +74,,(X¢) + €0y we can show that:

X0 = (Xi +ran(X))P X1 2
’ - —log(2wo; ;At)
202 ; 2 b
2 31
- al? /2= 3. 2 tog(2ma?,a0)

i=1

log NV (X-1; Xt + Ta,u(Xt)ﬁtQAt) ==

Due to the parametrization trick, we can rewrite the expectation over X; to an expectation over ¢;.

Therefore, we have

N 1 1 N
H(q(X:-11X1)) = -Ee, | - |l HQ /2 - Z 5 log(27rat27iAt):| =3 [N + Zlog(27rat27iAt)] (19)
i=1

i=1
‘We can now show with
H(qo,.(Xo1)) = “Exqrnga . (Xor) [108 Gav (Xo:r)]

T
= _EX():TNqu,U(XO:T) [log 7T’T()(’T) + ;log q(X,l/(Xt—1|Xt)]

T
= H(WT) - ZEXT:t—l"‘QQ,U(XT:t—l) [log qo"V(Xt*1|Xt)]

t=1

T
= H(mr) + 3 Bxpego  (Xr) [H (Gon (X1 | Xe))]
t=1

1 T N
= H(/]TT) + 5 ZEXT:tNQa.u(XT:t) [N + Z 10g(27r0't2’1At)]
t=1

=1

1 T N
=H(mp) + 3 > [N +> log(QwafviAt)]

t=1 i=1

A.6 Counterexamples to Data Processing Inequality for the Log Variance Loss

A.6.1 Counterexample in the Continuous Domain

In the following we provide a counter example where

Var (;)-q [log fjg] £ Var(e ) [log f,g z; ] 0

where the distributions ¢(x,y) is absolutely continuous with respect to p(z,y) and the other way

around. By definition, absolute continuity ¢ << p holds if every measurable set A c [0, 1]? for which
p(A) = 0 also satisfies ¢(A4) = 0.

Consider the following distributions:

2n
a:= 1 r+y<l, )
ple,y) =1,  gq(zy)=1 "J (z,y) € [0,1]%.
b:= , TH+y>1,
n+1



Joint variance. Since the lower and upper triangles A = {z +y < 1} and B = {z +y > 1} have
equal area 1, under ¢ the probabilities of the two constant values are Pry(A) = % and Pry(B) = %.

a(zy) _
p(z,y)

With p(z,y) = 1 we have log log q(x,y) taking only values log a,log b. Hence

b
Eq[logq(X,Y)] = gloga *3 log b,

b
E,[log? ¢(X,Y)] = g log” a + 2 log? b,

and therefore

q9(X,Y) _a 2 b 2 a b 2
P(X.Y) = —log a+§log b—(gloga+§logb) .

Var(X)y)Nq [log 5

Marginal variance. First obtain the marginal ¢(x):

q(w):foch(x,y)d%fOH Moy [ dy=ni(”+ﬂ?(1—”))-

n+1 1-zn+1 +1

Set 9
C:= , m:=1-mn, u=n+mz (ueln,l1]).
n+1

Then, with the change of variables u = n + mx (so dz = %“), the moments under X ~ g are

B losa(X)]= [ a(@)loga(@)dr= < [ ulog(Cu)du.

1
E,[log? ¢(X)] = % fn ulog?(Cu) du.

Use log(Cu) =1log C + log u and the elementary integrals
2

1 1-
[udu: n)
n 2
2

1 1 ,n2
logudu = -~ — =1 L
[l u logu au 1 B ogn + 4,

1 1 2 2 2
[n ulogQudu: Z—%loanJr%logn—n—.

4
Let 2 2 2 2 2 2
1- 1 1
A:= n’ B::—f—n—logn+n—, D::f—n—log2n+n—10gn—n—.
2 4 2 4 4 2 2 4
Then
C
Eq[logq(X)] = —((log C)A + B),
2 ¢ 2
Eq[log” ¢(X)] = —((logC)*A+2(log C)B + D),
m
and hence
q(X 2
Ve o 20| - fog? ()] - (&, Loz O,
p(X)
with the expectations given above (substitute C' = nil, m=1-n,and A, B, D as defined).

Numeric evaluation for n = 1073,  Substituting n = 1073 (so @ ~ 0.001998002, b ~ 1.998001998)
yields

Var(X.y)Nq[log 3] ~0.04762179,  Var X~q|:10g 9] ~ 0.24995228 = 0.25,
' p p

showing the claimed DPI violation.
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A.6.2 Counterexample in the Discrete Domain

Let p, ¢ be probability distributions, similar as in Eq. [TT|but without learnable parameters, with re-
spective marginal and conditional distributions and (X,Y") ~ ¢. Then the data processing inequality

for the LV loss is
X,Y

X
Var(xy.q [log q()] < Var(x yy~q [log m

p(X)

which can be decomposed such that

XY X Y|X

Var(x,y)~q [log ZEX, Y; ] =Var(x yy-q [log ZEX;] +Var x yyq [log Zq?EY||X; ]
() | q(X)]

p(YIX) T p(X) |

+2Cov(x,v)nq [log

Therefore, if we find distributions p, ¢ such that

q(Y1X)
p(Y|X)

q(X)
p(X)]SO

we disprove inequality Eq. For this, let X := {0,1}, p,q be defined on X x X = X? with
marginal probabilities

] +2C0V(X,Y)~q [log ; ,log

q(Y1X
Var(x, vy~ [log
(¥ p(Y]X
p(X=0)=0.1,p(X=1)=09, ¢(X=0)=09, ¢(X=1)=01, ¢(Y=0)=1,¢(Y=1)=0
and conditional probabilities
p(Y =0X=0)=05, p(Y =0|X =1) = 0.1.

From ¢(Y =1) =0 we get ¢(X,Y =1) = 0. By standard arguments e.g., as used for KL-divergence
we can interpret

q(X,Y =1)logq(Y = 11X) = ¢(X)q(Y = 1|X) logg(Y = 1|X)

as being zero since lim,_,¢+ x log x = 0 which results in the following simplifications

2
q(YlX)] q(ylz) o1 40127
Var(x y).q [log = q(z,y) | log - q(z’,y") log ———+
| e o 2 I ) T 2 T )

= Y g(x,0) (log q(0l) S g(o,0)log q(Oll"))

reX p(0|£L’) _z’eX p(0|1',)
_ Y () (logp<0|a:>— 5 q(a:'nogp(mx'))
reX x'eX

by using ¢(«,0) = ¢g(z). Analogously we get for
1015) g 202
p(YIX)" " p(X)

-3 o) (logp(0|x)_ > q(:c’)logp(OIw’))(logq(x) - 2, @) q(x,))'

reX z'eX p(l‘) x'eX p(l")

Cov(x,y)~q [1og

By inserting the corresponding probability values we have

aV1X) | ax(X)

o a(V[X)
(V10 (%)

p(Y]X)

Cov(x,y)~q [log ] ~ =0.6365, Var(x y)q [log ] ~0.2331

which demonstrates that the data processing inequality does not always hold for the LV loss.
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B Additional Experiments

We extend our experimental evaluation to include multimodal benchmarks in higher dimensions
such as GMM-40 (100d) and MoS-10 (100d). The results in Table @] and [5] demonstrate that the
proposed rKL-LD loss achieves performance comparable to the LV loss with respect to Sinkhorn
distance and Entropic Mode Coverage (EMC), while yielding superior results in terms of the Evi-
dence Lower Bound (ELBO), log Z, and Maximum Mean Discrepancy (MMD). On GMM-100D,
we observe that combining the LV loss with CMCD leads to divergent behavior in several random
seed runs, substantially degrading the average performance metrics. A similar issue arises on MoS-
100D when training DBS with the LV loss. Notably, learnable diffusion coefficients consistently
enhance performance when trained with the rKL-LD loss, but degrade performance when used with
the LV loss.

Task GMM-40 (100d)

Metric Sinkhorn ({) ELBO (1) log Z (1) EMC (1) MMD ({)
CMCD: rKL-R * 7152.88+:177.312 —795.0946.491 —528.09+2.995 0.995:0.000 0.116=0.001
CMCD: LV * 22237.03:10627.664  (—1.9611.35) x 10°  —774.91:466.647  0.866z0.084  0.268:0.101
CMCD: LV 12420.8316068.170  (=2.1412.03) x 10°  =1037.092031.118  0.951:0.0a3  0.138:0.015
CMCD: rKL-LD * 6079.38+205.248 —45.10=0.091 —18.09=0.341 0.996+0.000 0.084:0.001
CMCD: rKL-LD 6043.26+166.427 —45.84+0.080 —18.88+0.394 0.996+0.000 0.085+0.001
DBS: rKL-R * 5637.36+155.953 —270.61+0.275 —138.60+0.850 0.997+0.001  0.179:0.000
DBS: LV « 5024.58+171.079 —230.83+0.151 —105.53+0.972 0.998:0.001  0.1780.000
DBS: LV 4938.60+103.434 —252.56£0.299 —116.76+1.061 0.998+0.001  0.184:0.001
DBS: rKL-LD * 5163.31+206.480 —225.99:0.132 —101.80+0.953 0.997:0.000  0.178+0.000
DBS: rKL-LD 5132.65+124.068 —198.53+0.127 —87.59:0.818 0.997+0.001  0.171:0.000

Table 4: Results on GMM-100D tasks. Arrow | denotes that lower values of the metric are better,
and 1 denotes that higher values are better. x denotes that o4;g is not learned during training. Best
results are highlighted in bold.

Task MoS-10 (100d)

Metric Sinkhorn (1) ELBO (1) log Z (1) EMC (1) MMD (})
CMCD: rKL-R * 1809.48+295.512 —114.86+0.021 —68.25:0.48 0.977:0.00a  0.265:0.001
CMCD: LV * 2716.16+808.633 —97.44+0.622 —66.37+0.404 0.981:0.005 0.286:0.001
CMCD: rKL-LD * 1852.13+271.333 —68.21:0.322 -31.71:0.173 0.957+0.007  0.260+0.001
DBS: rKL-R * 9732.62+3761.867 —183.53x0.867 —113.88+1.51 0.990+0.003  0.298+0.001
DBS: LV (1.96:0.78) x 1012 (=1.680.67) x 10°  —48409.64+18962.519  0.393:0.201  0.298x0.001
DBS: rKL-LD * 3626.16+1557.007 —121.77+0.926 —69.53:0.347 0.996+0.001  0.295:0.001

Table 5: Results on MoS-100D tasks. Arrow | denotes that lower values of the metric are better,
and 1 denotes that higher values are better. x denotes that o4;g is not learned during training. Best
results are highlighted in bold.

C Metrics

Evidence Lower Bound The evidence lower bound is a lower bound on log Z and is computed
with:

P (Xor)

ELBO =E ~
Xo:T qot,V(XO:T) |:q0471,(X0:T)

] <logZ (22)

Sinkhorn Distance The Sinkhorn distance is an entropic regularization of the 2-Wasserstein (J-)
optimal transport (OT) distance Peyré et al.| [2019], providing a principled alternative to ELBO for
evaluating sample quality. Unlike ELBO, which is often insensitive to mode collapse Blessing et al.
[2024]), the Sinkhorn distance measures the discrepancy between generated and target distributions,
offering better insights into sample diversity and multimodal coverage. As it requires access to
ground-truth samples, its use is limited to synthetic tasks |Chen et al.[[2024a]. Following |Blessing
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et al.|[2024], |Chen et al.|[2024a], we compute the Sinkhorn distance using the ott package Cuturi
et al.|[2022]] and report it as a primary metric for the appropriate benchmarks. Sinkhorn distances are
computed on Funnel using 2000 samples and on GMM and MoS using 16000 samples. On MayWell
Sinkhorn distances are computed with 100000 samples using code from Richter and Berner [2024]].

Maximum Mean Discrepancy Given samples X ~ p(X) and samples Y ~ ¢(Y") the Maximum
Mean Discrepancy (MMD) is computed in the following way:

MMD(p,q) = \/EX,X’~p(X) [k(Xa X’)] + ]EY,Y’~q(Y) [k(Yv Y,)] - 2EX~p(X),Y~q(Y) [k(Xa Y)]v

where k(z,y) = YK, exp (=]l - y||*) where &; is the bandwith. We follow He et al.| [2025] and

compute the MMD with an average bandwidth of 100 and using K = 10 kernels. The code is based
on an implementation of |Chen et al.|[2024b]].

Entropic Mode Coverage The Entropic Mode Coverage Blessing et al.|[2024] is given by

L

M
N Z Zp(ﬁ,Xo)logMp(f,Xo)
X

0~qo =1

EMC := EX0~qg [H(p(faXO))] =

where i € {1,..., M} and p(&;, Xo) is the probability corresponding to the mixture component with
the highest likelihood at Xy. The optimal value of EMC is 1, i.e. every mode from the target
distribution is covered and it is 0. in the worst case.

C.1 Benchmarks

C.1.1 Bayesian Learning tasks

These tasks involve probabilistic inference where the true underlying parameter distributions are
unknown, requiring Bayesian approaches for estimation.

Bayesian Logistic Regression (Sonar and Credit). We consider Bayesian logistic regression for
binary classification on two well-established benchmark datasets, frequently used for evaluating
variational inference and Markov Chain Monte Carlo (MCMC) methods. The model’s posterior
distribution is given by:

Prarget (%) = p(x) [ [ Bernoulli (y;; sigmoid(z - u;))
i=1

where the dataset consists of standardized input-output pairs ((u;,y;))> . Our evaluation includes
the Sonar dataset (d = 61,n = 208) and the German Credit dataset (d = 25,n = 1000). The prior
distribution is chosen as a standard Gaussian p = N'(0, I') for Sonar, whereas for German Credit, we
follow the implementation of |Blessing et al.|[2024], which omits an explicit prior by setting p = 1.

Random Effect Regression (Seeds): The Seeds dataset (d = 26) is modeled using a hierarchical
random effects regression framework, which captures both fixed and random effects to account for
variability across different experimental conditions. The generative process is specified as:
T ~ Gamma(0.01,0.01)
ag,a,az,aiz ~N(0,10)
b~ N (0, =
7 ’ \/;

logits; = ap + a1x; + agy; + arex;y; + b1, i=1,...,21,

), i=1,...,21,

r; ~ Binomial (logits;, N;), i=1,...,21.

The inference task involves estimating the posterior distributions of 7, ag, a1, a2, a2, and the
random effects b;, given observed values of z;, y;, and IV;. This model is particularly relevant
for analyzing seed germination proportions, where the inclusion of random effects accounts for
heterogeneity in experimental conditions; see |Geffner and Domke]| [2023]] for further details.
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Time Series Models (Brownian): The Brownian motion model (d = 32) represents a discretized
stochastic process commonly used in time series analysis, with Gaussian observation noise. The
generative model follows:

Qinn ~ LogNormal(0, 2),

Qobs ~ LogNormal(0, 2),
z1 ~ N(0, inn),
€T; N./\/‘(xi_h()(inn), i:2,...,30,
yiNN(xi,aobs), 1=1,...,30.

The inference objective is to estimate ainn, Qobs, and the latent states {xz}ffl based on the available
observations {y; }1° and {y;}3%,, with the middle observations missing. This missing-data struc-
ture increases the difficulty of inference, making it a useful benchmark for probabilistic time series

modeling; see Geftner and Domke| [2023].

Spatial Statistics (LGCP): The Log-Gaussian Cox Process (LGCP) is a widely used spatial
model in statistics [Mgller et al., [1998]|], which describes spatially distributed point processes such
as the locations of tree saplings. The target density is defined over a discretized spatial grid of size
d =40 x 40 = 1600, and follows:

d
exXp (x;
Ptarget = N(l‘, M, E) H exp (xiyi — é)) ,
i=1

where y represents an observed dataset, and p and X define the mean and covariance of the prior
distribution. This formulation leads to a complex spatial dependency structure. We focus on the
more challenging unwhitened variant of the model, which retains the full covariance structure and
thus introduces stronger dependencies between grid locations, as described in [Heng et al.[ [2020],
Arbel et al.|[2021]].

C.1.2 Synthetic targets:

For these tasks, ground-truth samples are available, allowing for direct evaluation of inference accu-
racy.

Mixture distributions (GMM and MoS): We consider mixture models where the target distribu-
tion consists of m mixture components, defined as:

m

Z Pi-

=1

1
Prarget = —
m ;

The Gaussian Mixture Model (GMM), adapted from [Blessing et al.| [2024]], is constructed with
m = 40 Gaussian components:
Di = N(/”‘la I)7

i ~Ua(~40,40),

where U;(1,u) denotes a uniform distribution over [/,u]¢. We set the dimensionality to d = 50 in
the experiments in Tab. 2]

The Mixture of Student’s t-distributions (MoS) follows a similar construction but uses Student’s
t-distributions with two degrees of freedom (Z3) as the mixture components:

pi = to + g,
pi ~ Ua(-10,10),

where p; denotes the translation of each component. We set the dimensionality to d = 50 in the
experiments in Tab. 2]

For both the GMM and MoS tasks, the component locations j; remain fixed across experiments
using a predefined random seed to ensure reproducibility.
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Funnel: The Funnel distribution, originally introduced in |[Neal| [2003]], serves as a challenging
benchmark due to its highly anisotropic shape. It is defined as:

ptarget(x) :N(xl;O,O'Q)N(.'I;Q,. . -am10;07eXp(x1)I)7 (23)

where o2 = 9 for any number of dimensions d > 2. In our main experiments, we consider the case
d = 10. To maintain consistency with prior benchmarks Blessing et al.| [2024]], we apply a hard
constraint by clipping all sampled values to the interval [-30, 30].

Many Well: A standard problem in molecular dynamics is sampling from the stationary distribu-
tion of a Langevin dynamic. For our experiments, the resulting d-dimensional many-well potential
corresponds to the following unnormalized density

m 1 d
ptargct(m) = exp (_Z:('Z'z2 _6)2 - 5 Z xzz)
=1

i=m+1

with separation parameter § € (0,00) and m € N combined double wells. Following (Chen et al.
[2024al], Berner et al.|[2022]] we set d = m = 5 and § = 4 which results in 2 = 32 well-separated
modes. Since piarget factorizes in the dimensions ground truth statistics and samples can be obtained
by numerical integration and rejection sampling.

D Experimental Details

D.1 Evaluation

In the Bayesian learning task, we compute the average of the ELBO over three independent runs,
each estimated using 2000 samples. For the LGCP task, the evaluation is performed using 300
samples. The ELBO values reported in Tab. [T] represent the best ELBO achieved during training.
For synthetic tasks in Tab. [2| and Tab. [3| we report all metrics based on the checkpoint at the end
of training. When the run diverges on synthetic benchmarks, we report the result based on the
checkpoint with the best ELBO. We use 16000 samples on MoS-40 50D and GMM-40 50D, 2000
samples on Funnel, and 100000 samples on Many Well to estimate the Sinkhorn distance. In Tab.[I]
Tab. [2| and Tab. [3| we report the average metric value together with the standard error over three
seeds. For MoS-40 50D and GMM-40 50D we calculate the standard error over 7 independent
seeds, where for each seed the metrics are averaged over 30 repetitions due to large standard errors
of the sinkhorn distance. MMD values are computed by using 4000 samples. Ground truth Sinkhorn
distances and MMD values are computed by calculating these distances between two independent
set of samples from the target distribution. The ground truth values are then averaged over three
independent seeds.

D.2 Hyperparameter tuning

Benchmarks In benchmark experiments in Sec. [5] we perform for each method a grid search
OVET Odiff, Oprior, the learning rate of the model. The learning rate of the diffusion parame-
ters such as oprior and oqig is always chosen to be equal to the model learning rate. On all
Bayesian learning tasks, we perform for CMCD and DBS a grid search over oqia init = {0.1,0.3},
Oprior,init = {0.5,1.0} and the learning rate Ayodel,spE € {0.005,0.002,0.001}. On Brownian and
German Credit, we found that if o4;g is not learned a finer grid-search over o4;¢ is necessary. There-
fore on Brownian, we additionally add o4ig = 0.05 and on German Credit og;g = 0.01 to the grid
search.

On MoS 50D and GMM 50D, we follow [Chen et al.| [2024a] and fiX oprior,init to @ high initial
value. We found that oprior,init = 80 yielded the best results. We found that small model learning
rates and compared to that large learning rates of the interpolation parameters between the prior
and the target distribution work well. Therefore we adapt the grid search to oqigt init = {1.,1.5},
Ainterpol = {0.01,0.001} and the learning rate Apodel, spe € {0.0001,0.00005,0.00001 } for CMCD.
For DBS, the interpolation between the prior and the target distribution is not learned. Therefore,
we did not additionally search over Ainterpol but increased the size of the grid search by searching
OVer Oprior,init = 160,80}, On Many Well we conduct grid search over ogig init = {0.05,0.1,0.2},
Oprior,init = 10.5,1.0,2.0}, Amodel,spr € {0.001,0.0001, 0.00001}.
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Grid searches are performed over 8000 training iterations on all targets except MoS 50d and GMM
50d, where 12000 training iterations are performed. The best run is chosen according to the best
ELBO value at the end of training on Bayesian tasks and on Synthetic targets according to the run
with the best Sinkhorn distance at the end of training. The best hyperparameters are then run for
40000 training iterations. On MoS 50d and GMM 50d in Tab. [2] the best Sinkhorn distance is
sometimes achieved at initialization. In this case, the checkpoint is excluded as it has only slightly
better Sinkhorn values but much worse ELBOs than the runs at the end of training.

All scripts for running grid searches can be found in the code in /Configs/Sweeps/, and the final
selected hyperparameters can be found in /Configs/Sweeps/BestRunsSweeps/.

Ablations In ablation experiments in Sec. [5] we iteratively tuned hyperparameters such as
Oprior,init aNd 04iff init and learning rates for each method. For CMCD-LV and CMCD-LV * we
found it hard to find a good-performing diffusion coefficient. Therefore, we used the learned av-
erage diffusion coefficient of CMCD-rKL-LD og4;¢ as a starting point for iterative hyperparameter
tuning which resulted in a decent performance of CMCD-LV and CMCD-LV .

D.3 Architecture

Score parametrization The learned score with parameters 6 is parameterized in the following
way:

s9(Xy) = clip(30( X, 1) + 39(t) ® clip(Vx, log m: (X;), -102,10%), -10%,10%) (24)

where 59(X;,t) and 8¢(t) are two separate neural networks which are parameterized with the PIS-
gradnet architecture from [Vargas et al.| [2024] with 64 hidden neurons and 2 layers. The score is
related to the control by ug(X;) = o¢ s9(X¢). The usage of the Vx, log m¢(X;) term in the neural
network parametrization is often refered to as langevin parametrization [He et al.l 2025].

Parametrization of prior distribution: Similarly to/Chen et al|[2024a] and Blessing et al.|[2024]]
and parameterize the prior distribution 77 in the following way:

w1 = N (g, diag(exp(ly))

where 119 € R? and logarithmic standard deviations ly € R? are learnable parameters. In contrast to
Chen et al.|[20244a] and Blessing et al.[[2024] we do not update 9 and [y via the reparameterization
trick as training progresses but also with the usage of the log-derivative trick.

Parametrization of interpolation parameters: For each diffusion time step ¢ € {0,...,T - 1} we
parameterize the interpolation parameter By (¢) in the following way:

softplus(6;)

Palt) = > 1 softplus(6;)’

(25)

where 0 € RT are learnable parameters. Each variable of § € R” is initialized to zero.

Parametrization diffusion coefficient: We keep diffusion coefficients constant across time steps
and parameterize it as oy = exp~y, where v = logoinit. In principle, one could parameterize it
similarly as the interpolation parameters, which would allow for a time-adaptive schedule. However,
we leave this for future work.

Training All parameters are trained with the usage of the RAdam Liu et al.| [2020] optimizer. We
use gradient clipping by norm at the value of 1. The learning rate decays with a cosine learning rate
schedule from Aggart t0 Agtart/10.

D.4 Pseudoalgorithms

In the following we provide pseudoalgorithms for the computation of the LV loss, rKL-LD loss and
the rKL-R Loss:
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Algorithm 1 Computation of the LV Loss

1:

AN

Given: Batch of diffusion paths Xo.r ~ ¢o,,, computed with the Euler-Maruyama integration
(Eq. 4)

X < stop_grad(Xo.r) > detach the gradient from the Euler-Maruyama integration
compute log g, ., (X{.p) with Eq. 5

compute log py ., (X(.r) with Eq. 6

Ga,v (X C,):T ) )

Po,v (X C’):T )

Backpropagate through the loss and update («, ¢, ) using Adam optimizer

compute Loss L(a, ¢,v) = Var (log

Algorithm 2 Computation of the rKL-R Loss

1:

Given: Batch of diffusion paths Xo.r ~ ¢o,,, computed with the Euler-Maruyama integration
(Eq. 4)
compute log g, (Xo.7) with Eq. 5
compute log py ., (Xo.r) with Eq. 6
qo,v (Xo:T) ]
De,v(Xor)
Backpropagate through the loss and update (v, ¢, ) using Adam optimizer

compute Loss L(«, ¢, v) = mean [log

Algorithm 3 Computation of the rKL-LD Loss:
Averages are always computed over the batch dimension

1:

PR D

Given: Batch of diffusion paths Xo.r ~ ¢u,. (Xo:r) computed with the Euler-Maruyama inte-
gration (Eq. 4)

X{.p < stop_grad(Xo.r)
compute log g, (X(.1) with Eq. 5
compute log py ., (X|.7) with Eq. 6
. qa,u _ qa,V(X[,):T)
compute control variate b’ 4 = Mean [log Do (Xiw) ]

Go (Xor) plav I]
Pov(Xor)  Toudyv

compute Loss L(c, ¢, ) = mean [A* ®1og ¢a,, (X(.p)] — mean [log pgs , (X(.p) ]
Backpropagate through the loss and update («, ¢, ) using Adam optimizer

compute advantages A* = stop_gradient [log
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