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Abstract

Decisions often require balancing immediate gratification against long-term benefits.
In Reinforcement Learning (RL), this balancing act is influenced by temporal dis-
counting, which quantifies the devaluation of future rewards. Prior research indicates
that human decision-making aligns more closely with hyperbolic discounting than
the conventional exponential discounting used in RL. As artificial agents become
more advanced and pervasive, particularly in multi-agent settings alongside humans,
the need for appropriate discounting models becomes critical. Although hyperbolic
discounting has been proposed for single-agent learning, its potential in multi-agent
reinforcement learning (MARL) remains unexplored. We introduce and formulate
hyperbolic discounting in MARL, establishing theoretical and practical foundations
across various frameworks, including independent learning, centralized policy gra-
dient, and value decomposition methods. We evaluate hyperbolic discounting on
diverse cooperative tasks, comparing it to the exponential discounting baseline. Our
results show that hyperbolic discounting achieves higher returns in 60% of scenarios
and performs on par with exponential discounting in 95% of tasks, with significant
improvements in sparse reward and coordination-intensive environments. This work
opens new avenues for robust decision-making processes in the development of
advanced multi-agent systems.

1 Introduction

As AI systems evolve, their ability to interact autonomously with the world, collaborate with other
agents, and engage with humans becomes increasingly crucial (Islam et al., 2023; Huang et al., 2024).
Autonomous AI systems are designed to perform complex tasks without human intervention while
aligning with human values, making them essential in environments requiring rapid decision-making
and adaptability (Klingefjord et al., 2024; Spitzer et al., 2024). When these systems interact with
other agents, they must navigate intricate social dynamics and coordinate actions to achieve shared
goals (Oesterheld et al., 2024). This capability is vital in multi-agent settings such as multi-robot
teams, autonomous vehicles, or AI assistants in smart homes (Durante et al., 2024; Vats et al., 2024).

In reinforcement learning (RL), the goal of maximizing rewards is central to learning intelligent
behavior (Silver et al., 2021). This involves prioritizing reward maximization to generate complex
behaviors without specialized problem formulations. The treatment of the reward signal is crucial in
developing intelligent agents. Human and animal behavior often shows a preference for immediate
rewards over delayed ones (O’Donoghue & Rabin, 2000), rooted in temporal discounting, where the
value of rewards diminishes over time. In RL, discounting influences the time-preference for rewards,
enforces shortest path strategies, and represents the probability of termination (Puterman, 2014).
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Discounting plays a pivotal role, particularly in infinite horizon objectives, to ensure well-defined
long-term reward goals (Sutton & Barto, 2018).

The standard approach in RL uses a discount factor γ ∈ [0, 1) to exponentially reduce the present value
of future rewards (Bellman, 1957b; Samuelson, 1937). Exponential discounting ensures time-consistent
preferences, maintaining proportional reward values regardless of delay (Strotz, 1955). However,
human and animal behaviors often deviate from this model, exhibiting hyperbolic discounting
instead (Ainslie, 1975; Mazur, 1985; Green & Myerson, 2004), which better captures time-inconsistent
preferences (Green et al., 1994) and is optimal under uncertain risks (Sozou, 1998). Hyperbolic
discounting is expressed as V = rt

1+kt , where k > 0 is the hyperbolic discount rate.

In this work, we posit that incorporating hyperbolic discounting into MARL can enhance agents’
adaptability to diverse partners by aligning their decision-making with human temporal preferences.
This can improve the robustness and flexibility of MARL systems and foster more effective human-AI
collaboration by making agents’ behavior more predictable and intuitive. We explore hyperbolic
discounting for multi-agent learning, focusing on its impact on agent interactions, particularly
in human-AI collaboration scenarios. We compare hyperbolic discounting against exponential
discounting as a baseline, noting our agent-centric perspective. Our findings reveal that hyperbolic
discounting consistently outperforms exponential discounting, yielding higher returns, especially in
environments with sparse rewards and the need for intricate coordination. These improvements
are evident across various learning modalities and are particularly pronounced in the Centralized
Training Decentralized Execution (CTDE) framework. The main contributions of this work are:

• We establish theoretical and empirical foundations for incorporating hyperbolic discounting
across six MARL algorithms, covering independent learning, centralized policy gradient, and
value decomposition methods.

• We propose and conduct a comprehensive comparative analysis of two hyperbolic discounting
schemes against the traditional exponential model: one computes a hyperbolic value estimate,
and the other averages multiple value estimates using normally distributed exponential
discount factors. We perform extensive empirical evaluations across four cooperative multi-
agent tasks, demonstrating the advantages of hyperbolic discounting in various settings.

2 Preliminaries

2.1 Survival and Hazard Rate

We start by motivating against the use of a single, fixed discount factor. In survival analysis (Cox,
1972), the primary focus is on analyzing and modeling the time until specific events occur, such as
death. Sozou (1998) extend this by formalizing time preferences, showing that future rewards should
be discounted according to the probability that an agent will not survive to collect them due to
encountered risks or hazards. This survival probability is defined as s(t) = P (agent is alive|at time t).
The present value of a future reward rt is discounted by s(t), i.e., v(rt) = s(t)rt. If s(t) = 1,
the reward is not discounted. The hazard rate, h(t), is defined as the negative rate of change of
the log-survival probability, h(t) = − d

dt ln s(t). For a constant hazard rate λ, the survival rate is
s(t) = e−λt, leading to an exponential discount function s(t) = γt with γ = e−λ. Increasing hazard
leads to myopic behavior (as λ → ∞, γ → 0), and decreasing hazard leads to strategic behavior (as
λ → 0, γ → 1). When the hazard rate is uncertain, the survival rate is computed by integrating
over a prior distribution p(λ), s(t) =

∫ ∞
0 p(λ)e−λtdλ. For an exponential prior p(λ) = 1

k exp(−λ/k),
the expected survival rate becomes hyperbolic, s(t) = 1

1+kt ≡ Γk(t), where Γk(t) is the hyperbolic
discount function. Different priors over the hazard rate yield different discount functions (Sozou,
1998).
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2.2 Hazardous Markov Games

For the multi-agent setting, we formalize our problem based on the Markov Game (Littman, 1994),
generalized to include partial observability. Moreover, to consider distributions over the hazard
rate, and use non-exponential discounting functions, we remove the discount factor γ and introduce
two additions; a hazard distribution, and a general discount function. Concretely, the Hazardous
Markov Game (HMG) for N agents is defined by the tuple G = ⟨N , S, {Oi}i∈N , {Ai}i∈N , Ω, P, r⟩,
with agents i ∈ N = {1, . . . , N}, state space S, joint observation space O = O1 × . . . × ON , and
joint action space A = A1 × . . . × AN . Each agent i only perceives local observations oi ∈ Oi,
which depend on the state and joint action via the observation function Ω : S × A → ∆(O). The
transition function P : S × A → ∆(S) returns a distribution over states given a state and a joint
action A = (a1, a2, . . . , aN ). r : S × A → R is the shared reward function, with r(s, a1, a2, . . . , aN )
representing the reward received by all agents after taking actions a1, a2, . . . , aN in state s. H is the
hazard distribution from which a hazard rate λ ∈ [0, ∞) is sampled at the beginning of each episode.
Finally, instead of γ, we consider d(t), which is a general discount function, of which exponential
and hyperbolic will be special cases. The objective is to jointly optimize the discounted cumulative
reward G = EλEst,At

[
∑∞

t d(t)rt] where At is the joint action at timestep t and λ ∼ H.

3 Hyperbolic Discounting in MARL

We now discuss the theoretical foundations that can allow us to derive temporal-difference learning
solutions while using hyperbolic discounting. The fundamental concepts on value learning apply
to single and multi-agent settings alike, with the only difference in multi-agent centralized training
paradigms requiring the existence of a central value learner.

3.1 Value-Based Methods

We first show how exponentially discounted Q-values can be used to derive hyperbolic discounted
Q-values, building on prior work (Fedus et al., 2019). The Bellman equation (Bellman, 1957a) is
written as:

Qγt

π (s, a) = Eπ,P [R(s, a) + γQπ(s′, a′)] (1)

We establish a connection between hyperbolic QΓk
π -values and values obtained through standard

Q-learning. The hyperbolic discount Γk can be represented as the integral of a specific function
f(γ, t) for γ = [0, 1):

∫ 1

0
γktdγ = 1

1 + kt
= Γk(t) (2)

The integration of the function f(γ, t) = γkt across the domain γ ∈ [0, 1) results in the hyperbolic
discount factor Γk(t). This integration, incorporating an infinite set of exponential discount factors
γ, reveals that γkt functions as the standard exponential discount factor, linking the concept to
traditional Q-learning. This approach suggests that by aggregating an infinite collection of γ values,
hyperbolic discounts can be derived for each respective time step t. For a hyperbolic discount function
Γk(t), the hyperbolic Q-values can be written as:

QΓπ(s,a) =Eπ

[∑
t

Γk(t)R(st, at)
∣∣∣∣s, a

]
= Eπ

[∑
t

(∫ 1

γ=0
γkt

dγ

)
R(st, at)

∣∣∣∣s, a

]

=
∫ 1

γ=0
Eπ

[∑
t

R(st, at)(γkt)
∣∣∣∣s, a

]
dγ =

∫ 1

γ=0
Q(γkt)

π (s, a)dγ

(3)
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Figure 1: (a) Exponential vs. Hyperbolic discounting. The colored lines are hundred different
exponentially discounted curves with γ ∈ [0, 0.99] whereas the blank curve is the mean of all of them.
(b) The curves associated with discount factors used in the Averaged Horizon method (number of
γ=3) (c) The curves associated with discount factors used in the Hyperbolic discounting method
(tail-heavy distribution of discount factors).

3.2 Policy Gradient Methods

In policy gradient methods, particularly Actor-Critic variants utilizing the Advantage function for
value estimation, we use a simple method to extend the hyperbolic value estimation described in the
previous section. Advantage is defined as A(st, at) = Q(st, at) − V (st). It follows from Eq. 3 that
the hyperbolic advantage can be written as:

AΓ
π(st, at) =

∫ 1

0
A(γk)t

π (st, at)dγ =
∫ 1

0

[
Q(γk)t

π (st, at) − V (γk)t

π (st)
]
dγ

=
∫ 1

0

[
Q(γk)t

π (st, at)
]
dγ −

∫ 1

0

[
V (γk)t

π (st)
]
dγ

=
∫ 1

0

[
rt + γkV (γk)t

π (st+1)
]
dγ −

∫ 1

0

[
V (γk)t

π (st)
]
dγ

(4)

where we compute V (γkt) in a similar manner as Q(γkt) from Eq. 3 for each of the nγ heads by
using a multi-head architecture where each head corresponds to the value function for each γk. By
computing the value function over all γk where 0 ≤ γ < 1, we estimate hyperbolically discounted
advantage. We consider a finite set of γk to approximate the advantage through a Riemann sum:

AΓ
π(s, a) ≈

∑
γi

(γi+1 − γi)w(γ)A(γk)i
π (s, a) (5)

where w(γ) is the exponential weighting condition, that is, there exists a function w : [0, 1] → R such
that d(t) =

∫ 1
0 w(γ)γtdγ,. The advantage estimation is done in the Critic part of the Actor-Critic

network, which then supplies the Advantage to the Actor for optimizing the objective function. For the
Critic’s value estimation learning, we minimize the average of the losses calculated for these multiple γk

such that the loss function corresponding to each γk is defined as Lγk

v (θ) = Êt

[(
V γk

θ (st) − V̂ γk

targ

)2]
:

4 Experiments

4.1 Methods

We introduce two novel discounting methods: hyperbolic discounting and averaged horizon discounting.
The latter is a special case of the former, where the agent learns over multiple discount factors γ
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and averages the resulting value estimates for action selection and learning (network architectures
provided in Appendix B). Figure 1 shows the discount functions and their associated curves.

Hyperbolic Discounting Following Fedus et al. (2019), we implement hyperbolic discounting
in MARL using a multi-headed value output structure, where each head corresponds to a distinct
discount factor. We approximate the hyperbolic value function by integrating multiple value estimates
via a Riemann sum:

QΓ(s, a) ≈
∑

(γi+1)⊆G

(γi+1 − γi)w(γi) · Qγi(s, a) (6)

Here, G = [γ0, γ1, . . . , γn] is the set of discount factors, with Qγi denoting the Q-values for each γi.

Averaged Horizon Discounting Inspired by model averaging techniques (Arpit et al., 2022;
Churchill et al., 2023), we propose Averaged Horizon Discounting, where the value predictions from
multiple heads are averaged:

QΓ(s, a) ≈ 1
|G|

∑
γi⊆G

Qγi(s, a) (7)

This approach leverages the strengths of ensemble methods by averaging Q-values across different
discount factors, integrating diverse discounting horizons into the overall value estimation.

4.2 Setup

We evaluate the effectiveness of the proposed hyperbolic and average-horizon discounting methods
across six MARL algorithms: three from independent learning (IQL, IPPO, IA2C) and three from
centralized training with decentralized execution (CTDE) frameworks (QMIX, MAPPO, MAA2C).
Please see Appendix C for details of each method. These methods are tested in four distinct
MARL environments: Level Based Foraging (LBF) (Albrecht & Ramamoorthy, 2013), Multi-Robot
Warehouse (RWARE) (Papoudakis et al., 2021), Multi Particle Environment (MPE) (Mordatch
& Abbeel, 2017), and StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). Each
environment presents unique challenges to assess the scalability, generalization, and coordination
capabilities of the algorithms. Implementation setup is given at Appendix D, with details about
environments at Appendix K.

4.3 Results

We present results for the two proposed discounting methods and the baseline for each of the six
MARL algorithms across four benchmarks, comparing their performance. The results are aggregated
across tasks using the marl-eval library, following recommendations in Gorsane et al. (2022). We show
results for LBF and RWARE in this section (see Appendix E for MPE and SMAC). Figure 2 and
Figure 3 show the comparison of hyperbolic and averaged-horizon discounting against exponential
discounting for the six methods across LBF and RWARE environments. Generally, performance
differences are noticeable in LBF and RWARE (and for QMIX in SMAC), with one of the proposed
variants performing better, while performance differences in MPE are minimal. Tabular results for
exponential, averaged-horizon, and hyperbolic discounting are provided in Appendix J.

5 Discussion

Please see Appendix A for related works. We introduce hyperbolic discounting for MARL settings.
Our experiments revealed improvements in performance, stability, and sample efficiency with non-
exponential discounting methods, which outperformed traditional exponential discounting on more
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(c) IQL
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(d) MAA2C

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Re

tu
rn

Average
Hyperbolic
Exponential

(e) MAPPO

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

0.0

0.2

0.4

0.6

No
rm

al
ize

d 
Re

tu
rn

Average
Hyperbolic
Exponential

(f) QMIX

Figure 2: LBF Results. A comparison of the proposed hyperbolic discounting policies and the
exponential discounting baseline across 6 methods in the LBF benchmark. The hyperbolic variants
(blue and orange) perform better than exponential discounting (green) in most of the methods.
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Figure 3: RWARE Results. A comparison of the proposed hyperbolic discounting policies and the
exponential discounting baseline across 6 methods in the RWARE benchmark.

than 60% of the tasks (Appendix J). Hyperbolic discounting emerged as the most reliable method,
showing smaller standard deviations and enhanced performance across various algorithms. The
structural differences in algorithms influenced the impact of non-exponential discounting, with some
benefiting more than others. Future research could explore ensemble methods to further improve
non-exponential discounting functions. These findings highlight the potential of non-exponential
discounting in reinforcement learning, promoting more efficient and effective decision-making in
real-world applications.
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There are avenues of future work. The results of Bowling et al. (2023) address scenarios with
a constant exponential discount factor, not considering hyperbolic discounting. Since hyperbolic
discounting, as approximated by Fedus et al. (2019) and extended here, uses multiple constant
exponential discount factors, further theoretical analysis would be beneficial, such as Pitis (2023).
Moreover, it would be interesting to study effects of reward discounting in human-AI teams where
long-term decision trade-offs are involved.
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Appendix
A Related Work

We focus on the aspect of discounting preferences in social settings which involves more than one
individual (we refer the reader to Fedus et al. (2019) for an in depth review of discounting in
individual human preferences). In controlled studies, discounting future rewards has been mostly
studied as a personal preference parameter, where each individual is given a questionnaire to evaluate
their valuation of future rewards. These studies show how decisions involving immediate versus
long-term benefits are influenced by temporal discounting—where individuals place less value on
delayed rewards. Recent studies have expanded this concept to decisions made in group settings,
like dyads or small groups, revealing that direct interactions can lead to aligned preferences among
participants, making them more similar in patience level over time. Bixter & Luhmann (2021) study
whether such social influences could also be indirect, such as through mutual acquaintances within
a group. Focusing on hypothetical monetary rewards, the research involved groups of three where
one member’s decision preferences before collaboration were linked to another’s preferences after
collaborating with an intermediary. Findings highlighted that decision-making tendencies regarding
time can spread through a social network’s connections, showing the presence of indirect social
influence in a controlled setting.

B Network Architectures

We present a practical way of implementing hyperbolic discounting in multi-agent RL methods.
Integrating non-exponential discounting methods into multi-agent reinforcement learning algorithms
requires careful consideration of the neural network design. We explore the three main types of neural
network architectures found in MARL algorithms, and discuss changes necessary to incorporate
hyperbolic discounting in each.

B.1 Value-Based Q-Networks

Value-based networks approximate the value function or the action-value function of a state-action
pair, representing the expected cumulative reward an agent can obtain by following a certain policy
from a given state, and form the basis of temporal difference learning methods such as Q-learning
(Watkins & Dayan, 1992). In deep multi-agent reinforcement learning (MARL), Q-networks were
first used to study the interaction and learning of multiple agents. We use a Multi-Layer Perceptron
(MLP) network with fully connected (FC) layers for agent observations, representation learning, and
Q-value generation, utilizing ReLU activation for non-linearity. Hidden layers can be FC or Gated
Recurrent Units (GRU) layers to capture temporal dependencies. In MARL, agent behavior and
learning are modeled with or without parameter sharing. Without parameter sharing, each agent has
unique network parameters, while with parameter sharing, all agents use a common set of parameters,
receiving additional inputs identifying each agent through a one-hot vector (Gupta et al., 2017).
This shared approach enables distinct behaviors, optimized by the collective loss from all agents. To
accommodate non-exponential discounting, our modified Q-network outputs a set of Q-values for each
agent, represented as Qγi

π , with N fully connected layers corresponding to the number of discount
factors, each producing Q-values for a unique discount factor γi. These multi-headed Q-values allow
each agent to learn its own set, although no joint Q-value is learned, a concept discussed in methods
that decompose a joint Q-value into individual agent Q-values. Figure 4a shows the proposed Q-value
network for hyperbolic discounting in multi-agent Q-learning methods.

B.2 Policy Gradient Actor-Critic Networks

Policy-based reinforcement learning methods optimize an action’s probability distribution instead of
a value function, facing challenges like high variance and slow convergence. Actor-critic methods
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Figure 4: (a) Network architecture for hyperbolic discounting in IQL. (b) Network architecture for
hyperbolic discounting variants for Actor-Critic methods used in IA2C, IPPO, MAA2C, MAPPO.

combine the benefits of value-based and policy-based approaches by incorporating a critic network for
value function estimation and an actor network for action selection based on the critic’s assessments.
Notable actor-critic frameworks include Proximal Policy Optimization (PPO) (Schulman et al., 2017)
and Advantage Actor-Critic (A2C) (Mnih et al., 2016). In this framework, the actor network learns
a policy that maps the current state to a probability distribution over actions, while the critic
network approximates the value function to evaluate the quality of a given state. The actor network’s
adjustments are informed by the policy gradient, calculated using the critic’s value estimates, and
the critic network is refined through temporal-difference learning. To accommodate multiple discount
factors, a multi-headed critic network can be introduced, outputting separate value functions for
each discount factor, which are then used to compute the advantage function for optimizing the actor
network. Figure 4b shows the proposed actor-critic network for hyperbolic discounting in centralized
multi-agent policy gradient methods.

B.3 Value Factorization Networks

Value factorization techniques in multi-agent reinforcement learning (MARL) facilitate cooperation
among agents by decomposing the collective value function into individual components corresponding
to each agent. This allows for the optimization of joint actions while maintaining the autonomy of
individual agent decision-making processes. The Value Decomposition Network (VDN) (Sunehag
et al., 2017) and QMIX (Rashid et al., 2018) are two notable methods that employ this technique.

For this class of methods, we use QMIX as a template for incorporating non-exponential discounting
within the framework of value decomposition methods. Within QMIX, individual agents generate
Q-values using the Deep Q-Network architecture (Mnih et al., 2013). These Q-values are then
forwarded to a mixing network, constructed from hypernetworks, which nonlinearly combines the
individual Q-values into a collective value, Qtotal. This collective value guides the action selection
process for each agent, fostering collaboration while preserving agent autonomy. To implement
variable discounting within QMIX, the methodology introduced in Section 3.1 is adopted, establishing
several output layers for distinct discount factors, γ. The individual agent Q-values, Qn

π, are fed
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Figure 5: Network architecture for hyperbolic discounting in QMIX. The mixing network uses
hypernetworks to determine the weights and biases for its layers. The agent network can have a
recurrent layer depending upon the environment characteristics (see Table 2).

into their respective mixing networks, producing individual Qtotal values, Qγi

tot, for each discount
factor γi. This approach preserves the foundational network design by (Rashid et al., 2018) while
integrating a distinct mixing network for every different discount factor, enabling the incorporation of
non-exponential discounting within the value decomposition framework. Figure 5 shows the proposed
network for hyperbolic discounting in QMIX like value factorization methods.

C Multi-Agent Algorithms

To assess a fair evaluation of non-exponential discounting, a wide range of algorithms were selected
to cover multiple approaches in multi-agent reinforcement learning. Using the network modifications
and mathematical formulations presented in the previous sections, our algorithms are now suited
for non-exponential discounting strategies. In order to evaluate the effects of non-exponential
discounting in multi-agent reinforcement learning, a diverse range of algorithms was selected for
this work. These algorithms can be grouped into two primary categories: Independent Learning
and Centralized Learning Decentralized Execution (CTDE). The IL category contains IQL, IA2C,
and IPPO, while the CTDE category contains QMIX, MAA2C, and MAPPO, in which QMIX
is a value factorization/decomposition method, and MAA2C and MAAPO are centralized policy
gradient methods. By modifying the network structures and using the proposed mathematical
formulations mentioned in the previous discussion, these algorithms have been adapted to incorporate
non-exponential discounting functions. In this discussion, we emphasize the key differences and
similarities between the algorithms and demonstrate how non-exponential discounting strategies are
integrated into their learning and optimization processes.

C.1 Independent Learning (IL)

In independent learning, single-agent reinforcement learning algorithms are applied to individual
agents without the consideration of a multi-agent structure. Each agent perceives other agents as
part of the environment, treating them as dynamic and unpredictable elements rather than explicitly
acknowledging their presence as separate learning entities (Papoudakis et al., 2021). This leads to
a lack of communication and coordination among agents during both the training and execution
phases (Zhang et al., 2021). While independent learning allows for simpler and more efficient training
processes, this approach may result in suboptimal and less coordinated behaviors, especially in
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tasks where agent collaboration is crucial for success. Moreover, the agents may not adapt well to
changes in the strategies of their counterparts or be able to handle emergent behaviors that arise
from interactions within the multi-agent system. Despite these limitations, independent learning
serves as a baseline for evaluating more advanced multi-agent reinforcement learning methods. For
this work, We have selected and documented implementation details for these three independent
learning algorithms:

Independent Q-Learning (IQL). IQL utilizes a decentralized value-based Q-network to approxi-
mate Q-values for the individual observations of each agent (Tan, 1993). Each agent then updates
the Q-network by minimizing the Q-learning loss through the calculation of a temporal difference
(TD) error. In traditional methods of discounting, a single discount rate γ is used during the TD
calculation. With our modification, the Q-network outputs a set of Q-values for each unique discount
rate. These sets of values are then used to calculate separate TD targets, each using its corresponding
discount rate (Ali et al., 2022; Fedus et al., 2019). During action selection, we use the discounting
functions, as presented earlier, to combine a set of Q-values values for different discount factors into
a single set of Q-values, using either hyperbolic or averaged horizon discounting. The final set of
Q-values is then used for action selection through an argmax.

Independent Advantage Actor-Critic (IA2C) This method uses a decentralized actor-critic
network to optimize its policy and estimate state values based on individual observations. The actor
network in IA2C maps the agent’s state to a probability distribution over actions, while the critic
network estimates the state-value function. To update both networks, IA2C calculates the advantage
function using the values of a critic network. This advantage function helps in determining how much
better a specific action is compared to the average actions taken in the current state. Each agent
independently updates its actor and critic networks by minimizing the policy gradient loss and the
TD error. Similar to the modifications made to IQL, IA2C utilizes multiple discount rates for value
estimations. However, due to the action selection relying on a probability distribution instead of
values, the advantage function is used in the optimization objective, as opposed to a state-action
function.

Independent Proximal Policy Optimization (IPPO) This method follows a similar decentral-
ized approach as IA2C, with each agent using its own actor-critic network for policy optimization
and state value estimation (De Witt et al., 2020). The key difference between IPPO and IA2C lies in
the optimization process. IPPO employs a trust region optimization approach, which uses a ratio
of new and old policies in the surrogate objective function to ensure small, stable updates to the
policy and improve sample efficiency (Schulman et al., 2017). Similar to the modifications made in
IA2C, adapting IPPO to utilize a non-exponential discounting function requires the calculations of
independently discounted advantages. These advantages are then passed through a non-exponential
discounting function and then used for optimization.

C.2 Centralized Learning Decentralized Execution (CTDE)

In contrast to independent learning, centralized training decentralized execution (CTDE) methods
address the challenges in multi-agent reinforcement learning by allowing agents to share information
during the training phase while maintaining decentralized executions (Papoudakis et al., 2021). This
approach enables agents to learn coordinated policies by utilizing a global perspective and accounting
for the actions and observations of other agents during training. However, during the execution phase,
each agent makes decisions independently based on its own observations and learning policy, without
relying on any direct communication or information sharing with other agents. This balance between
centralized learning and decentralized execution enables CTDE methods to improve coordination
and performance in multi-agent tasks while retaining the scalability and robustness associated with
decentralized systems. We have selected and documented implementation details for these three
CTDE algorithms:
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Q-Value Mixing Network (QMIX) is a cooperative multi-agent reinforcement learning algo-
rithm that combines the advantages of centralized learning with decentralized execution to tackle
coordination challenges in multi-agent settings (Rashid et al., 2018; 2020)). In QMIX, the agents
employ decentralized Q-networks to approximate individual action-value functions, while a centralized
mixing network is utilized to aggregate the agents’ Q-values into a joint action-value function. The
mixing network is designed to be a monotonic function, ensuring that the optimal joint-action can be
derived from the optimal individual actions. Since individual Q-values of each agent are combined to
compute the joint-action values, the discounted estimations are based on the mixing network outputs
instead of the individual Q-values. In order to implement a non-exponential discounting function,
additional mixing networks are introduced to compute separate Q-totals corresponding to individual
discount factors. These separate Q-totals are then aggregated through the discounting functions
proposed to compute a total loss that is then backpropagated to the individual agents.

Multi-Agent Advantage Actor-Critic (MAA2C) is a cooperative multi-agent reinforcement
learning algorithm that builds upon the actor-critic framework by incorporating centralized learning to
enhance coordination between agents. Similar to IA2C, MAA2C employs decentralized actor networks
for each agent, mapping individual observations to probability distributions over actions. However,
unlike IA2C, MAA2C utilizes a centralized critic network, which considers the joint observations of
all agents to estimate the state-value function (Lyu et al., 2021). This centralized learning aspect
enables MAA2C to capture the interactions between agents, which improves coordination among
agents. For incorporating non-exponential discounting, we follow a similar setup to IA2C and utilize
multiple discount rates for value estimations. Since MAA2C relies on a probability distribution for
action selection, similar to IA2C, the discounting function is applied to the advantage estimations.
The difference between MAA2C and IA2C is the inputs to the critic networks. MAA2C aggregates
the observations of all agents to combine a joint-observation input, whereas IA2C keeps these
observations separated. The actual learning algorithm implementation of non-exponential discounting
itself remains the same as IA2C.

Multi-Agent Proximal Policy Optimization (MAPPO) MAPPO (Yu et al., 2022) is a
cooperative multi-agent reinforcement learning algorithm that extends the Proximal Policy Op-
timization (PPO) method (Schulman et al., 2017) to accommodate multiple agents, focusing on
enhanced coordination and stable policy updates in complex environments. Similar to MAA2C,
MAPPO utilizes a centralized critic network and a decentralized actor network. The key difference
between MAPPO and MAA2C lies in the optimization process, similar to the differences between
IA2C and IPPO. MAPPO employs a trust region optimization approach, which uses a ratio of new
and old policies in the surrogate objective function to ensure small, stable updates to the policy
and improve sample efficiency. However, similar to the modifications made in MAA2C, adapting
MAPPO to utilize a non-exponential discounting function requires the calculations of independently
discounted advantages corresponding to unique discount rates. These advantages are then used in
the optimization objective J(θ).

D Implementation

For each environment, experiments were done for both hyperbolic-weighted and hyperbolic-average
discounting methods applied to the six selected MARL algorithms. Agents are trained for steps
specified for each method and environment combination described previously, with results averaged
over 5 seeds to account for variability. Parameter sharing is employed which allows for each agent to
have a different behavior while sharing the same base network, and environment-specific adaptations,
such as action selection probability adjustments for invalid actions, are implemented to ensure fairness
and comparability across tests. All experiments were run across two Ubuntu-based servers. Each
server is equipped with a 16-core Intel Xeon 4215 processor clocked at 3.50GHz, 1 TB of RAM, and
8 NVIDIA A40 GPUs.
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D.1 Evaluation Criteria

The performance of each algorithm is assessed based on several criteria, including the efficiency of
learning (speed of convergence), the robustness of the learned policies, scalability to larger and more
complex scenarios, and the ability to generalize to unseen environments. Additional metrics, specific
to each environment, such as resource collection efficiency in LBF and RWARE, task completion time
in MPE, and win rate in SMAC, are also considered. To ensure fair comparison and compensate
for the higher sample efficiency of off-policy algorithms relative to on-policy ones, we follow the
procedure recommended by Papoudakis et al. (2021) and adjust training steps accordingly. For MPE
and LBF, on-policy algorithms (IA2C, IPPO, MAA2C, MAPPO) are trained for 20 million timesteps,
and off-policy algorithms (IQL, QMIX) are trained for 2 million timesteps. In SMAC and RWARE
environments, the on-policy and off-policy training is set to 40 and four million timesteps, respectively.
Despite on-policy algorithms not reusing samples via experience replay and hence resulting in lower
sample efficiency, they are not considered slower. Evaluations are carried out at every 10k steps
for 2M train steps, every 100k steps for 20M train steps, every 20k steps for 4M train steps, and
every 200k steps for 40M train steps, maintaining the total number of evaluations to be constant (41
evaluations), are done at regular intervals throughout the training and are done for 100 episodes per
evaluation.

D.2 Performance Metrics

To evaluate the performance of the algorithms, we consider two metrics, following the recommendations
of Papoudakis et al. (2021): maximum returns and average returns. Maximum Returns: For
each algorithm, we identify the evaluation timestep during training where the algorithm achieves
the highest average evaluation returns across five random seeds. We report the average returns
and the 95% confidence interval across these five seeds from this evaluation timestep. This metric
represents the peak performance achieved by the algorithm. Average Returns: We also report the
average returns achieved throughout all evaluations during training. This metric is computed over
all evaluations executed during the training process, considering not only the final achieved returns
but also the algorithm’s learning speed.

D.3 The γ Interval

The number of concurrent horizons (nγ) and the values of γ that set the minimum and maximum
horizons are crucial for determining the agent’s reward sensitivity. In the Hyperbolic discounting
variants, we follow Fedus et al. (2019) by choosing γ values such that the exponent of the largest
value in the interval with respect to the hyperbolic exponent k approximately equals γmax (set to
0.99). Using a power-method, the base b must satisfy b = exp

(
ln(1−γ1/k

max)
nγ

)
. This ensures γmax

remains stable. For the Averaged-horizon variants, we selected equally spaced values of γ between
∈ (0, 1) corresponding to the number of total discount factors (nγ).

D.4 Hyperparameters

Table 1 shows the hyperparameters related to discounting and common to all methods and en-
vironments, whereas Table 2 shows the hyperparameters for each of the MARL methods in our
experiments.

E Additional Results

E.1 MPE

Figure 6 presents a comparison of the proposed hyperbolic discounting and average discounting
formulations against the baseline of exponential discounting for each of the 6 methods on environments
from the MPE (Lowe et al., 2017) benchmark using marl-eval (Gorsane et al., 2022).
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Hyperparameters Values
Number of γ (hyperbolic) 3

γmax 0.99
Hyperbolic exponent k 0.1

Integral estimate lower
γ values (Exponential) 0.99
γ values (Hyperbolic) [0.94, 0.975, 0.99]

γ values (Average) [0.33, 0.66, 0.99]

Table 1: Hyperparameters related to reward discounting (common to all methods and environments).
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Figure 6: MPE Results. A comparison of the proposed hyperbolic discounting policies and the
exponential discounting baseline across 6 methods in the MPE benchmark.

E.2 SMAC

Figure 7 presents a comparison of the proposed hyperbolic discounting and average discounting
formulations against the baseline of exponential discounting for 2 methods on environments from the
SMAC (Samvelyan et al., 2019) benchmark.
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Figure 7: SMAC Results. A comparison of the proposed hyperbolic discounting policies and the
exponential discounting baseline across 2 methods in the SMAC benchmark.
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Table 2: Hyperparameters for MARL algorithms with parameter sharing

Algs Hyperparameter MPE SMAC LBF RWARE

IA
2C

hidden dimension 64 128 128 64
learning rate 0.0005 0.0005 0.0005 0.0005
reward standardization True True True True
network type GRU FC GRU FC
entropy coefficient 0.01 0.01 0.001 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 5 5 5

IP
P

O

hidden dimension 64 128 128 128
learning rate 0.0003 0.0005 0.0003 0.0005
reward standardization True False False False
network type GRU GRU FC GRU
entropy coefficient 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 10 5 10

IQ
L

hidden dimension 128 128 128 64
learning rate 0.0005 0.0005 0.0003 0.0005
reward standardization True False True True
network type FC GRU GRU FC
evaluation epsilon 0.0 0.05 0.05 0.05
epsilon anneal 200,000 50,000 200,000 50,000
target update 0.01 (soft) 200 (hard) 200 (hard) 0.01 (soft)

M
A

A
2C

hidden dimension 128 128 128 64
learning rate 0.0005 0.0005 0.0005 0.0005
reward standardization True True True True
network type GRU FC GRU FC
entropy coefficient 0.01 0.01 0.01 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 5 10 5

M
A

P
P

O

hidden dimension 64 64 128 128
learning rate 0.0005 0.0005 0.0003 0.0005
reward standardization True False False False
network type FC GRU FC FC
entropy coefficient 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 10 5 10

Q
M

IX

hidden dimension 64 128 64 64
learning rate 0.0005 0.005 0.0003 0.0005
reward standardization True True True True
network type GRU GRU GRU FC
evaluation epsilon 0.0 0.05 0.05 0.05
epsilon anneal 200,000 50,000 200,000 50,000
target update 0.01 (soft) 200 (hard) 0.01 (soft) 0.01 (soft)
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F Individual Results: LBF

Figure 8 presents results on a set of three environments from the LBF (Papoudakis et al., 2021)
benchmark.
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Figure 8: Individual results of each of the 3 discounting policies on all 6 methods in 3 LBF
environments. The hyperbolic variants (blue and orange) perform better than exponential discounting
(green) in most of the environments.



RLJ | RLC 2024

G Individual Results: RWARE

Figure 9 presents results on a set of three environments from the Robot Warehouse (RWARE)
(Papoudakis et al., 2021) benchmark.
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Figure 9: Individual results of each of the 3 discounting policies on all 6 methods (IA2C, IPPO, IQL,
MAA2C, MAAPO, QMIX) in 3 RWARE environments.
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H Individual Results: MPE

Figure 10 presents results on a set of three environments from the Multi Particle Environment (MPE)
(Lowe et al., 2017) benchmark.
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Figure 10: Individual results of each of the 3 discounting policies on 6 methods (IA2C, IPPO, IQL,
MAA2C, MAAPO, QMIX) in 3 MPE environments. There is no notable performance difference
between discounting methods except in the SimpleTag environment.
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I Individual Results: SMAC

Figure 11 presents a comparison of the proposed hyperbolic discounting and average discounting
formulations against the baseline of exponential discounting for the QMIX method on a set of three
maps from the StarCraft MultiAgent Challenge (Samvelyan et al., 2019) benchmark. Due to the
increased runtimes of SMAC, we only present results here for QMIX, which is the most widely studied
MARL algorithm, especially in the SMAC environment.
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Figure 11: Individual results of each of the 3 discounting policies on only QMIX for 3 SMAC maps.

J Tabular Results

Tables 3 and 4 showcase the maximum returns for each environment and algorithm (independent
learning and CTDE methods), while Table 5 and 6 showcase the average returns for each environment
and algorithm (independent learning and CTDE methods). Please see definitions for maximum and
average returns in Appendix D.2. The highest mean values are highlighted in bold. To determine
the statistical significance of the performance differences, two-sided t-tests were conducted with a
significance level of 0.05, comparing the highest-performing algorithm against each other algorithm
for every task. If an algorithm’s performance was not statistically significantly different from the
best-performing algorithm, the corresponding value is marked with an asterisk (*). Therefore, the
bold values or values with asterisks in the table represent the algorithms that achieved the best
performance for each task.
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Table 3: Maximum returns and 95% confidence interval over five seeds for the three discounting
policies across all tasks for IL Methods.

Algs Environment Exponential Average Hyperbolic

IA
2C

Foraging-15x15-3p-5f-v2 0.44 ± 0.03* 0.43 ± 0.05* 0.48 ± 0.01
Foraging-15x15-4p-3f-v2 0.85 ± 0.03 0.84 ± 0.02* 0.84 ± 0.01*
Foraging-15x15-4p-5f-v2 0.55 ± 0.04* 0.55 ± 0.03* 0.60 ± 0.05
Simpleadversary-v0 15.23 ± 0.16* 15.36 ± 0.22 15.25 ± 0.24*
Simplespeakerlistener-v0 -27.04 ± 6.01* -23.51 ± 1.41 -23.80 ± 1.38*
Simpletag-v0 443.64 ± 17.92 502.55 ± 18.65 567.29 ± 34.67
Rware-small-4ag-v1 3.98 ± 0.44 4.06 ± 0.42* 4.58 ± 0.24
Rware-tiny-2ag-v1 5.53 ± 3.14* 4.70 ± 1.16* 6.64 ± 2.99
Rware-tiny-4ag-v1 10.33 ± 7.40* 11.56 ± 6.46* 13.02 ± 1.67

IP
P

O

Foraging-15x15-3p-5f-v2 0.23 ± 0.17* 0.41 ± 0.05* 0.41 ± 0.03
Foraging-15x15-4p-3f-v2 0.68 ± 0.02 0.74 ± 0.03 0.83 ± 0.01
Foraging-15x15-4p-5f-v2 0.45 ± 0.13* 0.54 ± 0.04* 0.56 ± 0.03
Simpleadversary-v0 15.41 ± 0.25* 15.50 ± 0.19 15.47 ± 0.26*
Simplespeakerlistener-v0 -30.80 ± 7.73* -26.51 ± 3.10* -23.90 ± 1.46
Simpletag-v0 495.76 ± 34.47 624.45 ± 25.76 611.43 ± 24.86*
Rware-small-4ag-v1 16.04 ± 4.52 8.90 ± 3.73 10.60 ± 4.55*
Rware-tiny-2ag-v1 18.36 ± 5.88 15.53 ± 6.18* 18.31 ± 6.89*
Rware-tiny-4ag-v1 28.98 ± 18.92* 33.22 ± 8.71 32.90 ± 7.67*

IQ
L

Foraging-15x15-3p-5f-v2 0.05 ± 0.02 0.08 ± 0.01 0.06 ± 0.02*
Foraging-15x15-4p-3f-v2 0.20 ± 0.09* 0.28 ± 0.05* 0.32 ± 0.12
Foraging-15x15-4p-5f-v2 0.11 ± 0.01 0.14 ± 0.01 0.13 ± 0.02*
Simpleadversary-v0 7.74 ± 0.48 9.20 ± 0.22 9.15 ± 0.49*
Simplespeakerlistener-v0 -37.07 ± 7.67* -35.48 ± 6.67* -35.45 ± 6.48
Simpletag-v0 375.73 ± 14.91 355.77 ± 39.68 413.09 ± 13.24
Rware-small-4ag-v1 0.42 ± 0.47 0.03 ± 0.02* 0.15 ± 0.18*
Rware-tiny-2ag-v1 0.12 ± 0.22 0.02 ± 0.01* 0.03 ± 0.02*
Rware-tiny-4ag-v1 0.75 ± 0.64* 0.25 ± 0.17 1.20 ± 0.60



RLJ | RLC 2024

Table 4: Maximum returns and 95% confidence interval over five seeds for the three discounting
policies across all tasks for CTDE Methods.

Algs Environment Exponential Average Hyperbolic

M
A

A
2C

Foraging-15x15-3p-5f-v2 0.44 ± 0.04 0.47 ± 0.02* 0.50 ± 0.02
Foraging-15x15-4p-3f-v2 0.74 ± 0.04 0.84 ± 0.02 0.82 ± 0.01*
Foraging-15x15-4p-5f-v2 0.52 ± 0.02 0.59 ± 0.05* 0.61 ± 0.04
Simpleadversary-v0 15.75 ± 0.24* 16.09 ± 0.22 15.91 ± 0.24*
Simplespeakerlistener-v0 -23.13 ± 1.30 -23.21 ± 1.35* -23.43 ± 1.31*
Simpletag-v0 502.37 ± 32.86* 453.35 ± 271.68* 523.43 ± 40.35
Rware-small-4ag-v1 3.56 ± 0.17 5.73 ± 0.86* 6.65 ± 0.50
Rware-tiny-2ag-v1 3.78 ± 1.44 3.57 ± 0.48 8.07 ± 3.03
Rware-tiny-4ag-v1 13.46 ± 5.23* 11.17 ± 7.67* 18.27 ± 9.78

M
A

P
P

O

Foraging-15x15-3p-5f-v2 0.37 ± 0.05* 0.40 ± 0.02 0.30 ± 0.12*
Foraging-15x15-4p-3f-v2 0.64 ± 0.05 0.70 ± 0.03 0.81 ± 0.01
Foraging-15x15-4p-5f-v2 0.50 ± 0.02* 0.52 ± 0.03 0.51 ± 0.04*
Simpleadversary-v0 14.52 ± 0.28* 14.75 ± 0.23 14.66 ± 0.22*
Simplespeakerlistener-v0 -23.14 ± 1.36 -23.23 ± 1.31* -23.35 ± 1.35*
Simpletag-v0 470.61 ± 24.88 552.06 ± 19.96 541.54 ± 14.49*
Rware-small-4ag-v1 26.20 ± 0.76* 26.86 ± 0.71 25.05 ± 0.52
Rware-tiny-2ag-v1 18.77 ± 4.26* 22.06 ± 1.20* 22.13 ± 1.37
Rware-tiny-4ag-v1 50.71 ± 1.97* 31.28 ± 24.69* 51.50 ± 2.50

Q
M

IX

Foraging-15x15-3p-5f-v2 0.08 ± 0.04 0.14 ± 0.02 0.11 ± 0.02*
Foraging-15x15-4p-3f-v2 0.08 ± 0.03 0.51 ± 0.22 0.37 ± 0.20*
Foraging-15x15-4p-5f-v2 0.15 ± 0.06* 0.20 ± 0.01* 0.21 ± 0.10
Simpleadversary-v0 14.42 ± 0.15 14.27 ± 0.72* 14.17 ± 0.65*
Simplespeakerlistener-v0 -24.15 ± 1.47* -25.51 ± 1.95* -24.00 ± 1.59
Simpletag-v0 511.80 ± 13.05 435.48 ± 6.02 509.49 ± 12.30*
Rware-small-4ag-v1 0.05 ± 0.04 0.00 ± 0.01* 0.01 ± 0.02*
Rware-tiny-2ag-v1 0.04 ± 0.02* 0.01 ± 0.02* 0.05 ± 0.05
Rware-tiny-4ag-v1 0.62 ± 0.52* 0.12 ± 0.07* 0.65 ± 0.86
Smac-2s-vs-1sc 17.81 ± 0.31* 13.21 ± 1.69 17.97 ± 0.28
Smac-3s5z 15.30 ± 0.86 15.21 ± 1.83 18.10 ± 0.30
Smac-mmm2 11.19 ± 0.34* 8.35 ± 0.32 11.86 ± 1.29
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Table 5: Average returns and 95% confidence interval over five seeds for the three discounting policies
across all tasks for Indepndent Learning methods.

Algs Environment Exponential Average Hyperbolic

IA
2C

Foraging-15x15-3p-5f-v2 0.32 ± 0.06* 0.33 ± 0.03* 0.35 ± 0.05
Foraging-15x15-4p-3f-v2 0.72 ± 0.04* 0.73 ± 0.04 0.72 ± 0.03*
Foraging-15x15-4p-5f-v2 0.36 ± 0.04 0.40 ± 0.06* 0.45 ± 0.04
Simpleadversary-v0 13.68 ± 0.30* 13.86 ± 0.29 13.78 ± 0.28*
Simplespeakerlistener-v0 -34.88 ± 6.71* -32.27 ± 4.25* -30.87 ± 1.92
Simpletag-v0 405.60 ± 22.42 429.43 ± 24.97 485.93 ± 21.78
Rware-small-4ag-v1 1.91 ± 0.40 1.76 ± 0.28 2.45 ± 0.15
Rware-tiny-2ag-v1 1.92 ± 0.69* 1.75 ± 0.27* 2.85 ± 1.02
Rware-tiny-4ag-v1 5.11 ± 3.50* 5.68 ± 2.90* 6.97 ± 0.71

IP
P

O

Foraging-15x15-3p-5f-v2 0.13 ± 0.07* 0.20 ± 0.06 0.17 ± 0.05*
Foraging-15x15-4p-3f-v2 0.58 ± 0.03 0.60 ± 0.03* 0.65 ± 0.04
Foraging-15x15-4p-5f-v2 0.30 ± 0.09* 0.35 ± 0.04 0.25 ± 0.04
Simpleadversary-v0 14.16 ± 0.28* 14.33 ± 0.28 14.21 ± 0.28*
Simplespeakerlistener-v0 -37.05 ± 7.86* -33.78 ± 6.66* -29.78 ± 1.98
Simpletag-v0 446.13 ± 19.62 510.58 ± 37.86* 516.53 ± 24.54
Rware-small-4ag-v1 6.77 ± 3.86 4.43 ± 1.76* 5.17 ± 1.91*
Rware-tiny-2ag-v1 11.23 ± 4.75* 10.44 ± 4.43* 12.08 ± 4.66
Rware-tiny-4ag-v1 20.96 ± 14.08* 23.71 ± 6.22* 25.46 ± 6.52

IQ
L

Foraging-15x15-3p-5f-v2 0.04 ± 0.01* 0.06 ± 0.01 0.05 ± 0.01*
Foraging-15x15-4p-3f-v2 0.12 ± 0.03* 0.17 ± 0.02* 0.17 ± 0.06
Foraging-15x15-4p-5f-v2 0.08 ± 0.01 0.11 ± 0.01 0.10 ± 0.01*
Simpleadversary-v0 4.14 ± 1.27* 5.11 ± 1.02* 5.75 ± 1.24
Simplespeakerlistener-v0 -50.38 ± 8.32* -50.23 ± 8.13* -49.67 ± 7.58
Simpletag-v0 318.72 ± 17.06 296.17 ± 24.84 362.06 ± 15.69
Rware-small-4ag-v1 0.11 ± 0.11 0.01 ± 0.01* 0.04 ± 0.04*
Rware-tiny-2ag-v1 0.03 ± 0.05 0.01 ± 0.01* 0.01 ± 0.01*
Rware-tiny-4ag-v1 0.29 ± 0.17* 0.09 ± 0.04 0.29 ± 0.10
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Table 6: Average returns and 95% confidence interval over five seeds for the three discounting policies
across all tasks for CTDE methods.

Algs Environment Exponential Average Hyperbolic

M
A

A
2C

Foraging-15x15-3p-5f-v2 0.27 ± 0.05 0.38 ± 0.03* 0.38 ± 0.03
Foraging-15x15-4p-3f-v2 0.65 ± 0.03 0.72 ± 0.04 0.70 ± 0.02*
Foraging-15x15-4p-5f-v2 0.36 ± 0.05 0.49 ± 0.04 0.49 ± 0.04*
Simpleadversary-v0 14.44 ± 0.27* 14.67 ± 0.28 14.50 ± 0.28*
Simplespeakerlistener-v0 -29.02 ± 1.71* -28.61 ± 1.17 -28.82 ± 1.27*
Simpletag-v0 452.36 ± 15.49 385.21 ± 197.41* 434.42 ± 42.02*
Rware-small-4ag-v1 1.23 ± 0.89 1.95 ± 0.41 2.71 ± 0.19
Rware-tiny-2ag-v1 1.62 ± 0.47 1.56 ± 0.32 2.89 ± 0.47
Rware-tiny-4ag-v1 5.82 ± 3.53* 5.65 ± 3.60* 7.55 ± 3.74

M
A

P
P

O

Foraging-15x15-3p-5f-v2 0.15 ± 0.06* 0.19 ± 0.04 0.11 ± 0.05
Foraging-15x15-4p-3f-v2 0.48 ± 0.04 0.57 ± 0.04* 0.61 ± 0.04
Foraging-15x15-4p-5f-v2 0.26 ± 0.06* 0.31 ± 0.04 0.23 ± 0.06
Simpleadversary-v0 13.36 ± 0.27* 13.61 ± 0.26 13.53 ± 0.27*
Simplespeakerlistener-v0 -29.43 ± 2.97* -28.39 ± 1.71* -28.24 ± 1.30
Simpletag-v0 426.19 ± 24.48 472.18 ± 15.47* 481.18 ± 20.32
Rware-small-4ag-v1 17.82 ± 1.04 16.97 ± 1.00* 15.30 ± 0.85
Rware-tiny-2ag-v1 13.96 ± 3.50* 16.99 ± 1.18* 17.03 ± 1.17
Rware-tiny-4ag-v1 40.41 ± 2.82* 24.94 ± 19.71* 41.25 ± 2.11

Q
M

IX

Foraging-15x15-3p-5f-v2 0.05 ± 0.02 0.08 ± 0.01 0.07 ± 0.02*
Foraging-15x15-4p-3f-v2 0.06 ± 0.01 0.17 ± 0.07 0.13 ± 0.06*
Foraging-15x15-4p-5f-v2 0.08 ± 0.04* 0.11 ± 0.02* 0.11 ± 0.03
Simpleadversary-v0 10.52 ± 1.09* 10.63 ± 1.46 10.45 ± 1.27*
Simplespeakerlistener-v0 -37.60 ± 5.48* -42.29 ± 7.68* -37.12 ± 5.12
Simpletag-v0 368.15 ± 10.75* 346.31 ± 18.55 383.42 ± 10.88
Rware-small-4ag-v1 0.02 ± 0.01 0.00 ± 0.00* 0.00 ± 0.01*
Rware-tiny-2ag-v1 0.02 ± 0.01 0.01 ± 0.01* 0.01 ± 0.02*
Rware-tiny-4ag-v1 0.20 ± 0.13 0.06 ± 0.03* 0.16 ± 0.18*
Smac-2s-vs-1sc 14.51 ± 1.58 10.04 ± 2.36 14.39 ± 1.35*
Smac-3s5z 13.41 ± 0.94 13.81 ± 1.06 15.66 ± 0.74
Smac-mmm2 9.96 ± 0.69* 7.30 ± 0.86 10.32 ± 0.83
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Figure 12: The four MARL benchmarks studied in this work. From left to right: Level Based Foraging
(LBF), Multi-Robot Warehouse (RWARE), Multi Particle Environment (MPE) and StarCraft Multi-
Agent Challenge (SMAC).

K MARL Environments

The following multi-agent environments were used in this work, an overview of which is given in
Table 7 and visualized in Figure 12.

Level-Based Foraging (LBF) (Albrecht & Ramamoorthy, 2013) is a grid-world scenario where
agents must collect food items scattered randomly. Agents and items are assigned levels, and a group
of one or more agents can collect an item if the sum of their levels is greater than or equal to the
item’s level. Agents can move in four directions and have an action to attempt loading an adjacent
item, which succeeds based on the agents’ levels. LBF allows for configuring various tasks, including
partial observability or highly cooperative scenarios where all agents must participate simultaneously
to collect items. Seven distinct tasks with varying world sizes, agent numbers, observability, and
cooperation settings are defined to test the multi-agent reinforcement learning (MARL) algorithms’
ability to cooperate in collecting resources within the grid world. We use 3 of the available 7 tasks in
this work.

Multi-Robot Warehouse (RWARE) (Papoudakis et al., 2021) simulates a dynamic warehouse
scenario where robotic agents must collaborate to transport and sort packages efficiently. It is
a cooperative, partially observable scenario with sparse rewards. In this grid-world warehouse
simulation, agents (robots) must locate and deliver requested shelves to workstations and return them
after delivery. Agents receive rewards only upon completely delivering the requested shelves. The
environment features sparse and high-dimensional observations, consisting of a 3 × 3 grid containing
information about surrounding agents and shelves. Agents can move forward, rotate, and load/unload
shelves. Three tasks are defined with varying world sizes, agent numbers, and shelf requests. The
sparsity of rewards and partial observability make RWARE challenging, as agents must coordinate
their actions effectively to complete a series of steps before receiving any reward signal. RWARE
serves as a benchmark for evaluating algorithm performance in cooperative, partially observable
scenarios with sparse rewards, where effective coordination is crucial. We use all the 3 available tasks
in this study.

Multi-Agent Particle Environments (MPE) (Mordatch & Abbeel, 2017; Lowe et al., 2017)
consist of several two-dimensional navigation tasks designed to evaluate agent coordination and the
ability to handle non-stationarity. In this study, we investigate four tasks from MPE that emphasize
coordination: Speaker-Listener, Spread, Adversary, and Predator-Prey. In these tasks, agents receive
high-level feature vectors as observations, including relative agent and landmark locations, and agents
are required to navigate to fulfill environment-defined tasks. While the Speaker-Listener task requires
binary communication and is partially observable, the remaining tasks are fully observable. The
MPE tasks serve as a benchmark for assessing agent coordination and their capability to deal with
non-stationarity. The rewards in these tasks are highly dependent on the joint actions of the agents,
and a lack of effective coordination among individual agents can severely reduce the received rewards
(Papoudakis et al., 2019). As mentioned above, we use 4 of the available 6 tasks in MPE.



RLJ | RLC 2024

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) simulates battle
scenarios in the real-time strategy game StarCraft, where a team of controlled agents must destroy
an enemy team using fixed policies. Agents have limited observation radii and can move and attack
enemies. SMAC offers many tasks, known commonly as maps, varying in the number and types
of controlled units. The key challenges include accurately estimating state values under partial
observability, coordinating an increasing number of diverse agent types across tasks, and handling
large action spaces as agents can select targets for healing or attacking based on their unit type.
This environment serves as a complex benchmark for multi-agent reinforcement learning algorithms,
demanding effective coordination, decision-making under partial observability, strategic planning,
adaptability, and teamwork in realistic scenarios with large action spaces and diverse agents. We
study three maps for SMAC in our work. Due to limited computing, we restrict our analysis of
SMAC to QMIX, the most widely used and benchmarked method on SMAC.

Table 7: Overview of MARL environments (reproduced from (Papoudakis et al., 2021)).

Environment Observability Reward Sparsity Agents Main Difficulty
LBF Partial / Full Sparse 2-4 Coordination
RWARE Partial Sparse 2-4 Sparse reward
MPE Partial / Full Dense 2-3 Non-stationarity
SMAC Partial Dense 2-10 Large action space


