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ABSTRACT

The powerful modeling capabilities of all-attention-based transformer architec-
tures often cause overfitting and—for natural language processing tasks—lead to
an implicitly learned internal language model in the autoregressive transformer
decoder complicating the integration of external language models. In this paper,
we explore relaxed attention, a simple and easy-to-implement smoothing of the
attention weights, yielding a two-fold improvement to the general transformer
architecture: First, relaxed attention provides regularization when applied to the
self-attention layers in the encoder. Second, we show that it naturally supports the
integration of an external language model as it suppresses the implicitly learned
internal language model by relaxing the cross attention in the decoder. We demon-
strate the benefit of relaxed attention across several tasks with clear improvement
in combination with recent benchmark approaches. Specifically, we exceed the
former state-of-the-art performance of 26.90% word error rate on the largest public
lip-reading LRS3 benchmark with a word error rate of 26.31%, as well as we
achieve a top-performing BLEU score of 37.67 on the IWSLT14 (DE→EN) ma-
chine translation task without external language models and virtually no additional
model parameters. Code and models will be made publicly available.

1 INTRODUCTION

Early encoder-decoder models emerged from machine translation, where the encoder compressed the
entire source language sentence into a fixed-length embedding vector (Cho et al., 2014b). This is
particularly difficult for very long sentences (Cho et al., 2014a), as the fixed-length embedding vector
is only a limited-capacity representation. The use of attention, introduced in Bahdanau et al. (2015),
enabled the computation of variable-length weight distributions over the input sequence and soon
turned out to be advantageous for far more applications than just neural machine translation (NMT),
e.g., automatic speech recognition (ASR) (Chorowski et al., 2015; Chan et al., 2016; Bahdanau
et al., 2016), language modeling and understanding (Devlin et al., 2019), object detection (Carion
et al., 2020), and image classification (Dosovitskiy et al., 2021; Liu et al., 2021b). Soon the most
prominent attention-based encoder-decoder (AED) model emerged, namely the transformer (Vaswani
et al., 2017) model. Without the use of any recurrency, it entirely relies on self-attention in the
encoder to model temporal dependencies in the input and cross attention in the decoder to extract
relevant timesteps thereof during the autoregressive decoding process. While transformers in language
modeling tasks are well-suited for upscaling the model size and depth without any saturation when
large amounts of data are present (Devlin et al., 2019; Brown et al., 2020; Kaplan et al., 2020; Fedus
et al., 2022), they are also susceptible to overfit and require strong regularization to learn at all (Xu
et al., 2021; Popel & Bojar, 2018; Steiner et al., 2021). In a study exclusively on ASR (Lohrenz et al.,
2021), it was shown that regularization by smoothing the attention weights in the decoder’s cross
attention, dubbed relaxed attention, improves performance when the transformer model is combined
with an external language model but, for reasons yet to be explored, does not help without a language
model.

In this work, we take on the idea of relaxed attention to expand it to the self-attention layers in the
encoder, regularizing already the encoder. Thereby, we increase the method’s versatility as it becomes
applicable to encoder-only transformers, which are common in several non-sequence tasks such as
image classification or pre-trained bidirectional encoder representation by transformer (BERT, Devlin
et al. (2019)) models. Our main contributions are summarized as follows:
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• We introduce relaxed self-attention in the transformer encoder to improve generalization
and develop fuzzy relaxation as a variant thereof.

• Beyond relaxed self-attention, we extensively investigate the capability of relaxed cross
attention in the decoder of sequence-to-sequence transformer models and show that the
improvement is due to better external language model integration as it suppresses the
influence of the internal language model.

• We show improvements of the relaxed attention approaches on a variety of tasks including
automatic speech recognition, lip-reading, machine translation, and image classification.
On the lip-reading and machine translation task we report a new state of the art and top-
performing result, respectively.

The paper is structured as follows: After a summary of related work in Section 2, we introduce the
relaxed attention approach in Section 3, followed by the experimental evaluation including results
and discussion in Section 4. Section 5 concludes the paper.

2 RELATED WORK

Regularization of transformer models In this work, we introduce a regularization method to the
self-attention function (Vaswani et al., 2017), which is fundamental to transformer models. Several
regularization approaches proposed for such networks in the past are related to the network output of
transformer models by modifying the loss computation, either through label smoothing (Müller et al.,
2020), or by introducing additional loss terms. This could be a CTC-loss computed on the encoder
outputs (Karita et al., 2019; Chen et al., 2021) for monotonous tasks such as ASR, or a divergence
term between output softmax distributions of two forward passes with different dropout masks (Liang
et al., 2021; Shen et al., 2020). Related to the network input, several—mostly application-dependent—
data augmentation approaches such as spectral augmentation for ASR (Park et al., 2019b), or cutoff
for machine translation (Shen et al., 2020) have proven to be effective. Another set of regularization
methods, specific to transformer models, adds a loss term to encourage attention heads to yield diverse
outputs (Li et al., 2018; Audhkhasi et al., 2022) or is based on the dropout technique (Srivastava
et al., 2014) and randomly masks attention heads (Zhou et al., 2020; Sun et al., 2020) or entire
en-/decoder block layers (LayerDrop) (Fan et al., 2020) during training. It was also observed that
only a subset of specialized attention heads contribute to model performance, while other heads
remain useless and can be pruned (Voita et al., 2019). Relaxed attention in Lohrenz et al. (2021)
was used to prevent too narrow attention weight distributions in the cross attention during training
which only yielded improvements with an external language model in ASR. We, however, apply this
approach to the self-attention function to reduce over-fitting already in the encoder and investigate
if relaxed self-attention also helps when applied during both training and test (matched inference).
In addition we include a variety of the aforementioned—proven to be effective—regularization
methods as baselines and show that relaxed attention is able to further improve performance yielding
complementarity to other regularization methods.
When attention-based encoder-decoder networks were first applied to ASR, Chorowski et al. (2015)
proposed a modified softmax function to smooth the attention weights in the cross attention between
encoder and decoder by replacing the exponential function in the standard softmax function with a
sigmoid. Thereby, they compressed the probability-like outputs, but didn’t take into account the input
sequence length, despite the authors’ observation that longer sentences require less smoothing of the
attention weights. Even though this method dubbed smooth focus was so far only applied to recurrent
neural network (RNN)-based AED models, we include it as a reference method in our simulations as
it is the closest to the relaxed attention approach.

Internal language model handling For many sequence-to-sequence tasks the integration of lan-
guage models (LMs) to AED models is of dual use: First, LMs leverage the use of large amounts
of additional text-only data to improve performance. Second, LMs can be utilized to adapt acoustic
models to domains which differ from the original acoustic training data domain. Several techniques
exist to combine language models with AED models, such as shallow fusion (Gülçehre et al., 2015),
deep fusion (Gülçehre et al., 2015), and cold fusion (Sriram et al., 2018), whereas shallow fusion
still is the most common solution due to its simplicity and flexibility. However, AED models tend
to learn an internal language model in the autoregressive decoder (McDermott et al., 2019), which
can either be suppressed by subtracting an additional LM trained only on text transcriptions from the
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Figure 1: Multi-head attention (MHA) as used in encoder and decoder blocks of transformer models
with Nh=4 attention heads. The proposed relaxed attention (red block) is presented in Section 3.

acoustic training data (e.g., density ratio fusion from McDermott et al. (2019)) or—as was shown
more recently—can be adapted to a new domain (Meng et al., 2022) requiring additional retraining.
For the specific application of automatic speech recognition, in a small study, Lohrenz et al. (2021)
have investigated relaxed cross attention, whereby performance improvements were only achieved
with external language models. In our work, we investigate the hypothesis that relaxed cross attention
successfully suppresses the internal language model, which in contrast to the aforementioned methods
does not—apart from a single hyperparameter—require any additional models (McDermott et al.,
2019), parameters (Sriram et al., 2018), or adaptation trainings (Meng et al., 2022), but weakens the
internal language model during training of the transformer thus supporting shallow fusion (Gülçehre
et al., 2015). In addition, we will introduce relaxed self-attention, which improves performance in
many applications even without the use of an explicit LM.

3 PROPOSED RELAXED ATTENTION

Scaled dot-product multi-head attention (MHA, see Figure 1) is typically used in two variants in
the encoder-decoder transformer model (Vaswani et al., 2017): First, it is used in the encoder as
self-attention to model positional (e.g., temporal) dependencies in the preprocessed input sequence
indexed with t∈{1, . . . , T} of length T . Second, it is used in the decoder as cross attention (also
often referred to as encoder-decoder or source target attention), which draws the decoder’s attention
to relevant parts in the encoded input sequence hT

1 ∈RT×d for decoding at output sequence index
ℓ∈{1, . . . , L} with model dimension d. In case of self-attention1, all MHA inputs (key K, value
V, query Q) are the same, i.e., K V Q, with query input Q∈RL̃×d of length L̃=T . For cross
attention, key and value inputs, K∈RT×d and V∈RT×d, respectively, stem from the encoder output
hT
1 yielding K V hT

1 , while the query input Q comes from the previous decoder layer with L̃ 1

during inference and L̃ L during training, where for the latter all L tokens of the target sequence
are processed in parallel. Details of the entire typical encoder-decoder transformer architectures are
recapitulated in Appendix A.1. The attention weights Gi(Q,K)∈IL̃×T for the scaled dot-product
MHA sum up to one across the query input length L̃ after the softmax activation function and thus

1Note that masked self-attention is also used in the decoder to attend to prefix output tokens (cf. Fig. 2,
Appendix A.1), while in this work we focus on the multi-head attention variants that attend to the input domain.
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can be interpreted as a probabilistic weighting applied to the value input projection Yi∈RT×d/Nh ,
with Nh being the number of attention heads each indexed with i∈Nh.

Relaxed attention follows the basic principle of regularization by introducing some stress into the
training process. Shown as red box in Figure 1 it modifies the standard attention weights Gi(Q,K)
that draw attention to the encoded input sequence. Our relaxed attention weights for scaled dot-
product attention are defined as simple as

G̃i(Q,K) =

[
(1− γ)Gi(Q,K) + γ

1

T

]
, i ∈ Nh, (1)

gradually injecting a uniform distribution (with 1 here being an L̃×T matrix of ones), thereby
smoothing the distribution of attention weights and imposing some of the attention weight mass across
the entire input sequence. Please note that the normalizing division by T in equation (1) is different
for each file and minibatch for sequence tasks due to varying input sequence lengths. This provides
a natural and rich variation of the effective height of the injected uniform distribution and prevents
compensation of the relaxation by the learning process. The injection of the uniform distribution
is controlled by a relaxation coefficient γ∈ [0, 1], which is a constant single hyperparameter for all
respective attention layers.

While Lohrenz et al. (2021) only investigated relaxed cross attention, only for automatic speech
recognition and only during training, in our work (i) we propose relaxed cross attention and self-
attention, (ii) during training and during inference (matched inference), (iii) we investigate their
application to automatic speech recognition, lip-reading, machine translation, and image classification,
and (iv) we introduce fuzzy relaxation for the image classification task, where we randomly draw the
relaxation coefficient from a normal distribution γ∼N (x;µ γ0, σ

2), with the initially set γ0 being
the mean µ. For this specific task, the variable sequence length T in equation (1) is substituted by a
constant number of image patch tokens M2 (see equation (3) in Appendix A.2), thereby omitting
the aforementioned natural variation. Fuzzy relaxation re-establishes this variation of the relaxation
by randomizing γ during training, while for the matched inference case, the relaxation coefficient is
kept fixed at γ µ γ0 during inference. Details for the encoder-only transformer used for the image
classification task are given in Appendix A.2.

4 EXPERIMENTAL VALIDATION AND DISCUSSION

4.1 APPLICATION TO AUTOMATIC SPEECH RECOGNITION

Task and datasets Automatic speech recognition transforms recorded speech signals into a se-
quence of text tokens. We investigate our relaxed attention method on the Librispeech dataset (Panay-
otov et al., 2015) with the clean and other conditions of the dev and test subsets. We measure
system performance in terms of word error rate WER=1− N−D−I−S

N , depending on the number
of words N , deletions D, insertions I and substitutions S. All raw speech signals are sampled at
16 kHz and analyzed with a 25 ms window at a frame shift of 10 ms. As common in ASR, we also
use an external language model trained on the text labels of the 960 h training set as well as on
the text-only Librispeech language model training corpus, the latter containing sentences from a
total amount of 14,500 books from project Gutenberg (Panayotov et al., 2015) which are accessible
under public-domain. The Librispeech ASR corpus is available under the very permissive Creative
Commons BY 4.0 license.

Models and training For training with 100 h and 960 h of training data, we trained standard
encoder-decoder transformer models (Vaswani et al., 2017) from scratch in the small and base
configuration, comprising 19.3M and 69.8M parameters, respectively. As common for ASR, filterbank
features are extracted for each time frame t and then preprocessed by a four-layer convolutional
neural network, each using 3×3 filter kernels (cf. preprocessing block in Figure 2, Appendix A.1).
All hyperparameters were set according to the recipes available in the fairseq based espresso
toolkit2 (Wang et al., 2019) except the relaxation coefficients γ, which have been tuned on the joint
clean and other portions of the dev set for both, relaxed cross attention and relaxed self-attention.
As additional regularization we use SpecAugment (Park et al., 2019a), label smoothing (Müller et al.,
2020) and dropout (Srivastava et al., 2014) during training. See Appendix A.3.1 for more details.

2ASR training recipes at https://github.com/freewym/espresso
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Training
data Approach

without LM with LM
dev test dev test

clean other clean other clean other clean other

100 h

Baseline (Lohrenz et al. (2021), resim.) 13.98 28.71 14.82 29.31 10.62 24.19 12.06 25.56
+ smooth focus (Chorowski et al., 2015) 14.60 28.73 15.50 30.78 10.83 24.86 12.11 26.46
+ relaxed cross attention 13.91 28.70 14.70 30.10 9.33 22.16 10.62 23.04

+ matched inference 14.30 29.03 15.15 30.09 11.04 25.19 12.16 26.36
+ relaxed self-attention 13.48 27.87 14.20 28.96 10.22 23.53 11.04 24.55

+ matched inference 13.43 28.00 14.46 29.23 10.01 23.96 11.19 25.32

960 h

Baseline (Lohrenz et al. (2021), resim.) 3.92 9.00 4.47 9.23 3.73 8.52 4.40 8.95
+ smooth focus (Chorowski et al., 2015) 4.11 9.42 4.35 9.63 3.70 9.18 4.31 9.33
+ relaxed cross attention 3.95 9.33 4.28 9.45 3.44 7.74 3.58 8.35

+ matched inference 3.96 9.29 4.20 9.40 3.69 8.95 4.21 9.46
+ relaxed self-attention 3.82 8.50 4.05 8.71 3.52 8.03 4.17 8.51

+ matched inference 3.79 9.12 4.09 9.07 3.35 8.28 3.91 8.50

Table 1: Automatic speech recognition results in terms of WER (%) on the Librispeech task using
standard encoder-decoder transformer models. Attention relaxation is applied in training only,
except for "matched inference" (attention relaxation in training and test). We separately use the 100 h
and 960 h training datasets and highlight the respective best results for each size in bold font.

Results and discussion For both, the 100 h and 960 h training data cases in Table 1, the resimulated
baselines (using training scripts from Wang et al. (2019)) yield similar results as in Lohrenz et al.
(2021) using a standard transformer approach. The smooth focus method (Chorowski et al., 2015) has
a higher WER compared to the baseline on the small training data case, but yields small improvements
on some clean settings for the 960 h training data case. Compared to smooth focus, relaxed self-
and cross attention adapt to the length T of the input sequence, with the latter yielding solid WER
reduction across all dev and test conditions when an LM is used (right-hand side of Table 1),
thereby confirming the results of Lohrenz et al. (2021). In Appendix A.4, we show that the strong
improvement with LM using relaxed cross attention is due to improved internal language model
suppression. Without an LM, both the resimulated baseline and relaxed cross attention approaches are
outperformed by our new relaxed self-attention in all dev and test conditions for both training data
cases. Specifically, the WER across the test conditions of the 960 h case for relaxed self-attention
improved by a relative 9% (clean) and 5% (other) compared to the resimulated baseline, yielding
complementary regularization of our method to the other employed regularization methods. Note
that in all aforementioned cases, relaxed attention is best when used only in training. Only in a very
specific case on the dev set, however, "matched inference", i.e., relaxed self-attention in training
and test, is slightly ahead of using it in training only. Please also see the Appendix, where we
conduct deeper analysis on initialization seed robustness (Appendix A.5), sensitivity of the relaxation
coefficient γ (Appendix A.7), as well as an ablation on the related attention dropout (Appendix A.6).

4.2 APPLICATION TO LIP-READING

Task and datasets Automatic lip-reading strives to process an image sequence from recordings
of talking faces. We evaluate lip-reading performance in terms of WER on the test partition of the
Lip Reading Sentences 3 (LRS3) dataset consisting of a total of 1,321 recorded videos of English
utterances sourced from TED talks (Afouras et al., 2018). To investigate the performance of the
relaxed attention approach on recently successful self-supervised learning approaches, we closely
follow the training setup from Shi et al. (2022) and use audio-visual hidden unit BERT (AV-HuBERT)
encoder models pre-trained on the English subset of the Voxceleb2 dataset (Chung et al., 2018),
containing a total amount of 1,326 hours of unlabeled video recordings. For some experiments we
also use an external language model trained on the joint text data from LRS3 and the Librispeech
language model training corpus. LRS3 is publicly available under the TED terms of use as well as
the Creative Commons BY-NC-ND 4.0 license.
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Unlabeled
data
(pre-training)

Labeled
data
(fine-tuning)

Approach
without LM with LM

dev test dev test

334 h 433 h Afouras et al. (2020) — — — 59.80
— 1,362 h +157 h Afouras et al. (2018) — 59.90 — 58.90
— 433 h + 157 h Xu et al. (2020) — 57.80 — —
— 433 h Ma et al. (2021) — — — 46.90
— 433 h + 157 h Ma et al. (2021) — — — 43.30
— 33,000 h Makino et al. (2019) — 33.60 — —

1,326 h

30 h

Baseline (Shi et al. (2022)) — 46.10 — —

Baseline (Shi et al. (2022), resimulated) 47.36 45.90 47.61 45.33
+ smooth focus (Chorowski et al. (2015)) 47.08 45.80 46.69 45.38
+ relaxed cross attention 45.92 44.00 45.11 42.68

+ matched inference 46.55 45.25 46.46 45.39
+ relaxed self-attention 46.90 45.47 46.95 44.64

+ matched inference 46.85 45.04 46.68 44.69

433 h

Baseline (Shi et al. (2022)) — 28.60 — —

Baseline (Shi et al. (2022), resimulated) 21.90 29.52 21.61 28.97
+ smooth focus (Chorowski et al. (2015)) 21.87 29.25 21.29 28.86
+ relaxed cross attention 22.12 29.49 21.05 28.05

+ matched inference 22.11 29.20 21.55 28.55
+ relaxed self-attention 21.89 28.96 21.25 28.55

+ matched inference 21.86 28.84 21.24 28.48

433 h
+
1,326 h

Baseline (Shi et al. (2022)) — 26.90 — —

Baseline (Shi et al. (2022), resim.) 17.71 26.73 17.18 26.50
+ smooth focus (Chorowski et al. (2015)) 17.42 26.78 17.22 26.29
+ relaxed cross attention 17.40 26.57 16.92 25.51

+ matched inference 17.71 26.43 17.48 25.95
+ relaxed self-attention 17.54 26.31 17.12 26.17

+ matched inference 17.65 26.40 17.16 26.06

Table 2: Automatic lip-reading results in terms of WER (%) on the LRS3 task using various
sequence-to-sequence topologies (top segment baselines) or AV-HuBERT encoders (lower three seg-
ments) pre-trained on unlabeled English data from Voxceleb2 and fine-tuned with a joint transformer
decoder on the given amount of fine-tuning training data. We also use self-training (bottom segment)
by creating pseudo-labels for the 1,326 h of unlabeled data and using these for fine-tuning. Attention
relaxation is applied in training only, except for "matched inference" (attention relaxation in training
and test). Best results for each of the three fine-tuning setups are in bold font.

Models and training We use AV-HuBERT models3, introduced recently by Shi et al. (2022), which
receive image and acoustic frames for pre-training by unlabeled training data to iteratively learn
contextualized feature representations hT

1 . For fine-tuning and inference, only the video input is
used and preprocessed (cf. preprocessing layer in Figure 2, Appendix A.1) with a 3D convolutional
layer and a subsequent ResNet-18 (He et al., 2016; Stafylakis & Tzimiropoulos, 2017) architecture.
The models fine-tuned on 30 h of LRS3 training data use the base configuration of the downloaded
AV-HuBERT encoder and have a total of 160M parameters. Models fine-tuned on 433 h of LRS3
training data (with or without self-training) use the large AV-HuBERT encoder and comprise 477M
parameters in total. As additional regularization methods we use label smoothing (Müller et al., 2020),
LayerDrop (Fan et al., 2020), as well as dropout (Srivastava et al., 2014). For final experiments, we
use the self-training (Zoph et al., 2020) method, where an AV-HuBERT model fine-tuned on 433 h
of LRS3 training data is inferred to generate pseudo-labels for the 1,326 h of unlabeled Voxceleb2
data. These were then used together with the true labels from the LRS3 training data to fine-tune
the pre-trained AV-HuBERT model. Relaxed attention was only used during this final fine-tuning, and
relaxation coefficient γ of each relaxed attention approach was optimized on the development set for
each corresponding amount of fine-tuning data. See Appendix A.3.2 for more details.

3Pre-trained AV-HuBERT models and fine-tuning code downloaded from https://github.com/
facebookresearch/av_hubert
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Results and discussion The upper segment of Table 2 shows various baselines on LRS3,
whereby Makino et al. (2019) reached 33.60% WER w/o LM, using 33,000 h of YouTube training
data, and Ma et al. (2021) achieved 43.30% with LM and 157 h of additional data from the Lip
Reading in the Wild dataset (Chung & Zisserman, 2016). By leveraging pre-training of AV-HuBERT
models, Shi et al. (2022) report state of the art so far on LRS3 in three cases with 1,326 h unlabeled
pre-training data plus 30 h, plus 433 h, plus 433 h + 1,326 h of fine-tuning data, respectively, the latter
using self-training to leverage the pre-training data using pseudo-labels. See also our resimulated
numbers of that approach. Note that as it is common practice on the LRS3 task to not even report
performance on dev condition, we also formulate performance claims on the test set. Smooth fo-
cus (Chorowski et al., 2015) helps a bit in 4 out of the 6 total test conditions. Without a language
model—adding virtually no parameters and only marginally more complexity during training—our
relaxed self-attention achieves WERs of 45.04% vs. 45.90% from Shi et al. (2022), resimulated,
and 28.84% vs. 29.52% from Shi et al. (2022), resimulated, in the 30 h and 433 h fine-tuning cases,
respectively, with matched inference (relaxation in training and test). With self-training (433 h +
1,326 h), relaxed self-attention without matched inference even achieves 26.31% WER compared
to the best lip-reading WER of 26.90% from Shi et al. (2022) thus setting a new state of the art for
LRS3. With an additional LM, similar to the ASR task in Section 4.1, relaxed cross attention yields
consistent improvement on the test set compared to the resimulated baseline in all three fine-tuning
cases (i.e., 42.68% vs. 45.33%, 28.05% vs. 28.97%, and 25.51% vs. 26.50%, respectively). We
show that this is also caused by the improved internal language model handling for this task in
Appendix A.4. We also investigate robustness towards different initialization seeds in Appendix A.5.

4.3 APPLICATION TO MACHINE TRANSLATION

Task and datasets Neural machine translation (NMT) models use neural networks that translate an
input text sequence from a source language to a different target language. For our particular experi-
ments on relaxed attention we use data from the well-known IWSLT14 translation challenge (Cettolo
et al., 2014), choosing the German-to-English (DE→ EN) subtask and report performance in terms
of BLEU scores (Papineni et al., 2002). For training of an external LM we either use the IWSLT14
target language transcripts (160k utterances) or the MuST-C dataset, the latter contains 47% addi-
tional transcripts (236k utterances) from TED talks and is available under the Creative Commons
BY–NC–ND 4.0 international license (Cattoni et al., 2021).

Models and training For training we use the standard encoder-decoder transformer model
from Vaswani et al. (2017) in the base configuration with 36.7M parameters and apply cutoff
augmentation, which first randomly masks input positions and feature dimensions of the embedded
input tokens and second uses a divergence loss to minimize the difference in predictions for different
input masks4 (Shen et al., 2020). The joint dictionary for source and target language comprises
10k tokens generated with SentencePiece (Kudo & Richardson, 2018) and preprocessed with an
embedding layer (cf. preprocessing layer in Figure 2, Appendix A.1). As in the previous tasks, to
investigate relaxed attention with LM, we trained two transformer LMs of equal size: One LM trained
with IWSLT14 training transcripts and an extended LM trained on the MuST-C dataset, respectively.
For both, relaxed cross attention and relaxed self-attention, the relaxation coefficient γ has been tuned
on the development set. See Appendix A.3.3 for more details.

Results and discussion In the upper segment of Table 3, we report BLEU scores for recent
transformer-based approaches to NMT, whereof we choose the strong approach from Shen et al.
(2020) using cutoff augmentation as a baseline and report a somewhat lower BLEU score of 37.42 in
our resimulation. Smooth focus here achieves comparable performance to that baseline with small
gains when LMs are used. We observe that a LM trained only with the target language training
transcripts of the translation model yields no additional information compared to the internally
learned language model and thus does not improve performance for most approaches, even the
relaxed cross attention that has been strong (with LM) in previous tasks. However, in case of a strong
extended LM trained with additional data, relaxed cross attention (only during training again) yields
the best performance of 37.96 BLEU, as it suppresses the internal LM. The best performance for
the common case without LM is achieved with our relaxed self-attention approach applied during
training and test, slightly outperforming the previous state-of-the-art BLEU score without additional
training data (37.60, Shen et al. (2020)), with a score of 37.67, exceeding the resimulated baseline

4Code available from https://github.com/dinghanshen/cutoff
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Approach without LM with LM
(training transcripts only)

with extended LM
(additional data)

test test test

Vaswani et al. (2017) 34.40 — —
Fan et al. (2020) 34.50 — —
Wu et al. (2019) 35.20 — —
Wu et al. (2021) 36.88 — —
Liang et al. (2021) 37.25 — —
Shen et al. (2020) 37.60 — —

Baseline (Shen et al. (2020), resim.) 37.42 37.42 37.62
+ smooth focus (Chorowski et al. (2015)) 37.42 37.52 37.67
+ relaxed cross attention 37.56 37.53 37.96

+ matched inference 37.60 37.64 37.57
+ relaxed self-attention 37.57 37.49 37.74

+ matched inference 37.67 37.67 37.71

Table 3: Neural machine translation results in terms of BLEU scores on the IWSLT14 task (DE
→ EN) using encoder-decoder transformer models with cutoff augmentation (Shen et al., 2020).
Attention relaxation is applied in training only, except for "matched inference" (attention relaxation
in training and test). Best results across all approaches are in bold font, second best underlined.

even by 0.25 BLEU. We note, that in Iyer et al. (2021) (only available as preprint) the authors also
chose the model of Shen et al. (2020) as baseline but were able to reproduce the result of 37.60
BLEU. They report a BLEU score of 37.78 by simply applying a modified learning rate schedule
achieving a somewhat smaller improvement of 0.18 BLEU absolute vs. their baseline. Without
claiming a new state of the art, we note that both, our and their method are top-performing on the
IWSLT14 task. In Appendix A.5, also show robustness of the relaxed self-attention method towards
different initialization seeds. Ablations on attention dropout and the sensitiveness of γ are shown in
Appendices A.6 and A.7.

4.4 APPLICATION TO IMAGE CLASSIFICATION

Task and datasets Image classification is a fundamental task in computer vision aiming at recog-
nizing the primary content of images and differs significantly from the previous sequence-to-sequence
tasks as it uses a type of an attention-based encoder-only (decoder-less) transformer model, which
recently dominate vision benchmarks. To investigate if relaxed attention is also applicable to such
tasks, we evaluate performance in terms of classification accuracy (%) on the computationally less
demanding CIFAR-100 dataset (A. Krizhevsky, 2009). For each of its 100 classes, it contains 500
and 100 images for training and test, respectively, and is publicly available without a specified license.
As initialization, we use a model pre-trained on the ImageNet-1k dataset (Deng et al., 2009), which
contains 1.28M training images from 1,000 classes and is also available for research purposes upon
agreement of the terms of access.

Models and training For our experiments we use the vanilla Swin-T transformer model (Liu et al.,
2021b) as baseline—a recently established vision transformer comprising 29M parameters using
localized attention. Details on the architecture (including figures) are given in Appendix A.2. For
training settings we follow Liu et al. (2021b). For some experiments we downloaded the official
ImageNet-1k pre-trained model5 and report results after fine-tuning for 100 epochs on CIFAR-100
training data. With or without pre-training, relaxed self-attention is applied only during fine-tuning.
We investigate the interaction of our relaxed self-attention approach with other regularization methods
by omitting already employed (i.e., the well-known stochastic depth method (Huang et al., 2016))
or adding recently proposed (i.e., the dense relative localization loss Ldrloc (Liu et al., 2021a))
approaches. For fair comparison and following common practice as in (Kwon et al., 2021; Liu et al.,
2021a; Wang et al., 2017), we report results of our relaxed self-attention approaches after roughly
optimizing test accuracy with a small grid search over γ values (and σ2 for fuzzy relaxation after
the optimal γ0 was found) separately for each batch size (1024 and 128) with pre-training, applying
the found values to experiments without pre-training. See Appendix A.3.4 for more details.

5ImageNet-1k pre-trained Swin transformer models and fine-tuning code downloaded from https://
github.com/microsoft/Swin-Transformer.
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Approach

w/ pre-training w/o pre-training
batch size batch size

1024 128 1024 128

test test test test

Other
transformers

Dosovitskiy et al. (2021), ViT-S-16 87.10 — — —
Yuan et al. (2021), T2T-ViT-14 88.40 — — —
Guo et al. (2021), CMT-S 91.70 — — —

Swin-T
transformers

Liu et al. (2021b), Swin-T (vanilla) 88.22 — 53.28 —
Liu et al. (2021a), Swin-T (+ Ldrloc) 88.40 — 66.23 —

Baseline (Liu et al. (2021b), resimulated) 88.53 89.16 53.12 64.10
- stochastic depth (Huang et al. (2016)) 87.62 88.42 57.62 68.08
+ Ldrloc (Liu et al. (2021a)) 88.63 89.27 61.72 66.29
+ smooth focus (Chorowski et al. (2015)) 88.44 89.53 57.02 64.15
+ relaxed self-attention 88.64 89.21 52.89 63.72

+ matched inference 88.73 89.39 53.15 63.52
- stochastic depth (Huang et al. (2016)) 87.49 88.42 56.99 67.91
+ Ldrloc (Liu et al. (2021a)) 88.55 89.29 61.37 65.90
+ fuzzy relaxation 88.63 89.60 52.51 63.58

Table 4: Image classification results in terms of accuracy (%) on the CIFAR-100 task using encoder-
only transformer models. Relaxed self-attention is applied in training only, except for "matched
inference" (relaxation in training and test). All reference methods have roughly the same model size
and complexity. Best results across all Swin-T approaches are in bold font, second best underlined.

Results and discussion The first segment of Table 4 shows results for reference vision transformer
models ranging from 87.10% accuracy for the pure attention-based ViT-S-16 (Dosovitskiy et al.,
2021) to 91.70% accuracy for the convolution attention hybrid model CMT-S (Guo et al., 2021). The
second table segment presents baselines and experimental results for Swin-T transformer models
where we chose the vanilla architecture (Liu et al., 2021b) to resimulate a baseline for our experiments.
Omitting stochastic depth (Huang et al., 2016) causes a severe loss of performance with pre-training
but clearly helps when training from scratch. For the dense relative localization loss Ldrloc (Liu
et al., 2021a), we confirm performance gains with and especially without pre-training. Smooth
focus helps for the small batch size using pre-training and performs remarkably good for a large
batch size when training from scratch. Without pre-training we observe that relaxed self-attention
doesn’t help. This might be due to the limited number of training epochs and a slower convergence
caused by the additional relaxed self-attention regularization, similar to the effect of stochastic depth
in the resimulated baseline. When applying relaxed attention after pre-training, however, relaxed
self-attention alone slightly outperforms the baseline but achieves even higher accuracies when used
with matched inference (88.73% vs. 88.53%) and (89.39% vs. 89.16%) for the large and small batch
sizes, respectively. Matched inference turned out to be advantageous on this task in most cases,
thus we continue to report based thereon. Also, we note that the combination with stochastic depth
seems to be beneficial for relaxed self-attention. Our new fuzzy relaxation with matched inference
turns out to be useful only on smaller batch sizes after pre-training, achieving a strong accuracy of
89.60% outperforming the baseline (Liu et al. (2021b), resimulated) at 89.16%. We also investigate
robustness towards different initialization seeds in Appendix A.5.

5 CONCLUSIONS

In this work we broadly explored the idea of relaxed attention for transformer architectures, a simple
smoothing method of the attention weights in the attention layers. We confirmed the advantage
of relaxed cross attention when combined with strong external language models and introduced
relaxed self-attention, thereby providing regularization also in the transformer encoder and increasing
the versatility of relaxed attention to different transformer variants. We show improvements when
applying relaxed attention to automatic speech recognition, lip-reading, machine translation, and
image classification. On the LRS3 lip-reading task in particular we achieve a word error rate of
26.31% (vs. the former state of the art of 26.90%) as well as a top-performing BLEU score of 37.67
on the IWSLT14 machine translation task.
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A APPENDIX
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Figure 2: Standard encoder-decoder transformer during inference as used for sequence-to-sequence
tasks (i.e., automatic speech recognition, lip-reading, and machine translation).

A.1 MODEL SPECIFICS FOR THE SEQUENCE-TO-SEQUENCE TRANSFORMER

In this section we briefly review the original transformer architecture from Vaswani et al. (2017)
consisting of encoder and decoder as shown in Figure 2. Please note that here we describe the
transformer architecture exactly as used for the investigated sequence-to-sequence tasks (i.e., auto-
matic speech recognition, lip-reading, and machine translation), employing task-dependent individual
preprocessing steps, while the encoder-only Swin transformer, used for the image classification task,
is separately described and shown in Appendix A.2.

A.1.1 ENCODER-DECODER TRANSFORMER

The input sequence xT̃
1 of length T̃ (and more optional dimensions, e.g., for lip-reading: video channel,

height, and width, or for ASR: acoustic feature dimension F ) is entirely fed to the transformer’s
encoder and auto-regressively transformed (by the decoder model D( )) into an output token sequence
cL1 = (c1, c2, . . . , cL) with cℓ∈C={c(1), c(2), . . . , c(D)} being a single output token (i.e., grapheme-
based characters or (sub-) word units (Kudo & Richardson, 2018)) at output sequence index ℓ ∈
{1, . . . , L} from a vocabulary of size D. Specifically, the original input sequence xT̃

1 is first subject
to a task-dependent preprocessing that outputs a feature sequence of t∈{1, . . . , T} frames, optionally
sub-sampled with T ≤ T̃ . For each decoding step (starting at ℓ=1), the transformer decoder uses
the entire encoded input sequence hT

1 and the previous output token cℓ−1 to finally output a vector
Pℓ = D(hT

1 , cℓ−1) comprising probabilities of all D possible output tokens. These probabilities
are then subject to a beam search algorithm which, step-by-step, invokes the decoder until an end-
of-sentence (EOS) threshold is exceeded and the final set of hypotheses is emitted. Considering
regularization, the standard encoder-decoder transformer model employs three different variants of
dropout (Srivastava et al., 2014): Residual dropout applied to sub-layer outputs before the residual
connection is added, activation dropout applied after the rectified linear unit (ReLU) activation, and
attention dropout which is applied to the attention weights inside the MHA function (all layers, where
dropout might be applied to the respective outputs, are shown as dashed boxes in Figures 1 and 3).
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Figure 3: Encoder and decoder blocks as used in the transformer model (Figure 2) during inference.
Multi-head attention blocks which may exhibit relaxed attention are colored yellow. Details thereof
are shown in Figure 1. Layers, where dropout (Srivastava et al., 2014) might be applied to the outputs,
are depicted as dashed-line boxes.

A.1.2 SCALED DOT-PRODUCT ATTENTION

Besides other variants of the original attention function introduced in Bahdanau et al. (2015), in
this work we focus on scaled dot-product multi-head attention (MHA), introduced together with the
orignal encoder-decoder transformer model (Vaswani et al., 2017). As shown in Figure 1 (without
the red block), the standard MHA employs multiple (i.e., Nh) attention heads

Zi(Q,K,V) = softmax

QW
(Q)
i

(
KW

(K)
i

)T

√
d


︸ ︷︷ ︸

attention weights
=Gi(Q,K)

·VW
(V)
i︸ ︷︷ ︸

value projections
=Yi(V)

∈ RL̃× d
Nh (2)

with W
(Q)
i ,W

(K)
i , W(V)

i ∈Rd× d
Nh being linear projection weight matrices for the query Q, key K,

and value V inputs, i ∈ Nh={1 . . . Nh} being the index of the in total Nh attention heads, and d is
the feature vector size being used in most layers of the transformer model often referred to as the
model dimension. Considering cross attention, key and value inputs stem from the encoder’s last
layer, yielding K V hT

1 and the entries in each of the L̃ = L rows of the attention weight matrix
Gi(Q,K)∈IL̃×T , with I=[0, 1], sum up to one and are treated as probabilities that correspond to
the relevance of a time frame t to the ℓ-th or t-th position in the query input for cross attention or
self-attention, respectively. The outputs Zi of all Nh separate attention heads are concatenated and
subject to a fully connected output layer, yielding the MHA output Z ∈ RL̃×d. Note that for brevity
of notation the attention dropout commonly applied to the attention weights in transformer models is
not shown in equation (2).
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Figure 4: Swin transformer as used for the image classification tasks.

A.2 MODEL SPECIFICS FOR THE VISION TRANSFORMER

As attention-based model for the image classification task we employ the recently successful encoder-
only transformer, dubbed the Swin transformer (Liu et al., 2021b), as shown in Figure 4. The Swin
transformer is a hierarchical vision transformer, which uses a shifting window scheme to compute its
feature representations h and can be used as a general purpose backbone for various vision tasks. In
contrast to the sequence-based tasks, where a whole decoder is employed to yield sequential output,
here, a single fully connected layer with softmax activation (and preceding layer normalization and
adaptive average pooling) is used after the Swin transformer blocks to assign probabilities P to the
D classes for each image inside a batch B.

As input, the Swin transformer receives an RGB input image x∈ IH×W×3, I = [0, 1] of height H
and width W , which is divided into non-overlapping image patches of size 4× 4 by a convolutional
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Figure 5: Details of a Swin transformer block and the (shifted) window-based multi-head attention
(MHA), where relaxed attention (red block) is applied for the image classification task.

layer with a stride of (4, 4) and is thereby embedded into a feature representation of dimension C.
The hierarchical structure of the Swin transformer consists then of four stages each depicted as a
dashed box in Figure 4. In each stage, the patch merging modules first reduce the spatial resolution
and double the feature dimensionality (n · C → 2n · C), while dimensions remain constant for the
subsequent processing of that specific stage through the specified number of Swin transformer blocks
for that specific stage.

The Swin transformer block, shown in Figure 5a, is based on the original standard transformer block
(Vaswani et al. (2017), see also Figure 3a), but replaces the ReLU activation with a Gaussian error
linear unit (GELU) activation function after the first fully connected layer and, more importantly,
uses a (shifted) window-based multi-head attention module, shown in Figure 5b. There, the window
partitioning limits the self-attention computation to non-overlapping local M×M windows (M = 7),
which are shifted in position every other Swin transformer block. Once the features are split into
windows, they are treated as separate batch instances yielding a temporary batch size of hw

M2B with
B being the original batch size. Different to the standard multi-head attention, a relative position bias
Rpos ∈ RM2×M2

is added before softmax activation. The attention weights Gi(Q,K) ∈ RM2×M2
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inside the shifted window-based MHA contain probabilities for relevant entries in these windows and
are then subject to the herein investigated relaxation (see red box in Figure 5b), yielding

G̃i(Q,K) =

[
(1− γ)Gi(Q,K) + γ

1

M2

]
, i ∈ Nh, (3)

with M2 being the fixed amount of features in a single window. See Section 3 for the sequence-based
relaxed attention approach as well as for the fuzzy relaxation which randomly varies the relaxation
coefficient γ to compensate for the now constant M2 term in equation (3).

A.3 EXPERIMENTAL DETAILS

In this section we will list additional experimental details for all of the investigated tasks, thereby
starting with general settings that apply to multiple tasks and then providing details for the experiments
of each individual task that has been investigated in this work. Please note that for all tasks we
used publicly available code as baselines and did not change any hyper-parameters unless explicitly
mentioned (e.g., for ablation studies).

In experiments where an additional language model was included, we used the common shallow fusion
method (Gülçehre et al., 2015) for language model fusion. Specifically, shallow fusion combines
the output token probability vector Pℓ at the output of the transformer model (cf. Figure 2) for each
decoding timestep ℓ with the same D-length output token probabilities P

(LM)
ℓ in the logarithmic

domain to gather a joint output token probability log P̃ℓ = logPℓ + λ logP
(LM)
ℓ . The language

model weight is used to steer the influence of the language model during decoding and is gathered
individually for each task.

In all investigated tasks, the smooth focus method from Chorowski et al. (2015) is applied as a
reference method that smoothes the attention weights in the cross attention layer by modyifing the
softmax function. Defining the scaled dot-product of query and key projections, which is input to

the softmax function in equation (2), as Ei=
1√
d
QW

(Q)
i

(
KW

(K)
i

)T

= (ei,ℓ,t) ∈ RL×T with ei,ℓ,t

being elements thereof, the single elements gi,ℓ,t of the attention weights Gi(Q,K) with smooth
focus are computed as

gi,ℓ,t(Q,K) =
σsig (ei,ℓ,t)∑T
t 1 σsig (ei,ℓ,t)

, (4)

with σsig being the sigmoid function, which for smooth focus replaces the unbounded exponential
function from the standard softmax function. Please note that for the Swin transformer the softmax
input can be defined analogously as Ei= Rpos +

1√
c/4

QW
(Q)
i

(
KW

(K)
i

)T

∈ RM2×M2

.

A.3.1 AUTOMATIC SPEECH RECOGNITION

The specific model architecture for the trainings with 100 h and 960 h of training data, are stan-
dard encoder-decoder transformer models with a small (Ne Nd 6, Nh 4, d 512) and a large
(Ne 12, Nd 6, Nh 4, d 512) configuration, respectively, with Ne, Nd, and Nh being the number
of encoder blocks, decoder blocks, and attention heads, respectively, and d is the model dimension
(i.e., the amount of nodes used in most layers of the model). The external RNN language model con-
sists of shared input and output embedding layers with four LSTM layer in between each comprising
800 nodes yielding a total of 24.5M parameters.

Training of ASR models was done using the espresso toolkit, which is an extension of the PyTorch-
based fairseq toolkit. We performed a small grid search on the joint dev clean and dev other
datasets among values {0.0001, 0.001, 0.01, 0.05, 0.1} and {0.1, 0.15, 0.2, 0.25, 0.3} for the relax-
ation coefficient γ and found γ = 0.01 and γ = 0.25 to be optimal for relaxed self-attention and
relaxed cross attention, respectively. Optimal values were used for both, 100 h and 960 h training
data configurations. All remaining training hyper-parameters were adopted from the recipes available
at https://github.com/freewym/espresso with commit id 390ad6f. Specifically, we train all
models for 100 epochs using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001.
All dropout layers (i.e., residual, activation, and attention dropout) used the dropout rate p 0.2 and

18

https://github.com/freewym/espresso


Under review as a conference paper at ICLR 2023

the label smoothing coefficient was set to α = 0.1. Models for 100 h of training data were trained
using a single RTX2080ti GPU, while larger models on 960 h of training data were trained on a
single A100 GPU.

Inference was done using a beam search with beam size of 60 and the language model weight λ was
fixed at 0.4, following recipes from Wang et al. (2019) for all experiments with LM, without further
optimization.

A.3.2 LIP-READING

The specific model architecture for fine-tuning with 30 h of labeled data, is a pre-trained
base AV-HuBERT encoder model with an appended standard transformer decoder model
(Ne 12, Nd 6, Nh 12, d 768) while for the 433 h and 433 h + 1,326 h setups a large AV-HuBERT
encoder with a larger decoder was used (Ne 24, Nd 9, Nh 16, d 1024). The external transformer
language model comprises 16 decoder blocks with d = 512 (cf. Figure 3b, but without the cross
attention layer) and uses a shared input/output embedding of the in total D = 1000 subword units,
resulting in a language model size of 51M parameters.

Training of lip-reading models was done using the PyTorch-based fairseq toolkit. We performed
a small grid search on the development dataset among values {0.005, 0.01, 0.02, 0.05, 0.1} and
{0.1, 0.15, 0.2, 0.25, 0.3} for the relaxation coefficient of relaxed self-attention and relaxed cross
attention, respectively. For the 30 h fine-tuning case we found γ = 0.001 and γ = 0.25, for 433 h
we found γ=0.005 and γ=0.25, and for the 433 h+1,326 h case we found γ=0.005 and γ=0.2
to be optimal. All remaining training hyper-parameters were adopted from the recipes available
at https://github.com/facebookresearch/av_hubert with commit id cd1fd24. Residual,
activation, and attention dropout layers were using a dropout rate p of 0.1, 0.1, and 0.0, respectively.
The label smoothing coefficient was set to α = 0.1. Models for the smaller 30 h fine-tuning data
setup were trained using a single RTX3080 GPU, while for all other settings a single A100 GPU was
used for training.

Inference was done using a beam search with beam size of 50 and the language model weight λ was
optimzied for each approach by searching optimal values on the development data among values of
{0.05, 0.1, 0.15, 0.2}.

A.3.3 MACHINE TRANSLATION

The standard encoder-decoder transformer from Vaswani et al. (2017) was used in the base config-
uration (Ne Nd 6, Nh 4, d 512). The external transformer language model consists of shared
input and output embedding layers of the in total D = 10000 subword units with 6 decoder blocks
(cf. Figure 3b, but without the cross attention layer) in between and comprises 24.1M parameters.

Training of the machine translation transformer models was done using the PyTorch-based
fairseq toolkit. We performed a small grid search on the development dataset among val-
ues {0.005, 0.01, 0.02, 0.05, 0.1} and {0.1, 0.15, 0.2, 0.25, 0.3} for the relaxation coefficient and
found γ = 0.05 and γ = 0.1 optimal for relaxed self-attention and relaxed cross attention, re-
spectively. For approaches with LM the language model weight λ was tuned among values
{0, 0.05, 0.1, 0.15, 0.2}. All remaining training hyper-parameters were adopted from the recipes
available at https://github.com/dinghanshen/Cutoff with commit id 4978563. Residual, ac-
tivation, and attention dropout layers were set to 0.3, 0.1, and 0.1, respectively. All models were
trained using a single RTX2080ti GPU.

Inference was done using a beam search with beam size of 10 and the language model weight λ was
optimized for each approach by searching optimal values on the development dataset among values
of {0.05, 0.1, 0.15, 0.2}.

A.3.4 IMAGE CLASSIFICATION

We chose the Swin transformer as the specific model architecture for trainings with and without
pre-training. It is a multi-purpose backbone for various vision tasks and can be configured in terms
of size and complexity. Specifically, we use the tiny configuration of the model dubbed Swin-T,
which is defined by an initial feature embedding dimensionality C = 96 and comprises N = 6
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Swin transformer blocks in the third stage, resulting in a total of Ne = 12 Swin transformer blocks.
The number of attention heads Nh doubles with each consecutive stage, yielding an amount of
{3, 6, 12, 24} attention heads for the respective stages. In total, the model comprises 29M parameters.

Training of image classification models was done using the PyTorch toolkit. We performed a
small grid search among values {0.005, 0.01, 0.05, 0.1, 0.15, 0.2} and {0.01, 0.02, 0.03} for the
relaxation coefficient of relaxed self-attention and σ2 for fuzzy relaxation, respectively. Following
common practice on the CIFAR-100 task (see, e.g., Kwon et al. (2021); Liu et al. (2021a); Wang
et al. (2017)), parameter search was conducted on the test dataset. For the training with pre-
training we found γ = 0.1 and σ = 0.03 to be optimal. Both found relaxation hyper-parameters
were also applied for experiments without pre-training. All remaining training hyper-parameters
were adopted from the recipes available at https://github.com/microsoft/Swin-Transformer
with commit id 5d2aede. For some trainings we use an auxiliary dense relative localization loss
Ldrloc, which encourages vision transformers to learn spatial information between image patches and
thereby boosts convergence, especially for small datasets (Liu et al., 2021a). For the Ldrloc loss, we
adopted the official Swin-based code from https://github.com/yhlleo/VTs-Drloc with commit
id b69adb6. Specifically we train all models for 100 epochs using the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 0.000125 for a batch size of 128 and 0.001 for a batch size of 1024.
Stochastic depth (Huang et al., 2016), which randomly drops layers in the transformer block, is a
standard method for training the baseline model and was used with a drop probability of 0.2. Label
smoothing was used with a value of 0.1. All Swin transformer models were trained using a single
RTX2080ti GPU.

A.4 INTERNAL LANGUAGE MODEL SUPPRESSION

As shown in Table 1 for automatic speech recognition, we achieved superior results with relaxed cross
attention only when the transformer was combined with an external language model that is trained
with large amounts of additional text-only data. This finding is in line with Lohrenz et al. (2021),
but Lohrenz et al. (2021) does not provide a sound reason for such behavior. Different to hybrid
ASR approaches, the output token posterior Pℓ of a trained transformer model cannot technically
be decomposed into an acoustic model P(xT

1 |cL1 ) and language model P(cL1 ), since the latter is also
implicitly learned on the training transcripts by the transformer decoder that in addition to the encoder
output autoregressively receives previous output tokens as it is the case for language models.

Approach

absolute WER LM-induced WER reduction
dev test dev test

clean other clean other clean other clean other

Baseline (Lohrenz et al. (2021), resim.), no LM 3.92 9.00 4.47 9.23 — — — —
+ LM (training transcripts only) 3.92 8.90 4.44 9.20 0.00 0.10 0.03 0.03
+ LM (additional data, from Tab. 1) 3.73 8.52 4.40 8.95 0.19 0.48 0.07 0.28
Relaxed cross attention, no LM 3.95 9.33 4.28 9.45 — — — —
+ LM (training transcripts only) 3.91 9.26 4.23 9.30 0.04 0.07 0.05 0.15
+ LM (additional data, from Tab. 1) 3.44 7.74 3.58 8.35 0.51 1.59 0.70 1.10

Table 5: Automatic speech recognition results in terms of WER (%) on the Librispeech task using
standard encoder-decoder transformer models. The 960 h training dataset is used, see also Table 1.

Here, we investigate whether the improvement by relaxed cross attention might be due to a suppression
of the internal language model. To accomplish this, in Table 5, we measure the WER improvement
achieved by using an LM when the transformer was trained with and without relaxed cross attention,
respectively. Both trained transformer models are combined with two language models, one trained
only from the text transcripts of the acoustic training data, and one trained with additional text-only
data. Note that both, resimulated baseline results and results for the LM with additional data, are
taken from Table 1. We observe that for both, the baseline and the relaxed cross attention model,
the improvements with the training transcript only LM (rows 2 and 5) vs. the no LM methods are
about equally small. In contrast, when combined with the LM model trained on additional data, the
model trained with relaxed cross attention yields far more WER reduction as if this strong LM would
be used with the baseline. In any case it exceeds an absolute reduction of 0.5% (nowhere reached
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with the baseline), and for the (noisy) other condition it is more than 1% absolute WER reduction if
relaxed cross attention is employed.

Approach
absolute WER LM-induced

WER reduction
dev test dev test

Baseline (Shi et al. (2022), resimulated), no LM 17.71 26.73 — —
+ LM (training transcripts only) 17.83 27.22 -0.12 -0.49
+ LM (additional data, from Tab. 2) 17.18 26.50 0.53 0.23
Relaxed cross attention, no LM 17.40 26.57 — —
+ LM (training transcripts only) 17.48 26.52 -0.08 0.05
+ LM (additional data, from Tab. 2) 16.92 25.51 0.48 1.01

Table 6: Automatic lip-reading results in terms of WER (%) on the LRS3 task using standard
encoder-decoder transformer models with pre-trained AV-HuBERT encoders. For fine-tuning
433 h + 1,326 h of labeled data are used, see also Table 2.

For the automatic lip-reading task we observe similar behavior in Table 6. Here the integration
of the training transcripts only LM is even harmful for the baseline model (row 2), while for the
relaxed cross attention approach, WERs remain roughly the same compared to the relaxed cross
attention-trained model without LM (row 4 vs. 5). In combination with the strong LM, both baseline
and relaxed cross attention models take profit on the dev set, while on the test set, relaxed cross
attention yields a more than four-fold WER reduction by LM fusion (1.01% absolute) compared to
the baseline approach (0.23% absolute).

Overall, we observe that relaxed cross attention does not yet help when the LM was trained only with
the text transcript data that was already exposed to the ASR transformer model during training of
acoustic data. We conclude, however, that relaxed cross attention particularly helps when the LM has
been trained with additional text data and seems to suppress the internal model bias, thus suppressing
the influence of the internally learned (usually poor) language model. Note that the same behavior is
observed in Table 3 for neural machine translation.

A.5 ROBUSTNESS TO DIFFERENT INITIALIZATION SEEDS

In Table 7, we investigate the influence of different initialization seeds on our experiments. While for
the main experiments in Section 4 we experimented on an unchanged and non-optimized seed for
random number generation, here—since both of our SOTA contributions are based on the novel self-
attention—we analyze the best relaxed self-attention schemes of each task w.r.t. statistical significance
when using 5 different random seeds.

Task
Automatic

Speech Recognition
(Librispeech)

Automatic
Lip-Reading

(LRS3)

Machine
Translation
(IWSLT14)

Image
Classification
(CIFAR-100)

Setting
100 h

training data
w/o LM

433 h + 1,326 h
labeled data

w/o LM

w/o LM,
matched
inference

w/ pre-training,
batchsize 128

fuzzy relaxation

Metric WER (%) WER (%) BLEU Acc. (%)

Data subset test clean test other test test test

Baseline (resimulated) 14.89±0.17 29.66±0.34 26.92±0.21 37.49±0.10 89.29±0.12
Relaxed self-attention 14.25±0.29 28.63±0.54 26.36±0.22 37.66±0.02 89.45±0.17

Table 7: Sensitivity to different initialization of the various tasks. Training of the models for the
baseline and best relaxed self-attention approach was repeated 5 times. Results are shown in terms
of average and standard deviation values of the respective metrics.

We note that in these experiments, we achieve significant improvement for all three sequence-based
tasks including those where we claim state-of-the-art and top performance (i.e., lip-reading and
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machine translation). In addition, not shown here, the relaxed cross attention method yielded even
better performance on all three sequence-based tasks, outperforming relaxed self-attention, but we
do not formulate performance claims in this particular analysis as it implies extra computational
complexity due to the requirement of a language model as well as additional unpaired text training
data. For the image classification task, note that we reach a clear improvement using the non-
optimized standard seed for initialization of our main experiments (see Table 4). Here, however,
with additional seeds for initialization, we observe the baseline and the fuzzy relaxation approach to
differ without statistical significance. We suspect this is due to non-deterministic operations in the
original baseline code from Liu et al. (2021b), which might have flawed the tuning process for the
relaxation coefficients for fuzzy relaxation. However, as the average accuracy with fuzzy relaxation
is still higher (89.45% vs. 89.29%), we feel encouraged to further expand the relaxed self-attention
approach to attention-based approaches for computer vision tasks.

A.6 ABLATION STUDY ON ATTENTION DROPOUT

Depicted as dashed boxes in Figures 1 and 3, the well-known dropout method (Srivastava et al.,
2014) is employed to the standard encoder-decoder transformer in three different variations: Residual
dropout, activation dropout, and—most relevant for our study—attention dropout, where the latter
is either applied to the attention weights Gi after the softmax layer (baseline) or to the modified
attention weights G̃i after the relaxation operation (relaxed attention approaches, see equation (1)).
In Table 8, we investigate how these regularization operations interfere with each other for two
different tasks that incorporate attention dropout during training. Therefore, in this ablation, we
removed attention dropout throughout the encoder and the decoder of the transformer model for
both approaches with and without specified types of relaxed attention. Note that the employed
models for the lip-reading and image recognition tasks did not use attention dropout (following the
respective baseline recipes from Shi et al. (2022) and Liu et al. (2021b), see experimental details
in Appendices A.3.2 and A.3.4) and are thus omitted for this ablation. Specific values for attention
dropout are given for each task in Appendix A.3.

Task
Automatic

Speech Recognition
(Librispeech)

Machine
Translation
(IWSLT14)

Setting w/ LM
100 h training data w/o LM,

Relaxation type (*) cross attention self-attention
matched inference

Metric WER (%) ↓ BLEU ↑

Data subset
dev
clean

dev
other

test
clean

test
other test

Baseline (resimulated) 10.62 24.19 12.06 25.56 37.42
- attention dropout 11.02 25.24 11.89 26.88 37.51
+ relaxed (*) attention 9.33 22.16 10.62 23.04 37.67

- attention dropout 9.68 21.38 10.91 23.16 37.47

Table 8: Ablation study on attention dropout (Srivastava et al., 2014) for exemplary automatic speech
recognition and neural machine translation tasks. Best results across approaches are in bold font
and arrows (↓↑) point to the direction of better metric values for each task.

We note that relaxed attention nicely combines with attention dropout (Srivastava et al., 2014) as
in the test conditions of both tasks the combination of relaxed self-/cross attention with attention
dropout yields the best results, which are also reported in the main experiments for both specific tasks
in Section 4. Interestingly, attention dropout did even harm the baseline performance for machine
translation, as omitting it yields an 0.09 absolute increase in BLEU score, while it improves the
advantageous relaxed self-attention even further. In summary, we observe that both proposed relaxed
attention approaches seem to go along with other regularization approaches, such as attention dropout,
providing complementary regularization to the attention layers.
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A.7 SENSITIVENESS OF RELAXATION COEFFICIENT γ

In Figures 6 and 7 we investigate the sensitiveness of the relaxation coefficient γ for the automatic
speech recognition and for the neural machine translation task respectively. As introduced in Section 3
the constant relaxation coefficient γ ∈ [0, 1] is a single hyperparameter to control the addition of an
uniform distribution to the unmodified attention weights over the temporal dimension of the input
sequence. For both exemplary tasks we investigate the influence of γ for relaxing either the encoder
self-attention layers (Figures 6a and 7a) or the decoder cross attention layers (Figures 6b and 7b).
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Figure 6: Sensitiveness of the automatic speech recognition results with respect to the relaxation
coefficient γ in terms of combined WER (%) on the joint clean and other portions of the dev
dataset of the Librispeech task.
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Figure 7: Sensitiveness of the neural machine translation results with respect to the relaxation
coefficient γ in terms of BLEU scores on the development dataset of the IWSLT14 task (DE→ EN).

Both, Figures 6 and 7 show the task-specific performance on the respective development sets, that
were used for optimization of the γ hyperparameter. In all shown cases, we make the following
observations: (i) While relaxed self-attention performs best with smaller γ values, relaxed cross
attention reaches best performance with somewhat higher values, (ii) there is a smooth and substantial
range where relaxed self- and cross attention improves over the resimulated baselines with γ = 0
thus showing that the contribution of our method is insensitive with respect to the choice of γ in these
ranges.

A.8 STATEMENT ON POTENTIAL NEGATIVE SOCIETAL IMPACTS

Our method itself applies to the general transformer model and is—as we have demonstrated—
applicable to a variety of applications. Out of these applications, we identify that automatic lip-
reading can be used for malicious purposes such as eavesdropping on private civilian conversation in
video surveillance footage. The dataset we use for automatic lip-reading consists of professionally
recorded speakers that are aware of being recorded, are at a close distance, have well illuminated faces
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while speaking, and are mostly facing towards the camera. These conditions are very unlikely in a
malicious surveillance scenario where it is unlikely that the methods and models we developed in our
work are of large benefit. In addition, we believe that the positive impact of lip-reading applications
clearly outweighs the possible negative applications. Examples of such applications are (i) improving
speech recognition in case audio is corrupted, (ii) helping in crime investigations, (iii) enabling
people suffering from aphonia to communicate, (iv) silence dictations, and (v) uttering silent alarms
or passphrases for security.
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