
Interpreting Arithmetic Reasoning in Large Language Models using
Game-Theoretic Interactions

Anonymous ACL submission

Abstract

In recent years, large language models (LLMs)001
have made significant advancements in arith-002
metic reasoning. However, the internal mecha-003
nism of how LLMs solve arithmetic problems004
remains unclear. In this paper, we propose ex-005
plaining arithmetic reasoning in LLMs using006
game-theoretic interactions. Specifically, we007
disentangle the output score of the LLM into008
numerous interactions between the input words.009
We quantify different types of interactions en-010
coded by LLMs during forward propagation011
to explore the internal mechanism of LLMs012
for solving arithmetic problems. We find that013
(1) the internal mechanism of LLMs for solv-014
ing simple one-operator arithmetic problems015
is their capability to encode operand-operator016
interaction patterns and high-order interaction017
patterns from input samples. Additionally, we018
find that LLMs with poor arithmetic capabil-019
ities focus more on context-free interactions.020
(2) The internal mechanism of LLMs for solv-021
ing relatively complex two-operator arithmetic022
problems is their capability to encode operator023
interaction patterns from input samples. (3) An024
LLM gradually forgets its capability to solve025
simple one-operator arithmetic problems as it026
learns to solve relatively complex two-operator027
arithmetic problems1.028

1 Introduction029

In recent years, the arithmetic reasoning capabil-030

ities of large language models (LLMs) have im-031

proved significantly, but the internal mechanism is032

still unclear. Some studies identified neurons that033

have great effects on arithmetic reasoning (Yu and034

Ananiadou, 2024; Rai and Yao, 2024). Other stud-035

ies evaluated the impact of each word/token in the036

input arithmetic question on neuron activations and037

network outputs (Stolfo et al., 2023; Zhang et al.,038

2024). However, previous studies have not math-039

ematically guaranteed that the explanations faith-040

1All code and data will be released upon acceptance.

fully reflect the arithmetic reasoning logic of LLMs. 041

Besides, a DNN does not independently use each 042

word/token for inference. Rather, a DNN relies on 043

interactions among input variables for inference 044

(Ren et al., 2023a). For example, the interaction 045

between “green” and “hand” forms the concept of 046

“beginner.” To this end, a series of recent studies 047

have used game-theoretic interactions to explain 048

the representation power of traditional DNNs (Ren 049

et al., 2021a,b; Deng et al., 2021), which have been 050

proven to be faithful explanations by a series of 051

theoretical guarantees (Ren et al., 2023a). 052

Inspired by these studies, we use interactions 053

to explain the arithmetic reasoning capability of 054

LLMs. As Figure 1 shows, given an input arith- 055

metic question with n words, e.g., “What is 2 056

plus 7? Answer is,” the interaction S (e.g., S = 057

{2, plus, 7}) represents an AND relationship be- 058

tween the words in S, which is equivalently2 en- 059

coded by the LLM. Each interaction S contributes 060

a numerical effect IS to push the output score 061

towards generating the answer “9.” It has been 062

proven that the output score of a DNN on any 063

masked3 input sample can be represented as the 064

sum of the effects of all triggered interactions 065

(Ren et al., 2023a), which guarantees that the 066

interaction truly reflects the inference logic of 067

the DNN. Please see Theorem 1 for details. 068

In this way, interactions can be considered as 069

inference patterns encoded by an LLM. Therefore, 070

we quantify how LLMs encode different interac- 071

tions during forward propagation. We find that dif- 072

ferent LLMs have preferences for encoding certain 073

interactions. For example, as Figure 2 shows, when 074

computing features closer to the output layer, the 075

2Note that each interaction is equivalently encoded by the
entire DNN, rather than by a specific neuron.

3It is common to use a specific token or embedding to
mask the input variables of a DNN, but there are still no unified
masking strategies. Please see Appendix A for an introduction
to masking strategies.

1

operand

𝐼 plus =-1.29

𝜙 𝒙 =
𝑆⊆𝑁

𝟙 S 𝒙 ∙ 𝐼𝑆

+ context-free patterns

𝐼 What,plus =1.09

𝐼 plus,isb =1.07

𝐼 2 =-2.08

𝐼 2,7 =2.27

𝐼 2,plus =1.77

𝐼 plus,7 =1.18 𝐼 What,isa =-0.72

𝐼 What,Answer,isb =-0.29𝐼 2,7,isb =-0.50 𝐼 2,plus,7 =-0.70

𝐼 What =-0.10

⋮ ⋮ ⋮ ⋮

𝑣 “9” 𝒙)

Input Sentence 𝒙 =

Equivalently

modeling

What isa 2 plus Answer7 ? isb operator
context-free

operator patterns

operand patterns operand-operator patterns

LLM

MathCoder-CL-7B

Layer 𝑙

N
o
rm

al
iz

ed

a
v
e
ra

g
e
 s

tr
en

g
th

operand patterns
operator patterns

operand-operator patterns
context-free patterns

（a） （b）

Figure 1: (a) Illustration of using interactions to explain the outputs of LLMs for arithmetic problems. Given an
arithmetic question x, let N be a set containing all the words in x. We use a logic model based on interactions, i.e.,
ϕ (x) =

∑
S⊆N 1 (S | x) · IS to explain the detailed inference patterns encoded by LLMs. Note that superscripts

a and b are not input to the LLM, but are used to distinguish two words of “is” in two positions. (b) Based on
interactions, we explore how an LLM encodes different types of interaction patterns during forward propagation.

Llemma-7B (Azerbayev et al., 2023) model tends076

to encode interactions that contain both operands077

and operators, while the OPT-1.3B (Zhang et al.,078

2022) model tends to encode interactions that only079

contain context-free words. Inspired by the above080

observations, we further define four types of inter-081

action patterns encoded by the LLM for arithmetic082

reasoning, including (1) operand interaction pat-083

terns, (2) operator interaction patterns, (3) operand-084

operator interaction patterns, and (4) context-free085

interaction patterns, as shown in Figure 1. Fur-086

thermore, we propose a new metric to quantify the087

focus of LLMs on the different types of interaction088

patterns above and discover the following insights.089

• Insight 1 (Internal mechanism of solving sim-090

ple one-operator problems): The internal mecha-091

nism of LLMs for solving simple one-operator092

arithmetic problems is their capability to en-093

code2 operand-operator interaction patterns094

and high-order interaction patterns from input095

samples. For simple one-operator arithmetic prob-096

lems, LLMs that perform well tend to enhance the097

strength of operand-operator interaction patterns098

and high-order interaction patterns during forward099

propagation. A high-order interaction contains a100

large number of input words, while a low-order101

interaction contains a small number of input words.102

In contrast, LLMs that perform poorly tend to fo-103

cus mostly on context-free interaction patterns and104

extremely low-order interaction patterns.105

• Insight 2 (Internal mechanism of solving rela-106

tively complex two-operator problems): The inter-107

nal mechanism of LLMs for solving relatively108

complex two-operator arithmetic problems is109

their capability to encode2 operator interac-110

tion patterns from input samples. The LLM111

tends to focus more on operator interaction pat- 112

terns throughout the process of learning to solve 113

two-operator arithmetic problems. 114

• Insight 3: As an LLM learns to solve rela- 115

tively complex two-operator problems, its capa- 116

bility to solve simple one-operator problems de- 117

clines. Meanwhile, the LLM tends to reduce its 118

focus on operand-operator interaction patterns and 119

high-order interaction patterns. 120

2 Related Work 121

Explaining arithmetic reasoning in LLMs. 122

Some studies identified and analyzed key neurons 123

to explain arithmetic reasoning in LLMs. Yu and 124

Ananiadou (2024) identified an internal logic chain. 125

Rai and Yao (2024) investigated neuron activations 126

and identified reasoning-related neurons. Some 127

studies attempted further analysis by changing the 128

inputs of the LLM. Zhang et al. (2024) identified 129

key components by perturbing activations and mea- 130

suring the changes in the output logits. Stolfo et al. 131

(2023) examined the impact of changes in each 132

input unit on neuron activations and network out- 133

puts. However, previous studies failed to provide 134

strong mathematical support for their explanations. 135

In contrast, in this paper, we use interactions to 136

explain how LLMs solve arithmetic tasks, which 137

has been proven to be a faithful explanation. 138

Using game-theoretic interactions to explain 139

DNNs. Ren et al. (2023a) proposed using inter- 140

actions to explain DNNs and provided a series of 141

theoretical guarantees to ensure the faithfulness of 142

this explanation. A series of studies further ex- 143

plored using interactions to explain the representa- 144

tional power of DNNs, including adversarial robust- 145

2

ness (Wang et al., 2021), adversarial transferability146

(Wang et al., 2020), and the overfitting problem147

(Ren et al., 2023b; Zhou et al., 2023). However,148

due to terabytes of data and billions of parame-149

ters in LLMs, as well as the inherent complexity150

of arithmetic reasoning tasks, whether interactions151

can be used to explain the arithmetic reasoning of152

LLMs while ensuring the faithfulness of the expla-153

nation remains to be verified.154

3 Using interactions to explain inference155

patterns encoded by LLMs156

3.1 Preliminaries: Disentangling the network157

output using interactions158

Given a DNN and an input sample x with n vari-159

ables indexed by N = {1, 2, . . . , n}, we can obtain 2n160

masked3 sentences {xT | T ⊆ N} by masking3 each161

of n variables. Specifically, xT denotes the input162

sentence when we keep variables in T unchanged163

and mask3 variables in N\T . x∅ denotes the input164

sentence when all variables in x are masked3. Ren165

et al. (2021b) have proven that there exists a sur-166

rogate logical model ϕ(·) that can well predict/fit167

the scalar output of the DNN for all 2n different168

masked sentences, as Theorem 1 shows.169

∀T ⊆ N,ϕ (xT) = ϕ (x∅) +
∑

S⊆N,S ̸=∅

1(S|xT) · IS , (1)170

the trigger function 1(S|xT) represents an AND171

relationship among the input variables in a set S ⊆172

N . That is, if all variables in S are present in T ,173

then 1(S|xT) = 1. Otherwise, if any variable in S is174

masked3, then 1(S|xT) = 0. Each interaction S has175

a scalar weight IS.176

Theorem 1. (Universal matching property, as177

proven by Ren et al. (2023a)). When the scalar178

weight IS in the logical model ϕ(·) is set as follows,179

∀S ⊆ N,S ̸= ∅, IS =
∑
S′⊆S

(−1)|S|−|S′| · v (xS′) , (2)180

then we have ∀T ⊆ N , the output score of the DNN181

v (xT) = ϕ (xT).182

The universal matching property guarantees the183

theoretical faithfulness of using interactions to ex-184

plain the DNN. That is, the interaction truly reflects185

the inference logic of the DNN. Besides, the inter-186

action has been proven to serve as the basis for187

many game-theoretic metrics, further ensuring its188

theoretical faithfulness. Please see Appendix C for189

more details about game-theoretic metrics.190

3.2 Explaining the LLM using interactions 191

Although interactions have been widely used to 192

explain traditional DNNs, the following two chal- 193

lenges remain in using interactions to explain the 194

forward propagation process of the LLM. 195

(1) How to quantify interactions encoded by 196

an LLM in intermediate layers. Given an LLM 197

with L layers4, we follow previous work (Wendler 198

et al., 2024) by focusing on the embedding of the 199

last input token at each layer l. We conduct exper- 200

iments, detailed in Appendix E, showing that the 201

mid-layer features of other tokens remain nearly 202

unchanged when the input is masked3. At layer l, 203

we set the output score v(l)(xT) as follows. 204

v(l)(xT) =
(f (l)(xN))⊤ · f (l)(xT)

∥f (l)(xN)∥2 · ∥f (l)(xT)∥2
, (3) 205

where f (l) ∈ Rd denotes the embedding of the last 206

input token and ∥·∥2 is the L2-norm. The score 207

v(l)(xT) measures the utility of f (l)(xT) along the 208

direction of f (l)(xN). Since significant masking 209

typically removes feature strength along the fea- 210

ture direction f(l)(xN\T)
∥f(l)(xN\T)∥2

, changes in the score 211

v(l)(xT) for differently masked sentences xT are 212

attributed to interaction effects on the l-th layer’s 213

feature. Thus, the interactions computed based on 214

the scores v(l)(xT) for all T ⊆ N can be considered 215

as being encoded by features at the l-th layer. Note 216

that we use f (l)(xT) − f (l)(x∅) to replace f (l)(xT), 217

where f (l)(x∅) denotes the embedding when we 218

mask3 all input variables in x. This shifting opera- 219

tion is used to ensure that f (l)(x∅) = 0. 220

(2) We use words instead of tokens as input 221

variables. It is because the tokenizers of differ- 222

ent LLMs adopt different strategies for encoding 223

numbers. For example, the Llama-2-7B (Touvron 224

et al., 2023) model divides the word “15” into two 225

tokens “1” and “5,” while the OPT-1.3B (Zhang 226

et al., 2022) model obtains a single token “15.” To 227

ensure a fair comparison of interactions encoded by 228

different LLMs, we treat all tokens within a word 229

as a single input variable. When generating the 230

masked3 sentence xT , we use a specific padding to- 231

ken (see Appendix B for details) to mask all tokens 232

that belong to the words in N \ T . 233

Base on the above two settings, we quantify inter- 234

actions in LLMs when solving arithmetic problems. 235

Figure 2 shows the top 10 interactions (i.e., those 236

interactions with largest absolute values) encoded2 237

4Please see Appendix D for details about network archi-
tectures and chosen layers.

3

（a）Interactions encoded by the Llemma-7B model

The Llemma-7B model predicts: 8 (Correct)

The 5th layer The 30th layer

𝐼{isb}=0.51

𝐼{Answer}=0.51

𝐼 isa =0.35

𝐼{isa,Answer}=-0.32

𝐼 How,Answer =-0.31

𝐼{much,isa}=-0.31

𝐼{How,isa}=-0.30

𝐼{isa,4,Answer}=0.30

𝐼{isa,4}=0.30

𝐼{times}=0.30

𝐼{How,much,isa,4,times,2,Answer}=0.53

𝐼{How,isa,4,times,2,Answer,isb}=0.50

𝐼 How,much,isa,4,times,2,Answer,isb =-0.48

𝐼{How,much,isa,4,times,2}=-0.47

𝐼 isa,4,times,2,Answer =0.46

𝐼{How,much,isa,4,times,2,isb}=0.41

𝐼{isa,4,times,2,Answer,isb}=-0.40

𝐼{much,isa,4,times,2,Answer}=-0.40

𝐼{much,isa,4,times,2,isb}=-0.40

𝐼{much,isa,4,times,2,Answer,isb}=0.39

（b）Interactions encoded by the OPT-1.3B model

The OPT-1.3B model predicts: 4 (Incorrect)

The 3th layer The 24th layer
𝐼{isb}=0.80

𝐼{Answer}=0.07

𝐼 How,much,isa,Answer,isb =0.06

𝐼{isa,Answer}=-0.05

𝐼 How,much,isa,times,2,Answer,isb =-0.05

𝐼{How,much,isa,Answer}=-0.05

𝐼{isa,4,times,2,Answer,isb}=0.05

𝐼{much,isa,4,times,2,Answer,isb}=-0.05

𝐼{times,2,isb}=-0.05

𝐼{much,isa,Answer,isb}=-0.05

𝐼{much,isa,4,times,2,Answer}=1.34

𝐼{much,is,4,times,2,Answer,isb}=-1.34

𝐼 4,Answer =-1.18

𝐼{4,Answer,isb}=1.18

𝐼 2,Answer =-1.17

𝐼{2,Answer,isb}=1.17

𝐼{times,Answer}=-1.16

𝐼{times,Answer,isb}=1.16

𝐼{much,isa,4,2,Answer}=-1.14

𝐼{much,isa,4,2,Answer,isb}=1.14

Layer 𝑙

N
o
rm

al
iz

ed

in
te

ra
ct

io
n
 s

tr
e
n
g

th

𝑆={isa, 4, times, 2}
𝑆={isa, 4, times, 2, Answer}
𝑆={times}
𝑆={much, times}
𝑆={4}
𝑆={How, much, isa, Answer, isb}
𝑆={much, isb}
𝑆={How, is, 4, 2, Answer}

𝑆={isb}
𝑆={Answer}
𝑆={times, Answer}
𝑆={times, Answer, isb}
𝑆={4,2}
𝑆={How, isa, 2, Answer, isb}
𝑆={much, isa, 4, times, 2}

𝑆={How, isa, 4, times, Answer, isb}

Layer 𝑙

N
o
rm

al
iz

ed

in
te

ra
ct

io
n
 s

tr
e
n
g

th

Given a simple one-operator arithmetic problem as input: “How much isa 4 times 2? Answer isb”

Figure 2: Visualization of top 10 interactions encoded by LLMs when computing features in different layers. Results
show that the Llemma-7B model mainly focuses on interactions containing both operands (in blue) and operators
(in orange) in a late layer (i.e., the 30th layer). In comparison, the OPT-1.3B model mainly focuses on interactions
that contain only context-free words in a late layer (i.e., the 24th layer), which may be the reason why the OPT-1.3B
model answers incorrectly. Note that superscripts a and b are not input to the LLM, but are used to distinguish two
words of “is” in two positions.

by the Llemma-7B model (Azerbayev et al., 2023)238

and the OPT-1.3B model (Zhang et al., 2022) when239

solving an one-operator problem “How much is 4240

times 2? Answer is.” The Llemma-7B model pre-241

dicts the correct answer “8,” while the OPT-1.3B242

model predicts the incorrect answer “4.” We ob-243

serve that the Llemma-7B model mainly focuses244

on interactions that contain only context-free words245

in an early (5th) layer5, and mainly focuses on in-246

teractions containing both operands and operators247

in a late (30th) layer. In comparison, the OPT-1.3B248

model mainly focuses on interactions that contain249

only context-free words in a late (24th) layer, which250

might be the reason why the OPT-1.3B model an-251

swers incorrectly.252

To better observe the changing trends of different253

interactions encoded by an LLM during forward254

propagation, Figure 2 reports the curves of interac-255

tions encoded by LLMs when computing features.256

To ensure a fair comparison of interactions at dif-257

ferent layers, we compute the normalized strength258

of interactions at different layers, that is, |I(l)S |
Z(l) ,259

where Z(l) = ES⊆N |I(l)S |. As Figure 2 shows, the260

Llemma-7B model enhances its focus on interac-261

5 Please see Appendix D for details about network archi-
tectures and chosen layers.

tions containing both operands and operators (e.g., 262

S = {isa, 4, times, 2}) during forward propaga- 263

tion. In comparison, the OPT-1.3B model does not 264

show a preference for any interactions in the middle 265

layers and shifts its focus to interactions that con- 266

tain only context-free words (e.g., S = {isb}) in 267

the very few layers close to the output layer. There- 268

fore, interactions provide us with a new perspective 269

to explain the internal mechanism of LLMs for 270

arithmetic reasoning. 271

3.3 Defining and quantifying different types 272

of interaction patterns 273

Inspired by the above observations obtained in Sec- 274

tion 3.2, we classify the variables in an input arith- 275

metic query x into the following three categories: 276

operand variables xopd, operator variables xopr and 277

context-free variables xctx-free. Thus, all 2n interac- 278

tions can be classified as the following four types to 279

describe the inference patterns encoded by LLMs 280

for arithmetic reasoning. 281

• Operand interaction patterns. If an interaction S 282

contains at least one operand variable but no oper- 283

ator variables, we regard S as an operand pattern. 284

Let Ωopd denote the set of all operand patterns. 285

Ωopd = {S | ∃xopd ∈ S ∧ ∄xopr ∈ S}. (4) 286

4

• Operator interaction patterns. If an interaction287

S contains at least one operator variable but no288

operand variables, we regard S as an operator pat-289

tern. Let Ωopr denote the set of all operator patterns.290

Ωopr = {S | ∃xopr ∈ S ∧ ∄xopd ∈ S}. (5)291

• Operand-operator interaction patterns. If an292

interaction S contains at least one operand variable293

and at least one operator variable, we regard S as294

an operand-operator pattern. Let Ωopd-opr denote the295

set of all operand-operator patterns.296

Ωopd-opr = {S | ∃xopd ∈ S ∧ ∃xopr ∈ S}. (6)297

• Context-free interaction patterns. If an interac-298

tion S contains neither operand nor operator vari-299

ables, we regard S as a context-free pattern. Let300

Ωctx-free denote the set of all context-free patterns.301

Ωctx-free = {S | ∄xopd ∈ S ∧ ∄xopr ∈ S}. (7)302

Note that the union of the four sets above is303

the complete set of 2n interactions. According304

to Theorem 1, the sum of numerical effects305

of these four types of interactions can accu-306

rately fit the output scores of the LLM, thereby307

ensuring the faithfulness of the analysis. We308

design the following metric to quantify how an309

LLM focuses on a specific type of interaction310

Ωtype ∈ {Ωopd,Ωopr,Ωopd-opr,Ωctx-free}.311

Definition 1. (Focality on a specific type of interac-312

tion). The focality on a specific type of interaction313

Ωtype at layer l, R(l)(Ωtype), is computed as follows,314

R(l)(Ωtype) =
ES∈Ωtype |I(l)S |

Z(l)
, (8)315

where Z(l) = ES⊆N |I(l)S | is a normalization term316

used to ensure a fair comparison of the interaction317

effects across different layers.318

In Equation 8, a higher R(l)(Ωtype) value suggests319

that the LLM focuses more on this type of inter-320

action Ωtype when computing features at layer l. If321

R(l)(Ωtype) = 1, the strength of this type of inter-322

action Ωtype encoded by the LLM is equal to the323

average strength of all interactions encoded by the324

LLM, which reveals that the LLM does not show a325

preference for this type of interaction.326

We also quantify interactions of different orders327

to measure the representation complexity of an328

LLM. The order m of an interaction S is defined329

as the number of variables in S, that is, m = |S|.330

We design the following metric to quantify how an331

LLM focuses on m-order interactions.332

Model 1-opr 2-opr
OPT-1.3B 6.7 5.3
GPT-J-6B 28.0 9.1
Llama-2-7B 77.7 17.8
CodeLlama-2-7B 75.0 13.8
MathCoder-L-7B 78.0 12.6
MathCoder-CL-7B 70.7 12.7
Llemma-7B 88.1 22.2
OPT-1.3B Fine-tuned 97.0 69.9

Table 1: Overall accuracy (%) of different LLMs on
one-operator and two-operator arithmetic queries.

Definition 2. (Focality on interactions of a specific 333

order). The focality on m-order interactions at 334

layer l, κ(l)
m , is computed as follows, 335

∀m ∈ {1, 2, . . . , n}, κ(l)
m =

E|S|=m|I(l)S |
Z(l)

. (9) 336

If κ(l)
m has a larger value when m is higher, it indi- 337

cates that the LLM encodes interactions of greater 338

complexity when computing features at layer l. If 339

κ
(l)
m has a larger value when m is lower, it indicates 340

that the LLM encodes interactions of lower com- 341

plexity when computing features at layer l. 342

4 Comparative studies 343

In this section, we conduct comparative studies 344

to analyze the internal mechanism of LLMs for 345

arithmetic reasoning (see Section 4.1). We also 346

fine-tune an LLM to improve its capability to solve 347

arithmetic problems and explore how the LLM en- 348

codes different interaction patterns during the train- 349

ing process (see Section 4.2). 350

LLMs. We use interactions to analyze seven 351

LLMs for arithmetic reasoning, including the OPT- 352

1.3B (Zhang et al., 2022) model, the GPT-J-6B 353

(Wang and Komatsuzaki, 2021) model, the Llama- 354

2-7B (Touvron et al., 2023) model, the CodeLlama- 355

2-7B (Roziere et al., 2023) model, the MathCoder- 356

L-7B (Wang et al., 2023) model, the MathCoder- 357

CL-7B (Wang et al., 2023) model, and the Llemma- 358

7B (Azerbayev et al., 2023) model. Appendix B 359

shows how to mask words for these LLMs. 360

Data. We follow Karpas et al. (2022); Razeghi 361

et al. (2022); Stolfo et al. (2023) to conduct ex- 362

periments on a set of arithmetic problems hand- 363

crafted by humans, including 6 templates for one- 364

operator two-operand queries and 29 templates for 365

two-operator three-operand queries. For example, 366

“The sum of n1 and n2 is” and “What is the ratio be- 367

tween n1 minus n2 and n3? The answer is.” Each 368

template for one-operator queries includes all four 369

arithmetic operators, i.e., {+,−,×,÷}, and each 370

5

1st-order 8th-order2nd-order 3th-order 4th-order 5th-order 6th-order 7th-order

operator patterns operand patterns operand-operator patterns context-free patterns

𝑅(𝑙)

𝜅(𝑙)

OPT-1.3B

Layer 𝑙

Layer 𝑙

GPT-J-6B

Layer 𝑙

Layer 𝑙

Llama-2-7B

Layer 𝑙

Layer 𝑙

CodeLlama-2-7B

Layer 𝑙

Layer 𝑙

MathCoder-L-7B

Layer 𝑙

Layer 𝑙

MathCoder-CL-7B

Layer 𝑙

Layer 𝑙

Llemma-7B

OPT-1.3B GPT-J-6B Llama-2-7B CodeLlama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B

Layer 𝑙

Layer 𝑙

Figure 3: Comparing the normalized average strength R(l) of different types of interaction patterns encoded by
LLMs during forward propagation. Each curve in the figure is averaged over various one-operator arithmetic queries.

template for two-operator queries corresponds to a371

unique combination of two operators. Please see372

Appendix F for template details. For each template373

of one-operator queries, we generate 20 prompts374

by randomly sampling operands (n1, n2)
6, and for375

each template of two-operator queries, we generate376

5 prompts following the same procedure.377

Table 1 shows the overall accuracy of different378

LLMs on one-operator queries and two-operator379

queries. We observe that the Llama-2-7B model,380

the CodeLlama-2-7B model, the MathCoder-L-381

7B model, the MathCoder-CL-7B model, and the382

Llemma-7B model perform well on one-operator383

queries, while the OPT-1.3B model and the GPT-384

J-6B model perform relatively poorly. However,385

for two-operator queries, all seven LLMs perform386

poorly. Please see Appendix G for accuracy test387

results on each template.388

4.1 Exploring the internal mechanism of389

LLMs for solving arithmetic problems390

In this subsection, we analyze the focality on dif-391

ferent interaction patterns of LLMs during forward392

propagation and obtain the following insights.393

Insight 1: The internal mechanism of LLMs394

for solving simple one-operator arithmetic prob-395

lems is their capability to encode operand-396

operator interaction patterns and high-order in-397

teraction patterns. Figure 3 reports the focality on398

different types of interaction patterns R(l) encoded399

by LLMs during forward propagation. The results400

are averaged over all one-operator queries. We ob-401

serve that for simple one-operator problems, in the402

Llama-2-7B model, the CodeLlama-2-7B model,403

the MathCoder-L-7B model, the MathCoder-CL-404

7B model, and the Llemma-7B model, R(l)(Ωopd-opr)405

gradually increases starting from the middle layers406

and takes the lead in the late layers. This sug-407

gests that LLMs with good arithmetic capabilities408

tend to use more operand-operator interactions for409

6We sample operands from {1, 2, . . . , 9} since some
LLMs tokenize each digit as an independent token, such as
the Llama-2-7B model.

arithmetic reasoning during the later stages of for- 410

ward propagation. Although these LLMs gradu- 411

ally compress the encoding of operand-operator 412

interaction patterns as they approach the output 413

layer (R(l)(Ωopd-opr) of very few layers close to the 414

output layer tends to decrease), the encoding of 415

these interaction patterns in the late layers is suf- 416

ficient to support their arithmetic reasoning. In 417

comparison, in the OPT-1.3B model and the GPT- 418

J-6B model, R(l) remains around 1.0 in most layers, 419

while R(l)(Ωctx-free) suddenly increases in the very 420

few layers close to the output layer. This suggests 421

that LLMs with poor arithmetic capabilities do not 422

exhibit a preference for any interaction patterns in 423

the middle layers and focus excessively on context- 424

free interaction patterns in the very few layers close 425

to the output layer. 426

Note that, We also observe that in Figure 3, 427

among all models, the MathCoder-CL-7B model 428

shows the highest focus on operand-operator in- 429

teraction patterns in the late layers. However, its 430

accuracy on one-operator queries is not the highest 431

(see Table 1), which may be because it overly limits 432

the encoding of both operator interaction patterns 433

and operand interaction patterns in the late layers. 434

Figure 4 reports the focality on interaction pat- 435

terns of different orders κ(l) encoded by LLMs 436

during forward propagation. The results are aver- 437

aged over queries from a single one-operator tem- 438

plate, as different templates correspond to different 439

maximum orders, i.e., the number of input words. 440

We observe that for simple one-operand prob- 441

lems, in the Llama-2-7B model, the CodeLlama- 442

2-7B model, the MathCoder-L-7B model, the 443

MathCoder-CL-7B model, and the Llemma-7B 444

model, κ(l)
m for m ∈ {6, 7, 8} tends to increase star- 445

ing from the middle layers. This suggests that 446

LLMs with good arithmetic capabilities tend to use 447

more high-order interactions for arithmetic reason- 448

ing during the later stage of forward propagation. 449

In comparison, in the OPT-1.3B model and the 450

GPT-J-6B model, most κ(l) in the middle layers is 451

around 1.0, while in the very few layers close to the 452

6

1st-order 8th-order2nd-order 3th-order 4th-order 5th-order 6th-order 7th-order

operator patterns operand patterns operand-operator patterns context-free patterns

𝑅(𝑙)

𝜅(𝑙)

OPT-1.3B

Layer 𝑙

Layer 𝑙

GPT-J-6B

Layer 𝑙

Layer 𝑙

Llama-2-7B

Layer 𝑙

Layer 𝑙

CodeLlama-2-7B

Layer 𝑙

Layer 𝑙

MathCoder-L-7B

Layer 𝑙

Layer 𝑙

MathCoder-CL-7B

Layer 𝑙

Layer 𝑙

Llemma-7B

OPT-1.3B GPT-J-6B Llama-2-7B CodeLlama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B

Layer 𝑙

Layer 𝑙

Figure 4: Comparing the normalized average strength κ(l) of interaction patterns of different orders encoded by
LLMs during forward propagation. Each curve in the figure is averaged over various one-operator arithmetic queries.

𝑅(𝑙)

Fine-tuned on one-operator queries

Accuracy(%)

1st-order 6th-order

2nd-order 7th-order

3rd-order 8th-order

4th-order 9th-order

5th-order 10th-order

Layer 𝑙

Layer 𝑙

OPT-1.3B

6.5 23.4

Time point 1

Layer 𝑙

Layer 𝑙

Time point 2

62.4

Layer 𝑙

Layer 𝑙

83.9

Time point 3

Layer 𝑙

Layer 𝑙

96.0

Time point 4

Layer 𝑙

Layer 𝑙

97.0

Time point 5

Layer 𝑙

Layer 𝑙

𝜅(𝑙)

（a）

（b）

operand patterns

operator patterns

operand-operator patterns

context-free patterns

Figure 5: Visualizing the dynamic changes of different interaction patterns encoded by the OPT-1.3B model during
the training process on one-operator queries. Each curve is averaged over various one-operator queries. Results
show that as accuracy increases, the OPT-1.3B model tends to enhance the strength of operand-operator interaction
patterns (in the upper part) and the strength of high-order interaction patterns (in the lower part).

output layer, κ(l)
1 suddenly increases. This suggests453

that LLMs with poor arithmetic capabilities tend to454

excessively focus on extremely low-order interac-455

tion patterns. More results from other templates in456

Appendix I lead to the same conclusion.457

4.2 Dynamic encoding of different interaction458

patterns during training process459

We further explore how an LLM learns to solve460

arithmetic problems. That is, we investigate how an461

LLM encodes different interaction patterns when462

trained on arithmetic problem data. To this end,463

we fine-tune the OPT-1.3B model on arithmetic464

queries in the following three different ways7. (1)465

We fine-tune the OPT-1.3B model on one-operator466

queries, increasing its accuracy on one-operator467

queries from 6.7% to 97.0%. This version is termed468

the OPT-1.3B-One model. (2) We fine-tune the469

OPT-1.3B model on two-operator queries, increas-470

ing its accuracy on two-operator queries from 5.3%471

to 69.9%. (3) Building upon the OPT-1.3B-one472

model, we further train it on two-operator queries.473

We analyze the dynamic encoding of different in-474

teraction patterns during the above three training475

processes and obtain the following insights.476

Figure 5 reports the dynamic changes of differ-477

7Please see Appendix H for details about model training.

ent interaction patterns encoded by the OPT-1.3B 478

model during training on one-operator queries. The 479

results of R(l) are averaged over all one-operator 480

queries, and the results of κ(l) are averaged over 481

queries from a single one-operator template8. We 482

observe that as the accuracy of the OPT-1.3B model 483

on one-operator queries increases, R(l)(Ωopd-opr) and 484

κ
(l)
m for m ∈ {8, 9, 10} gradually increase in the mid- 485

dle layers. The results validate our Insight 1. 486

Note that, we also observe that the OPT-1.3B 487

model consistently enhances its focus on context- 488

free interaction patterns in the very few layers close 489

to the output layer during the training process. This 490

may be due to the inherent preference of the OPT- 491

1.3B model, which tends to enhance its focus on 492

context-free interaction patterns in the very few 493

layers close to the output layer, as Figure 3 shows. 494

Insight 2: The internal mechanism of LLMs 495

for solving relatively complex two-operator 496

arithmetic problems is their capability to en- 497

code operator interaction patterns. Figure 6 re- 498

ports the dynamic changes of different interaction 499

patterns encoded by the OPT-1.3B model during 500

training on two-operator queries. The results are 501

8As different templates correspond to different maximum
orders, please see Appendix I for more results from other
templates, which lead to the same conclusion.

7

𝑅(𝑙)

Fine-tuned on two-operator queries

Layer 𝑙

OPT-1.3B

5.3 38.9

Time point 1

Layer 𝑙

Time point 2

45.9

Layer 𝑙

57.8

Time point 3

Layer 𝑙

63.1

Time point 4

Layer 𝑙

69.9

Time point 5

Layer 𝑙

Accuracy(%)

operand patterns

operator patterns

operand-operator patterns

context-free patterns

Figure 6: Visualizing the dynamic changes of different types of interaction patterns encoded by the OPT-1.3B model
during the training process on two-operator queries. Each curve is averaged over various two-operator queries.
Results show that the OPT-1.3B model tends to consistently focus more on operator interaction patterns.

𝑅(𝑙)

Fine-tuned on two-operator queries

Layer 𝑙

Layer 𝑙

OPT-1.3B-One

97.0 36.6

Time point 1

Layer 𝑙

Layer 𝑙

Time point 2

29.7

Layer 𝑙

Layer 𝑙

22.0

Time point 3

Layer 𝑙

Layer 𝑙

21.5

Time point 4

Layer 𝑙

Layer 𝑙

20.6

Time point 5

Layer 𝑙

Layer 𝑙

𝜅(𝑙)

（a）

（b）

Accuracy(%)

1st-order 6th-order

2nd-order 7th-order

3rd-order 8th-order

4th-order 9th-order

5th-order 10th-order

operand patterns

operator patterns

operand-operator patterns

context-free patterns

Figure 7: Visualizing the dynamic changes of different interaction patterns encoded by the OPT-1.3B-One model
during the training process on two-operator queries. Each curve is averaged over various one-operator queries.
Results show that as accuracy decreases, the OPT-1.3B-One model tends to decrease the strength of operand-operator
interaction patterns (in the upper part) and the strength of high-order interaction patterns (in the lower part).

averaged over all two-operator queries. We observe502

that as the accuracy of the OPT-1.3B model on two-503

operator queries increases, R(l)(Ωopr) remains con-504

sistently high in the middle layers. This suggests505

that solving relatively complex two-operator arith-506

metic problems requires an LLM to focus more on507

operator interaction patterns.508

Insight 3: When an LLM that can solve sim-509

ple one-operator arithmetic problems learns510

to solve relatively complex two-operator arith-511

metic problems, the LLM progressively loses its512

capability to solve the simpler ones. Figure 7 re-513

ports the dynamic changes of different interaction514

patterns encoded by the OPT-1.3B-One model dur-515

ing training on two-operator queries. The results of516

R(l) are averaged over all one-operator queries, and517

the results of κ(l) are averaged over queries from a518

single one-operator template8. We observe that as519

the accuracy of the OPT-1.3B-One model on one-520

operator queries decreases, R(l)(Ωopd-opr) and κ
(l)
m for521

m ∈ {8, 9, 10} gradually decrease, and most R(l) and522

κ(l) tend to be around 1.0 in the middle layers, The523

results validate our Insight 1. This suggests that524

the OPT-1.3B-One model gradually forgets how to525

solve simple arithmetic problems while learning526

more complex knowledge. We think it might be 527

due to spurious forgetting of LLMs (Zheng et al., 528

2025), which we further discuss in Appendix L. 529

5 Conclusion 530

In this paper, we use interactions to provide a deep 531

understanding of the internal mechanism of LLMs 532

for arithmetic reasoning. Through comparison stud- 533

ies of different interaction patterns encoded by 534

LLMs during forward propagation, we find that 535

the internal mechanism of LLMs for solving sim- 536

ple one-operator arithmetic problems is their capa- 537

bility to encode operand-operator interaction pat- 538

terns and high-order interaction patterns. We fur- 539

ther fine-tune an LLM to explore how an LLM 540

encodes different interaction patterns when learn- 541

ing to solve arithmetic problems. We find that the 542

internal mechanism of LLMs for solving relatively 543

complex two-operator arithmetic problems is their 544

capability to encode operator interaction patterns. 545

We also find that an LLM forgets how to solve 546

simple arithmetic problems as it learns to solve 547

relatively complex arithmetic problems. 548

8

Limitations549

We have only studied simple arithmetic problems550

and have not yet extended our research to more551

complex math word problems. In the future, we552

will work on this.553

References554

Marco Ancona, Cengiz Oztireli, and Markus Gross.555
2019. Explaining deep neural networks with a poly-556
nomial time algorithm for shapley value approxima-557
tion. In International Conference on Machine Learn-558
ing, pages 272–281. PMLR.559

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,560
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,561
Jia Deng, Stella Biderman, and Sean Welleck. 2023.562
Llemma: An open language model for mathematics.563
arXiv preprint arXiv:2310.10631.564

Piotr Dabkowski and Yarin Gal. 2017. Real time image565
saliency for black box classifiers. Advances in neural566
information processing systems, 30.567

Huiqi Deng, Qihan Ren, Hao Zhang, and Quanshi568
Zhang. 2021. Discovering and explaining the rep-569
resentation bottleneck of dnns. arXiv preprint570
arXiv:2111.06236.571

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. 2019.572
Understanding deep networks via extremal pertur-573
bations and smooth masks. In Proceedings of the574
IEEE/CVF international conference on computer vi-575
sion, pages 2950–2958.576

Michel Grabisch and Marc Roubens. 1999. An ax-577
iomatic approach to the concept of interaction among578
players in cooperative games. International Journal579
of game theory, 28:547–565.580

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak581
Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit582
Bata, Yoav Levine, Kevin Leyton-Brown, et al. 2022.583
Mrkl systems: A modular, neuro-symbolic architec-584
ture that combines large language models, external585
knowledge sources and discrete reasoning. arXiv586
preprint arXiv:2205.00445.587

Scott Lundberg. 2017. A unified approach to588
interpreting model predictions. arXiv preprint589
arXiv:1705.07874.590

Daking Rai and Ziyu Yao. 2024. An investigation of591
neuron activation as a unified lens to explain chain-of-592
thought eliciting arithmetic reasoning of llms. arXiv593
preprint arXiv:2406.12288.594

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,595
and Sameer Singh. 2022. Impact of pretraining term596
frequencies on few-shot reasoning. arXiv preprint597
arXiv:2202.07206.598

Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quan- 599
shi Zhang. 2021a. Towards axiomatic, hierarchical, 600
and symbolic explanation for deep models. 601

Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quan- 602
shi Zhang. 2023a. Defining and quantifying the emer- 603
gence of sparse concepts in dnns. In Proceedings of 604
the IEEE/CVF conference on computer vision and 605
pattern recognition, pages 20280–20289. 606

Jie Ren, Zhanpeng Zhou, Qirui Chen, and Quanshi 607
Zhang. 2021b. Can we faithfully represent masked 608
states to compute shapley values on a dnn? arXiv 609
preprint arXiv:2105.10719. 610

Qihan Ren, Huiqi Deng, Yunuo Chen, Siyu Lou, and 611
Quanshi Zhang. 2023b. Bayesian neural networks 612
avoid encoding complex and perturbation-sensitive 613
concepts. In International Conference on Machine 614
Learning, pages 28889–28913. PMLR. 615

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 616
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 617
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023. 618
Code llama: Open foundation models for code. arXiv 619
preprint arXiv:2308.12950. 620

Lloyd S Shapley. 1953. A value for n-person games. 621
Contribution to the Theory of Games, 2. 622

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya 623
Sachan. 2023. A mechanistic interpretation of arith- 624
metic reasoning in language models using causal me- 625
diation analysis. arXiv preprint arXiv:2305.15054. 626

Mukund Sundararajan, Kedar Dhamdhere, and Ashish 627
Agarwal. 2020. The shapley taylor interaction in- 628
dex. In International conference on machine learn- 629
ing, pages 9259–9268. PMLR. 630

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. 631
Axiomatic attribution for deep networks. In Interna- 632
tional conference on machine learning, pages 3319– 633
3328. PMLR. 634

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 635
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 636
Baptiste Rozière, Naman Goyal, Eric Hambro, 637
Faisal Azhar, et al. 2023. Llama: Open and effi- 638
cient foundation language models. arXiv preprint 639
arXiv:2302.13971. 640

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6 641
billion parameter autoregressive language model. 642

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun 643
Luo, Weikang Shi, Renrui Zhang, Linqi Song, 644
Mingjie Zhan, and Hongsheng Li. 2023. Math- 645
coder: Seamless code integration in llms for en- 646
hanced mathematical reasoning. arXiv preprint 647
arXiv:2310.03731. 648

Xin Wang, Shuyun Lin, Hao Zhang, Yufei Zhu, and 649
Quanshi Zhang. 2021. Interpreting attributions and 650
interactions of adversarial attacks. In Proceedings 651
of the IEEE/CVF International Conference on Com- 652
puter Vision, pages 1095–1104. 653

9

Xin Wang, Jie Ren, Shuyun Lin, Xiangming Zhu, Yisen654
Wang, and Quanshi Zhang. 2020. A unified approach655
to interpreting and boosting adversarial transferabil-656
ity. arXiv preprint arXiv:2010.04055.657

Chris Wendler, Veniamin Veselovsky, Giovanni Monea,658
and Robert West. 2024. Do llamas work in english?659
on the latent language of multilingual transformers.660
arXiv preprint arXiv:2402.10588.661

Zeping Yu and Sophia Ananiadou. 2024. Interpret-662
ing arithmetic mechanism in large language models663
through comparative neuron analysis. arXiv preprint664
arXiv:2409.14144.665

Susan Zhang, Stephen Roller, Naman Goyal, Mikel666
Artetxe, Moya Chen, Shuohui Chen, Christopher De-667
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.668
Opt: Open pre-trained transformer language models.669
arXiv preprint arXiv:2205.01068.670

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu-ming671
Cheung, Xinmei Tian, Xu Shen, and Jieping Ye.672
2024. Interpreting and improving large language673
models in arithmetic calculation. arXiv preprint674
arXiv:2409.01659.675

Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma.676
2025. Spurious forgetting in continual learning of677
language models. arXiv preprint arXiv:2501.13453.678

Huilin Zhou, Hao Zhang, Huiqi Deng, Dongrui Liu,679
Wen Shen, Shih-Han Chan, and Quanshi Zhang.680
2023. Concept-level explanation for the generaliza-681
tion of a dnn. arXiv preprint arXiv:2302.13091.682

A Strategies of masking input variables683

In the research of attribution methods, it is com-684

mon to use a specific token or embedding to mask685

input variables of a DNN (Lundberg, 2017; Ancona686

et al., 2019; Fong et al., 2019), and use changes687

in network outputs on the masked samples to esti-688

mate attributions of input variables. However, each689

method has certain limitations. The mean baseline690

value (Dabkowski and Gal, 2017), i.e., setting the691

baseline value for each input variable to its mean692

across all samples, introduces additional signals,693

e.g., grey dots in images. Similarly, the zero base-694

line value (Ancona et al., 2019; Sundararajan et al.,695

2017), i.e., setting baseline values for all input vari-696

ables to zero, would also introduce additional sig-697

nals to the input, such as black dots.698

B Details about how to mask input words699

for different LLMs700

In this paper, we analyze seven LLMs for arith-701

metic reasoning, including the OPT-1.3B model,702

the GPT-J-6B model, the Llama-2-7B model, the703

CodeLlama-2-7B model, the MathCoder-L-7B704

model, the MathCoder-CL-7B model, and the 705

Llemma-7B model. For the OPT-1.3B model, we 706

use the “</s>” token with the token id = 2 to 707

mask the words in N\T . For the GPT-J-6B model, 708

we use the “<|endoftext|>” with the token id = 709

50256 to mask the words in N\T . For the other 710

five models, including the Llama-2-7B model, 711

the CodeLlama-2-7B model, the MathCoder-L- 712

7B model, the MathCoder-CL-7B model, and the 713

Llemma-7B model, with Llama as their base model, 714

we use the “<unk>” with the token id = 0 to mask 715

the words in N\T . 716

C Properties of interactions 717

The Harsanyi interaction IS , i.e., the interaction 718

in this paper, can explain the elementary mecha- 719

nism of existing game-theoretic metrics (Ren et al., 720

2021a), including the Shapley value (Shapley, 721

1953), the Shapley interaction index (Grabisch and 722

Roubens, 1999), and the Shapley-Taylor interac- 723

tion index (Sundararajan et al., 2020). 724

(1) Connection to the Shapley value (Shapley, 725

1953). Let ϕ(i) denote the Shapley value of an 726

input variable i, given the input sample x. Then, 727

the Shapley value ϕ(i) can be explained as the 728

result of uniformly assigning attributions of each 729

Harsanyi interaction to each involving variable 730

i, i.e., ϕ(i) =
∑

S⊆N\{i}
1

|S|+1IS∪{i}. This also 731

proves that the Shapley value is a fair assignment 732

of attributions from the perspective of the Harsanyi 733

interaction. 734

(2) Connection to the Shapley interaction index 735

(Grabisch and Roubens, 1999). Given a subset of 736

variables T ⊆ N in an input sample x, the Shap- 737

ley interaction index I
Shapley
T can be represented as 738

I
Shapley
T =

∑
S⊆N\T

1
|S|+1IS∪T . In other words, 739

the index I
Shapley
T can be explained as uniformly 740

allocating IS′ such that S′ = S ∪ T to the compo- 741

sitional variables of S′, if we treat the coalition of 742

variables in T as a single variable. 743

(3) Connection to the Shapley Taylor interaction 744

index (Sundararajan et al., 2020). Given a subset of 745

variables T ⊆ N in an input sample x, the k-th or- 746

der Shapley Taylor interaction index I
Shapley-Taylor
T 747

can be represented as a weighted sum of interac- 748

tion effects, i.e., IShapley-Taylor
T = IT if |T | < k; 749

I
Shapley-Taylor
T =

∑
S⊆N\T

(|S|+k
k

)−1
IS∪T if |T | = 750

k; and I
Shapley-Taylor
T = 0 if |T | > k. 751

Given an input sample x, the Harsanyi interac- 752

tion IS satisfies seven desirable axioms in game 753

10

theory (Ren et al., 2021a), including the efficiency,754

linearity, dummy, symmetry, anonymity, recursive755

and interaction distribution axioms.756

(1) Efficiency axiom. The output score of a757

model can be decomposed into interaction effects758

of different patterns, i.e., v(x) =
∑

S⊆N IS .759

(2) Linearity axiom. If we merge output scores760

of two models w and v as the output of model u,761

i.e., ∀S ⊆ N, u(xS) = v(xS)+w(xS), then their762

interaction effects I(v)S and I
(w)
S can also be merged763

as ∀S ⊆ N, I
(u)
S = I

(v)
S + I

(w)
S .764

(3) Dummy axiom. If a variable i ∈ N is a765

dummy variable, i.e., ∀S ⊆ N\{i}, v(xS∪{i}) =766

v(xS) + v(x{i}), then it has no interaction with767

other variables, ∀∅ ≠ T ⊆ N\{i}, IT∪{i}=0.768

(4) Symmetry axiom. If input variables i, j ∈ N769

cooperate with other variables in the same way,770

∀S ⊆ N \ {i, j}, v(xS∪{i}) = v(xS∪{j}), then771

they have the same interaction effects with other772

variables, ∀S ⊆ N \ {i, j}, IS∪{i} = IS∪{j}.773

(5) Anonymity axiom. For any permutations π774

on N , we have ∀S ⊆ N, I
(v)
S = I

(πv)
πS , where775

πS ≜ {π(i) | i ∈ S}, and the new model πv is de-776

fined by (πv)(xπS) = v(xS). This indicates that777

interaction effects are not changed by permutation.778

(6) Recursive axiom. The interaction effects779

can be computed recursively. For i ∈ N and780

S ⊆ N \ {i}, the interaction effect of the pat-781

tern S ∪ {i} is equal to the interaction effect782

of S with the presence of i minus the inter-783

action effect of S with the absence of i, i.e.,784

∀S ⊆ N \ {i}, IS∪{i} = I
(i is always present)
S −785

IS .I
(i is always present)
S denotes the interaction ef-786

fect when the variable i is always present as787

a constant context, i.e., I
(i is always present)
S =788 ∑

L⊆S(−1)|S|−|L| · v(xL∪{i}).789

(7) Interaction distribution axiom. This axiom790

characterizes how interactions are distributed for791

“interaction functions” (Sundararajan et al., 2020).792

An interaction function vT parameterized by a sub-793

set of variables T is defined as follows: ∀S ⊆794

N, vT (xS) = c, if T ⊆ S; otherwise, vT (xS) =795

0. The function vT models pure interaction among796

the variables in T because only if all variables in T797

are present the output value will be increased by c.798

The interactions encoded in the function vT satisfy799

IT = c, and ∀S ̸= T, IS = 0.800

D Details about network architectures 801

and chosen layers for experiments in 802

section 4 803

OPT-1.3B model. The OPT-1.3B model is com- 804

posed of the following parts: one word em- 805

bedding layer (namely Embedding Layer), one 806

position embedding layer (namely OPTLearned- 807

PositionalEmbedding), 24 OPT decoder mod- 808

ules (namely OPTDecoderLayer), and one lin- 809

ear output layer (namely Linear Layer). The 810

architecture can be summarized as Embed- 811

ding Layer → OPTLearnedPositionalEmbed- 812

ding → [OPTDecoderLayer]×24 → Linear Layer. 813

Each module of OPTDecoderLayer contains a self- 814

attention mechanism layer (namely OPTAttention), 815

an activation function (namely ReLU), a layer nor- 816

malization operation (namely LayerNorm), two 817

fully connected layers (namely Linear), and a final 818

layer normalization operation (namely LayerNorm). 819

In our experiments, we selected all 24 OPTDe- 820

coderLayer modules and conducted experiments 821

based on the output features of the LayerNorm op- 822

eration. 823

GPT-J-6B model. The GPT-J-6B model in- 824

cludes a single word embedding layer (namely Em- 825

bedding Layer), followed sequentially by 28 Trans- 826

former blocks (namely GPTJBlock), culminating in 827

an output layer normalization (namely LayerNorm) 828

and a linear output layer (namely Linear Layer). 829

This architecture can be succinctly described as: 830

Embedding Layer → [GPTJBlock]×28 → Layer- 831

Norm → Linear Layer. Delving into the details of 832

each module of GPTJBlock, it comprises three in- 833

tegral components, including a layer normalization 834

(namely LayerNorm), a self-attention mechanism 835

(namely GPTJAttention), and a feed-forward net- 836

work (namely GPTMLP). In our experiments, we 837

selected all 28 GPTJBlock modules and conducted 838

experiments based on the output features of the 839

LayerNorm operation. 840

Other Llama-based models. The other five 841

models based on Llama include the Llama-2- 842

7B model, the CodeLlama-2-7B model, the 843

MathCoder-L-7B model, the MathCoder-CL-7B 844

model, and the Llemma-7B model. These mod- 845

els share the same architecture, which is com- 846

posed of various elements: a single word embed- 847

ding layer (namely Embedding Layer), followed 848

by a sequence of 32 LlamaDecoderLayer, an out- 849

put layer normalization layer (namely LlamaRM- 850

SNorm), and culminating in a linear output layer 851

11

𝒙𝑇 = {𝐻𝑜𝑤, 1, 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑖𝑠}

Layer 𝑙

𝑣
(𝑙
) (
𝒙
𝑇
)

𝒙𝑇 = {𝑚𝑢𝑐ℎ, 𝑖𝑠}

Layer 𝑙

𝒙𝑇 = {𝐻𝑜𝑤,𝑚𝑢𝑐ℎ, 1}

Layer 𝑙

𝒙𝑇 = {𝐻𝑜𝑤,𝑚𝑢𝑐ℎ, 5,1}

Layer 𝑙

Figure 8: The visualization of v(l) at different token positions across various layers of CodeLlama for the prompt
“How much is 5 plus 1? Answer is” under different masked inputs. Results show that except for the final tokens
of the complete sentence (i.e., token 10 and token 13), the v(l) values of other tokens in the middle layers remain
almost unchanged.

(namely Linear Layer). This architecture can be852

summarized as Embedding Layer → [LlamaDe-853

coderLayer]×32 → LlamaRMSNorm → Linear854

Layer. Delving into each module of LlamaDecoder-855

Layer, it integrates multiple components, including856

a self-attention mechanism layer (namely LlamaAt-857

tention), a feed-forward network layer (namely Lla-858

maMLP) encompassing several linear layers and859

activation functions, an input layer normalization860

(namely Input LayerNorm), and a post-attention861

layer normalization (namely Post Attention Layer-862

Norm), the latter serving to normalize the output863

from the self-attention mechanism layer. In our ex-864

periments, we selected all 32 modules of LlamaDe-865

coderLayer and conducted experiments based on866

the output features of the LayerNorm operation.867

E The features of other tokens in the868

middle layers remain unchanged869

Through experiments, we found that, except for the870

final token of the complete sentence, the v(l) values871

at other token positions in the middle layers remain872

almost unchanged. Figure 8 shows the v(l) values873

at different token positions across various layers of874

CodeLlama for the prompt “How much is 5 plus 1?875

Answer is” under different masked inputs xT . The876

prompt consists of 13 tokens {<s>, How, much, is,877

space, 5, plus, space, 1, ?, answer, is, space}.878

Except for token 10 (?) and token 13 (space), the879

v(l) values of other tokens in the middle layers880

remain almost unchanged.881

F Prompt Templates882

In Table 2 and 3, we report the question templates883

used as prompts for the model for one- and two-884

operator queries, respectively. For two-operator885

queries, we use one query template for each of the886

29 possible two-operation combinations. To en-887

able the model to output the answer directly, we888

appended “The answer is” at the end of each tem- 889

plate. 890

G Performance of the LLMs 891

In Tables 4 and 5, we report the accuracy of the 892

LLMs on the arithmetic queries used in our analy- 893

ses. For the OPT-1.3B and GPT-J-6B models, we 894

treat each operand as a single token, while for other 895

LLMs, each number is split into multiple tokens 896

(“0”, “1”, “2”, . . . , “9”) by the tokenizer. 897

H Fine-tuning Details 898

We fine-tune the OPT-1.3B model using the LoRA 899

architecture on one-operator and two-operator tem- 900

plates. For the one-operator templates, the model 901

is trained for 10 epochs on a dataset consisting of 902

3,500 samples with a batch size of 16. For the 903

two-operator templates, we train the model for 20 904

epochs on a dataset containing 29,000 samples, 905

with a batch size of 32. The training uses a learn- 906

ing rate of 8e-4 with a linear decay scheduler. The 907

LoRA configuration includes a rank of 8, a LoRA 908

alpha of 32, and a dropout of 0.05. We ensure no 909

overlap between the training data and any evalua- 910

tion or testing datasets. 911

I More experimental results 912

Figure 9 shows that LLMs with good arithmetic 913

capabilities gradually focus more on high-order 914

interaction patterns, while LLMs with poor arith- 915

metic capabilities exhibit a more dispersed focus 916

across interaction patterns of different orders in 917

the middle layers. Figure 10 illustrates that the 918

OPT-1.3B model gradually increases its focus on 919

high-order interaction patterns during the learning 920

process of simple arithmetic problems. Figure 11 921

demonstrates that the OPT-1.3B model gradually 922

decreases its focus on high-order interactions while 923

learning relatively complex arithmetic problems. 924

12

Type Addition Subtraction

1 How much is n1 plus n2? Answer is How much is n1 minus n2? Answer is
2 What is n1 plus n2? Answer is What is n1 minus n2? Answer is
3 How much is the sum of n1 and n2? Answer is How much is the difference between n1 and n2? Answer is
4 What is the sum of n1 and n2? Answer is What is the difference between n1 and n2? Answer is
5 The sum of n1 and n2 is The difference between n1 and n2 is
6 Given two numbers n1 and n2, the sum of them is Given two numbers n1 and n2, the difference between them is

Multiplication Division

1 How much is n1 times n2? Answer is How much is n1 over n2? Answer is
2 What is n1 times n2? Answer is What is n1 over n2? Answer is
3 What is the result of n1 times n2? Answer is What is the result of n1 over n2? Answer is
4 How much is the product of n1 and n2? Answer is How much is the ratio between n1 and n2? Answer is
5 The product of n1 and n2 is The ratio of n1 and n2 is
6 Given two numbers n1 and n2, the product of them is Given two numbers n1 and n2, the ratio between them is

Table 2: Question templates for one-operator arithmetic queries.

（b）

（a）𝜅(𝑙)

𝜅(𝑙)

OPT-1.3B

Layer 𝑙

Layer 𝑙

OPT-1.3B

GPT-J-6B

Layer 𝑙

Layer 𝑙

GPT-J-6B

Llama-2-7B

Layer 𝑙

Layer 𝑙

Llama-2-7B

CodeLlama-2-7B

Layer 𝑙

Layer 𝑙

CodeLlama-2-7B

MathCoder-L-7B

Layer 𝑙

Layer 𝑙

MathCoder-L-7B

MathCoder-CL-7B

Layer 𝑙

Layer 𝑙

MathCoder-CL-7B

Llemma-7B

Layer 𝑙

Layer 𝑙

Llemma-7B

1st-order 6th-order2nd-order 7th-order3rd-order 8th-order4th-order 9th-order5th-order 10th-order

1st-order 8th-order2nd-order 3th-order 4th-order 5th-order 6th-order 7th-order 9th-order

Figure 9: Comparing the normalized average strength κ(l) of interaction patterns of different orders encoded by
LLMs during forward propagation. Each curve in the figure is averaged over various one-operator arithmetic queries,
corresponding to (a) template 2 and (b) template 3 in Table 2.

（a）

（b）

Fine-tuned on one-operator queries

Accuracy(%)

𝜅(𝑙)

1st-order

8th-order

2nd-order

3th-order

4th-order

5th-order

6th-order

7th-order

Accuracy(%)

𝜅(𝑙)

13.9

Time point 1

Layer 𝑙

13.9

Time point 1

Layer 𝑙

Time point 2

31.3

Layer 𝑙

Time point 2

78.9

Layer 𝑙

Layer 𝑙

97.0

Time point 5

Layer 𝑙

97.0

Time point 5

Layer 𝑙

OPT-1.3B

6.5

Layer 𝑙

OPT-1.3B

6.5

8th-order3th-order

5th-order

1st-order 6th-order

2nd-order 7th-order

4th-order 9th-order

55.1

Time point 3

Layer 𝑙

83.9

Time point 3

Layer 𝑙

Layer 𝑙

Time point 4

93.6

Layer 𝑙

Time point 4

89.5

Fine-tuned on one-operator queries

Figure 10: Visualizing the dynamic process of different interaction patterns encoded by the OPT-1.3B model during
the training process. Each curve is averaged over various one-operator queries, corresponding to (a) template 0 and
(b) template 3 in Table 2.

13

Formula Format

f = ((A+B) ∗ C) Sum A and B and multiply by C

f = (A+B ∗ C) What is the sum of A and the product of B and C?

f = ((A−B) ∗ C) What is the product of A minus B and C?

f = (A/(B/C)) How much is A divided by the ratio between B and C?

f = (A ∗ (B − C)) What is the difference between A and the product of B and C?

f = ((A+B)) How much is A times the difference between B and C?

f = (A− (B − C)) What is the ratio between A plus B and C?

f = ((A−B)) How much is A minus the difference between B and C?

f = ((A−B ∗ C)) What is the ratio between A minus B and C?

f = (A−B/C) What is the difference between A and the ratio between B and C?

f = (A/(B + C)) How much is A divided by the sum of B and C?

f = (A/(B − (C))) How much is A divided by the difference between B and C?

f = ((A+B)/C) What is the sum of A and the ratio between B and C?

f = (A ∗ (B/C)) How much is A times the ratio between B and C?

f = (A ∗ (B + C)) How much is A times the sum of B and C?

f = (A+B/C) How much is the sum of A divided by B and C?

f = (A/(B/C)) How much is A divided by B divided by C?

f = (A ∗ (B/C)) How much is the difference between A divided by B and C?

f = (A/B) How much is A divided by B times C?

f = (A− (B ∗ C)) How much is A divided by B times C?

f = (A+B ∗ C) How much is A divided by C?

f = (A+B ∗ C) How much is A plus B times C?

f = (A/(B + C)) How much is A times B times C?

Table 3: Question templates for two-operator arithmetic queries.

1-opr OPT-1.3B GPT-J-6B Llama-2-7B CodeLlama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B
2 0.071 0.295 0.941 0.887 0.920 0.843 0.979
3 0.020 0.368 0.637 0.773 0.803 0.707 0.886
4 0.123 0.205 0.670 0.801 0.762 0.663 0.917
5 0.057 0.125 0.701 0.741 0.769 0.733 0.844
6 0.079 0.071 0.847 0.648 0.845 0.744 0.895
7 0.106 0.431 0.733 0.707 0.545 0.475 0.707

Table 4: Accuracy(%) of 7 models on 6 one-operator templates.

J Information about the use of AI925

assistants.926

In this paper, AI tools such as DeepSeek were used927

for translation and grammar checking.928

K Computational budget 929

We conducted our experiments on an NVIDIA 930

GeForce RTX 3090 24GB GPU. For the Llama-2- 931

7B model, the computation time per one-operator 932

sample is around 30 seconds, while that for a two- 933

operator sample is around 60 seconds. 934

14

2-opr OPT-1.3B GPT-J-6B Llama-2-7B CodeLlama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B

1 0.00 0.010 0.004 0.007 0.004 0.003 0.007
2 0.000 0.001 0.015 0.016 0.001 0.005 0.015
3 0.012 0.029 0.016 0.023 0.013 0.027 0.022
4 0.078 0.056 0.117 0.124 0.132 0.193 0.128
5 0.045 0.031 0.051 0.061 0.047 0.045 0.098
6 0.002 0.027 0.044 0.051 0.044 0.036 0.054
7 0.117 0.152 0.144 0.160 0.157 0.157 0.168
8 0.004 0.009 0.028 0.032 0.026 0.025 0.028
9 0.116 0.203 0.328 0.446 0.257 0.282 0.424

10 0.018 0.008 0.036 0.041 0.019 0.028 0.048
11 0.195 0.360 0.161 0.157 0.159 0.163 0.363
12 0.221 0.175 0.372 0.368 0.369 0.367 0.373
13 0.005 0.002 0.074 0.073 0.021 0.016 0.034
14 0.046 0.116 0.143 0.144 0.104 0.146 0.229
15 0.000 0.025 0.027 0.025 0.007 0.015 0.053
16 0.000 0.009 0.063 0.055 0.004 0.012 0.048
17 0.018 0.004 0.004 0.016 0.021 0.024 0.051
18 0.200 0.460 0.607 0.471 0.492 0.623 0.554
19 0.022 0.066 0.142 0.168 0.256 0.192 0.205
20 0.035 0.062 0.102 0.146 0.122 0.149 0.223
21 0.021 0.035 0.36 0.107 0.075 0.092 0.272
22 0.000 0.013 0.019 0.020 0.010 0.020 0.028
23 0.235 0.308 0.517 0.270 0.339 0.304 0.644
24 0.004 0.011 0.030 0.064 0.025 0.048 0.081
25 0.000 0.015 0.581 0.163 0.355 0.128 0.559
26 0.004 0.100 0.431 0.176 0.152 0.118 0.361
27 0.059 0.142 0.132 0.233 0.126 0.213 0.361
28 0.002 0.030 0.058 0.065 0.042 0.057 0.104
29 0.005 0.059 0.237 0.152 0.068 0.113 0.000

Table 5: Accuracy(%) of 7 models on 29 two-operator templates.

（a）

（b）

Fine-tuned on two-operator queries

Accuracy(%)

𝜅(𝑙)

1st-order

8th-order

2nd-order

3th-order

4th-order

5th-order

6th-order

7th-order

Accuracy(%)

𝜅(𝑙)

Layer 𝑙

OPT-1.3B-One

6.5

Layer 𝑙

OPT-1.3B-One

97.0

8th-order3th-order

5th-order

1st-order 6th-order

2nd-order 7th-order

4th-order 9th-order

Layer 𝑙

20.6

Time point 5

Layer 𝑙

20.6

Time point 5

37.9

Time point 1

Layer 𝑙

36.6

Time point 1

Layer 𝑙

Time point 2

36.6

Layer 𝑙

Time point 2

32.0

Layer 𝑙

Layer 𝑙

Time point 4

22.0

Layer 𝑙

Time point 4

21.8

23.8

Time point 3

Layer 𝑙

Time point 3

Layer 𝑙

23.2

Fine-tuned on two-operator queries

Figure 11: Visualizing the dynamic process of different interaction patterns encoded by the OPT-1.3B-One model
during the training process. Each curve is averaged over various one-operator queries, corresponding to (a) template
0 and (b) template 3 in Table 2.

15

Figure 12: The change in accuracy of OPT-1.3B-Both
on one-operator queries during the training process.

L Spurious Forgetting of LLMs935

We further train the OPT-1.3B-One model on two-936

operator queries. This version is termed the OPT-937

1.3B-Both model. The results in Section 4.2 show938

that the accuracy of the OPT-1.3B-One model on939

one-operator problems declines during the training940

process on two-operator queries. Following (Zheng941

et al., 2025), we further fine-tune the OPT-1.3B-942

Both model on half of the training data from one-943

operator queries used to train the OPT-1.3B-One944

model (see Appendix H). Figure 12 shows the ac-945

curacy of OPT-1.3B-Both on one-operator queries946

during the training process. We observe that after947

just 3 epochs, the accuracy reaches 0.85, and at the948

fifth epoch, it reaches 0.90. Therefore, we think949

the performance loss of the OPT-1.3B-One model950

on one-operator queries during the training process951

on two-operator problems might be due to spurious952

forgetting. That is, the performance loss does not953

necessarily indicate a loss of knowledge, but rather954

a decline in task alignment.955

16

	Introduction
	Related Work
	Using interactions to explain inference patterns encoded by LLMs
	Preliminaries: Disentangling the network output using interactions
	Explaining the LLM using interactions
	Defining and quantifying different types of interaction patterns

	Comparative studies
	Exploring the internal mechanism of LLMs for solving arithmetic problems
	Dynamic encoding of different interaction patterns during training process

	Conclusion
	Strategies of masking input variables
	Details about how to mask input words for different LLMs
	Properties of interactions
	Details about network architectures and chosen layers for experiments in section 4
	The features of other tokens in the middle layers remain unchanged
	Prompt Templates
	Performance of the LLMs
	Fine-tuning Details
	More experimental results
	Information about the use of AI assistants.
	Computational budget
	Spurious Forgetting of LLMs

