Interpreting Arithmetic Reasoning in Large Language Models using
Game-Theoretic Interactions

Anonymous ACL submission

Abstract

In recent years, large language models (LLMs)
have made significant advancements in arith-
metic reasoning. However, the internal mecha-
nism of how LLMs solve arithmetic problems
remains unclear. In this paper, we propose ex-
plaining arithmetic reasoning in LLMs using
game-theoretic interactions. Specifically, we
disentangle the output score of the LLM into
numerous interactions between the input words.
We quantify different types of interactions en-
coded by LLMs during forward propagation
to explore the internal mechanism of LLMs
for solving arithmetic problems. We find that
(1) the internal mechanism of LLMs for solv-
ing simple one-operator arithmetic problems
is their capability to encode operand-operator
interaction patterns and high-order interaction
patterns from input samples. Additionally, we
find that LLMs with poor arithmetic capabil-
ities focus more on context-free interactions.
(2) The internal mechanism of LLMs for solv-
ing relatively complex two-operator arithmetic
problems is their capability to encode operator
interaction patterns from input samples. (3) An
LLM gradually forgets its capability to solve
simple one-operator arithmetic problems as it
learns to solve relatively complex two-operator
arithmetic problems!.

1 Introduction

In recent years, the arithmetic reasoning capabil-
ities of large language models (LLMs) have im-
proved significantly, but the internal mechanism is
still unclear. Some studies identified neurons that
have great effects on arithmetic reasoning (Yu and
Ananiadou, 2024; Rai and Yao, 2024). Other stud-
ies evaluated the impact of each word/token in the
input arithmetic question on neuron activations and
network outputs (Stolfo et al., 2023; Zhang et al.,
2024). However, previous studies have not math-
ematically guaranteed that the explanations faith-

'All code and data will be released upon acceptance.

fully reflect the arithmetic reasoning logic of LLMs.
Besides, a DNN does not independently use each
word/token for inference. Rather, a DNN relies on
interactions among input variables for inference
(Ren et al., 2023a). For example, the interaction
between “green” and “hand” forms the concept of
“beginner.” To this end, a series of recent studies
have used game-theoretic interactions to explain
the representation power of traditional DNNs (Ren
et al., 2021a,b; Deng et al., 2021), which have been
proven to be faithful explanations by a series of
theoretical guarantees (Ren et al., 2023a).

Inspired by these studies, we use interactions
to explain the arithmetic reasoning capability of
LLMs. As Figure 1 shows, given an input arith-
metic question with n words, e.g., “What is 2
plus 7? Answer is,” the interaction S (e.g., S =
{2, plus, 7}) represents an AND relationship be-
tween the words in .S, which is equivalently” en-
coded by the LLM. Each interaction S contributes
a numerical effect Ig to push the output score
towards generating the answer “9.” It has been
proven that the output score of a DNN on any
masked® input sample can be represented as the
sum of the effects of all triggered interactions
(Ren et al., 2023a), which guarantees that the
interaction truly reflects the inference logic of
the DNN. Please see Theorem 1 for details.

In this way, interactions can be considered as
inference patterns encoded by an LLM. Therefore,
we quantify how LLMs encode different interac-
tions during forward propagation. We find that dif-
ferent LLMs have preferences for encoding certain
interactions. For example, as Figure 2 shows, when
computing features closer to the output layer, the

Note that each interaction is equivalently encoded by the
entire DNN, rather than by a specific neuron.

31t is common to use a specific token or embedding to
mask the input variables of a DNN, but there are still no unified
masking strategies. Please see Appendix A for an introduction
to masking strategies.

v(9|x) {—p

p@ =) 16191

MathCoder-CL-7B

Equivalently o512
modeling operator patterns + cantext-free patterns Eé /\ y \
operand patterns operand-operatorpatterns Ea10 £ w::l X
= . %
Ipiusy=-1.29 I=-2.08 I pusy=177 Iwhag=-0.10 Sg ***"
>0.
I{What,})]m)zl-og 1{2,7}:2-27 1[1)“15,7}:1'18 I{What,isa}:'oj2 508 1 5 17 i5 33
I e 101 =1.07 Ity i1 =-050 I, 1,71 =-0.70 I . 1=-0.29 Layer [
{plus,is } {2,7,is }: {2,p us,7? _{M]swems } operator patterns
' ’ ’ operand =o= operand patterns
Input Sentence x = What is® 2 | plus | 7 2 Answer isp operalr e == Operand-operator patterns

(a)

= context-free patterns

(b)

Figure 1: (a) [llustration of using interactions to explain the outputs of LLMs for arithmetic problems. Given an
arithmetic question x, let NV be a set containing all the words in . We use a logic model based on interactions, i.e.,
¢ (x) = gcn 1(S | x) - Is to explain the detailed inference patterns encoded by LLMs. Note that superscripts
a and b are not input to the LLM, but are used to distinguish two words of “is” in two positions. (b) Based on
interactions, we explore how an LLM encodes different types of interaction patterns during forward propagation.

Llemma-7B (Azerbayev et al., 2023) model tends
to encode interactions that contain both operands
and operators, while the OPT-1.3B (Zhang et al.,
2022) model tends to encode interactions that only
contain context-free words. Inspired by the above
observations, we further define four types of inter-
action patterns encoded by the LLM for arithmetic
reasoning, including (1) operand interaction pat-
terns, (2) operator interaction patterns, (3) operand-
operator interaction patterns, and (4) context-free
interaction patterns, as shown in Figure 1. Fur-
thermore, we propose a new metric to quantify the
focus of LLMs on the different types of interaction
patterns above and discover the following insights.
e [nsight I (Internal mechanism of solving sim-
ple one-operator problems): The internal mecha-
nism of LLMs for solving simple one-operator
arithmetic problems is their capability to en-
code’ operand-operator interaction patterns
and high-order interaction patterns from input
samples. For simple one-operator arithmetic prob-
lems, LLMs that perform well tend to enhance the
strength of operand-operator interaction patterns
and high-order interaction patterns during forward
propagation. A high-order interaction contains a
large number of input words, while a low-order
interaction contains a small number of input words.
In contrast, LLMs that perform poorly tend to fo-
cus mostly on context-free interaction patterns and
extremely low-order interaction patterns.

o Insight 2 (Internal mechanism of solving rela-
tively complex two-operator problems): The inter-
nal mechanism of LLMs for solving relatively
complex two-operator arithmetic problems is
their capability to encode’ operator interac-
tion patterns from input samples. The LLM

tends to focus more on operator interaction pat-
terns throughout the process of learning to solve
two-operator arithmetic problems.

e [nsight 3: As an LLM learns to solve rela-
tively complex two-operator problems, its capa-
bility to solve simple one-operator problems de-
clines. Meanwhile, the LLM tends to reduce its
focus on operand-operator interaction patterns and
high-order interaction patterns.

2 Related Work

Explaining arithmetic reasoning in LLMs.
Some studies identified and analyzed key neurons
to explain arithmetic reasoning in LLMs. Yu and
Ananiadou (2024) identified an internal logic chain.
Rai and Yao (2024) investigated neuron activations
and identified reasoning-related neurons. Some
studies attempted further analysis by changing the
inputs of the LLM. Zhang et al. (2024) identified
key components by perturbing activations and mea-
suring the changes in the output logits. Stolfo et al.
(2023) examined the impact of changes in each
input unit on neuron activations and network out-
puts. However, previous studies failed to provide
strong mathematical support for their explanations.
In contrast, in this paper, we use interactions to
explain how LLMs solve arithmetic tasks, which
has been proven to be a faithful explanation.

Using game-theoretic interactions to explain
DNNs. Ren et al. (2023a) proposed using inter-
actions to explain DNNs and provided a series of
theoretical guarantees to ensure the faithfulness of
this explanation. A series of studies further ex-
plored using interactions to explain the representa-
tional power of DNNSs, including adversarial robust-

ness (Wang et al., 2021), adversarial transferability
(Wang et al., 2020), and the overfitting problem
(Ren et al., 2023b; Zhou et al., 2023). However,
due to terabytes of data and billions of parame-
ters in LLMs, as well as the inherent complexity
of arithmetic reasoning tasks, whether interactions
can be used to explain the arithmetic reasoning of
LLMs while ensuring the faithfulness of the expla-
nation remains to be verified.

3 Using interactions to explain inference
patterns encoded by LL.Ms

3.1 Preliminaries: Disentangling the network
output using interactions

Given a DNN and an input sample = with n vari-
ables indexed by NV = {1,2,...,n}, we can obtain 2"
masked® sentences {xr | T C N} by masking® each
of n variables. Specifically, zr denotes the input
sentence when we keep variables in 7 unchanged
and mask? variables in N\T. z, denotes the input
sentence when all variables in « are masked?. Ren
et al. (2021b) have proven that there exists a sur-
rogate logical model ¢(-) that can well predict/fit
the scalar output of the DNN for all 2" different
masked sentences, as Theorem 1 shows.

VT C N,¢(zr) = ¢ (z9) + Z 1(S|er) - Is, 1)
SCN,S£0

the trigger function 1(S|zr) represents an AND
relationship among the input variables in a set S C
N. That is, if all variables in S are present in T,
then 1(S|zr) = 1. Otherwise, if any variable in .S is
masked?, then 1(S|zr) = 0. Each interaction S has
a scalar weight Is.

Theorem 1. (Universal matching property, as
proven by Ren et al. (2023a)). When the scalar
weight Is in the logical model ¢(-) is set as follows,

VSCN,S#0,Is= Z (1) (@g), @)

S'CS

then we have VT C N, the output score of the DNN
v(zr) = ¢ (@)

The universal matching property guarantees the
theoretical faithfulness of using interactions to ex-
plain the DNN. That is, the interaction truly reflects
the inference logic of the DNN. Besides, the inter-
action has been proven to serve as the basis for
many game-theoretic metrics, further ensuring its
theoretical faithfulness. Please see Appendix C for
more details about game-theoretic metrics.

3.2 Explaining the LLLM using interactions

Although interactions have been widely used to
explain traditional DNNss, the following two chal-
lenges remain in using interactions to explain the
forward propagation process of the LLM.

(1) How to quantify interactions encoded by
an LLM in intermediate layers. Given an LLM
with L layers*, we follow previous work (Wendler
et al., 2024) by focusing on the embedding of the
last input token at each layer i. We conduct exper-
iments, detailed in Appendix E, showing that the
mid-layer features of other tokens remain nearly
unchanged when the input is masked®. At layer 1,
we set the output score v (zr) as follows.

(SO @n)" - fO(@r)

) _
@) =)b [f0@h O

v

where) € R? denotes the embedding of the last
input token and ||-||» is the L2-norm. The score
v (zr) measures the utility of f)(xr) along the
direction of f®(zy). Since significant masking
typically removes feature strength along the fea-

AR CINYD)
[GRICTeI ¥
v (xr) for differently masked sentences xr are
attributed to interaction effects on the i-th layer’s
feature. Thus, the interactions computed based on
the scores v (x7) for all T C N can be considered
as being encoded by features at the /-th layer. Note
that we use f(xr) — f(xp) to replace fO(xr),
where f(xy) denotes the embedding when we
mask? all input variables in «. This shifting opera-
tion is used to ensure that & (x4) = 0.

(2) We use words instead of tokens as input
variables. It is because the tokenizers of differ-
ent LLMs adopt different strategies for encoding
numbers. For example, the Llama-2-7B (Touvron
et al., 2023) model divides the word “/5” into two
tokens “/” and “5,” while the OPT-1.3B (Zhang
et al., 2022) model obtains a single token “/5.” To
ensure a fair comparison of interactions encoded by
different LLLMs, we treat all tokens within a word
as a single input variable. When generating the
masked® sentence 7, we use a specific padding to-
ken (see Appendix B for details) to mask all tokens
that belong to the words in N \ 7.

Base on the above two settings, we quantify inter-
actions in LLMs when solving arithmetic problems.
Figure 2 shows the top 10 interactions (i.e., those
interactions with largest absolute values) encoded?

ture direction , changes in the score

“Please see Appendix D for details about network archi-
tectures and chosen layers.

Given a simple one-operator arithmetic problem as input: “How much is? 4 times 2? Answer is”

The Llemma-7B model predicts: 8 (Correct)
The 5th layer The 30th layer

i The OPT-1.3B model predicts: 4 (Incorrect)
- The 3th layer

The 24th layer

I{isb}=0'51 I{How,much,isa,4,1||mw,2,Answer}=0-53 I(much,isa,4,11111(3>,2,Answer}=1-34 I{isb)=0~80
Itanswery=0.51 I{How,isaA,lxmm,Z,Answer,isb}z0'50 I{muCh,iS,4,llHl(’s,Z,AnSWer,iSb}=_1'34 ItAnswery=0.07
Iisy=0.35 {How,much,isaA-,Hnn*x‘,Z,Answer,isb}:'0'48 I{4,Answer}=-1.18 {How,much,is"‘,Answer,isb}:0'06
l{isa,Answer}='0-32 I{How,much,isa,4,r1mcs,z}z‘o-‘l'7 : 1{4,Answer,isb}=1'18 {isa,Answer}='0-
I{How,Answer}='0-31 l{isa""“'““5'2"'\“5""9"}:0'46 I{Z,Answer)='1'17 I{How,much,isa,nnm.s,Z,Answer,iSb}=-O'05
Itmuchis?y=-0.31 I{HOW.muChliSaA-“”“’\':2.i5b}20'41 I{Z,Answer,isb}=1'17 I{How,much,is? Answer}=-0.05
I{How,isa}='0~30 I{isa,4,timU\-,Z,Answer,isb}:’o"l'o 1{1111u~s,Answer}='1-16 1{15"‘,4.1\mvx‘,Z,Answer,isb}:O'OS
Iisa 4, Answery=0-30 Iimuch,is® 4,times,2, Answer}=-040 I{Umus,Answer,isb}=1‘16 {much,isaA,umcs,Z,Answer,isb}z'O'OS
I{isa,4}=0'30 I{muCh,iSa,‘l-,YilnL‘S,Z,iSb}=-0'40 I{much,isa,4,2,Answer}='1-14 {rinws,Z,iSb}z-O'OS
I{Ilmos}zo-?’o I{much,isa,4,\1mu>,2,Answer,isb}=0‘39 I{much,i53,4,2,Answer,isb}:1‘14 I{much,isa,Answer,isb}='0'05
le=2 : le—1

Sis —5:{?53,4' times, 2} : S5 —S:{isb}

2 S={is? 4, times, 2, Answer} i = S={Answer}
Eg f | S={times} i §g S={times, Answer}
=2 101 Y S={much, times} =2 104 S={times, Answer, is"}
ES / S={4} ES §={4,2}
28 51 g S={How, much, is?, Answer, isP} S8 0.5 S={How, is?, 2, Answer, is"}

2 - P A |[=S={much, is?} : o —S={much, is?, 4, times, 2}

/Y . i —_—————— | —_ i S i
0.0+ . . . S={How, is, 4, 2, Answer} i £004 . ; S={How, is?, 4, times, Answer, 1sb}
10 20 30 H 10 20
Layer [Layer [

(a) Interactions encoded by the Llemma-7B model

(b) Interactions encoded by the OPT-1.3B model

Figure 2: Visualization of top 10 interactions encoded by LLMs when computing features in different layers. Results
show that the Llemma-7B model mainly focuses on interactions containing both operands (in blue) and operators
(in orange) in a late layer (i.e., the 30th layer). In comparison, the OPT-1.3B model mainly focuses on interactions
that contain only context-free words in a late layer (i.e., the 24th layer), which may be the reason why the OPT-1.3B
model answers incorrectly. Note that superscripts a and b are not input to the LLM, but are used to distinguish two

[TEPRL]

words of “is” in two positions.

by the Llemma-7B model (Azerbayev et al., 2023)
and the OPT-1.3B model (Zhang et al., 2022) when
solving an one-operator problem “How much is 4
times 2? Answer is.” The Llemma-7B model pre-
dicts the correct answer “8,” while the OPT-1.3B
model predicts the incorrect answer “4.” We ob-
serve that the Llemma-7B model mainly focuses
on interactions that contain only context-free words
in an early (5th) layer®, and mainly focuses on in-
teractions containing both operands and operators
in a late (30th) layer. In comparison, the OPT-1.3B
model mainly focuses on interactions that contain
only context-free words in a late (24th) layer, which
might be the reason why the OPT-1.3B model an-
swers incorrectly.

To better observe the changing trends of different
interactions encoded by an LLM during forward
propagation, Figure 2 reports the curves of interac-
tions encoded by LLMs when computing features.
To ensure a fair comparison of interactions at dif-
ferent layers, we compute the normalized strength
ISl
VAON
where 2 = Egcn|I%|. As Figure 2 shows, the

Llemma-7B model enhances its focus on interac-

of interactions at different layers, that is,

3 Please see Appendix D for details about network archi-
tectures and chosen layers.

tions containing both operands and operators (e.g.,
S = {is* 4, times, 2}) during forward propaga-
tion. In comparison, the OPT-1.3B model does not
show a preference for any interactions in the middle
layers and shifts its focus to interactions that con-
tain only context-free words (e.g., S = {is®}) in
the very few layers close to the output layer. There-
fore, interactions provide us with a new perspective
to explain the internal mechanism of LLMs for
arithmetic reasoning.

3.3 Defining and quantifying different types
of interaction patterns

Inspired by the above observations obtained in Sec-
tion 3.2, we classify the variables in an input arith-
metic query « into the following three categories:
operand variables x°*, operator variables z°" and
context-free variables =**™. Thus, all 2" interac-
tions can be classified as the following four types to
describe the inference patterns encoded by LLMs
for arithmetic reasoning.

e Operand interaction patterns. If an interaction S
contains at least one operand variable but no oper-
ator variables, we regard S as an operand pattern.
Let Q™ denote the set of all operand patterns.

Q%P4 = (5|32 e SA R € S @)

e Operator interaction patterns. If an interaction
S contains at least one operator variable but no
operand variables, we regard S as an operator pat-
tern. Let Q° denote the set of all operator patterns.

QP ={S |3z c SAPx™ € S}. 5)

e Operand-operator interaction patterns. If an
interaction S contains at least one operand variable
and at least one operator variable, we regard S as
an operand-operator pattern. Let Q" denote the
set of all operand-operator patterns.

QOPIOPT — 5| 35 c SA T2 € S} (6)

e Context-free interaction patterns. If an interac-
tion S contains neither operand nor operator vari-
ables, we regard S as a context-free pattern. Let
Qfee denote the set of all context-free patterns.

Qctx—free _ {S | ﬂmOPd cSA ﬂmopr S S} (7

Note that the union of the four sets above is
the complete set of 2" interactions. According
to Theorem 1, the sum of numerical effects
of these four types of interactions can accu-
rately fit the output scores of the LLM, thereby
ensuring the faithfulness of the analysis. We
design the following metric to quantify how an
LLM focuses on a specific type of interaction
QvPe ¢ {Qopd, Qopr7 Qopd-opr7 Qctx-free}.

Definition 1. (Focality on a specific type of interac-
tion). The focality on a specific type of interaction
Qe at layer 1, RV (Q"), is computed as follows,

e Escame IV

1) type\ _ LSeqvre|lg 8
RO (gore) = el | ®)
where z1 = Escn|I| is a normalization term

used to ensure a fair comparison of the interaction
effects across different layers.

In Equation 8, a higher R (Q"7*) value suggests
that the LLM focuses more on this type of inter-
action Q" when computing features at layer /. If
RW Q") = 1, the strength of this type of inter-
action Q" encoded by the LLM is equal to the
average strength of all interactions encoded by the
LLM, which reveals that the LLM does not show a
preference for this type of interaction.

We also quantify interactions of different orders
to measure the representation complexity of an
LLM. The order m of an interaction S is defined
as the number of variables in S, that is, m = |S|.
We design the following metric to quantify how an
LLM focuses on m-order interactions.

Model 1-opr 2-opr
OPT-1.3B 6.7 53
GPT-J-6B 28.0 9.1
Llama-2-7B 77.7 17.8
CodeLlama-2-7B 75.0 13.8
MathCoder-L-7B 78.0 12.6
MathCoder-CL-7B 70.7 12.7
Llemma-7B 88.1 22.2
OPT-1.3B Fine-tuned 97.0 69.9

Table 1: Overall accuracy (%) of different LLMs on
one-operator and two-operator arithmetic queries.

Definition 2. (Focality on interactions of a specific
order). The focality on m-order interactions at
layer I, &Y is computed as follows,

Eisj—m 1]
O _ [S|=m|Lg 9
Ym € {1,2,...,n}, Ky S ORI €))

If %) has a larger value when m is higher, it indi-
cates that the LLLM encodes interactions of greater
complexity when computing features at layer I. If
xY has a larger value when m is lower, it indicates
that the LLM encodes interactions of lower com-
plexity when computing features at layer .

4 Comparative studies

In this section, we conduct comparative studies
to analyze the internal mechanism of LLMs for
arithmetic reasoning (see Section 4.1). We also
fine-tune an LLM to improve its capability to solve
arithmetic problems and explore how the LLM en-
codes different interaction patterns during the train-
ing process (see Section 4.2).

LLMs. We use interactions to analyze seven
LLMs for arithmetic reasoning, including the OPT-
1.3B (Zhang et al., 2022) model, the GPT-J-6B
(Wang and Komatsuzaki, 2021) model, the Llama-
2-7B (Touvron et al., 2023) model, the CodeLlama-
2-7B (Roziere et al., 2023) model, the MathCoder-
L-7B (Wang et al., 2023) model, the MathCoder-
CL-7B (Wang et al., 2023) model, and the Llemma-
7B (Azerbayev et al., 2023) model. Appendix B
shows how to mask words for these LLMs.

Data. We follow Karpas et al. (2022); Razeghi
et al. (2022); Stolfo et al. (2023) to conduct ex-
periments on a set of arithmetic problems hand-
crafted by humans, including 6 templates for one-
operator two-operand queries and 29 templates for
two-operator three-operand queries. For example,
“The sum of ny and ny is” and “What is the ratio be-
tween n1 minus no and ng? The answer is.” Each
template for one-operator queries includes all four
arithmetic operators, i.e., {+, —, X, =}, and each

operator patterns =o=operand patterns == operand-operator patterns =
CodelLlama-2-7B

OPT-1.3B GPT-J-6B Llama-2-7B

context-free patterns

MathCoder-L-7B MathCoder-CL-7B . Llemma-7B

21 X
18 14
(O/%
o A
0.9 %EE-»---«;- N\ || =

1 7 13 19 2 15 22 2

i\ |11 1.2 ! \ W /
A‘Mj,\ ,M>(1.0| Jke ,\ YV\—{ 1.0 «1’ /,p u(fM\ e Mﬂ{l\i’ﬁ?ﬁ

T s \

A \
4 ‘\/V 0.8 YA/
17 25 33

8
Layer [Layer [

g
Layer [Lays

/ o. >
17 25 33 1 9 17 25 33 1 9 17 25 33 1 9
er

l Layer [Layer [

Figure 3: Comparing the normalized average strength R of different types of interaction patterns encoded by
LLMs during forward propagation. Each curve in the figure is averaged over various one-operator arithmetic queries.

template for two-operator queries corresponds to a
unique combination of two operators. Please see
Appendix F for template details. For each template
of one-operator queries, we generate 20 prompts
by randomly sampling operands (n1, n2)6, and for
each template of two-operator queries, we generate
5 prompts following the same procedure.

Table 1 shows the overall accuracy of different
LLMs on one-operator queries and two-operator
queries. We observe that the Llama-2-7B model,
the CodeLlama-2-7B model, the MathCoder-L-
7B model, the MathCoder-CL-7B model, and the
Llemma-7B model perform well on one-operator
queries, while the OPT-1.3B model and the GPT-
J-6B model perform relatively poorly. However,
for two-operator queries, all seven LLMs perform
poorly. Please see Appendix G for accuracy test
results on each template.

4.1 Exploring the internal mechanism of
LLMs for solving arithmetic problems

In this subsection, we analyze the focality on dif-
ferent interaction patterns of LLMs during forward
propagation and obtain the following insights.
Insight 1: The internal mechanism of LLMs
for solving simple one-operator arithmetic prob-
lems is their capability to encode operand-
operator interaction patterns and high-order in-
teraction patterns. Figure 3 reports the focality on
different types of interaction patterns R encoded
by LLMs during forward propagation. The results
are averaged over all one-operator queries. We ob-
serve that for simple one-operator problems, in the
Llama-2-7B model, the CodeLlama-2-7B model,
the MathCoder-L-7B model, the MathCoder-CL-
7B model, and the Llemma-7B model, R® (Q°pd-orr)
gradually increases starting from the middle layers
and takes the lead in the late layers. This sug-
gests that LLMs with good arithmetic capabilities
tend to use more operand-operator interactions for

®We sample operands from {1, 2, ..., 9} since some
LLMs tokenize each digit as an independent token, such as
the Llama-2-7B model.

arithmetic reasoning during the later stages of for-
ward propagation. Although these LLMs gradu-
ally compress the encoding of operand-operator
interaction patterns as they approach the output
layer (R Q) of very few layers close to the
output layer tends to decrease), the encoding of
these interaction patterns in the late layers is suf-
ficient to support their arithmetic reasoning. In
comparison, in the OPT-1.3B model and the GPT-
J-6B model, R"Y remains around 1.0 in most layers,
while RY Q) suddenly increases in the very
few layers close to the output layer. This suggests
that LLMs with poor arithmetic capabilities do not
exhibit a preference for any interaction patterns in
the middle layers and focus excessively on context-
free interaction patterns in the very few layers close
to the output layer.

Note that, We also observe that in Figure 3,
among all models, the MathCoder-CL-7B model
shows the highest focus on operand-operator in-
teraction patterns in the late layers. However, its
accuracy on one-operator queries is not the highest
(see Table 1), which may be because it overly limits
the encoding of both operator interaction patterns
and operand interaction patterns in the late layers.

Figure 4 reports the focality on interaction pat-
terns of different orders ' encoded by LLMs
during forward propagation. The results are aver-
aged over queries from a single one-operator tem-
plate, as different templates correspond to different
maximum orders, i.e., the number of input words.
We observe that for simple one-operand prob-
lems, in the Llama-2-7B model, the Codel.lama-
2-7B model, the MathCoder-L-7B model, the
MathCoder-CL-7B model, and the Llemma-7B
model, ! for m € {6,7,8} tends to increase star-
ing from the middle layers. This suggests that
LLMs with good arithmetic capabilities tend to use
more high-order interactions for arithmetic reason-
ing during the later stage of forward propagation.
In comparison, in the OPT-1.3B model and the
GPT-J-6B model, most ¥ in the middle layers is
around 1.0, while in the very few layers close to the

=0~ 1st-order ==2nd-order 3th-order 4th-order Sth-order 6th-order === 7th-order =o=8th-order

OPT-1.3B GPT-J-6B Llama-2-7B CodelLlama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B
6.0 3.0 4.0
4.0 3.0]
O] 2.0

2.0|

2.0 B A

sty 1.0 i 1.0| Ny

T 7 13 19 25 1 8 15 22 2 1 9 17 25 33 1 9 25 33 1 9

25 33)

17 17 17
Layer | Layer | Layer [Layer | Layer [Layer | Layer |

Figure 4: Comparing the normalized average strength ") of interaction patterns of different orders encoded by
LLMs during forward propagation. Each curve in the figure is averaged over various one-operator arithmetic queries.

Fine-tuned on one-operator queries

OPT-1.3B Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
6.5 23.4 62.4 83.9 14 96.0 14 97.0 Accuracy(%)
. . 1.2 ~c- operator patterns
R 5 1o =o= operand patterns
: - ’ == operand-operator patterns
B N ™ 08\ o / <~ context-free patterns
13 1 25 1 7 13 19 25 1 7 13 19 25 1 7 13 19 25
Layer [Layer [Layer [Layer [Layer [
6.0 6.0 6.0, 0 0
=o=1st-order 6th-order
([)4 0 X 4.0 4.0 ~=2nd-order 7th-order
K 3rd-order 8th-order
2.0) Al ~~ert, W - P 2.0f | . 4th-order =o=9th-order
i V== = = R e - Sth-order =@=10th-order
1 7 13 19 25 T 7 13 19 25 1 7 13 19 25 1 7 13 19 25 1 7 13 18 25 1 7 13 19 25
Layer [Layer [Layer [Layer [Layer [Layer [

Figure 5: Visualizing the dynamic changes of different interaction patterns encoded by the OPT-1.3B model during
the training process on one-operator queries. Each curve is averaged over various one-operator queries. Results
show that as accuracy increases, the OPT-1.3B model tends to enhance the strength of operand-operator interaction

patterns (in the upper part) and the strength of high-order interaction patterns (in the lower part).

output layer, «\" suddenly increases. This suggests
that LLMs with poor arithmetic capabilities tend to
excessively focus on extremely low-order interac-
tion patterns. More results from other templates in
Appendix I lead to the same conclusion.

4.2 Dynamic encoding of different interaction
patterns during training process

We further explore how an LLM learns to solve
arithmetic problems. That is, we investigate how an
LLM encodes different interaction patterns when
trained on arithmetic problem data. To this end,
we fine-tune the OPT-1.3B model on arithmetic
queries in the following three different ways’. (1)
We fine-tune the OPT-1.3B model on one-operator
queries, increasing its accuracy on one-operator
queries from 6.7% to 97.0%. This version is termed
the OPT-1.3B-One model. (2) We fine-tune the
OPT-1.3B model on two-operator queries, increas-
ing its accuracy on two-operator queries from 5.3%
to 69.9%. (3) Building upon the OPT-1.3B-one
model, we further train it on two-operator queries.
We analyze the dynamic encoding of different in-
teraction patterns during the above three training
processes and obtain the following insights.
Figure 5 reports the dynamic changes of differ-

"Please see Appendix H for details about model training.

ent interaction patterns encoded by the OPT-1.3B
model during training on one-operator queries. The
results of R are averaged over all one-operator
queries, and the results of () are averaged over
queries from a single one-operator template®. We
observe that as the accuracy of the OPT-1.3B model
on one-operator queries increases, R (Q°P°P) and
k(Y for m € {8,9,10} gradually increase in the mid-
dle layers. The results validate our Insight 1.
Note that, we also observe that the OPT-1.3B
model consistently enhances its focus on context-
free interaction patterns in the very few layers close
to the output layer during the training process. This
may be due to the inherent preference of the OPT-
1.3B model, which tends to enhance its focus on
context-free interaction patterns in the very few
layers close to the output layer, as Figure 3 shows.
Insight 2: The internal mechanism of LLMs
for solving relatively complex two-operator
arithmetic problems is their capability to en-
code operator interaction patterns. Figure 6 re-
ports the dynamic changes of different interaction
patterns encoded by the OPT-1.3B model during
training on two-operator queries. The results are

8 As different templates correspond to different maximum
orders, please see Appendix I for more results from other
templates, which lead to the same conclusion.

Fine-tuned on two-operator queries

OPT-1.3B Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
5.3 38.9 45.9 57.8 63.1 69.9 Accuracy(%)
1.4 4 1.4 1.4 1.4 1.4
WA A

1.2 J 1.2 ,\/v 1.2 1.2 operator patterns

RO, ol V Lo ;:s/t \ A ol Spaede N e |10l A woofhf | 0= operand patterns
\"'*f'\ﬁ b Y Y ; =\ ~ || | —*—operand-operator patterns
/" b
0.8 \J\/ 0.8 \/ 0.8 V' \ [|o.8 - context-free patterns
1 7 13 1 25 1 7 13 19 25 1 7 13 16 25 1 7 13 19 25 1 7 13 10 25 1 7 13 10 2

Layer [Layer [Layer [Layer [Layer [Layer [

Figure 6: Visualizing the dynamic changes of different types of interaction patterns encoded by the OPT-1.3B model
during the training process on two-operator queries. Each curve is averaged over various two-operator queries.
Results show that the OPT-1.3B model tends to consistently focus more on operator interaction patterns.

Fine-tuned on two-operator queries

OPT-1.3B-One Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
97.0 36.6 29.7 22.0 215 20.6 Accuracy(%)
1.4 14— 4 4 1.4 1.4
1.2| 1.2 \ 1.2] operator patterns
1 -
RC)1.0 1.0l 1o -c operand patterns
2) —#= operand-operator patterns
0.8 \Y oo A" |08 s <= context-free patterns
T 7 13 19 25 1 7 13 19 25 1 7 13 19 25 1 7 13 19 =25 1 7 13 19 25 1 7 13 19 25
Layer [Layer [Layer [Layer [Layer [Layer [
6.0 0 6.0 6.0 6.0 6.0
=o= 1st-order 6th-order
(1)4.0 4.0 4.0l 4.0l 4.0 4.0 == 2nd-order 7th-order
K 3rd-order —~ 8th-order
2.0 "‘"’,"‘\ 2.0 y 2 2.0 A o K 2.0] § . % 2.0 ’ — - é 0 N o 4th-order =o=9th-order
o AR - o Sth-order =e=10th-order
1 7 13 19 25 1 7 13 19 25 1 7 13 19 25 1 7 13 19 25 1 7 13 19 25 1 7 13 19 25
Layer [Layer [Layer [Layer [Layer [Layer [

Figure 7: Visualizing the dynamic changes of different interaction patterns encoded by the OPT-1.3B-One model
during the training process on two-operator queries. Each curve is averaged over various one-operator queries.
Results show that as accuracy decreases, the OPT-1.3B-One model tends to decrease the strength of operand-operator
interaction patterns (in the upper part) and the strength of high-order interaction patterns (in the lower part).

averaged over all two-operator queries. We observe ~ more complex knowledge. We think it might be
that as the accuracy of the OPT-1.3B model on two- due to spurious forgetting of LLMs (Zheng et al.,
operator queries increases, R (Q°") remains con- 2025), which we further discuss in Appendix L.
sistently high in the middle layers. This suggests

that solving relatively complex two-operator arith-

metic problems requires an LLM to focus more on 5 Conclusion

operator interaction patterns.

Insight 3: When an LLM that can solve sim- In this paper, we use interactions to provide a deep
ple one-operator arithmetic problems learns understanding of the internal mechanism of LLMs
to solve relatively complex two-operator arith- for arithmetic reasoning. Through comparison stud-
metic problems, the LLM progressively loses its ies of different interaction patterns encoded by
capability to solve the simpler ones. Figure 7 re- LLMs during forward propagation, we find that
ports the dynamic changes of different interaction the internal mechanism of LLMs for solving sim-
patterns encoded by the OPT-1.3B-One model dur- ple one-operator arithmetic problems is their capa-
ing training on two-operator queries. The results of bility to encode operand-operator interaction pat-
R® are averaged over all one-operator queries, and terns and high-order interaction patterns. We fur-
the results of) are averaged over queries froma ther fine-tune an LLM to explore how an LLM
single one-operator template®. We observe that as encodes different interaction patterns when learn-
the accuracy of the OPT-1.3B-One model on one- ing to solve arithmetic problems. We find that the
operator queries decreases, R (") and) for internal mechanism of LLMs for solving relatively
m € {8,9,10} gradually decrease, and most R and complex two-operator arithmetic problems is their
x" tend to be around 1.0 in the middle layers, The capability to encode operator interaction patterns.
results validate our Insight 1. This suggests that ~We also find that an LLM forgets how to solve
the OPT-1.3B-One model gradually forgets how to simple arithmetic problems as it learns to solve
solve simple arithmetic problems while learning relatively complex arithmetic problems.

Limitations

We have only studied simple arithmetic problems
and have not yet extended our research to more
complex math word problems. In the future, we
will work on this.

References

Marco Ancona, Cengiz Oztireli, and Markus Gross.
2019. Explaining deep neural networks with a poly-
nomial time algorithm for shapley value approxima-
tion. In International Conference on Machine Learn-

ing, pages 272-281. PMLR.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Piotr Dabkowski and Yarin Gal. 2017. Real time image
saliency for black box classifiers. Advances in neural
information processing systems, 30.

Huiqi Deng, Qihan Ren, Hao Zhang, and Quanshi
Zhang. 2021. Discovering and explaining the rep-
resentation bottleneck of dnns. arXiv preprint
arXiv:2111.06236.

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. 2019.
Understanding deep networks via extremal pertur-
bations and smooth masks. In Proceedings of the
IEEE/CVF international conference on computer vi-

sion, pages 2950-2958.

Michel Grabisch and Marc Roubens. 1999. An ax-
iomatic approach to the concept of interaction among
players in cooperative games. International Journal
of game theory, 28:547-565.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak
Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit
Bata, Yoav Levine, Kevin Leyton-Brown, et al. 2022.
Mrkl systems: A modular, neuro-symbolic architec-
ture that combines large language models, external
knowledge sources and discrete reasoning. arXiv
preprint arXiv:2205.00445.

Scott Lundberg. 2017. A unified approach to
interpreting model predictions. arXiv preprint
arXiv:1705.07874.

Daking Rai and Ziyu Yao. 2024. An investigation of
neuron activation as a unified lens to explain chain-of-
thought eliciting arithmetic reasoning of llms. arXiv
preprint arXiv:2406.12288.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term

frequencies on few-shot reasoning. arXiv preprint
arXiv:2202.07206.

Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quan-
shi Zhang. 2021a. Towards axiomatic, hierarchical,
and symbolic explanation for deep models.

Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quan-
shi Zhang. 2023a. Defining and quantifying the emer-
gence of sparse concepts in dnns. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 20280-20289.

Jie Ren, Zhanpeng Zhou, Qirui Chen, and Quanshi
Zhang. 2021b. Can we faithfully represent masked
states to compute shapley values on a dnn? arXiv
preprint arXiv:2105.10719.

Qihan Ren, Huiqgi Deng, Yunuo Chen, Siyu Lou, and
Quanshi Zhang. 2023b. Bayesian neural networks
avoid encoding complex and perturbation-sensitive
concepts. In International Conference on Machine
Learning, pages 28889-28913. PMLR.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Lloyd S Shapley. 1953. A value for n-person games.
Contribution to the Theory of Games, 2.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A mechanistic interpretation of arith-
metic reasoning in language models using causal me-
diation analysis. arXiv preprint arXiv:2305.15054.

Mukund Sundararajan, Kedar Dhamdhere, and Ashish
Agarwal. 2020. The shapley taylor interaction in-
dex. In International conference on machine learn-
ing, pages 9259-9268. PMLR.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319—
3328. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint
arXiv:2310.03731.

Xin Wang, Shuyun Lin, Hao Zhang, Yufei Zhu, and
Quanshi Zhang. 2021. Interpreting attributions and
interactions of adversarial attacks. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 1095-1104.

Xin Wang, Jie Ren, Shuyun Lin, Xiangming Zhu, Yisen
Wang, and Quanshi Zhang. 2020. A unified approach
to interpreting and boosting adversarial transferabil-
ity. arXiv preprint arXiv:2010.04055.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea,
and Robert West. 2024. Do llamas work in english?
on the latent language of multilingual transformers.
arXiv preprint arXiv:2402.10588.

Zeping Yu and Sophia Ananiadou. 2024. Interpret-
ing arithmetic mechanism in large language models
through comparative neuron analysis. arXiv preprint
arXiv:2409.14144.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu-ming
Cheung, Xinmei Tian, Xu Shen, and Jieping Ye.
2024. Interpreting and improving large language
models in arithmetic calculation. arXiv preprint
arXiv:2409.01659.

Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma.
2025. Spurious forgetting in continual learning of
language models. arXiv preprint arXiv:2501.13453.

Huilin Zhou, Hao Zhang, Huiqgi Deng, Dongrui Liu,
Wen Shen, Shih-Han Chan, and Quanshi Zhang.
2023. Concept-level explanation for the generaliza-
tion of a dnn. arXiv preprint arXiv:2302.13091.

A Strategies of masking input variables

In the research of attribution methods, it is com-
mon to use a specific token or embedding to mask
input variables of a DNN (Lundberg, 2017; Ancona
et al., 2019; Fong et al., 2019), and use changes
in network outputs on the masked samples to esti-
mate attributions of input variables. However, each
method has certain limitations. The mean baseline
value (Dabkowski and Gal, 2017), i.e., setting the
baseline value for each input variable to its mean
across all samples, introduces additional signals,
e.g., grey dots in images. Similarly, the zero base-
line value (Ancona et al., 2019; Sundararajan et al.,
2017), i.e., setting baseline values for all input vari-
ables to zero, would also introduce additional sig-
nals to the input, such as black dots.

B Details about how to mask input words
for different LLMs

In this paper, we analyze seven LLMs for arith-
metic reasoning, including the OPT-1.3B model,
the GPT-J-6B model, the Llama-2-7B model, the
CodeLlama-2-7B model, the MathCoder-L-7B

10

model, the MathCoder-CL-7B model, and the
Llemma-7B model. For the OPT-1.3B model, we
use the “</s>” token with the token id = 2 to
mask the words in N'\T'. For the GPT-J-6B model,
we use the “<|endoftext|>" with the token id =
50256 to mask the words in N\T'. For the other
five models, including the Llama-2-7B model,
the CodeLlama-2-7B model, the MathCoder-L-
7B model, the MathCoder-CL-7B model, and the
Llemma-7B model, with Llama as their base model,
we use the “<unk>" with the token id = 0 to mask
the words in N\T.

C Properties of interactions

The Harsanyi interaction [g, i.e., the interaction
in this paper, can explain the elementary mecha-
nism of existing game-theoretic metrics (Ren et al.,
2021a), including the Shapley value (Shapley,
1953), the Shapley interaction index (Grabisch and
Roubens, 1999), and the Shapley-Taylor interac-
tion index (Sundararajan et al., 2020).

(1) Connection to the Shapley value (Shapley,
1953). Let ¢(i) denote the Shapley value of an
input variable ¢, given the input sample x. Then,
the Shapley value ¢(i) can be explained as the
result of uniformly assigning attributions of each
Harsanyi interaction to each involving variable
i, i, ¢(i) = Yscn i mﬁlmi}. This also
proves that the Shapley value is a fair assignment
of attributions from the perspective of the Harsanyi
interaction.

(2) Connection to the Shapley interaction index
(Grabisch and Roubens, 1999). Given a subset of
variables 7' C N in an input sample @, the Shap-
ley interaction index I, ;hapley can be represented as
I;hapley = Yscmr ‘S‘%I sur. In other words,

the index I;hap 1Y can be explained as uniformly

allocating I/ such that S” = S U T to the compo-
sitional variables of S’, if we treat the coalition of
variables in 7" as a single variable.

(3) Connection to the Shapley Taylor interaction
index (Sundararajan et al., 2020). Given a subset of
variables 7' C N in an input sample x, the k-th or-
der Shapley Taylor interaction index I. :SFhapley_Taylor
can be represented as a weighted sum of interac-
tion effects, i.e., Iyr Y™ — [1if |T| < k;
I;hapley-Taylor _ ZSQN\T (|S|k+k)_1ISUT if |T| _
k; and I3MY YO — 0 i |7 > k.

Given an input sample x, the Harsanyi interac-
tion [g satisfies seven desirable axioms in game

theory (Ren et al., 2021a), including the efficiency,
linearity, dummy, symmetry, anonymity, recursive
and interaction distribution axioms.

(1) Efficiency axiom. The output score of a
model can be decomposed into interaction effects
of different patterns, i.e., v(x) = > gy Is-

(2) Linearity axiom. If we merge output scores
of two models w and v as the output of model u,
ie,VS C Nyu(xs) = v(xs)+w(xs), then their
interaction effects 1 g)) and / éw) can also be merged
asVs C N, I = 1) + 13"

(3) Dummy axiom. If a variable ¢ € N is a
dummy variable, i.e., VS € N\{i}, v(xsu()
v(xs) + v(xy;), then it has no interaction with
other variables, V() # T C N\{i}, Irugiy—o-

(4) Symmetry axiom. If input variables ¢, 5 € N
cooperate with other variables in the same way,
VS © N\ A{i,j}v(@suy) = v(esugy), then
they have the same interaction effects with other
variables, VS C N\ {4,5}, Isupiy = Isugy-

(5) Anonymity axiom. For any permutations 7
on N, we have VS C N, Iév) = Ifrgv), where
7S = {r(i) | i € S}, and the new model 7v is de-
fined by (7v)(xrs) = v(xs). This indicates that
interaction effects are not changed by permutation.

(6) Recursive axiom. The interaction effects
can be computed recursively. For ¢ € N and
S C N\ {i}, the interaction effect of the pat-
tern S U {i} is equal to the interaction effect
of S with the presence of ¢ minus the inter-
action effect of S with the absence of i, i.e.,
VS C N \ {i}alsu{i} I(z is always present)

S
i is al t . .
Ig.1 g is always present) denotes the interaction

fect when the variable ¢ is always present
I(’L is always present)
s

ef-
as
a constant context, i.e.,

ZLQS(—U‘SHL‘ (T Lugy)-

(7) Interaction distribution axiom. This axiom
characterizes how interactions are distributed for
“interaction functions” (Sundararajan et al., 2020).
An interaction function vy parameterized by a sub-
set of variables T is defined as follows: VS C
N,vr(xg) = ¢, if T' C S; otherwise, vp(xg) =
0. The function v models pure interaction among
the variables in 7" because only if all variables in T’
are present the output value will be increased by c.
The interactions encoded in the function vr satisfy
Ir=c, andVS #7T,Ig = 0.

11

D Details about network architectures
and chosen layers for experiments in
section 4

OPT-1.3B model. The OPT-1.3B model is com-
posed of the following parts: one word em-
bedding layer (namely Embedding Layer), one
position embedding layer (namely OPTLearned-
PositionalEmbedding), 24 OPT decoder mod-
ules (namely OPTDecoderLayer), and one lin-
ear output layer (namely Linear Layer). The
architecture can be summarized as Embed-
ding Layer — OPTLearnedPositionalEmbed-
ding — [OPTDecoderLayer] x24 — Linear Layer.
Each module of OPTDecoderLayer contains a self-
attention mechanism layer (namely OPTAttention),
an activation function (namely ReLU), a layer nor-
malization operation (namely LayerNorm), two
fully connected layers (namely Linear), and a final
layer normalization operation (namely LayerNorm).
In our experiments, we selected all 24 OPTDe-
coderLayer modules and conducted experiments
based on the output features of the LayerNorm op-
eration.

GPT-J-6B model. The GPT-J-6B model in-
cludes a single word embedding layer (namely Em-
bedding Layer), followed sequentially by 28 Trans-
former blocks (namely GPTJBlock), culminating in
an output layer normalization (namely LayerNorm)
and a linear output layer (namely Linear Layer).
This architecture can be succinctly described as:
Embedding Layer — [GPTJBlock]x28 — Layer-
Norm — Linear Layer. Delving into the details of
each module of GPTJBlock, it comprises three in-
tegral components, including a layer normalization
(namely LayerNorm), a self-attention mechanism
(namely GPTJAttention), and a feed-forward net-
work (namely GPTMLP). In our experiments, we
selected all 28 GPTJBlock modules and conducted
experiments based on the output features of the
LayerNorm operation.

Other Llama-based models. The other five
models based on Llama include the Llama-2-
7B model, the CodelLlama-2-7B model, the
MathCoder-L-7B model, the MathCoder-CL-7B
model, and the Llemma-7B model. These mod-
els share the same architecture, which is com-
posed of various elements: a single word embed-
ding layer (namely Embedding Layer), followed
by a sequence of 32 LlamaDecoderLayer, an out-
put layer normalization layer (namely LlamaRM-
SNorm), and culminating in a linear output layer

xr = {much, is} xr = {How, much, 1}

xr = {How, much, 5,1}

xr = {How, 1, Answer, is}

1.0[¢ , 1.0 ~ |10

b | . '3 |
AN 3 | \ A |
0.5] | ™~ [0.5 |

SNt Va |

v (xp)

!
/ | \ N A
\ \\)‘/\ﬂ & P\

1.0 =@ Token 1 =@= Token 8
i/ Token 2 Token 9
Token 3 Token 10
/" | =@=Token 4 Token 11
" | =@=Tokens Token 12
| Token 6 =@= Token 13
Token 7

“
Y.

e

{

3

0.5

17 25 33 9 17 25 33
Layer [Layer [

9

17 25 33 1 9 17 25 33
Layer [Layer [

Figure 8: The visualization of v(!) at different token positions across various layers of CodeLlama for the prompt
“How much is 5 plus 1? Answer is” under different masked inputs. Results show that except for the final tokens
of the complete sentence (i.e., token 10 and token 13), the v values of other tokens in the middle layers remain

almost unchanged.

(namely Linear Layer). This architecture can be
summarized as Embedding Layer — [LlamaDe-
coderLayer]x32 — LlamaRMSNorm — Linear
Layer. Delving into each module of LlamaDecoder-
Layer, it integrates multiple components, including
a self-attention mechanism layer (namely LlamaAt-
tention), a feed-forward network layer (namely Lla-
maMLP) encompassing several linear layers and
activation functions, an input layer normalization
(namely Input LayerNorm), and a post-attention
layer normalization (namely Post Attention Layer-
Norm), the latter serving to normalize the output
from the self-attention mechanism layer. In our ex-
periments, we selected all 32 modules of LlamaDe-
coderLayer and conducted experiments based on
the output features of the LayerNorm operation.

E The features of other tokens in the
middle layers remain unchanged

Through experiments, we found that, except for the
final token of the complete sentence, the v() values
at other token positions in the middle layers remain
almost unchanged. Figure 8 shows the v(!) values
at different token positions across various layers of
CodeLlama for the prompt “How much is 5 plus 1?
Answer is” under different masked inputs x7. The
prompt consists of 13 tokens {<s>, How, much, is,
space, 5, plus, space, 1, ?, answer, is, space}.
Except for token 10 (?) and token 13 (space), the
v values of other tokens in the middle layers
remain almost unchanged.

F Prompt Templates

In Table 2 and 3, we report the question templates
used as prompts for the model for one- and two-
operator queries, respectively. For two-operator
queries, we use one query template for each of the
29 possible two-operation combinations. To en-
able the model to output the answer directly, we

12

appended “The answer is” at the end of each tem-
plate.

G Performance of the LLMs

In Tables 4 and 5, we report the accuracy of the
LLMs on the arithmetic queries used in our analy-
ses. For the OPT-1.3B and GPT-J-6B models, we
treat each operand as a single token, while for other
LLMs, each number is split into multiple tokens
(07, “17, %27, ..., “9”) by the tokenizer.

H Fine-tuning Details

We fine-tune the OPT-1.3B model using the LoRA
architecture on one-operator and two-operator tem-
plates. For the one-operator templates, the model
is trained for 10 epochs on a dataset consisting of
3,500 samples with a batch size of 16. For the
two-operator templates, we train the model for 20
epochs on a dataset containing 29,000 samples,
with a batch size of 32. The training uses a learn-
ing rate of 8e-4 with a linear decay scheduler. The
LoRA configuration includes a rank of 8, a LoRA
alpha of 32, and a dropout of 0.05. We ensure no
overlap between the training data and any evalua-
tion or testing datasets.

I More experimental results

Figure 9 shows that LLMs with good arithmetic
capabilities gradually focus more on high-order
interaction patterns, while LLMs with poor arith-
metic capabilities exhibit a more dispersed focus
across interaction patterns of different orders in
the middle layers. Figure 10 illustrates that the
OPT-1.3B model gradually increases its focus on
high-order interaction patterns during the learning
process of simple arithmetic problems. Figure 11
demonstrates that the OPT-1.3B model gradually
decreases its focus on high-order interactions while
learning relatively complex arithmetic problems.

Type Addition Subtraction

1 How much is n; plus n2? Answer is How much is 1 minus ns? Answer is

2 What is n1 plus n2? Answer is What is n1 minus n2? Answer is

3 How much is the sum of n; and n2? Answer is How much is the difference between n; and n2? Answer is

4 What is the sum of n; and n2? Answer is What is the difference between n; and no? Answer is

5 The sum of n; and na is The difference between n1 and ns is

6 Given two numbers n1 and no, the sum of them is Given two numbers n1 and no, the difference between them is
Multiplication Division

1 How much is n; times ny? Answer is How much is n1 over n2? Answer is

2 What is n1 times no? Answer is What is n1 over no? Answer is

3 ‘What is the result of n1 times no? Answer is What is the result of n1 over n2? Answer is

4 How much is the product of n1 and n2? Answer is How much is the ratio between n1 and n2? Answer is

5 The product of n1 and n2 is The ratio of n; and ng is

6 Given two numbers n; and ng, the product of them is ~ Given two numbers n; and ng, the ratio between them is

Table 2: Question templates for one-operator arithmetic queries.

=o=1st-order ==2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order 8th-order =o=9th-order =e=10th-order
OPT-1.3B GPT-J-6B Llama-2-7B Codellama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B
: la.0

2.0

1.0

2 i 33 1 9 25 33 1 33 1

=

2 29 1

§ 15 2 9 17 25 9 17 25 17 g 17 25 9 17 25
Layer [Layer [Layer [Layer [Layer [Layer [

7 13 19
Layer [

=o=1st-order ==2nd-order 3th-order 4th-order Sth-order 6th-order 7th-order == 8th-order =e=9th-order

OPT-1.3B GPT-J-6B Llama-2-7B Codellama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B
4.0 30 >0 30 16 3.0
(b)K(l)s,o 2o 2.0 o 1.2 ' bo
2.0| 1.0l % 0.8 o
1.0| il1.0 A 1.0| ~lo.a
T 72801 533 1 3T

7 13 19 2 1 8 15 2 9 17 25 3 1 9 17 - 2 9 17 25 3 1 9 17 25 9 17 25
Layer [Layer [Layer [Layer [Layer [Layer [Layer [
Figure 9: Comparing the normalized average strength () of interaction patterns of different orders encoded by
LLMs during forward propagation. Each curve in the figure is averaged over various one-operator arithmetic queries,

corresponding to (a) template 2 and (b) template 3 in Table 2.

Fine-tuned on one-operator queries

o o o
OPT-1.3B Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
6.5 13.9 31.3 55.1 93.6 97.0 Accuracy(%)
6.0 5.0
ho —o—1st-order Sth-order
4.0 ' ~c~2nd-order —~6th-order
(a)® 3o ath-order =~
2.0 bo -order ==7th-order
® . 1.0{% T M [N - 4th-order =e=8th-order
007 7 13 19 25 1 7 13 19 2 1 7 13 19 2 T 7 13 19 2 1 7 13 19 25 1 7 13 19 25
Layer | Layer | Layer Layer | Layer Layer |
Fine-tuned on one-operator queries
OPT-1.3B Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
6.5 13.9 78.9 83.9 89.5 97.0 Accuracy(%)
4.0 4.0 4.0 —o—1st-order 6th-order
3.0 50 50 =2nd-order 7th-order
(b)e®s.0 ho 5o 3th-order ——8th-order
1o A Y 4th-order =e=9th-order
’ 0 10 Sth-order

1 7 13 19 25 1 7 13 19 25 1 7 13 19 2 7 13 19 25 1 7 13 19 25
Layer [Layer [Layer [Layer [Layer [Layer [

Figure 10: Visualizing the dynamic process of different interaction patterns encoded by the OPT-1.3B model during
the training process. Each curve is averaged over various one-operator queries, corresponding to (a) template O and
(b) template 3 in Table 2.

13

Format

R s T S s T s s S .
Il

e e e e s T T U e e N e N e N T T e e N e N N N N N
b
\

Sum A and B and multiply by C

What is the sum of A and the product of B and C?

What is the product of A minus B and C?

How much is A divided by the ratio between B and C?

What is the difference between A and the product of B and C?
How much is A times the difference between B and C?

What is the ratio between A plus B and C?

How much is A minus the difference between B and C?

What is the ratio between A minus B and C?

What is the difference between A and the ratio between B and C?

How much is A divided by the sum of B and C?

How much is A divided by the difference between B and C?
What is the sum of A and the ratio between B and C?

How much is A times the ratio between B and C?

How much is A times the sum of B and C?

How much is the sum of A divided by B and C?

How much is A divided by B divided by C?

How much is the difference between A divided by B and C?
How much is A divided by B times C?

How much is A divided by B times C?

How much is A divided by C?

How much is A plus B times C?

How much is A times B times C?

Table 3: Question templates for two-operator arithmetic queries.

1-opr OPT-1.3B GPT-J-6B Llama-2-7B CodeLlama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B
2 0.071 0.295 0.941 0.887 0.920 0.843 0.979
3 0.020 0.368 0.637 0.773 0.803 0.707 0.886
4 0.123 0.205 0.670 0.801 0.762 0.663 0.917
5 0.057 0.125 0.701 0.741 0.769 0.733 0.844
6 0.079 0.071 0.847 0.648 0.845 0.744 0.895
7 0.106 0.431 0.733 0.707 0.545 0.475 0.707

J Information about the use of Al
assistants.

In this paper, Al tools such as DeepSeek were used
for translation and grammar checking.

Table 4: Accuracy(%) of 7 models on 6 one-operator templates.

K Computational budget

We conducted our experiments on an NVIDIA
GeForce RTX 3090 24GB GPU. For the Llama-2-
7B model, the computation time per one-operator

operator sample is around 60 seconds.

14

sample is around 30 seconds, while that for a two-

2-opr | OPT-1.3B GPT-J-6B Llama-2-7B CodeLlama-2-7B MathCoder-L-7B MathCoder-CL-7B Llemma-7B

1 0.00 0.010 0.004 0.007 0.004 0.003 0.007
2 0.000 0.001 0.015 0.016 0.001 0.005 0.015
3 0.012 0.029 0.016 0.023 0.013 0.027 0.022
4 0.078 0.056 0.117 0.124 0.132 0.193 0.128
5 0.045 0.031 0.051 0.061 0.047 0.045 0.098
6 0.002 0.027 0.044 0.051 0.044 0.036 0.054
7 0.117 0.152 0.144 0.160 0.157 0.157 0.168
8 0.004 0.009 0.028 0.032 0.026 0.025 0.028
9 0.116 0.203 0.328 0.446 0.257 0.282 0.424
10 0.018 0.008 0.036 0.041 0.019 0.028 0.048
11 0.195 0.360 0.161 0.157 0.159 0.163 0.363
12 0.221 0.175 0.372 0.368 0.369 0.367 0.373
13 0.005 0.002 0.074 0.073 0.021 0.016 0.034
14 0.046 0.116 0.143 0.144 0.104 0.146 0.229
15 0.000 0.025 0.027 0.025 0.007 0.015 0.053
16 0.000 0.009 0.063 0.055 0.004 0.012 0.048
17 0.018 0.004 0.004 0.016 0.021 0.024 0.051
18 0.200 0.460 0.607 0.471 0.492 0.623 0.554
19 0.022 0.066 0.142 0.168 0.256 0.192 0.205
20 0.035 0.062 0.102 0.146 0.122 0.149 0.223
21 0.021 0.035 0.36 0.107 0.075 0.092 0.272
22 0.000 0.013 0.019 0.020 0.010 0.020 0.028
23 0.235 0.308 0.517 0.270 0.339 0.304 0.644
24 0.004 0.011 0.030 0.064 0.025 0.048 0.081
25 0.000 0.015 0.581 0.163 0.355 0.128 0.559
26 0.004 0.100 0.431 0.176 0.152 0.118 0.361
27 0.059 0.142 0.132 0.233 0.126 0.213 0.361
28 0.002 0.030 0.058 0.065 0.042 0.057 0.104
29 0.005 0.059 0.237 0.152 0.068 0.113 0.000
Table 5: Accuracy(%) of 7 models on 29 two-operator templates.
Fine-tuned on two-operator queries
OPT-1.3B-One Time point 1 Time point 2 Time point 3 Time point 4 Time point 5
6.5 37.9 36.6 23.8 22.0 20.6 Accuracy(%)
5.0 4.0 4.0 4.0 4.0/
20 0 =o=1st-order 5th-order
~+2nd-order 6th-order
(a),((l)j:z o, 2.0 3th-order ==7th-order
1.0/#% e A S e 1.0/ RSSO 1.0/ § S 4th-order =e=8th-order
T 7 13 19 25 1 7 13 19 25 1 7 13 18 25 1 7 13 18 25 1 7 13 10 25 1 7 13 19 25
Layer [Layer [Layer [Layer [Layer [Layer [
Fine-tuned on two-operator queries
OPT-1.3B-One Time point 1 Time point 2 Time point 3 Time point 4 Time point 5

97.0 36.6 32.0 23.2 21.8 20.6 Accuracy(%)
2.0 3.0] 3.0 —o— 1st-order 6th-order
3.0 b0 Lo ==2nd-order 7th-order
K o~ = , 3th-order == 8th-order
(e ,MWW Lol Pipl=> AN Lol 4th-zrd:: --ch-z:er

1ol " o [4) S o~ T | 5th-order

1 7 13 19 2 1 7 13 19 2 1 7 13 19 2 T 7 13 19 2 T 7 13 19 2 j 7 13 19 2

Layer [Layer [Layer | Layer [Layer [Layer [

Figure 11: Visualizing the dynamic process of different interaction patterns encoded by the OPT-1.3B-One model
during the training process. Each curve is averaged over various one-operator queries, corresponding to (a) template
0 and (b) template 3 in Table 2.

15

Accuracy

0 1 2 3 4 5
Epoch

Figure 12: The change in accuracy of OPT-1.3B-Both
on one-operator queries during the training process.

L Spurious Forgetting of LL.Ms

We further train the OPT-1.3B-One model on two-
operator queries. This version is termed the OPT-
1.3B-Both model. The results in Section 4.2 show
that the accuracy of the OPT-1.3B-One model on
one-operator problems declines during the training
process on two-operator queries. Following (Zheng
et al., 2025), we further fine-tune the OPT-1.3B-
Both model on half of the training data from one-
operator queries used to train the OPT-1.3B-One
model (see Appendix H). Figure 12 shows the ac-
curacy of OPT-1.3B-Both on one-operator queries
during the training process. We observe that after
just 3 epochs, the accuracy reaches 0.85, and at the
fifth epoch, it reaches 0.90. Therefore, we think
the performance loss of the OPT-1.3B-One model
on one-operator queries during the training process
on two-operator problems might be due to spurious
forgetting. That is, the performance loss does not
necessarily indicate a loss of knowledge, but rather
a decline in task alignment.

16

	Introduction
	Related Work
	Using interactions to explain inference patterns encoded by LLMs
	Preliminaries: Disentangling the network output using interactions
	Explaining the LLM using interactions
	Defining and quantifying different types of interaction patterns

	Comparative studies
	Exploring the internal mechanism of LLMs for solving arithmetic problems
	Dynamic encoding of different interaction patterns during training process

	Conclusion
	Strategies of masking input variables
	Details about how to mask input words for different LLMs
	Properties of interactions
	Details about network architectures and chosen layers for experiments in section 4
	The features of other tokens in the middle layers remain unchanged
	Prompt Templates
	Performance of the LLMs
	Fine-tuning Details
	More experimental results
	Information about the use of AI assistants.
	Computational budget
	Spurious Forgetting of LLMs

