
Does Synthetic Data Help
Named Entity Recognition for Low-Resource Languages?

Anonymous ACL submission

Abstract

In this paper, we explore whether synthetic001
datasets generated by large language models002
are useful for low-resource named entity recog-003
nition, considering 11 languages from diverse004
language families. Our results suggest that syn-005
thetic data created with seed human labeled006
data is a reasonable choice when there is no007
available labeled data, and is better than us-008
ing automatically labeled data. HOwever, a009
small amount of high-quality data, coupled010
with cross-lingual transfer from a related lan-011
guage, always offers better performance.012

1 Introduction013

Named Entity Recognition (NER) for low-resource014

languages aims to produce robust systems for lan-015

guages with limited labeled training data available,016

and has been an area of increasing interest within017

natural language processing (NLP). Two common018

approaches to address this data scarcity are cross-019

lingual transfer and data augmentation/synthesis;020

recent research has in particular explored the use-021

fulness of large language models (LLMs) for such022

data augmentation and synthetic data creation in023

NLP (Whitehouse et al., 2023; Li et al., 2023),024

while their use for NER is also emerging (Bog-025

danov et al., 2024).026

In this background, we propose LLM-based syn-027

thetic data generation using a small amount of gold028

examples (Figure 1) as an alternative to relying029

on automatically created datasets for low-resource030

NER. With experiments covering 11 languages, we031

show that032

1. Even a small amount of human annotated data033

can yield far better performance than much034

larger amounts of synthetic data.035

2. Zero-shot transfer from a related language can036

provide high baselines for low-resource lan-037

guage NER.038

Figure 1: High-level overview of our data generation
process. We use multilingual large language models to
generate new NER datapoints on the basis of a handful
of high quality data points. See Section 3.1 for more.

3. Synthetic data generated by prompting an 039

LLM with a few high quality examples (Fig- 040

ure 1) could be better than using automatically 041

labeled datasets when training low-resource 042

NER models. 043

We start with a review of related literature (Sec- 044

tion 2) and describe our data generation approach 045

and experimental setup in Section 3, followed by 046

a discussion of the results (Section 4), limitations 047

(Section 6) and broader impact (Section 7). 048

2 Related Work 049

NER in low resource settings has long been a topic 050

of interest in NLP. Significant research examines 051
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cross-lingual transfer from a high resource source052

language to a lower-resource target language for053

the task (Rahimi et al., 2019; Mueller et al., 2020;054

Zeng et al., 2022; Zhao et al., 2022; Yang et al.,055

2022; Zhou et al., 2022), while other approaches056

have explored the creation of synthetic datasets057

through e.g. parallel corpora or machine translation058

(Mayhew et al., 2017; Ni et al., 2017; Pan et al.,059

2017; Xie et al., 2018; Liu et al., 2021; Yang et al.,060

2022; Fetahu et al., 2022).061

More recent work has explored using LLMs such062

as GPT-3.5 and GPT-4 as data generators for NER063

(Bogdanov et al., 2024; Heng et al., 2024). We064

build on such work, but differ from their meth-065

ods. Our data generation process uses high quality066

examples as seeds, and we not only evaluate dif-067

ferent LLMs (both open and closed-source), but068

also experiment with 11 languages covering three069

language families and five base scripts.070

3 Our Approach071

At a high level, our approach involves two steps:072

1. Using the train split of a high quality (usu-073

ally manually annotated) NER dataset for a074

target language to generate synthetic data for075

that language with the help of an LLM (Sec-076

tion 3.1); and then077

2. Comparing the performance of an NER model078

on the test split of the high quality dataset079

when trained on synthetic data from Step 1080

and another model trained on the train split of081

the same high quality dataset (Section 3.2).082

3.1 Synthetic Data Generation:083

Our synthetic data generation process (shown in084

Figure 1) involves using LLMs to generate new085

synthetic data points on the basis of existing, high086

quality NER annotations as described below:087

• First, we randomly sample m data points from088

the train split of an organic (i.e. non-synthetic)089

NER dataset.090

• Next, we format and append these data points091

to a prompt asking the model to produce n092

new, unique data points on the basis of the m093

data points in the prompt.094

• We submit this prompt as input to the095

LLM, and extract any correctly-formatted data096

points from its response;097

• We repeat steps (1)-(3) k times, with each 098

call to the model choosing a different random 099

sample of organic data points. 100

In our experiments, we set m to 10, n to 20, and 101

k to 500. This sets an upper cap of 5000 synthetic 102

training data points, if every model response con- 103

tains perfectly formatted data points. We present 104

and solicit data structured as JSON strings to the 105

LLMs, and extract well-formatted samples from 106

model responses using regular expressions. Ap- 107

pendix A provides further details about this pro- 108

cess. 109

We compare three LLMs as our source of 110

synthetic data: GPT-41 (Achiam et al., 2023), 111

which we assume to be the state of the art; 112

Llama-3.1-8B-Instruct (Dubey et al., 2024), 113

as a much smaller, open-source instruction-tuned 114

model; and finally, aya-expanse-32b (Dang et al., 115

2024), as a larger open source multilingual LLM. 116

3.2 Training NER models: 117

For all experiments, we use the pre-trained version 118

of XLM-RoBERTa-large (Conneau et al., 2020) as 119

our base model and fine-tune it on our synthetic 120

and organic training sets in two distinct settings. 121

1. In the first setting, we use our data to train 122

an NER model from scratch, by fine-tuning 123

the pre-trained XLM-RoBERTa-large on target 124

language NER data. 125

2. In the second setting, we first fine-tune the 126

model on the high quality NER data in a lan- 127

guage related source language2, and then fur- 128

ther fine-tune this NER model on our synthetic 129

or organic target language data. 130

While the first setting—which we name NER 131

FROM SCRATCH—aims to shed light on the relative 132

utility of synthetic data for training an NER model 133

(largely) from the ground up, the latter —which we 134

name NER FINE-TUNING—simulates a common 135

setting, when a lower resource language lacks ade- 136

quate NER data, but is related to a higher-resource 137

language with existing NER systems. In both set- 138

tings, we modulate the amount of data (both syn- 139

thetic and organic) used, so as to compare model 140

performance when trained on smaller or larger 141

amounts of each type of data. 142

1We use gpt-4-turbo, and all data generation with the
model was conducted between September and December
2024.

2See Table 2 in Appendix B for the full list of chosen
related languages for all the target languages.
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Languages & Datasets: We focus on 11 lan-143

guages from diverse language families: Tamil,144

Kannada, Malayalam, Telugu (Dravidian), Kin-145

yarwanda, Swahili, Igbo, Yoruba (Niger-Congo),146

Swedish, Danish and Slovak (Indo-European). Of147

these, Igbo, Yoruba, and Kinyarwanda are not148

among the 100 languages in the XLM-Roberta pre-149

training corpus. We use the Universal NER dataset150

(Mayhew et al., 2024) as our high quality, man-151

ually annotated dataset for Swedish, Danish and152

Slovak; MasakhaNER2 (Adelani et al., 2022) for153

Kinyarwanda, Swahili, Igbo and Yoruba; and the154

Naamapadam dataset (Mhaske et al., 2023) for155

Tamil, Kannada, Malayalam and Telugu.156

While the first two datasets are completely manu-157

ally annotated, the train and validation splits of the158

Naamapadam dataset are constructed using parallel159

corpora, and thus contain some noise. Neverthe-160

less, we choose it as our organic dataset, as (i) its161

test sets, which contain 500-1000 datapoints per162

language, are completely manually annotated, and163

(ii) it remains the largest NER resource for these164

four languages. Crucially, all of these datasets165

cover largely identical NER categories, allowing166

for comparisons between them.167

Additionally, we compare models trained on168

LLM-generated data with those trained using169

WikiANN (Pan et al., 2017; Rahimi et al., 2019),170

a large, automatically created NER dataset based171

on Wikipedia cross-linking, as it covers the 11 lan-172

guages we study. This dataset represents a different173

form of synthetic data—one generated not from174

LLMs, but instead from scraping knowledge bases.175

Although the dataset has no manual annotations, it176

is frequently used as a standard low-resource NER177

benchmark (Schmidt et al., 2022; Asai et al., 2024).178

4 Results179

4.1 Synthetic Data Generation180

We generate the synthetic datasets following the181

process described in Section 3.1. While model182

responses from GPT-4 are almost always usable,183

we found recurring errors in responses from the184

other two models. Some of these errors are de-185

scribed in Table 1 in Appendix A; we discard such186

instances when compiling our synthetic datasets187

from model responses. The average percentage of188

usable training datapoints from GPT-4, Llama-3.1189

and aya-expanse are 97%, 59.3% and 11.7% re-190

spectively.3 We assess the overall quality and 191

viability of this synthetic data by measuring the 192

performance of an NER model on a high quality, 193

manually-annotated test set, when trained on the 194

synthetic data. 195

4.2 Training on Synthetic Data 196

Figure 2 shows our results when using synthetic 197

data from different models, in both the NER FROM 198

SCRATCH and NER FINE-TUNING settings. While 199

the models trained on organic data in the NER 200

FROM SCRATCH setting always perform better than 201

synthetic data based models, we find that models 202

trained on GPT-4-generated data come the closest 203

to models trained on organic data. We also find 204

that more synthetic data is not necessarily useful; 205

for some languages, we see a saturation after about 206

1000 data points, and for some, we also notice a 207

drop in performance with more data. 208

Perhaps more surprisingly, in the NER FINE- 209

TUNING setting, we notice that zero-shot transfer 210

from a related language outperforms the same mod- 211

els after they have been further fine-tuned on syn- 212

thetic target language data. This suggests that in 213

some cases where an NER model for a related lan- 214

guage exists, synthetic data in target languages may 215

actually be detrimental to overall performance. 216

Comparison with WikiAnn: In most cases, 217

when dataset size is comparable, training on 218

WikiANN data in the NER FROM SCRATCH set- 219

ting yielded NER models that perform consider- 220

ably worse than those trained on synthetic data 221

from GPT-4. For the four Niger-Congo languages, 222

GPT-4 generated data gave superior results even in 223

the NER FINE-TUNING SETTING (see Table 3 in 224

Appendix C for the detailed results). 225

5 Conclusions and Discussion 226

Our results lead us to three main conclusions 227

around the utility of LLM-generated synthetic data 228

for low resource language NER. 229

1. A small amount of carefully annotated data 230

yields better performance than a large amount 231

of synthetic data. As is evident in Figure 2, 232

even 100 manually annotated data points can 233

yield NER models that cannot be matched by 234

models trained on much larger amounts of 235

synthetic data. 236

3Llama-3.1’s rejected datapoints are often incomplete due
to hitting new token limits, suggesting potentially higher capa-
bilities under higher token limits.
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(a) NER FROM SCRATCH Setting

(b) NER FINE-TUNING Setting

Figure 2: NER model performance when trained on increasingly large subsets of training data. aya-expanse-32b
and Llama-3.1-8B-Instruct produced lower amounts of usable data; this is why they do not extend as far as
organic or GPT-4-produced data in fine-tuning data size. Performance at Fine-tuning Dataset Size = 0, only
present in the NER FINE-TUNING setting, indicates zero-shot performance of a related-language NER model.

2. In many cases, zero-shot transfer from a237

related-language NER model is a high base-238

line, and that further training such a model239

on synthetic data may even lower the perfor-240

mance.241

3. Despite the fact that it falls short of man-242

ually annotated data, LLM-generated data243

often still yields better model performance244

than WikiANN, especially for the more low-245

resource languages among the ones we stud- 246

ied. This echoes the findings by Lignos et al. 247

(2022), who arrive at similarly negative find- 248

ings around the data quality of WikiANN. 249

Overall, while showing how synthetic data from 250

LLMs can help train NER models from scratch 251

for low resource languages, our results reinforce 252

the need for manually annotated gold test sets in 253

benchmarking NER for lower resource languages. 254
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6 Limitations255

Although we experimented with many languages,256

the nature of the NER datasets used is relatively257

simple, containing only three or four entity cate-258

gories (persons, locations, organizations and dates).259

Thus, we don’t know if the general conclusions,260

especially about the quality of synthetic data, will261

extend to scenarios where there are many entity cat-262

egories. While we did study datasets covering more263

than one language family, the selection of language264

is far from extensive, and is also constrained by the265

availability of human labeled test data. Finally, to266

keep the experiments under control, we explored a267

limited set of methods for fine-tuning and synthetic268

data generation. Our findings should be viewed269

after taking these aspects into consideration.270

7 Ethics and Broader Impact271

We used publicly available datasets with human-272

annotated and automatically labeled data, and also273

created synthetically generated datasets as a part274

of this work. The models built using such ar-275

tificially created datasets should always be vali-276

dated with a human-labeled data. We did not in-277

volve any human participants in this study. All278

the code and generated datasets is provided at279

this github repository to support reproducible re-280

search: https://anonymous.4open.science/r/281

low-resource-syn-ner-A1C7/.282
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LLM Response Quality Examples

Well-Formatted {"data": [{ "tokens": ["Lars", "Løkke", "Rasmussen", "besøgte", "firmaet", "i", "Odense", "."],
"ner_tags": [1, 2, 2, 0, 0, 0, 5, 0]}, ...

Unequal Token & Tag Lengths {"id": "4123", "tokens": ["Wananchi", "wamekunja", "mashitaka", "."],
"ner_tags": [0, 0, 0, 0, 0, 0]}

Run-On & Incomplete Data {"id": "9000", "tokens": ["Olorun", "lè.è.", ..., "ò", "ò", "ò", "ò", "ò", "ò", "ò", "ò", "ò", "ò", "ò", "ò", "ò"

{"id":"4617","tokens":["O.d́.ǹ", "ò.sè", "lè", "ò.rí.", "-", "èdè", "O.b́.f́.emi", "àfú", "fùn", "àwo.n", "gb", "." ]
"ner_tags":[8,0,0,0,0

Empty Responses & Prompt Continuations <EOS_TOKEN>
<EOS_TOKEN>include a mix of names, locations, organizations...

Table 1: Examples of different types of responses from the synthetic data-generating LLMs tested.

A Synthetic Data Generation475

As shown in Figure 1, we present the following476

prompt to the LLM in the data generation process:477

478

Help me make a {language} Named Entity479

Recognition dataset. Please give me {n}480

new datapoints, formatted as a single481

JSON object. Make sure the examples482

are unique and diverse. Here are some483

examples to get you started:484

{m examples}485

486

For GPT-4, we used the OpenAI API’s func-487

tionalities for structured outputs to ensure that488

outputs were formatted as JSON strings. For the489

open-sourced models, we experimented with using490

transformers-compatible libraries for obtaining491

structured outputs from LLMs, but ultimately492

found better results simply specifying the JSON493

requirement in the model and system prompt. For494

the open-sourced models, we used the following495

system prompt:496

497

You are a helpful model that helps498

build text-based datasets, but does not499

produce any conversation besides the500

text it is asked to produce. You only501

output JSON strings.502

503

For GPT-4, we used the following (minimally504

different) system prompt, on the assumption that505

specifying output mode in the system prompt was506

less important on account of the API’s structured507

output functionalities:508

509

You are a helpful model that helps510

build text-based datasets, but does not511

produce any conversation besides the512

text it is asked to produce.513

514

We ran all open-sourced models using vLLM515

(Kwon et al., 2023), with a temperature setting 516

of 0.8, maximum new token limit of 4096 new to- 517

kens, and nucleus sampling value of 0.8. Calls to 518

GPT-4 were made using default hyperparameters. 519

Table 1 shows some of the examples of the dif- 520

ferent types of responses to these prompts. 521

B Related-Language Model Details 522

In the NER FINE-TUNING setting, we first train 523

an NER model on a language related to the target 524

language, before fine-tuning it further on the target 525

language NER data. Below is the list of related 526

languages chosen to build a base NER model for 527

each target language. 528

Target Language Related Language Chosen

Kannada Telugu
Tamil Telugu
Telugu Kannada
Malayalam Tamil
Kinyarwanda Swahili
Swahili Kinyarwanda
Yoruba Igbo
Igbo Yoruba
Swedish Danish
Danish Swedish
Slovak English*

Table 2: List of related languages used in the NER FINE-
TUNING setting for each target language. *English is
not closely related to Slovak, but given the absence of
another highly related language among the 11 target
languages, it was chosen as the language for the base
NER model to be fine-tuned.

B.1 NER-fine tuning: Implementation Details 529

We source the pre-trained XLM-RoBERTa-large 530

weights from Huggingface using the 531

transformers library; fine-tuning is imple- 532

mented using training pipelines from the same 533

library. In the NER FROM SCRATCH setting, we 534
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train on the the target language data for 10 epochs;535

in the NER FINE-TUNING setting, we train on the536

related language data for 5 epochs, and then the537

target language data for 10 epochs. In all cases, we538

use a learning rate of 2e-05, and a batch size of 16.539

C Full Results of WikiANN Comparison540

The WikiANN dataset is a massively multilingual541

NER benchmark, comprising data from 176 lan-542

guages (Pan et al., 2017; Rahimi et al., 2019).4543

Table 3 shows the full list of comparisons between544

NER model performance when trained on organic545

data, GPT-4-produced data, and WikiANN data.546

The sizes of the WikiANN train sets vary signif-547

icantly between different languages, meaning we548

often cannot assess the quality of the data in the549

context of training sets containing over 1000 data-550

points (e.g. Kannada and Yoruba, whose WikiANN551

train sets contain only 100 datapoints). In such552

cases, however, we compare model performance553

when trained on equally small amounts of organic554

or LLM-produced synthetic data.555

4As Lignos et al. (2022) also note, strictly speaking, the
original version of WikiANN put together by Pan et al. (2017)
contains data from 282 languages; the version of the dataset
commonly downloaded from Huggingface, however, and put
together by Rahimi et al. (2019), contains data from 176 lan-
guages. In this work, we refer to the latter when referring to
the WikiANN dataset.

Language N.F.S. F1 N.F.T. F1 DATA SIZE

Kannada WIKIANN 4.5e-3 0.77 100
GPT-4 0.26 0.65 100
GPT-4 0.65 0.68 4861
NAAMAPADAM 0.47 0.79 100
NAAMAPADAM 0.76 0.79 5000

Telugu WIKIANN 0.67 0.74 1000
GPT-4 0.64 0.66 1000
GPT-4 0.67 0.72 4919
NAAMAPADAM 0.77 0.82 1000
NAAMAPADAM 0.83 0.82 5000

Tamil WIKIANN 0.55 0.62 15000
GPT-4 0.56 0.51 4977
NAAMAPADAM 0.73 0.73 5000

Malayalam WIKIANN 0.65 0.74 10000
GPT-4 0.64 0.70 4898
NAAMAPADAM 0.79 0.83 5000

Yoruba WIKIANN 0.07 0.21 100
GPT-4 0.26 0.43 100
GPT-4 0.53 0.56 4761
MASAKHANER 2 0.20 0.50 100
MASAKHANER 2 0.79 0.82 5000

Swahili WIKIANN 0.50 0.59 1000
GPT-4 0.74 0.78 1000
GPT-4 0.75 0.79 4900
MASAKHANER 2 0.69 0.85 1000
MASAKHANER 2 0.92 0.90 5000

Kinyarwanda WIKIANN 7.9e-4 0.35 100
GPT-4 0.23 0.46 100
GPT-4 0.58 0.54 4754
MASAKHANER 2 0.26 0.61 100
MASAKHANER 2 0.80 0.81 5000

Igbo WIKIANN 7.7e-3 0.39 100
GPT-4 0.43 0.70 100
GPT-4 0.66 0.71 4693
MASAKHANER 2 0.41 0.72 100
MASAKHANER 2 0.81 0.86 5000

Danish WIKIANN 0.72 0.71 20000
GPT-4 0.60 0.68 4857
UNIVERSAL NER 0.83 0.85 4383

Swedish WIKIANN 0.36 0.29 20000
GPT-4 0.65 0.56 4825
UNIVERSAL NER 0.58 0.89 4303

Slovak WIKIANN 0.57 0.55 20000
GPT-4 0.29 0.29 4889
UNIVERSAL NER 0.80 0.82 5000

Table 3: Performance of NER models trained on
WikiANN, synthetic data from GPT-4, and high quality
‘organic’ data, for all 11 languages. N.F.S: NER FROM
SCRATCH setting; N.F.T: NER FINE-TUNING setting.
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