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Abstract

In this paper, we explore whether synthetic
datasets generated by large language models
are useful for low-resource named entity recog-
nition, considering 11 languages from diverse
language families. Our results suggest that syn-
thetic data created with seed human labeled
data is a reasonable choice when there is no
available labeled data, and is better than us-
ing automatically labeled data. HOwever, a
small amount of high-quality data, coupled
with cross-lingual transfer from a related lan-
guage, always offers better performance.

1 Introduction

Named Entity Recognition (NER) for low-resource
languages aims to produce robust systems for lan-
guages with limited labeled training data available,
and has been an area of increasing interest within
natural language processing (NLP). Two common
approaches to address this data scarcity are cross-
lingual transfer and data augmentation/synthesis;
recent research has in particular explored the use-
fulness of large language models (LLMs) for such
data augmentation and synthetic data creation in
NLP (Whitehouse et al., 2023; Li et al., 2023),
while their use for NER is also emerging (Bog-
danov et al., 2024).

In this background, we propose LLM-based syn-
thetic data generation using a small amount of gold
examples (Figure 1) as an alternative to relying
on automatically created datasets for low-resource
NER. With experiments covering 11 languages, we
show that

1. Even a small amount of human annotated data
can yield far better performance than much
larger amounts of synthetic data.

2. Zero-shot transfer from a related language can
provide high baselines for low-resource lan-
guage NER.

{"tokens":["Ilé""igbimo", ..., ""],"ner_tags":[3,4,..., 0]}
{"tokens":["Rohr","pe' J'ner_tags":[1,0,...,0]}

{"tokens":["Alaaja""Silifa"; ..., "ni"], "ner_tags":[0,1,...,0]}

High Quality
NER Data

Help me make a Yoruba Named Entity Recognition
dataset. Please give me new datapoints,
formatted as a single JSON object. Make sure
the examples are unique and diverse. Here are
some examples to get you started:

{"tokens":["Rohr","pe",...,"""],"ner_tags":[1,0,...,0]}
{"tokens":["T¢""ba"...,""],"ner_tags":[0, 0, ..., O]}
In-Context
Examples

‘;!;' Multilingual LLM

Here are 20 new datapoints for the Yoruba
Named Entity Recognition dataset:

Raw LLM Output

{
"datapoints": [
{"tokens": ["Ayoade", "ti", "di", "\
"
, "omo", "odun", "merinla"],
"ner_tags": [1, @, @, @, 0, 0, 0, O]},...

Parseable JSON Strings
Extracted using Regex

Figure 1: High-level overview of our data generation
process. We use multilingual large language models to
generate new NER datapoints on the basis of a handful
of high quality data points. See Section 3.1 for more.

3. Synthetic data generated by prompting an
LLM with a few high quality examples (Fig-
ure 1) could be better than using automatically
labeled datasets when training low-resource
NER models.

We start with a review of related literature (Sec-
tion 2) and describe our data generation approach
and experimental setup in Section 3, followed by
a discussion of the results (Section 4), limitations
(Section 6) and broader impact (Section 7).

2 Related Work

NER in low resource settings has long been a topic
of interest in NLP. Significant research examines



cross-lingual transfer from a high resource source
language to a lower-resource target language for
the task (Rahimi et al., 2019; Mueller et al., 2020;
Zeng et al., 2022; Zhao et al., 2022; Yang et al.,
2022; Zhou et al., 2022), while other approaches
have explored the creation of synthetic datasets
through e.g. parallel corpora or machine translation
(Mayhew et al., 2017; Ni et al., 2017; Pan et al.,
2017; Xie et al., 2018; Liu et al., 2021; Yang et al.,
2022; Fetahu et al., 2022).

More recent work has explored using LLMs such
as GPT-3.5 and GPT-4 as data generators for NER
(Bogdanov et al., 2024; Heng et al., 2024). We
build on such work, but differ from their meth-
ods. Our data generation process uses high quality
examples as seeds, and we not only evaluate dif-
ferent LLMs (both open and closed-source), but
also experiment with 11 languages covering three
language families and five base scripts.

3 Our Approach

At a high level, our approach involves two steps:

1. Using the train split of a high quality (usu-
ally manually annotated) NER dataset for a
target language to generate synthetic data for
that language with the help of an LLM (Sec-
tion 3.1); and then

2. Comparing the performance of an NER model
on the test split of the high quality dataset
when trained on synthetic data from Step 1
and another model trained on the train split of
the same high quality dataset (Section 3.2).

3.1 Synthetic Data Generation:

Our synthetic data generation process (shown in
Figure 1) involves using LLMs to generate new
synthetic data points on the basis of existing, high
quality NER annotations as described below:

* First, we randomly sample m data points from
the train split of an organic (i.e. non-synthetic)
NER dataset.

* Next, we format and append these data points
to a prompt asking the model to produce n
new, unique data points on the basis of the m
data points in the prompt.

* We submit this prompt as input to the
LLM, and extract any correctly-formatted data
points from its response;

* We repeat steps (1)-(3) k times, with each
call to the model choosing a different random
sample of organic data points.

In our experiments, we set m to 10, n to 20, and
k to 500. This sets an upper cap of 5000 synthetic
training data points, if every model response con-
tains perfectly formatted data points. We present
and solicit data structured as JSON strings to the
LLMs, and extract well-formatted samples from
model responses using regular expressions. Ap-
pendix A provides further details about this pro-
cess.

We compare three LLMs as our source of
synthetic data: GPT-4' (Achiam et al., 2023),
which we assume to be the state of the art;
Llama-3.1-8B-Instruct (Dubey et al., 2024),
as a much smaller, open-source instruction-tuned
model; and finally, aya-expanse-32b (Dang et al.,
2024), as a larger open source multilingual LLM.

3.2 Training NER models:

For all experiments, we use the pre-trained version
of XLM-RoBERTa-1large (Conneau et al., 2020) as
our base model and fine-tune it on our synthetic
and organic training sets in two distinct settings.

1. In the first setting, we use our data to train
an NER model from scratch, by fine-tuning
the pre-trained XLM-RoBERTa-1arge on target
language NER data.

2. In the second setting, we first fine-tune the
model on the high quality NER data in a lan-
guage related source language?, and then fur-
ther fine-tune this NER model on our synthetic
or organic target language data.

While the first setting—which we name NER
FROM SCRATCH—aims to shed light on the relative
utility of synthetic data for training an NER model
(largely) from the ground up, the latter —which we
name NER FINE-TUNING—simulates a common
setting, when a lower resource language lacks ade-
quate NER data, but is related to a higher-resource
language with existing NER systems. In both set-
tings, we modulate the amount of data (both syn-
thetic and organic) used, so as to compare model
performance when trained on smaller or larger
amounts of each type of data.

'We use gpt-4-turbo, and all data generation with the

model was conducted between September and December
2024.

See Table 2 in Appendix B for the full list of chosen
related languages for all the target languages.



Languages & Datasets:  We focus on 11 lan-
guages from diverse language families: Tamil,
Kannada, Malayalam, Telugu (Dravidian), Kin-
yarwanda, Swabhili, Igbo, Yoruba (Niger-Congo),
Swedish, Danish and Slovak (Indo-European). Of
these, Igbo, Yoruba, and Kinyarwanda are not
among the 100 languages in the XLM-Roberta pre-
training corpus. We use the Universal NER dataset
(Mayhew et al., 2024) as our high quality, man-
ually annotated dataset for Swedish, Danish and
Slovak; MasakhaNER?2 (Adelani et al., 2022) for
Kinyarwanda, Swahili, Igbo and Yoruba; and the
Naamapadam dataset (Mhaske et al., 2023) for
Tamil, Kannada, Malayalam and Telugu.

While the first two datasets are completely manu-
ally annotated, the train and validation splits of the
Naamapadam dataset are constructed using parallel
corpora, and thus contain some noise. Neverthe-
less, we choose it as our organic dataset, as (i) its
test sets, which contain 500-1000 datapoints per
language, are completely manually annotated, and
(i) it remains the largest NER resource for these
four languages. Crucially, all of these datasets
cover largely identical NER categories, allowing
for comparisons between them.

Additionally, we compare models trained on
LLM-generated data with those trained using
WikiANN (Pan et al., 2017; Rahimi et al., 2019),
a large, automatically created NER dataset based
on Wikipedia cross-linking, as it covers the 11 lan-
guages we study. This dataset represents a different
form of synthetic data—one generated not from
LLMs, but instead from scraping knowledge bases.
Although the dataset has no manual annotations, it
is frequently used as a standard low-resource NER
benchmark (Schmidt et al., 2022; Asai et al., 2024).

4 Results

4.1 Synthetic Data Generation

We generate the synthetic datasets following the
process described in Section 3.1. While model
responses from GPT-4 are almost always usable,
we found recurring errors in responses from the
other two models. Some of these errors are de-
scribed in Table 1 in Appendix A; we discard such
instances when compiling our synthetic datasets
from model responses. The average percentage of
usable training datapoints from GPT-4, L1ama-3.1
and aya-expanse are 97%, 59.3% and 11.7% re-

spectively.> We assess the overall quality and
viability of this synthetic data by measuring the
performance of an NER model on a high quality,
manually-annotated test set, when trained on the
synthetic data.

4.2 Training on Synthetic Data

Figure 2 shows our results when using synthetic
data from different models, in both the NER FROM
SCRATCH and NER FINE-TUNING settings. While
the models trained on organic data in the NER
FROM SCRATCH setting always perform better than
synthetic data based models, we find that models
trained on GPT-4-generated data come the closest
to models trained on organic data. We also find
that more synthetic data is not necessarily useful;
for some languages, we see a saturation after about
1000 data points, and for some, we also notice a
drop in performance with more data.

Perhaps more surprisingly, in the NER FINE-
TUNING setting, we notice that zero-shot transfer
from a related language outperforms the same mod-
els after they have been further fine-tuned on syn-
thetic target language data. This suggests that in
some cases where an NER model for a related lan-
guage exists, synthetic data in target languages may
actually be detrimental to overall performance.

Comparison with WikiAnn: In most cases,
when dataset size is comparable, training on
WikiANN data in the NER FROM SCRATCH set-
ting yielded NER models that perform consider-
ably worse than those trained on synthetic data
from GPT-4. For the four Niger-Congo languages,
GPT-4 generated data gave superior results even in
the NER FINE-TUNING SETTING (see Table 3 in
Appendix C for the detailed results).

5 Conclusions and Discussion

Our results lead us to three main conclusions
around the utility of LLM-generated synthetic data
for low resource language NER.

1. A small amount of carefully annotated data
yields better performance than a large amount
of synthetic data. As is evident in Figure 2,
even 100 manually annotated data points can
yield NER models that cannot be matched by
models trained on much larger amounts of
synthetic data.

’Llama-3.1’s rejected datapoints are often incomplete due

to hitting new token limits, suggesting potentially higher capa-
bilities under higher token limits.



Fine-tuning at different sizes with no prior NER training
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Figure 2: NER model performance when trained on increasingly large subsets of training data. aya-expanse-32b
and Llama-3.1-8B-Instruct produced lower amounts of usable data; this is why they do not extend as far as
organic or GPT-4-produced data in fine-tuning data size. Performance at Fine-tuning Dataset Size = 0, only
present in the NER FINE-TUNING setting, indicates zero-shot performance of a related-language NER model.

2. In many cases, zero-shot transfer from a resource languages among the ones we stud-

related-language NER model is a high base-
line, and that further training such a model
on synthetic data may even lower the perfor-
mance.

. Despite the fact that it falls short of man-
vally annotated data, LLM-generated data
often still yields better model performance
than WikiANN, especially for the more low-

ied. This echoes the findings by Lignos et al.
(2022), who arrive at similarly negative find-
ings around the data quality of WikiANN.

Overall, while showing how synthetic data from
LLMs can help train NER models from scratch
for low resource languages, our results reinforce
the need for manually annotated gold test sets in
benchmarking NER for lower resource languages.



6 Limitations

Although we experimented with many languages,
the nature of the NER datasets used is relatively
simple, containing only three or four entity cate-
gories (persons, locations, organizations and dates).
Thus, we don’t know if the general conclusions,
especially about the quality of synthetic data, will
extend to scenarios where there are many entity cat-
egories. While we did study datasets covering more
than one language family, the selection of language
is far from extensive, and is also constrained by the
availability of human labeled test data. Finally, to
keep the experiments under control, we explored a
limited set of methods for fine-tuning and synthetic
data generation. Our findings should be viewed
after taking these aspects into consideration.

7 Ethics and Broader Impact

We used publicly available datasets with human-
annotated and automatically labeled data, and also
created synthetically generated datasets as a part
of this work. The models built using such ar-
tificially created datasets should always be vali-
dated with a human-labeled data. We did not in-
volve any human participants in this study. All
the code and generated datasets is provided at
this github repository to support reproducible re-
search: https://anonymous.4open.science/r/
low-resource-syn-ner-A1C7/.
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LLM Response Quality Examples
Well-Formatted {"data": [{ "tokens": ["Lars", "Lgkke", "Rasmussen”, "besggte”, "firmaet”, "i", "Odense”, "."],
"ner_tags”: [1, 2, 2, 0, 0, 0, 5, 01},...

Unequal Token & Tag Lengths {"id": "4123", "tokens": ["Wananchi”, "wamekunja", "mashitaka”, "."],
"ner_tags": [0, 0, 0, 0, 0, 0]}

Run-On & Incomplete Data {"id": "9000", "tokens”: ["Olorun”, "Le&", ..., "0", "3", "3", "6", "0", "3", "3", "6", "O", "3, "3", "e", "O"
{"1d":"4617", "tokens”: ["0dn", "osé”, "1&", "ori”, "-", "ede", "Obfemi”, "afa”, "fun”", "awon”, "gb", "." 1]

"ner_tags":[8,0,0,0,0

Empty Responses & Prompt Continuations

<EOS_TOKEN>
<EOS_TOKEN>include a mix of names, locations, organizations...

Table 1: Examples of different types of responses from the synthetic data-generating LLMs tested.

A Synthetic Data Generation

As shown in Figure 1, we present the following
prompt to the LLM in the data generation process:

Help me make a {language} Named Entity
Recognition dataset. Please give me {n}
new datapoints, formatted as a single
JSON object. Make sure the examples
are unique and diverse. Here are some
examples to get you started:

{m examples}

For GPT-4, we used the OpenAl API’s func-
tionalities for structured outputs to ensure that
outputs were formatted as JSON strings. For the
open-sourced models, we experimented with using
transformers-compatible libraries for obtaining
structured outputs from LLMs, but ultimately
found better results simply specifying the JSON
requirement in the model and system prompt. For
the open-sourced models, we used the following
system prompt:

You are a helpful model that helps
build text-based datasets, but does not
produce any conversation besides the
text it is asked to produce. You only
output JSON strings.

For GPT-4, we used the following (minimally
different) system prompt, on the assumption that
specifying output mode in the system prompt was
less important on account of the API’s structured
output functionalities:

You are a helpful model that helps
build text-based datasets, but does not
produce any conversation besides the
text it is asked to produce.

We ran all open-sourced models using vLLM

(Kwon et al., 2023), with a temperature setting
of 0.8, maximum new token limit of 4096 new to-
kens, and nucleus sampling value of 0.8. Calls to
GPT-4 were made using default hyperparameters.

Table 1 shows some of the examples of the dif-
ferent types of responses to these prompts.

B Related-Language Model Details

In the NER FINE-TUNING setting, we first train
an NER model on a language related to the target
language, before fine-tuning it further on the target
language NER data. Below is the list of related
languages chosen to build a base NER model for
each target language.

Target Language Related Language Chosen
Kannada Telugu
Tamil Telugu
Telugu Kannada
Malayalam Tamil
Kinyarwanda Swabhili
Swahili Kinyarwanda
Yoruba Igbo
Igbo Yoruba
Swedish Danish
Danish Swedish
Slovak English*

Table 2: List of related languages used in the NER FINE-
TUNING setting for each target language. *English is
not closely related to Slovak, but given the absence of
another highly related language among the 11 target
languages, it was chosen as the language for the base
NER model to be fine-tuned.

B.1 NER-fine tuning: Implementation Details

We source the pre-trained XLM-RoBERTa-large
weights  from  Huggingface using the
transformers library; fine-tuning is imple-
mented using training pipelines from the same
library. In the NER FROM SCRATCH setting, we



train on the the target language data for 10 epochs;
in the NER FINE-TUNING setting, we train on the
related language data for 5 epochs, and then the
target language data for 10 epochs. In all cases, we
use a learning rate of 2e-05, and a batch size of 16.

C Full Results of WikiANN Comparison

The WikiANN dataset is a massively multilingual
NER benchmark, comprising data from 176 lan-
guages (Pan et al., 2017; Rahimi et al., 2019).%
Table 3 shows the full list of comparisons between
NER model performance when trained on organic
data, GPT-4-produced data, and WikiANN data.
The sizes of the WikiANN train sets vary signif-
icantly between different languages, meaning we
often cannot assess the quality of the data in the
context of training sets containing over 1000 data-
points (e.g. Kannada and Yoruba, whose WikiANN
train sets contain only 100 datapoints). In such
cases, however, we compare model performance
when trained on equally small amounts of organic
or LLM-produced synthetic data.

*As Lignos et al. (2022) also note, strictly speaking, the
original version of WikiANN put together by Pan et al. (2017)
contains data from 282 languages; the version of the dataset
commonly downloaded from Huggingface, however, and put
together by Rahimi et al. (2019), contains data from 176 lan-
guages. In this work, we refer to the latter when referring to
the WikiANN dataset.

Language N.F.S. F1 N.ET.Fl DATA SIZE
Kannada WIKIANN 4.5e-3 0.77 100
GPT-4 0.26 0.65 100
GPT-4 0.65 0.68 4861
NAAMAPADAM 0.47 0.79 100
NAAMAPADAM 0.76 0.79 5000
Telugu WIKIANN 0.67 0.74 1000
GPT-4 0.64 0.66 1000
GPT-4 0.67 0.72 4919
NAAMAPADAM 0.77 0.82 1000
NAAMAPADAM 0.83 0.82 5000
Tamil WIKIANN 0.55 0.62 15000
GPT-4 0.56 0.51 4977
NAAMAPADAM 0.73 0.73 5000
Malayalam WIKIANN 0.65 0.74 10000
GPT-4 0.64 0.70 4898
NAAMAPADAM 0.79 0.83 5000
Yoruba WIKIANN 0.07 0.21 100
GPT-4 0.26 043 100
GPT-4 0.53 0.56 4761
MASAKHANER 2 0.20 0.50 100
MASAKHANER 2 0.79 0.82 5000
Swabhili WIKIANN 0.50 0.59 1000
GPT-4 0.74 0.78 1000
GPT-4 0.75 0.79 4900
MASAKHANER 2 0.69 0.85 1000
MASAKHANER 2 0.92 0.90 5000
Kinyarwanda WIKIANN 7.9e-4 0.35 100
GPT-4 0.23 0.46 100
GPT-4 0.58 0.54 4754
MASAKHANER 2 0.26 0.61 100
MASAKHANER 2 0.80 0.81 5000
Igbo WIKIANN 7.7e-3 0.39 100
GPT-4 0.43 0.70 100
GPT-4 0.66 0.71 4693
MASAKHANER 2 0.41 0.72 100
MASAKHANER 2 0.81 0.86 5000
Danish WIKIANN 0.72 0.71 20000
GPT-4 0.60 0.68 4857
UNIVERSAL NER 0.83 0.85 4383
Swedish WIKIANN 0.36 0.29 20000
GPT-4 0.65 0.56 4825
UNIVERSAL NER 0.58 0.89 4303
Slovak WIKIANN 0.57 0.55 20000
GPT-4 0.29 0.29 4889
UNIVERSAL NER 0.80 0.82 5000

Table 3: Performance of NER models trained on
WikiANN, synthetic data from GPT-4, and high quality
‘organic’ data, for all 11 languages. N.F.S: NER FROM
SCRATCH setting; N.F.T: NER FINE-TUNING setting.
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