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Abstract. The exploration of large, unknown RDF data sets is difficult even for
users who are familiar with Semantic Web technologies as, e.g., the SPARQL
query language. The concept of faceted navigation offers a user-friendly explo-
ration method through filters that are chosen such that no empty result sets occur.
Computing such filters is resource intensive, especially for large data sets, and
may cause considerable delays in the user interaction. One possibility for improv-
ing the performance is the generation of indices for partial solutions. In this paper,
we propose and evaluate indices in form of the Bitmap Triple (BT) data structure,
generated over the Header-Dictionary-Triples (HDT) RDF compression format.
We show that the resulting indices can be utilized to efficiently compute the re-
quired exploratory operations for data sets with up to 150 million triples. In the
experiments, the BT indices exhibit a stable performance and outperform other
deployed approaches in four out of five compared operations.

1 Introduction

Exploring large data sets is increasingly important in many scenarios. In the context of
Semantic Web technologies, however, the exploration of a large, unfamiliar RDF data
set can be very challenging, in particular, for novice users of Semantic Web technolo-
gies. Faceted navigation is an approach to ease the exploration process by providing
users with filters for a given set of resources such that it is guaranteed that applying the
filters yields a non-empty result.

Several approaches and systems support faceted navigation: Ontogator [9], /facet [8],
and BrowseRDF [15] are among the first text-based, faceted browsers, where the latter
provides metrics for an automatic ranking for the available filters. GraFa [13] targets
large-scale, heterogeneous RDF graphs and employs a materialisation strategy and a
full-text index for queries to improve the response time. The browsers SemFacet [2,10]
and Broccoli [3] support faceted search, i.e., they combine faceted navigation with full-
text search. Apart from text-based faceted browsers, there are also graph-based visuali-
sation systems such as gFacet [7] and SemSpect [11].

The operations needed for faceted navigation are, however, very costly, especially
for large data sets. To improve the performance of the required operations, most (if
not all) of the above systems use indices. Sometimes, such indices require, however,
even more space than the original data set. Therefore, the development of techniques
for keeping such indices as small as possible is of great importance. An established
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compression format for RDF data is Header-Dictionary-Triples (HDT) [12,5], where
each resource of the data set is assigned a unique integer ID in a dictionary component.
These IDs are then used to generate a compressed representation of all RDF triples in
a binary data structure called Bitmap Triples (BT). HDT further has the advantage that
triple patterns can efficiently be resolved over the BT data structure.

In this work, we propose two BT indices on top of an HDT file for efficiently ex-
ecuting the operations required in faceted navigation. For this, we extend the original
BT definition to allow for representing BT indices over subsets of the original RDF
graph. An exploration over a given HDT file is especially useful since the HDT format
is intended to be an exchange format for RDF data sets. Therefore, using an exchanged
HDT file as a basis for a faceted navigation back end might be practical in order to get
an overview of an initially unknown data set. In an empirical evaluation, we demon-
strate that the generation of these indices is feasible for data sets with up to 150 million
triples and that the time and space needed for generating the indices is less than what
is required for generating the original HDT file. Based on the indices, a stable and con-
sistently improved performance can be observed compared to executing the operations
over the HDT file itself and other in-memory triple stores.

Section 2 introduces the concept of and operations needed for faceted navigation as
well as the fundamentals of the HDT format. Section 3 then introduces the novel BT
indices and their use in the required exploratory operations. In Section 4, we empirically
evaluate our approach and other existing approaches over various real-world data sets.
Section 5 concludes the paper.

2 Preliminaries

Before going into the details of our proposed indices, we introduce the operations
needed for faceted navigation, the basics of Header Dictionary Triples and the Bitmap
Triples compression format.

2.1 Faceted Navigation

Faceted navigation is an approach to retrieve data which is organised in facets and facet
values. In this paper, we consider faceted navigation over RDF graphs:

Definition 1 (RDF). Let I, L, and B be pairwise disjoint infinite sets of IRIs, literals,
and blank nodes, respectively. A tuple (s, p, o) ∈ (I ∪ B) × I × (I ∪ L ∪ B) is called an
RDF triple, where s is the subject, p is the predicate, and o is the object. An RDF graph
G is a finite set of RDF triples. We set S G = {s | (s, p, o) ∈ G}, PG = {p | (s, p, o) ∈ G},
OG = {o | (s, p, o) ∈ G}.

Given an RDF graph G, we define the set CG of classes as containing all resources
C such that G RDFS-entails the triple (C, rdf :type, rdfs :Class). We say that a resource
s has type C if G RDFS-entails the triple (s, rdf :type,C) and the instances of a class C
are all resources that have the type C in G.

In the context of faceted search, for a triple (s, p, o) ∈ G, we also call p a facet, and
we call s and o facet values.
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Fig. 1. Screenshot of the GraFa [13] application. Proceeding from an initial class, the user refines
the set of instances by the step-wise selection of available filters.

We normally omit “RDF” in our terminology if no confusion is likely and we abbre-
viate IRIs using the prefixes rdf, rdfs, and owl to refer to the RDF, RDFS, and OWL
namespaces, respectively.

The initial step in the faceted exploration of a graph is to filter resources according
to classes. Once a user has chosen a class, the instances of the class constitute the centre
of the exploration. This centre is then step-by-step refined by applying filters.

Definition 2 (Filters). Let G be an RDF graph, a centre M ⊆ S G ∪ OG w.r.t. G is a
subset of the resources in G.

Let V be a countably infinite set of variables disjoint from I ∪ L ∪ B. In order to
distinguish variables from resources, we prefix variables with a ?. A triple pattern is a
member of the set (I ∪ B ∪ V) × (I ∪ V) × (I ∪ L ∪ B ∪ V).

An incoming property-value filter is a triple pattern of the form (s, p, ?o), while an
outgoing property-value filter is of the form (?s, p, o). Given a centre M w.r.t. G, apply-
ing the property-value filters (s, p, ?o) and (?s, p, o) to M yields {o | o ∈ M, (s, p, o) ∈ G}
and {s | s ∈ M, (s, p, o) ∈ G}, respectively.

A property filter is a triple pattern of the form (?s, p, ?o). Applying (?s, p, ?o) to a
centre M yields a set of incoming resources M→p = {s | o ∈ M, (s, p, o) ∈ G} and a set
of outgoing resources M←p = {o | s ∈ M, (s, p, o) ∈ G}.

Given a centre M w.r.t. G, a filter f is available, if applying f over M yields a
non-empty result.

In faceted navigation, only available filters must be presented to the user. The above
defined notions and operations are used, for example, in the application GraFa [13] as
shown in Figure 1.

Since the exploration is also often based on classes and their instances, which are
then filtered, another important concept is that of reachable classes:

Definition 3 (Reachable Classes). Let G be an RDF graph and M a centre. A class C
induces a set of incoming (outgoing) facets {p | (s, p, o) ∈ G, s ∈ M, o has type C} ({p |
(s, p, o) ∈ G, o ∈ M, s has type C}) w.r.t. M. We say that C is an incoming (outgoing)
reachable class w.r.t. M, if the induced set of incoming (outgoing) facets is non-empty.
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Fig. 2. Excerpt from the SemSpect [1] application exploring the Panama Papers data set. (1) A
user selects an initial class (in SemSpect denoted as “category”), which then represents the centre.
(2) Proceeding from the centre, all reachable classes are computed. (3) The user chooses one of
the reachable classes which subsequently constitutes the new centre.

If the direction (incoming/outgoing) is clear from the context, we simply speak about
reachable classes.

From a centre M, a user may choose a reachable class C and an appropriate facet p
to continue the exploration. As a result, an incremental join operation is performed to
join the incoming (outgoing) resources with the instances of the class C. Subsequently,
this set becomes the new centre. From there, the available filters and the reachable
classes are computed again.

As an example for the reachable classes and incremental join operation, an excerpt
from the application SemSpect [1] is shown in Figure 2.

2.2 RDF Compression

Traditional RDF serialisation formats (e.g., RDF/XML, Turtle, or N3) have a high level
of redundancy and a simple lookup requires a sequential scan of the document. The
binary Header Dictionary Triples (HDT) [5,12] format addresses these shortcomings
by providing a compressed triple structure that can be queried without the need of de-
compression. An HDT file is composed of three parts: (i) the Header provides metadata
about the data set in plain RDF format, (ii) the Dictionary provides a mapping between
strings and unique IDs, and (iii) the Triples encode the RDF graph using IDs. We next
consider the concrete implementation of the dictionary and the triples component in
more detail as they constitute the basis of the proposed indices.

Definition 4 (HDT). Let SOG = S G ∩ OG denote the set of shared resources, S pure =

S G \ SOG the set of pure subjects, and Opure = OG \ SOG the set of pure objects. For a
set S , we use S to denote the lexicographic order of elements in S .

The HDT dictionary provides a mapping µ such that µmaps a resource ri at position
i (starting with position 1) of a list L to i if L = SOG, to |SOG |+ i if L = S pure, to |SOG |+ i
if L = Opure, and to i if L = PG.

Note that a given ID can belong to different sets, but the disambiguation of the correct
set is trivial when we know the position (subject, predicate, or object) of the ID in a
triple. Furthermore, the distinction into four sets helps to assign shorter IDs since the
entries are stored in a binary sequence, where the length of the sequence depends on
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the maximal used ID. The ID 0 is reserved as a wildcard character in triple ID queries.
The dictionary is eventually stored using plain front-coding [4] – a compression format
for lexicographically sorted dictionaries based on the fact that consecutive entries are
likely to share a common prefix.

The Triples component uses the assigned IDs to form a compressed representation
of a graph G using the Plain Triples, Compact Triples or Bitmap Triples [5] format.

Definition 5 (Plain Triples). Given an RDF graph G, the Plain Triples representation
PT(G) of G is obtained by replacing each triple (s, p, o) ∈ G with (µ(s), µ(p), µ(o)),
where µ is the HDT dictionary mapping.

The Compact Triples representation of G is obtained from PT(G) based on adjacency
lists of predicates and objects for the subjects:

Definition 6 (Compact Triples). For a subject ID s in the plain triples format PT(G)
of an RDF graph G, pred(s) denotes the ordered sequence of predicate IDs in {p |
(s, p, o) ∈ PT(G)}; for a subject ID s and a predicate ID p in PT(G), obj(s, p) denotes
the ordered sequence of object IDs in {o | (s, p, o) ∈ PT(G)}.

Let s1, . . . , sn be the ordered sequence of distinct subject IDs in PT(G). The Compact
Triples encoding CT(G) of G consists of two ID sequences: The predicate sequence
S p = pred(s1)0 . . . 0pred(sn) and the objects sequence S o = S 1

o . . . S
n
o, where each

partial object sequence S i
o, 1 ≤ i ≤ n, is the concatenation obj(si, p1)0 . . . 0obj(si, pm)0

and p1, . . . , pm = pred(si).

Note that the unused ID 0 is used to terminate predicate and object sequences. The
Bitmap Triples representation of G is obtained from CT(G) by further compressing the
lists with the help of additional bitmap sequences:

Definition 7 (Bitmap Triples). Let G be an RDF graph and CT(G) its compact triples
representation such that S p = S 1

p0 . . . 0S n
p and S o = S 1

o0 . . . 0S m
o are the predicate and

object sequence of CT(G), respectively. Let `i
p and ` j

o denote the length of S i
p and S j

o,
1 ≤ i ≤ n, 1 ≤ j ≤ m, respectively.

The Bitmap Triples encoding BT(G) of G consists of two ID sequences Ŝ p = S 1
p . . . S

n
p

and Ŝ o = S 1
o . . . S

m
o , obtained from S p and S o by dropping the 0s, and two bit sequences

Bp and Bo such that the length of Bp and Bo is the same as the length of Ŝ p and Ŝ o,
respectively, and the value at position pos in Bp (Bo) is 1 if pos = `1

p + . . .+ `i
p for some

i, 1 ≤ i ≤ n, (pos = `1
o + . . . + `

j
o, for some j, 1 ≤ j ≤ m) and it is 0 otherwise.

Figure 3, from an example introduced by Fernandez et al. [5], illustrates the different
formats. While we omit the dictionary component, the Plain Triples show that the IDs
1 . . . 3 are subject IDs and that the ID 1 denotes a shared resource as it also occurs in
the object position. The further (pure) objects have the IDs 2 . . . 6. The IDs 1 . . . 4 also
represent predicates. The subject 1 is used with the (distinct) predicates 2 and 3, hence,
pred(1) is 23. Analogously, pred(2) = 124 and pred(3) = 3. In S p these sequences
are separated by a 0 and S o analogously encodes the objects for each subject–predicate
pair. In the Bitmap Triples encoding, the sequences Ŝ p and Ŝ o simply drop any 0 from
S p and S o. The bit sequence Bp tells us with a value of 1, when a sequence in Ŝ p ends,
i.e., the first sequence 23 (of length 2) ends at (and including) position 2. The following
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1 2 6

1 3 2

2 1 3

2 2 4

2 2 5

2 4 1

3 3 2

Plain Triples

2 3 0 1 2 4 0 3

6 0 2 0 3 0 4 5 0 1 0 2 0

subject 1 subject 2 subject 3

predicates Sp:

objects So:

Compact Triples

Ŝp 2 3 1 2 4 3

Bp 0 1 0 0 1 1

Ŝo 6 2 3 4 5 1 2

Bo 1 1 1 0 1 1 1

predicates:

objects:

Bitmap Triples

Fig. 3. Example for the compressed triple formats from Fernandez et al. [5]

sequence 124 (of length 3) starts at position 3 and the next 1 at position 5 (2 + 3) of
Bp indicates the end of the sequence. The bit sequence Bo analogously terminates the
sequences in Ŝ o.

HDT is not merely a compression format but also provides the efficient resolution of
triple patterns on the compressed representation of an RDF graph by deploying succinct
data structures for the BT implementation [5]. SP-O index queries can be efficiently
accomplished in O(log(n)), i.e., the triple patterns (s, p, o), (s, p, 0), (s, 0, o) and (s, 0, 0)
can be resolved, where 0 denotes a wildcard match and s, p, o represent resource IDs at
the corresponding triple position. For other triple patterns, the so far discussed solutions
do not suffice and Martínez-Prieto et al. [12], therefore, introduced a compact full-index
called HDT Focused on Querying (FoQ), which is created over the original HDT file
and which consists of a further PS-O and OP-S index.

3 Faceted Navigation Indices Based on HDT BT

In order to efficiently compute the available filters, reachable classes, filter operations
and the corresponding incremental joins as described in Section 2, we propose the use
of additional (in-memory) BT indices over subsets of the original RDF data set. There-
fore, in order to represent only a sub-graph, an adaptation of the original Bitmap Triples
format (Definition 7) is needed. We illustrate this for the standard SP-O triple compo-
nent order, but the approach can analogously be transferred to the PO-S and PS-O BT
indices. We decided against self-indexing individual triples in the Bitmap Triples com-
ponent of the HDT file because we need to perform efficient triple pattern queries on
the subgraphs in the triple component order PO-S and PS-O. For instance, in case of
triple pattern queries (?s, p, o), the self-indexing approach does not require less space
since these patterns can only be efficiently resolved by indexing all subjects for the
appropriate predicate-object pairs.

Definition 8 (Partial BT SP-O Index). Let G be an RDF graph and G′ ⊆ G a sub-
graph of G. A partial BT index for G′ consists of BT(G′) and the ID sequence S s =

s1 · · · sn, where s1, . . . , sn is the ordered sequence of distinct subject IDs in PT(G′).

For an SP-O index over a sub-graph G′ of an RDF graph G, the implicit subject ID,
which is stored by the bit sequence Bp, does not correspond to the actual subject dic-
tionary ID of the original HDT file. Therefore, the additional ID sequence S s indicates
the actual subject ID from the dictionary to each implicit subject ID.
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Ŝp 2 3 1 2 4 3

Bp 0 1 0 0 1 1

Ŝo 6 2 3 4 5 1 2

Bo 1 1 1 0 1 1 1

1 2 3subjects:

predicates:

objects:

Bitmap Triples

Ŝp 2 3 3

Bp 0 1 1

Ŝo 6 2 2

Bo 1 1 1

1 2

1 3Sssubject sequence:

subjects:

predicates:

objects:

Partial BT SP-O Index

Fig. 4. Bitmap triples from the example in Figure 3 (left-hand side) and for the sub-graph con-
taining triples with subject IDs 1 and 3 (right-hand side) with the additional subject sequence S s

to obtain the original subject IDs

Figure 4 shows again the Bitmap triples from Figure 3 (left-hand side) and the
Bitmap Triples for the sub-graph containing only triples with subject IDs 1 and 3. The
additional subject sequence S s is used to obtain the original subject IDs for the HDT
mapping.

In order to resolve triple patterns of the form (s, 0, 0) (with 0 as wildcard) on a
partial SP-O BT index, the subject ID s is first converted into the implicit subject ID
of the corresponding partial BT index. For this purpose a binary search operation is
executed on the sequence S s to obtain the position of s in S s, which corresponds to
the implicit subject ID in the bit sequence Bp of BT(G′). Afterwards, the resolution of
triple patterns involves the same steps as for the standard Bitmap Triples [12]. However,
when iterating over the results from a search over a partial BT index, each subject ID sr

from the search results has to be converted into the appropriate subject ID se over the
full graph, which can be accomplished by the simple access operation se := S s[sr].

Based on our definition of partial BT indices, we propose the use of two additional
(in-memory) BT indices: Property-Value and Class-to-Class indices.

Definition 9 (Property-Value Index). Let G be an RDF graph with C ∈ CG a class. An
incoming property value (PV) index w.r.t. C is a partial PS-O BT index over {(s, p, o) ∈
G | o has type C}. An outgoing PV index w.r.t. C is a PO-S BT index over {(s, p, o) ∈
G | s has type C}.

In order to efficiently calculate all available filters and the filter operations, we generate
incoming and outgoing PV indices for all classes in an RDF graph. In case of the incom-
ing and outgoing PV indices, the PS-O and the PO-S triple component order has been
chosen, respectively, to fetch all relevant triples for a given incoming property-value
filter (s, p, ?o) and outgoing property-value filter (?s, p, o), respectively.

In order to efficiently compute reachable classes, we further propose Class-to-Class
indices:

Definition 10 (Class-to-Class Index). Let G be an RDF graph with C,D ∈ CG classes.
A Class-to-Class (CtC) index w.r.t. C and D is a partial PS-O BT index over {(s, p, o) ∈
G | s has type C, o has type D}.
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Table 1. Data sets utilised in the experiments

Data Set RDF Dump File (.ttl) #Triples #Classes

LinkedMDB5 282 MB 3,579,532 41
Lobbying Filings6 306 MB 5,344,200 7
Panama Papers7 1,140 MB 19,903,231 18
Reactome8 1,350 MB 48,556,891 82
SciGraph9 8,500 MB 39,692,376 20
YAGO 210 9,920 MB 158,991,568 373,442
OpenPermID11 11,470 MB 152,527,813 21

We generate CtC indices for each pair of classes C,D ∈ CG. The PS-O triple component
order facilitates the computation of incremental join operations between instances of the
classes C and D since all existing triples in the corresponding index can efficiently be
retrieved for a given facet p.

4 Implementation and Evaluation

We next present the empirical evaluation of the proposed additional BT indices. We start
by describing used data sets as well as the time and space required to create and store the
proposed BT indices for these data sets. We then introduce the different benchmarked
approaches and the queries and tasks used in the evaluation before we present the actual
results.

All presented experiments were conducted on an Intel(R) Core(TM) i7-3930K CPU
@ 3.20GHz, 6 cores, 64GB DDR3 @ 1334MHz.

4.1 Data Sets and Index Generation

The (partial) BT indices were implemented in Java with the HDT Java library3 as foun-
dation and the code is available on GitHub as open-source project.4 Since our imple-
mentation does not support RDFS-entailment, the required inferences (for types of the
resources) are materialised upfront using RDFox [14]. For each RDF file, we gener-
ate an HDT file, which serves as the basis for the CtC and PV indices. Note that RDF
classes, which do not contribute to the semantic domain of the RDF model such as
rdfs:Resource, are not considered in the indices.

In order to get an impression of the required generation time and resulting file size,
the proposed BT indices have been generated for various data sets (see Table 1). For the
YAGO 2 data set, the CtC and PV indices could not be generated because of insufficient
main memory capacity for the high number of distinct RDF classes.

3 https://github.com/rdfhdt/hdt-java
4 https://github.com/MaximilianWenzel/hdt-bt-indices-java-lib
5 http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-18-05-2009-dump.
nt
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LinkedMDB Lobbying
Filings

Panama
Papers

Reactome SciGraph OpenPermID

PV Indices 00:10 00:15 01:09 04:04 01:59 07:29
CtC Indices 00:09 00:09 00:35 02:55 00:55 03:38
FoQ Index 00:02 00:03 00:27 01:00 01:58 16:49
HDT File 00:33 00:29 01:44 04:06 12:43 22:10

0%

20%

40%

60%

80%

100%

Time Format mm:ss
Fig. 5. Time required for generating the representations (format mm:ss)

LinkedMDB Lobbying
Filings

Panama
Papers

Reactome SciGraph OpenPermID

PV Indices 17 MB 24 MB 190 MB 804 MB 187 MB 788 MB
CtC Indices 10 MB 9 MB 54 MB 546 MB 32 MB 161 MB
FoQ Index 19 MB 24 MB 107 MB 236 MB 254 MB 1.068 MB
HDT File 32 MB 35 MB 125 MB 299 MB 1.060 MB 1.449 MB
RDF Dump File (.ttl) 282 MB 307 MB 1.204 MB 1.354 MB 8.497 MB 11.469 MB

0%

20%

40%

60%

80%

100%

Fig. 6. File size comparison of the various representations

6 We are not authorized to publish the data set in RDF format. REST API for XML download:
https://lda.senate.gov/api/, accessed: 2019-10-15

7 https://doi.org/10.5281/zenodo.4319930
8 https://doi.org/10.5281/zenodo.4415888
9 https://www.springernature.com/gp/researchers/scigraph

10 http://yago.r2.enst.fr/
11 https://permid.org/
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In Figure 5, the time required to generate all CtC and PV indices is compared to
the time needed to create the HDT file and the compact HDT Focused on Querying
(FoQ) full-index [12]. Figure 6 shows the size of the BT indices compared to the size
of the original RDF dump file, the HDT file and the HDT FoQ index. Neither the time
for generating the CtC nor the PV index exceeds the time for generating the HDT file
on any data set. The files that are utilised in an actual faceted exploration, i.e., the PV,
CtC, and FoQ indices and the HDT file, require between 18 − 30% of the Turtle file
size in five out of six data sets. Only for the Reactome data set, 139% of the Turtle file
size is needed which is due to the high interconnectivity, i.e., the high number of triples
t = (s, p, o) where s and o have an RDF class assigned. The consumed storage space
subsequently corresponds to the required main memory capacity during an exploration.

4.2 Performance Benchmark Setup

We consider the following approaches in the experimental evaluation:

1. HDT Jena: The Jena ARQ query engine12 used over an HDT file.
2. RDFox: The commercial, in-memory triple store RDFox [14].
3. Plain HDT: Our implementation using only the original HDT file and the FoQ

index.
4. PV indices: Our implementation used with PV indices, the HDT file and the FoQ

index. The FoQ index is utilized to perform efficient triple pattern queries that en-
hance the property-value filter and available filter operations if a given centre M
has less resources than a threshold θ, which was experimentally determined [16].
For instance, in case of property-value filter operations, θ = 5, 000.

5. CtC indices: Our implementation used with CtC indices and the HDT file.
6. Hybrid: Our implementation used with PV indices, the CtC indices, the HDT file

and the FoQ index.

Our evaluation initially also included other triple stores. However, we limit our result
presentation to a comparison with RDFox and HDT Jena as these were the best perform-
ing systems for the kinds of queries needed in faceted exploration. When interpreting
the results, it should be noted that RDFox and HDT Jena offer full SPARQL 1.1 sup-
port and RDFox further supports incremental reasoning. This is in contrast to our HDT
BT indices which are particularly optimized but also limited to faceted query answer-
ing. Our approach also comes with a single upfront HDT BT indices creation time. For
instance, the largest considered data set, OpenPermID, can be loaded query ready in
93 s into an RDFox data store, whereas the generation of our CtC and PV indices alone
requires about 11 m.

The used queries and tasks in the experiments are designed to fulfill the following
two requirements: (i) The queries should be representative for the data set. We use the
principle of stratified randomisation to design queries, which correspond to a specific
level of difficulty. Since it was not always possible to generate sufficient queries for all
difficulty levels, the actual number of queries in an experiment may vary depending on
the data set. We comment on this in the evaluation results. (ii) The queries should be

12 https://jena.apache.org/documentation/query/index.html
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representative for a faceted navigation scenario. To address this, we use the following
query types and tasks in our benchmark:

1. Filter queries apply a sequence of property-value filters to a given centre M. Since
incoming and outgoing filters require the same computational effort using the PV
indices, only outgoing filters are considered. As result, all IRIs of the resources
from the filtered centre are returned. Overall, we consider 1 to 3 filters over 3 levels
of difficulty with 10 queries per difficulty level, where the relevant parameters for
the difficulty level comprise the size of M and size of the result set obtained by
applying the filter. Thus, the maximal number of evaluated filter queries per data
set is nmax = 3 · 3 · 10 = 90.

2. The task of computing all available filters is based on a filter query, which is used
to initialise a centre M. Relative to this centre, all available incoming and outgoing
property-value filters are computed. As result, the number of distinct facet values
for each facet is subsequently returned. Overall, we use 1 filter over 3 levels of
difficulty with 10 queries per difficulty level, i.e., we evaluate at most nmax = 30
task executions per data set.

3. Class queries start with a given initial centre M0 and perform n incremental join op-
erations to an incoming or outgoing reachable class. All IRIs of the resources from
the final centre Mn are subsequently returned. The number of joins n corresponds
to the number of used facets. The parameters, which were considered in the query
generation process for the corresponding level of difficulty, are again the size of M0
and, on the other hand, the number of triples that participate in the join operations.
We evaluate class queries that use 1 to 4 joins over 3 levels of difficulty with 10
queries per difficulty level, i.e., we evaluate at most nmax = 120 task executions per
data set. The incremental join operations are explicitly indicated in the resulting
SPARQL queries by using nested subqueries with single result variables to lower
the number of intermediate results and eventually increase the efficiency, i.e., each
SPARQL query begins with the resulting centre Mn and the preceding class Mn−1 is
defined in an appropriate subquery which in turn uses a subquery for its respective
predecessor Mn−2 if present.

4. The task of computing all reachable classes starts from a centre of resources, ob-
tained using a class query, and computes the reachable classes relative to this centre.
The returned result is the number of reachable classes, i.e., the number of incom-
ing and outgoing facets w.r.t a reachable class as described in Definition 3. We use
class queries with 1 join over 3 levels of difficulty and 10 queries per difficulty
level. Overall, we evaluate at most nmax = 30 task executions per data set.

5. Hybrid queries combine class and filter queries. We obtain a centre M by executing
a class query (which requires a series of joins) and then apply a filter query to
the obtained centre. All IRIs of the resulting resources are returned. Again, we
consider 3 levels of difficulty which coincide with the number of applied filters and
the difficulty level of the underlying class query. We evaluate hybrid queries that
use 1 to 4 joins over 3 levels of difficulty with 10 queries per difficulty level, i.e.,
we evaluate at most nmax = 120 task executions per data set.

Note that all operations in our experiments compute exact results which is of course
more expensive than the calculation of partial results. Partial results, however, often
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Fig. 7. Results of the filter query experiment

increase the scalability of the eventual application, which is observed, for instance, in
the SPARQL query builder SPARKLIS [6].

The complete execution of an experiment comprises the following steps: First, the
query engine is initialised and the queries are loaded from a file into main memory.
Second, a warm-up round begins where all queries are executed before the actual ex-
periment. Afterwards, the execution time of all queries is measured in two consecutive
rounds and the minimum required time is documented. If a query requires more than
ten seconds for the execution, a timeout occurs and is documented correspondingly. A
timeout of ten seconds has been chosen because an execution time beyond ten seconds
is unreasonable concerning the user-experience in an exploratory setting.

4.3 Experimental Results

In the following sections all results from the experiments are presented. The collected
time measurements were evaluated using the programming language R and are sum-
marized by box plots. The value n represents the actual number of queries from each
experiment. Recall that not for all difficulty levels sufficiently many queries could be
generated and, hence, n ≤ nmax. We present the experimental results of the four largest
data sets from Table 1 for which the PV and CtC indices could be generated. The full
experimental results and queries are available online [16].

Figure 7 shows the results of the filter queries. The PV indices and the Plain HDT
approach perform equally well on all data sets – no considerable benefits are obtained
using additional PV indices on top of the original HDT file. Apart from a few outliers,
e.g., on the Reactome data set, RDFox is the leading approach for the resolution of
filter queries with reference to the median since it is the lowest observed on all data
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Fig. 8. Results of the available filters experiment

sets. RDFox and the Jena ARQ query engine both utilise query planning in contrast to
Plain HDT and the PV indices. The performance of our implementation could certainly
be improved with additional query planning, which is a topic for future research.

Figure 8 shows the results of the available filters experiment. Since the available
filters are computed relative to the current centre, we only compare the PV indices ap-
proach with the Plain HDT approach. A fair comparison with the other approaches,
which execute SPARQL queries, would be difficult in this scenario. Apparently, the
Plain HDT approach and the PV indices perform generally well in that 50% of the
queries always require less than 1 s. For larger data sets such as Reactome and OpenPer-
mID, the Plain HDT approach, however, reveals significant performance issues, where
occasionally a query requires more than 5 s in case of the Reactome data set and in case
of the OpenPermID data set even a timeout occurred. In contrast, the PV indices ap-
proach constantly requires less than 2 s and shows stable performance across all queries.

The results of the class queries are shown in Figure 9. Concerning the HDT Jena
approach, at least 21% timeouts occurred on all data sets. Although RDFox requires
in all cases less than 1 s for at least 75% of the queries, several outliers appear in case
of the SciGraph and OpenPermID data set, where furthermore 1% of the queries timed
out. Plain HDT shows a stable performance in case of the Panama Papers data set, but
in other cases, such as OpenPermID, 18% timeouts occur and, in sum, about 25% of
the queries require more than 5 s for the completion. The CtC indices show an overall
stable performance with a maximum required execution time on the SciGraph data set
at around 3 s.

In Figure 10, the results from the reachable classes task are presented. Since the
reachable classes are computed relative to the current centre, we only compare the CtC
indices approach with the Plain HDT approach. A fair comparison with the other ap-
proaches would be difficult in this scenario. As can be seen, the CtC indices outperform
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Fig. 9. Results of the class query experiment

Fig. 10. Results of the reachable classes experiment

the Plain HDT approach for all data sets. Especially concerning the data sets SciGraph,
Reactome and OpenPermID, Plain HDT requires in some cases even more than 10 s
whereas the CtC indices need at most about 1 s for the execution.

The results of the hybrid queries are presented in Figure 11. Those approaches,
which utilise query planing, i.e., the Jena ARQ query engine and RDFox, have evident
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Fig. 11. Results of the hybrid query experiment

benefits concerning the resolution of hybrid queries. For instance, in case of RDFox,
75% of the measured times from SciGraph and OpenPermID are considerably lower
than those of the Plain HDT and the Hybrid approach. Nevertheless, at least 5% of the
queries timed out in case of HDT Jena on all data sets and, in case of Reactome and
OpenPermID, RDFox shows a worst case evaluation time of about 3 s and 7 s, respec-
tively. The maximum execution time of the Hybrid approach is considerably lower on
all data sets than the maximum time required by Plain HDT. The Hybrid approach has
furthermore a worst case evaluation time of 2 s, as can be observed for the SciGraph
data set, whereas, e.g., 38% of the queries executed by Plain HDT on the OpenPermID
data set led to a time out.

5 Conclusion

In this paper, we propose an approach to generate additional indices on top of the RDF
compression format HDT for the efficient exploration of RDF data sets. To achieve this
objective, the Bitmap Triples (BT) data structure of the HDT file was extended to a
BT index which is able to store subsets of the original RDF graph. In order to cover
all required exploratory operations of a faceted navigation scenario, two kinds of BT
indices have been introduced, namely the Property-Value (PV) and the Class-to-Class
(CtC) indices.

Our evaluation over real-world data sets shows that the generation of the CtC and
PV indices is feasible for data sets with up to 150 million triples and 82 RDF classes.
Neither the generation time of the PV nor of the CtC indices exceeded the duration for
generating the original HDT file. Likewise, the file sizes of the PV and CtC indices do
not surpass the original HDT file size.
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In the performance benchmark, the CtC indices, the PV indices and the Hybrid
approach, i.e., the combination of both kinds of indices, show an overall stable perfor-
mance for all considered exploratory operations across all data sets with a maximum
execution time of 3 s. We conclude that such BT indices represent a significant con-
tribution for the Semantic Web and faceted navigation in particular and that further
improvements are possible, when the approach is combined with other optimisations
such as query planning and a memory efficient BT indices generation method.
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