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Abstract

The Modern Hopfield Network (MHN) model, recently introduced as an extension
of Hopfield networks, allows for the memory capacity to scale non-linearly with
the size of the network. In previous works, MHNs have been used to store inputs in
its connections and reconstruct them from partial inputs. In this work, we examine
if MHN can be used for classical classification tasks that require generalization to
unseen data from same class. We developed a Modern Hopfield Network based
classifier with the number of hidden neurons equal to number of classes in the input
data and local learning that is able to perform at the accuracy as MLP on several
vision tasks (classification on MNIST, Fashion-MNIST and CIFAR-10). Our
approach allows us to perform classification, pattern completion, noise robustness
and examining the representation of individual classes within the same network. We
identify that temperature determines both accuracy and noise robustness. Overall,
in this preliminary report, we propose a simple framework for class generalization
using MHN and demonstrates the feasibility of using MHN for machine learning
tasks that require generalization.

1 Introduction and Related Works

Hopfield networks [1] are associative memory models with binary neurons and pairwise synaptic
connections defined by an energy function. The memory capacity of classical Hopfield networks
scales linearly with the number of input features. Introducing higher-order polynomial interactions
between neurons can increase the capacity [2] and exponential neuron interactions enable exponential
storage capacity [3]. The modern Hopfield network (MHN) developed by [4] uses continuous neuron
states and an exponential interaction function, enabling storage of exponentially many patterns. To
represent this with pairwise interactions, a two-layer model was proposed by [5]. MHNs have been
applied to sequence classification [6] and tabular data [7]. However, the ability of MHNs to learn
classes and class generalization has not been extensively evaluated, to our knowledge. One approach
for classification with MHNs entails dedicating one hidden unit per training exemplar, irrespective
of the class structure present in the data [5, 8]. However, the resulting sizable hidden layer and
input-dependence of learned weights limit generalization. We present a modern Hopfield variant
amenable to biological local learning that demonstrates class generalization capabilities. Our core
contributions are:
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• We propose a Modern Hopfield Classifier (MHC) incorporating modified Hebbian learning
that demonstrates class generalization capabilities on image classification tasks.

• We show MHC is robust to noise, able to perform pattern completion and can generate
internal representation corresponding to a class prototype.

• We find that decaying the inverse temperature parameter over training epochs enhances
generalization performance, as quantified by test accuracy.

2 Model description

2.1 Modern Hopfield Classifier

We propose a trainable, continuous valued modern Hopfield model based on the continuous time
mathematical formulation of associative memory networks in [5] that can perform class generalization.
We call this model the Modern Hopfield Classifier (MHC).

Figure 1: Model of the Modern Hopfield Clas-
sifier (reproduced from [5])
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The model comprises two layers of neurons (Figure1) - the feature/input neurons (Nf in number)
with currents denoted by vi and the memory/hidden neurons (Nh in number) with currents denoted
by hj connected by a set of symmetric weights Wij = Wji. The respective activation functions
are g(v) and f(h), with time constants τv and τh. We use g(v) = v and f(h) = softmax(βh)
where β denotes an inverse temperature parameter that controls sharpness of the softmax function.
Our formulation during inference resembles the model (type B) described in [5], but differs in that
h evolves dynamically over continuous time rather than instantaneously updating. Another key
difference is how the weights are computed; in [5], the weights are set simply as the images which
are encoded. In our model, we obtain the weights via training which enables them to capture the
class structure present in the data. The dynamics are formalized as a system of coupled nonlinear
differential equations (eqns. 1 and 2). We integrate these numerically using the Euler method for 100
steps during both training and inference. Class predictions are obtained by taking the argmax over h
after the 100 integration steps in the inference stage.

2.2 Local Learning Rule

We train the model weights using a modified Hebbian rule inspired by [9]. The synaptic weights
Wij are randomly initialized, while the visible neurons vi are clamped to input data samples. During
training, the hidden neurons hj are initialized randomly and allowed to evolve per eqn2, concurrently
with the weight updates computed as:

dWij

dt
=

η ∗ gi ∗ (tj − fj)

e−|Wij |
(3)

Here fj = softmax(βhj) denotes the hidden unit activities, tj encodes the target distribution from
the class labels, η is the learning rate. |Wij | denotes the absolute value of the weight Wij . The
denominator acts as a form of weight normalization that prevents uncontrolled growth of the weights
during training. Each training image is presented to the network for 100 time steps during which
the weights and the state of memory neuron are both allowed to evolve. We train over multiple full
passes of the training set (epochs), updating the hyperparameters η (learning rate) and β (inverse
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temperature) on a per-epoch basis. The learning rate used for an epoch is ηepoch = η/(iepoch + 1)

and the inverse temperature is βepoch = β

2iepoch+1 , where η, β are the initial set hyperparameters and
iepoch is the index of the current epoch.

3 Results

We evaluated MHC performance on MNIST [10], Fashion-MNIST [], and CIFAR-10 [11] datasets.
For MNIST experiments, models were trained on 10,000 random images over 5 epochs. Inference
occurred on the held-out 10,000 test instances, integrating dynamics with the torchdiffeq ODE solver
(convergence example in Supplementary Figure4). Inputs were preprocessed to standardized pixel
intensities via per-pixel (x − µ)/σ normalization using aggregate dataset statistics. This ensured
homogeneous feature scales.

3.1 Performance of MHC on classification tasks

The output class for a given input is determined by initializing the visible neurons v to input test
images and the hidden neurons h to small random values. The coupled neural dynamics given by
equations 1 and 2 are numerically integrated for 100 steps to allow the states v and h to evolve. The
most active hidden neuron is taken as the predicted label ŷ. Classification accuracy is computed by
comparing ŷ to the true label y across all test examples.

The MHC model with a single hidden layer achieved approximately 90% classification accuracy on
the MNIST dataset. For comparison, we trained a 2-layer multilayer perceptron (MLP) model having
identical neuron counts per layer over 50 epochs on the same MNIST training set. In this preliminary
version containing only a single hidden layer, the MHC demonstrated comparable performance to the
MLP over multiple datasets, as summarized in Table 1.

Model MNIST Fashion-MNIST CIFAR-10
MHC (with temperature scheduling) 90.13% 82.8% 47.31%
MHC (without temperature scheduling) 85.2% 77.13% 41.68%

2-layer MLP 90.67% 83.0% 48.73%
Table 1: Performance (Classification accuracy) of the MHC model on classification tasks

3.2 Class specific representations generated by the MHC model

The images generated for each class in Figure2a depict the final states that the feature neurons
converge to during inference. These representations are obtained by initializing said neurons randomly,
clamping the respective class-specific hidden unit, and integrating the dynamics (eqns. 1 and 2). As
such, they approximate the prototypes learned in the model for each category. The MHC learns these
general representations during training, rather than memorizing particular instances of images. This
facilitates generalization - allowing accurate predictions on novel test data. Additionally, learning
these class prototypes within the model parameters enables pattern completion. Upon presenting
a corrupted or incomplete input image, the dynamics evolve the state of the feature neurons (vi)
toward the nearest encoded prototype, effectively filling in missing information. Figure2b shows
the incomplete image of the digit 0 (initial state of feature neurons) and the image reconstructed by
the MHC (final state of feature neurons). The completion of all the digits to their nearest prototype
can be seen in Supplementary Figure6. Unlike feedforward networks, capabilities like prototypical
pattern generation and completion are result of attractor characteristics of MHC, a distinguishing
feature.

3.3 Effects of temperature on classification performance in the presence of noise

The temperature parameter (β) determines the sharpness of the softmax function and hence the
accuracy of classification. In Figure3a, it can be seen that the the accuracy at very low β (high
temperature) is at chance and as β increases (temperature decreases), the classification accuracy
increases and then saturates at around 90% for the unperturbed input and at around 53% for the input
with noise added (σ = 4.0).
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(a) Representations generated by activating each class
specific hidden neuron after MHC is trained on MNIST

(b) Masked and reconstructed image for
the digit 0. The bottom graph shows the
evolution of hidden neuron states till con-
vergence.

Decaying β over training epochs exposes the model to diverse response patterns, conferring noise
robustness absent when fixing β (Figure3b and Table1). The MHC with β decay marginally exceeds
the MLP, while the variant without decay performs substantially worse. The accuracy gap between
these MHC models is small on original data yet grows under increasing noise. Optimal task-specific
weights emerge via controlled β decay schedules that enable generalized learning.

(a) Effect of β on classification accuracy (b) Effects of input noise on the accuracy
of the MHC model.

4 Discussion and Future Work

In this preliminary work, we propose a novel model of associative memory, trained using a local
learning rule, which can perform class generalization. We report results on a small, 2-layer model
with just 10 hidden neurons leading to relatively low accuracy compared to state of the art. However,
the classification performance is comparable to an equivalent 2-layer MLP. We used the evolution of
the coupled dynamical system (weights+hidden neurons) based on local interaction for learning the
weights. The time constant of the evolution of weights was much slower than that of the evolution of
hidden neuron states, which enabled the attractor dynamics to converge to previously learned classes.
Energy Based Models, such as MHN, allow for a larger diversity of responses when the temperature
is increased. Consistent with this observation, we show that increasing the temperature after each
epoch during learning improves the noise robustness of the model. This allows the model to learn
more general features of the class rather than memorizing training images (prevents overfitting to the
training set), resulting in increased classification accuracy and robustness to additive noise. Future
work will explore storing multiple representations per class, enabled by the rich dynamics of our
modern Hopfield variant.
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Supplementary Materials

Energy Function of the trained MHC

The energy function of the trained MHC model can be derived from [5]. The energy function for the general
model is:

E(t) = [

Nf∑
i=1

vigi − Lv] + [

Nh∑
j=1

hjfj − Lh]−
∑
i,j

viWijhj (4)

gi =
∂Lv

∂vi
fj =

∂Lh

∂hj
(5)

where the first term corresponds to the layer of visible/feature neurons, the second term to the layer of hid-
den/memory neurons and the last term corresponds to the interaction term between the two layers of neurons.
Since we have used fj = softmax(hj) and gi = vi, Lv, Lh are

Lv =
1

2

∑
i

v2i Lh = log(
∑
j

ehj ) (6)

Algorithm for training MHC

Algorithm 1 Training the MHC model using local learning rule
initialise W with random weights
t = array(0, 100)
for n_epoch = 1 to num_epochs do

ηepoch = η
nepoch+1

βepoch = β

2nepoch+1 for i = 1 to Nimgs do
get image, label
initialise target, tj = generate_zero_array(size=Nh)
initialise hinit = generate_random_array(size=Nh)
vinit = flatten(image)
tj[label] = 1.0
update W according to eqn 3 for t time period

end
end

The number of neurons in the feature layers is Nf and in the memory layer is Nh. The time constants of the
feature and memory neurons are τf = 1.0 and τh = 0.1. Learning rate η = 0.02 and inverse temperature
parameter β = 1. The state of the MHC model is described by a set of non-linear differential equations 1, 2. We
used the euler method for numerical integration for the evolution of differential equations for 100 time steps.
During inference, the class corresponding to most active hidden neuron following 100 time steps was taken as its
output.

Convergence and evolution of states

During inference, the trained Modern Hopfield Classifier dynamics unfold according to Eqs. 2 and 1, evolving
the state over time. The visible neurons v representing input features are initialized to an example image. The
memory neurons h, encoding learned prototypes, are randomly initialized. As seen in Figure4, the h unit
corresponding to the correct class becomes increasingly active, ultimately exceeding all other elements of h.
This winning unit denotes the network’s classification decision upon convergence. Concurrently, v evolves to a
final state that recovers the stored class prototype closest to the input, thus exhibiting associative recall. The
integrated dynamics hence classify by activating the appropriate memory unit, while also reconstructing the
canonical representation learned for that category.
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Figure 4: Evolution of the states of MHC model neurons

Confusion matrices for classification on MNIST

In this section, we show the confusion matrices for the classification task performed by the MHC and the 2-layer
MLP. In Figure5a and 5b respectively. Both the models were trained on 10,000 training images and tested for
10,000 test images. The MHC was trained for 5 epochs, while the MLP was trained for 30 epochs.

(a) Confusion matrix for MHC (b) Confusion matrix for the 2-layer MLP

Figure 5: MNIST classification task performance

Pattern completion

In this section, We demonstrate MHC pattern completion capabilities. Figure 7 shows noisy MNIST test images
clamped to visible neurons v converge via MHC dynamics to stored prototypes. Similarly, Supplementary
Figure6 presents 40% masked inputs completed by dynamics to learned representations, with model-predicted
labels. The obscured "4" completes to a "9", consistent with human perception given ambiguities. The
noisy image shows the hidden neuron associated with the correct class being activated, denoting successful
classification.

Effect of size of training set on the performance of the MHC

We evaluated MHC and 2-layer MLP classification accuracy versus MNIST training set size, fixing models
at 5 training epochs. Figure9 shows accuracies on a held-out test set after fitting each architecture on varying
numbers of examples. For larger training sets, MHC and MLP performance is comparable. However, MHC
slightly outperforms MLP when trained on fewer examples. This indicates enhanced generalization capacities
given limited data, a characteristic well-suited for small or sparse datasets.
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Figure 6: Masked and reconstructed images for each MNIST digit

Figure 7: Noisy input

Figure 8: Pattern completion and classification for noisy and masked images
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Figure 9: Accuracy vs training data size
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