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ABSTRACT

In this paper, we demonstrate how to leverage 2:4 sparsity, a popular hardware-
accelerated GPU sparsity pattern, to activations to accelerate large language
model training and inference. Crucially we exploit the intrinsic sparsity found
in Squared-ReLU activations to provide this acceleration with no accuracy loss.
Our approach achieves up to 1.3x faster Feed Forward Network (FFNs) in both
the forwards and backwards pass. This work highlights the potential for sparsity
to play a key role in accelerating large language model training and inference.

1 INTRODUCTION & RELATED WORK

The rapid growth of Large Language Models (LLMs) in recent years has been driven by a corre-
sponding surge in GPU FLOPs. While some of this gain has come from hardware improvements, a
large portion has come from reducing operator precision from 32 → 16 → 8 bits. However, as we
approach the 0 bit quantization asymptote, researchers have turned to alternative methods to reduce
LLM compute. One promising approach is sparsity, which seeks to avoid unnecessary computation
to accelerate the model.

Existing work on sparsity for LLMs has primarily focused on inference. SparseGPT (Frantar &
Alistarh, 2023) and others have shown that existing dense LLM weights can be made sparse, either
through post training pruning (Sun et al., 2023; Zhang et al., 2024) or fine-tuning (Kurtic et al.,
2023), enabling subsequent inference acceleration. Sparsity has also been applied to activations (Liu
et al., 2024b; Lee et al., 2024) to speed up batch size=1 decode inference workloads via selective
weight loading.

Mozaffari et al. (2024), Hu et al. (2024) were able to accelerate LLM training with 2:4 sparsity, but
applied to the model weights. Moreover, in all of these works, the final sparse model comes with a
small reduction in model accuracy compared to the dense model.

In this paper, we investigate the application of 2:4 sparsity to accelerate both LLM training and
inference by sparsifying model activations. Crucially, we exploit the intrinsic sparsity found in
certain activation functions, which is not present in the dense model weights.

Squared ReLU: Recently, SwiGLU = (Swishβ(XW1) ⊙ XW3)W2 (Shazeer, 2020) has been
used as the activation function in the Feed-Forward Network blocks (FFN) of multiple LLMs (Tou-
vron et al., 2023) (Liu et al., 2024a). However, (So et al., 2021) suggests that Squared-ReLU =
(max(0, XW1)

2
)W2 is at least as good as SwiGLU, which we confirmed in our experiments (Ta-

ble2). Larger models have since been trained successfully with Square-ReLU (Adler et al., 2024).

While the model accuracy remains similar, switching the activation function to Squared-ReLU has
an interesting side-effect: activation sparsity naturally emerges during training. Intuitively, this
makes sense as Swishβ(x) =

x
1+e−βx will be 0 if and only if x = 0 whereas ReLU2 = max(0, x)

2

maps any x < 0 to 0. In theory, with normal centered inputs, we expect to see 50% sparsity in
the activations - which is what we observe at model initialization. In practice, however, we observe
that the sparsity level rapidly increases during training, reaching 85-98% depending on the layer
(Figure1). While we do not offer an explanation for the emergence of this phenomenon, this means
that a Squared ReLU model spends a large amount of GPU time and energy multiplying zeros.

Hardware-accelerated (2:4) sparsity: To accelerate this model, we leverage sparsity. Modern
GPUs have specialized units for matrix multiplication (TensorCores), and these units can only ac-
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Figure 1: We plot the sparsity level progression of different FFN layers over a training run. Replac-
ing SwiGLU with Squared-ReLU does not impact the model accuracy (See Table2), and makes the
FFN activations highly sparse during training & inference (84-98% sparse for this model).

Figure 2: Given an activation tensor A of shape [seqlen, features] (Figure 2a), we can accelerate
the computation of AB if A is 2:4-sparse token-wise (Figure 2b), or ATB if A is 2:4-sparse feature-
wise (Figure 2c). To respect the 2:4 sparsity constraint, it is possible that some values need to be
dropped when the tensor A is sparsified (in red). The more sparse the original tensor is, the less
likely we are to drop values - if no values are dropped, the calculation is exact.

celerate a single sparsity format: 2:4 sparsity (Mishra et al., 2021). A tensor is 2:4 sparse if for every
4 consecutive values, at most 2 are non-zeros (Figure2). If a tensor A is 2:4-sparse (50% sparsity),
it is theoretically possible to compute AB 2x faster, because we skip every other multiplication - in
practice we see 1.5x-1.7x speedups for 2:4 FP8 matrix multiplication on H100 compared to dense
FP8 depending on the matrix shape.

2 APPROACH

Inspired by Jeong et al. (2024), we aim to approximate the second 1 matrix multiply of the FFN,
Y2W2, with a 2:4 sparse matrix multiply, as Y2 = ReLU2(X1W1) and is mostly zero. If more than
2 elements are non-zeros in a block of 4 in Y2, we naively keep the 2 highest magnitude scalars and
drop the others. In practice, ∼1% of non-zero values are dropped, but this can vary depending on
the sparsity level.

Figure 3: Pseudo-code for our proposed replacement FP8 Squared-ReLU FFN.

1Note that the first linear layer cannot be accelerated as its inputs are not sparse. Further savings could be
achieved if the residual can be made sparse.
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We implemented 2 new kernels, so that the entire FFN forward pass can be implemented with only 3
kernels: the existing FP8 matmul for the first linear layer, a new kernel that applies the activation, the
sparsification, and FP8 quantization, and another new 2:4 GEMM kernel that supports FP8 rowwise
scaling. To sparsify the activations we adapt the fast sparsification routines outlined in Cai et al. 2

Notably, this also provides inference speedups in the compute bound regime (Figure5), such as
during prefilling, with speculative decoding, or higher batch sizes. This is different from existing
activation sparsity work (Liu et al., 2024b; Lee et al., 2024) that aims at reducing the amount of
weights loaded from memory, which can only accelerate batch size=1 decode.

Figure 4: The compute graph for a Squared-ReLU FFN during training. As ReLU2(y1) is highly
sparse, any matrix multiplication involving y2 or dy1 can be accelerated. In total, 4 matrix multi-
plications out of 6 can be accelerated, when considering both the forward and backward passes.

Unfortunately the sparse GEMMs in the backwards pass are more difficult to accelerate. NVIDIA
GPUs can only accelerate sparsity along the reduction dimension. During the backwards pass when
we calculate ∂W2

∂y3
= yT2

∂y3

∂L we reduce on the feature dimension, and therefore y2 must be sparsified
feature-wise (Figure2b) to leverage hardware acceleration. Naively sparsifying as we did in the
forwards pass yields poor accuracy, due to the following reasons:

Some individual features are not sufficiently sparse (e.g. 20% sparsity only) and are unable
to be sparsified. Therefore, we introduce Optimization 1) split the sparse tensors into 2 tensors:
a tensor with 95% of the features, that can be 2:4 sparsified feature-wise , and a tensor with the
remaining of the values, containing the non-sparse features. This means that we execute 2 GEMMs:
a 2:4 sparse GEMM with 95% of the flops, and a dense one with 5% of the flops. The dense GEMM
in the forward pass, Y1 = XW1 can compute the column level sparsity in the epilogue for free,
while a cheap argsort kernel is then used to partition features into sparse and non-sparse features.

Features are highly correlated among consecutive tokens. For instance, a feature might be 99%
sparse, but non-zero on 10 consecutive tokens. For this reason, we apply Optimization 2) a fixed
permutation to the tokens before entering the FFN and shuffle them back after. These tokens permu-
tations can be fused into the existing add/quantize/normalize operations before and after the FFN.
In fact, it is possible to implement all the pointwise operations of the backward pass in a single
fused kernel, including the transposition/FP8 scaling, and the split of tensors in dense & sparse
counterparts.

Finally, we sparsify feature-wise on top of the token-wise sparsification mask computed in the for-
ward pass to maintain training stability, as sparsifying feature-wise would otherwise allow for some
values that are dropped in the forwards pass to reappear. We also train the models densely for the
first 1k iterations (warmup), as the sparsity at initialization is roughly 50%, and few training steps
are required to increase to 90%+ sparsity.

2These routines have been open sourced in torchao (torchao maintainers & contributors, 2024)
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3 EXPERIMENTAL RESULTS

We are still actively developing the kernels and fusions outlined above to show end-to-end speedups
for training but have 1) accuracy experiments on LLM pretraining that show no accuracy loss
and 2) kernel benchmarks of the FFN forwards pass and backwards split-GEMM that show up
to a 1.3x speedup. We advocate for further scaling of sparse transformers to validate the approach
with larger models, as well as exploration into why Squared-ReLU models have such high levels of
intrinsic sparsity.

Experiment Final Perplexity
Dense training (SwiGLU) 2.654
Dense training (Squared-ReLU) 2.651
2:4 recipe (5% of the features dense in BW) 2.652
2:4 - no warmup 2.657
2:4 - naively sparsify backward GEMMs 2.682
2:4 - no permuting rows 2.919 (plateaus very early)
2:4 - no sparsify y1 in BW pass 3.735 (diverges after step ∼42k)

Table 1: LLM pretraining accuracy. These experiments were ran on an 1.5B LLM trained for 63B
tokens on DCLM with emulated 2:4 sparsity. Please see Appendix for more details.

Figure 5: Our kernels can accelerate the FFN forward pass up to 30%, depending on the model
dimension and batch size. Larger models or larger batch sizes lead to higher speedups. All FP8
matrix multiplications are done with row-wise scaling, to match the baseline training recipe.

Figure 6: split GEMM TFLOPs across different split ratios. We decompose the feature-wise sparse
GEMMs found in the backwards pass as 95% 2:4-sparse and 5% dense, which incurs a small per-
formance hit compared to having a fully 2:4 sparse GEMM, but is still faster than a fully dense
GEMM. Operand A contains 90% of zeros.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

REFERENCES

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. arXiv preprint arXiv:2406.11704, 2024.

Jesse Cai, Daniel Haziza, and Supriya Rao. Accelerating Neural Network Training
with Semi-Structured (2:4) Sparsity — pytorch.org. https://pytorch.org/blog/
accelerating-neural-network-training/. [Accessed 07-02-2025].

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023.

Yuezhou Hu, Jun Zhu, and Jianfei Chen. S-ste: Continuous pruning function for efficient 2:4 sparse
pre-training, 2024.

Geonhwa Jeong, Po-An Tsai, Abhimanyu R. Bambhaniya, Stephen W. Keckler, and Tushar Krishna.
Abstracting sparse dnn acceleration via structured sparse tensor decomposition, 2024.

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse fine-tuning
for inference acceleration of large language models, 2023.

Donghyun Lee, Je-Yong Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. Cats:
Contextually-aware thresholding for sparsity in large language models, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models, 2024b. URL https://arxiv.org/abs/
2408.14690.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks, 2021.

Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, and Maryam Mehri Dehnavi. Slope:
Double-pruned sparse plus lazy low-rank adapter pretraining of llms, 2024.

Noam Shazeer. Glu variants improve transformer, 2020.
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A APPENDIX

Table 2: LLM training hyperparameters. We use the same hyperparameters for training the SwiGLU
and Squared-ReLU variants, and modify the FFN hidden dimension to ensure we have the same total
number of model parameters

Hyperparameter Value for 1B model Value for 7B model
Training dataset DCLM DCLM
Number of GPUs 64xH100 256xH100
Global batch size (tokens) 1M 2M
Training iterations 35k (37B tokens) 100k (209B tokens)
Optimizer AdamW (β1 = 0.9, β2 = 0.95) AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 3e− 3 1e− 3
Learning rate schedule 5,000 linear warmup steps + cosine 2,000 linear warmup steps + cosine
Gradient clipping 1.0 1.0
Weight decay 0.033 0.1
Model dimension 2048 4096
FFN hidden dimension 8192 16384
Number of layers 25 32
Number of attention heads 16 32
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