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Abstract

Recent advancements in music large language001
models (LLMs) have significantly improved002
music understanding tasks, which involve the003
model’s ability to analyze and interpret various004
musical elements. These improvements primar-005
ily focused on integrating both music and text006
inputs. However, the potential of incorporating007
additional modalities such as images, videos008
and textual music features to enhance music un-009
derstanding remains unexplored. To bridge this010
gap, we propose DeepResonance, a multimodal011
music understanding LLM fine-tuned via multi-012
way instruction tuning with multi-way aligned013
music, text, image, and video data. To this end,014
we construct Music4way-MI2T, Music4way-015
MV2T, and Music4way-Any2T, three 4-way016
training and evaluation datasets designed to en-017
able DeepResonance to integrate both visual018
and textual music feature content. We also in-019
troduce multi-sampled ImageBind embeddings020
and a pre-alignment Transformer to enhance021
modality fusion prior to input into text LLMs,022
tailoring DeepResonance for multi-way instruc-023
tion tuning. Our model achieves state-of-the-art024
performances across six music understanding025
tasks, highlighting the benefits of the auxil-026
iary modalities and the structural superiority027
of DeepResonance. We plan to open-source the028
models and the newly constructed datasets.029

1 Introduction030

“Music gives a soul to the universe,031

wings to the mind, flight to the imagi-032

nation, and life to everything.”033

— Plato034

Different modalities are often interwoven. In the035

context of music, humans typically experience mu-036

sic alongside complementary textual and visual sig-037

nals, such as lyrics, the composition of a piece, live038

performances, or the arrangement of instruments039
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Figure 1: Performance overview of DeepResonance
and related models. “Music4way,” “MI2T,” “MV2T,”
and “Any2T” refer to the Music4way-MusicCaps,
Music4way-MI2T, Music4way-MV2T, and Music4way-
Any2T datasets. The metrics “B,” “R,” and “BERT”
represent BLEU-1, ROUGE-L, and BERTScore. All
values have been normalized based on maximum.

in a band. These additional modalities significantly 040

influence how humans perceive and understand mu- 041

sic. Therefore, it is reasonable to assume that train- 042

ing a model to incorporate other modalities—such 043

as images, videos, and textual music features can 044

enhance its performance on music understanding 045

tasks (Manco et al., 2021; Gardner et al., 2024; 046

Agostinelli et al., 2023; Liu et al., 2024). 047

In this work, we introduce the concept of multi- 048

modal music understanding, where multiple modal- 049

ity signals are leveraged to enhance the percep- 050

tion of music. We implement this concept through 051

multi-way instruction tuning, inspired by code- 052

switched (Song et al., 2022) and multi-way mul- 053

tilingual translation (Fan et al., 2021) that extend 054

translation models beyond bilingual pairings. For 055

multimodal music understanding, we establish re- 056

1



lationships that go beyond the conventional pairing057

of music and text modalities commonly seen in ex-058

isting music large language models (LLMs) (Doh059

et al., 2023; Liu et al., 2024; Hussain et al., 2023;060

Gardner et al., 2024; Zhao et al., 2024).061

We present DeepResonance, a multimodal mu-062

sic understanding LLM trained on music-centric063

multi-way data that integrates the music, text, im-064

age, and video modalities. Specifically, we con-065

struct two 4-way training datasets, Music4way-066

MI2T and Music4way-MV2T, where the source067

data comprises music, images/videos, and textual068

descriptions and instructions. The target data in-069

cludes textual descriptions enriched with multi-070

modal information, such as music, images/videos,071

and low-level music features, including tempo,072

chords, key, and downbeats. Using these datasets,073

we develop DeepResonance based on the NExT-074

GPT (Wu et al., 2024) architecture. To enhance075

multimodal music understanding tasks, we propose076

two key modifications to the backbone model. The077

first involves multi-sampled ImageBind embed-078

dings, which are designed to retain richer informa-079

tion of music, image, and video modalities from the080

ImageBind encoders (Girdhar et al., 2023), thereby081

fostering deeper interaction with the music modal-082

ity and improving multimodal music understand-083

ing. The second is a pre-alignment Transformer,084

a module aimed at pre-adapting different modali-085

ties to each other before feeding them into the text086

LLM module. This component is particularly effec-087

tive in simultaneously handling multimodal inputs088

of music, text, images, and videos. These inno-089

vations collectively advance the model’s ability to090

integrate and process diverse multimodal signals091

for enhanced music understanding.092

We evaluate DeepResonance on three conven-093

tional music understanding tasks (i.e., music +094

text (instruction)−→ text) and three multimodal095

music understanding tasks (i.e., music + im-096

age/video + text (instruction) −→ text (multimodal-097

enriched)). The former includes two existing098

benchmarks, MusicQA (Liu et al., 2024) and Mu-099

sicCaps (Agostinelli et al., 2023), along with our100

constructed Music4way-MusicCaps, which cover101

captioning and question-answering tasks for mu-102

sic understanding. The latter evaluation for mul-103

timodal music understanding uses the test splits104

of Music4way-MI2T and Music4way-MV2T, as105

well as the newly introduced Music4way-Any2T106

to assess the model’s robustness.107

As shown in Fig. 1, DeepResonance models with108

different configurations (α and β) consistently out- 109

perform related models across all six downstream 110

tasks in supervised settings, demonstrating the ef- 111

fectiveness of our proposed multi-way datasets and 112

model architecture components for music under- 113

standing tasks. Additionally, we conduct zero-shot 114

evaluations to assess the model’s generalization 115

to unseen datasets and perform ablation studies to 116

evaluate the impact of each proposed component in 117

different downstream task settings. The contribu- 118

tions of this work can be summarized as follows: 119

• We introduce the Music4way-MI2T, 120

Music4way-MV2T, and Music4way-Any2T 121

datasets, enabling music, text, image, and 122

video integration for music understanding. 123

• We propose multi-sampled ImageBind embed- 124

dings and a pre-alignment Transformer to en- 125

hance multimodal fusion for music LLMs. 126

• Our DeepResonance outperforms existing mu- 127

sic LLMs across six downstream tasks, show- 128

ing the effectiveness of our proposed datasets 129

and models, which will be open-sourced. 130

2 Related Work 131

Music Understanding is an emerging topic that 132

builds upon the foundational research efforts in 133

music information retrieval (MIR), which tradition- 134

ally focused on low-level music feature recognition 135

tasks, such as identifying tempo, chords, keys, and 136

instruments (Faraldo et al., 2016; Pauwels et al., 137

2019; Gururani et al., 2019; Schreiber et al., 2020). 138

Early work in this area was centered on basic tag- 139

ging tasks, such as determining the genre or version 140

of a piece of music (Tzanetakis, 2001; Won et al., 141

2021; Yesiler et al., 2021). Over time, the focus 142

shifted to high-level understanding tasks that re- 143

quire a more comprehensive interpretation of the 144

content, sentiment, and insights conveyed by music. 145

These tasks include captioning, reasoning, ques- 146

tion answering, and tool using (Manco et al., 2021; 147

Gardner et al., 2024; Agostinelli et al., 2023; Liu 148

et al., 2024; Deng et al., 2024; Zhao et al., 2024). 149

Multimodal Instruction Tuning and Music Foun- 150

dation Models: Recently, multimodal pre-training 151

has successfully bridged image, audio, and video 152

modalities to text LLMs (Tang et al., 2024a; Wu 153

et al., 2024; Gong et al., 2024; Tang et al., 2024b) 154

through multimodal instruction tuning (Liu et al., 155

2023; Zhao et al., 2023) or universal multimodal 156
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Figure 2: Overview of DeepResonance. It integrates the “multi-way unified caption” as a target, along with
“multi-sampled ImageBind embeddings” and a “pre-alignment Transformer” as novel architectural components.

embedding space encoders (Girdhar et al., 2023;157

Zhu et al., 2024). However, few studies have fo-158

cused on the music modality. MU-LLaMA (Liu159

et al., 2024) was among the first to instruction-tune160

LLaMA models (Touvron et al., 2023) for the mu-161

sic domain, while LLark (Gardner et al., 2024)162

extended music LLMs to support a wide range of163

tasks, including captioning, reasoning, and low-164

level music feature recognition. M2UGen (Hus-165

sain et al., 2023) introduced music generation mod-166

ules built on MU-LLaMA, leveraging newly con-167

structed music-centric datasets for instruction fine-168

tuning. OpenMU (Zhao et al., 2024) unified ex-169

isting music understanding datasets, curating a170

comprehensive benchmark for evaluating music171

+ text −→ text tasks. Other models, such as Mus-172

Caps (Manco et al., 2021), LP-MusicCaps (Doh173

et al., 2023), and MusiLingo (Deng et al., 2024),174

were designed for task-specific purposes.175

Our work differs from the previous studies on176

music understanding and music foundation mod-177

els in three aspects: (1) We are the first to ap-178

ply instruction-tuning on music foundation mod-179

els using multi-way data that integrates multiple180

modalities, shifting the paradigm from the tradi-181

tional music + text −→ text approach to the music +182

image/video + text −→ text (multimodal-enriched)183

framework. (2) We are the first to access the gener-184

alization of music LLMs to multi-way multimodal185

inputs using our newly curated Music4way-Any2T186

dataset and zero-shot evaluation on out-of-domain187

benchmarks. (3) We propose multi-sampled Image-188

Bind embeddings and pre-alignment Transformer189

that significantly impact multimodal music under-190

standing tasks, delivering state-of-the-art music191

LLMs optimized for different downstream tasks.192

3 Multi-way Instruction Tuning 193

We focus on the integration of multi-way informa- 194

tion into each data for music understanding tasks, 195

which conventionally contains only music and text. 196

3.1 Music-centric Multi-way Datasets 197

Construction 198

M2UGen (Hussain et al., 2023) pioneered multi- 199

modal dataset construction for instruction-tuning 200

music LLMs, creating music-centric pairs with text, 201

images, videos, and other music for captioning, 202

editing, and generation tasks. Drawing inspiration 203

from studies on code-switched and multi-way trans- 204

lation (Song et al., 2022; Fan et al., 2021), which 205

break away from English-centric bilingual pairing 206

relationships, we propose extending traditional mu- 207

sic LLM fine-tuning by incorporating multi-way 208

relationships among music and other modalities, in- 209

cluding image, video, and text. Building upon the 210

music-centric paired dataset construction pipeline 211

of M2UGen, we expand it with multi-way relation- 212

ships to create multimodal-enriched training data. 213

Music4way: Building upon the AudioSet (Gem- 214

meke et al., 2017) music clips filtered by M2UGen1, 215

we curate a multi-way aligned dataset, comprising a 216

total of 172.57 hours of music.2 Each video-music 217

pair from AudioSet is processed as shown in Fig. 3 218

(left). First, we randomly extract a video frame to 219

serve as the aligned image for the video and mu- 220

sic. Next, BLIP (Li et al., 2022), VideoMAE (Tong 221

et al., 2022), and MU-LLaMA (Liu et al., 2024) 222

are used to generate captions for the image, video, 223

1https://github.com/shansongliu/M2UGen
2Note that in M2UGen, each music clip is paired with only

one other modality during training.
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★ Multi-way unified caption of Music4way-MI2T and Music4way-MV2T

Tempo, chords, downbeats, key

Multi-way 
aligned music

Multi-way 
aligned video

Multi-way 
aligned image

Video caption

Music caption

Image caption

The music is a slow, heavy metal song
with a dark and intense mood. The
instruments used are electric guitar,
bass guitar, drums, and vocals …

A man is playing a song on a guitar and
he is sitting on a table.

The image shows a man playing a guitar.

{
'tempo': [[105.26315789473684, 0.4619219529856875], … ]
'chords': [[0.0, 1.5, 'C:maj'], [1.5, 3.7, 'F:maj'], … ], 

    'downbeats': [[0.25, 3.0], [0.81, 4.0], [1.39, 1.0], [1.99, 2.0], … ],
    'key': [[9.83237405307591e-05, 8.27968106023036e-05, …]
}

The video and music describe a fast-paced and energetic performance by a group of musicians, with a
positive and upbeat mood. The music features a driving rhythm, a strong beat, and a variety of
instruments, including drums, bass, electric guitar, and keyboards. The chords used in the music are
major, with a key of A minor. The tempo ranges from 60 to 120 beats per minute, with a strong sense
of energy and movement conveyed by the upbeat tone of the music. The downbeats occur every four
beats, with a strong emphasis on the first and third beats of each measure. Overall, the visual and
auditory components complement each other to create a cohesive and engaging experience for the
viewer.

MPT-7B

VideoMAE

BLIP

MU-LLaMA
Input: Consider the music of <Music>; and its paired image of <Image>; or video of <Video>; that visually 
represents a dark and intense atmosphere.

Instruction: Describe how the music's slow, heavy metal style and the visuals of a man playing a guitar are 
reflected in the image or video.

Output: The music is a slow, heavy metal song with a dark and intense mood. It features electric guitar, bass
guitar, drums, and powerful vocals. The tempo is slow and the rhythm is steady, with a heavy, distorted guitar
sound and a solid foundation provided by the bass guitar and drums. The vocals are deep and powerful,
emphasizing the lower register. This creates a heavy and intense sound. The image or video shows a man playing
a guitar, holding it, and sitting on a table. The visuals are simple but effective, focusing on the man and his
instrument. The dark and intense atmosphere of the music is reflected in the visuals, capturing the mood and
energy of the song. Together, the music and visuals create a cohesive experience that immerses the audience in a
dark and intense musical journey.

★ Music4way-Any2T

GPT-4o mini

Feature Extractors

★ Music4way (4-way aligned music, image, video, and text)

Multi-way aligned text

Figure 3: Multi-way Instruction Tuning Data Construction. Based on AudioSet, we construct Music4way
(M+T−→T, I+T−→T, V+T−→T), Music4way-MI2T (M+I+T−→T), Music4way-MV2T (M+V+T−→T), and Music4way-
Any2T (M+I/V+T−→T) for instruction tuning and evaluation. (M: music; I: image; V: video; T: text)

and music, respectively. Following LLark (Gard-224

ner et al., 2024), we employ madmom (Böck et al.,225

2016) to extract low-level music features, including226

tempo, chords, downbeats, and key, representing227

these features in textual form. This process creates228

a 4-way alignment for each music-video pair, estab-229

lishing relationships between music, image, video,230

and text. The text modality conveys information231

through captions or feature values derived from the232

other three modalities. The resulting Music4way233

dataset includes 59,128 training samples (164.24234

hours) and 3,000 evaluation samples (8.33 hours).235

3.2 Multi-way Instruction Tuning Data236

Construction237

Building on the constructed Music4way dataset,238

we design instruction tuning data tailored for train-239

ing and evaluating music LLMs. As fine-tuning240

an LLM requires data to be formatted strictly as241

source-target pairs, we develop two pipelines to242

transform the multi-way relationships among the243

four modalities in Music4way into source-target244

pairs, which ensure seamless integration of multi-245

modal information for LLM instruction tuning.246

Music4way-MI2T and Music4way-MV2T: In-247

spired by VAST (Chen et al., 2023), which es-248

tablished multimodal connections between vision,249

audio, and subtitles to generate omni-modal cap-250

tions for improving visual-text tasks, we extend251

this approach to the music domain, exploring its252

potential benefits for music understanding tasks.253

As shown in Fig. 3, we prompt the open-source254

MPT-7B (Team, 2023) model to combine captions255

from images, videos, and music, as well as textual256

music features, creating a multi-way unified cap-257

tion. These captions are then paired with music 258

and image/video inputs to form the source-target 259

pairs required for fine-tuning LLMs. For the task 260

of music + image to multi-way unified caption, 261

we construct the Music4way-MI2T dataset. Sim- 262

ilarly, for music + video inputs, we construct the 263

Music4way-MV2T dataset. These datasets are de- 264

signed to train the music understanding model to 265

infer visual content and musical details (e.g., instru- 266

ments, sentiments, and low-level features) directly 267

from raw music and image/video files. The tem- 268

plates we utilized for prompting MPT-7B to gener- 269

ate the multi-way unified captions are provided in 270

the Appx. C. As shown in Fig. 2, these datasets are 271

then used to fine-tune music understanding models, 272

with inputs comprising music and image/video, a 273

fixed instruction template (see Appx. C), and out- 274

puts of multi-way unified captions. Additionally, 275

we create corresponding test sets from the test split 276

of Music4way to benchmark performance on mul- 277

timodal music understanding tasks. (See Sec. 5.3) 278

Music4way-Any2T: To evaluate the robustness 279

of multimodal music LLMs to diverse text inputs 280

and queries, we introduce the Music4way-Any2T 281

dataset. As shown in Fig. 3, this dataset features 282

flexible inputs, allowing each modality to appear 283

in any position. It includes instructions and outputs 284

presented as diverse question-answer pairs, cover- 285

ing various aspects (e.g., visual or musical content) 286

of the multi-way aligned data. To construct struc- 287

tured data with input, instruction, and output fields, 288

we use GPT-4o mini3, prompted with all textual 289

information from the Music4way dataset alongside 290

the multi-way unified caption. Detailed prompting 291

3https://platform.openai.com/docs/models
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templates and data examples can be found in the292

Appx. D. The Music4way-Any2T dataset is used to293

benchmark the robustness and generalization capa-294

bilities of multimodal music understanding models,295

with results presented in Sec. 5.3.296

4 Model Architecture Tailored for297

Multimodal Music Understanding298

In this section, we introduce DeepResonance,299

our model designed to adapt general any-to-text300

LLMs for multimodal music understanding tasks,301

leveraging the multi-way datasets introduced in302

Sec. 3.2. We construct DeepResonance based on303

NExT-GPT (Wu et al., 2024), a general any-to-any304

multimodal LLM. This framework integrates an Im-305

ageBind encoder (Girdhar et al., 2023) to process306

inputs from the image, video, and audio modali-307

ties, a Vicuna-7B (Chiang et al., 2023) model as308

the LLM backbone, and linear adaptors to bridge309

ImageBind to the Vicuna model. The vanilla ver-310

sion of DeepResonance, like NExT-GPT, models311

the text sequence generation task as follows:312

P(wn|Xm,Xv,Xi,Xt,Q,W1:n−1) =313

LLM(Am(em),Av(ev),Ai(ei),314

{et}, {eq}, {ew}1:n−1) (1)315

where W = {w1, w2, . . . , wn} represents the text316

sequence to be generated, and Xm, Xv, Xi and317

Xt denote the patch-level multimodal and text to-318

kens for music, video, image, and text, respectively.319

Q indicates the query (i.e., instruction) input to320

the model. LLM and A∗ (∗ ∈ {m, v, i}) repre-321

sent the Vicuna-7B LLM and the linear adaptors322

for each modality. e∗ (∗ ∈ {m, v, i}) denotes the323

embedding of music, video, and image produced324

by ImageBind, while e# (# ∈ {t, q, w}) are the325

LLM’s text embeddings of input, query, and output.326

However, the pooled single embedding from327

ImageBind may fail to capture the detailed infor-328

mation required to effectively interact with other329

modalities in downstream music understanding330

tasks, particularly for music and video modalities.331

This limitation arises because such multimodal en-332

coders prioritize coarse-grained representations for333

cross-modal retrieval tasks (Balaji et al., 2022). Ad-334

ditionally, as NExT-GPT relies solely on modality-335

specific adaptors to map each modality into LLM’s336

embedding space, it may not effectively model in-337

teractions between modalities. These interactions338

were never pre-trained, and the LLM itself only em-339

ploys uni-directional attention (Zhou et al., 2024).340

Dataset Used for In−→out modality
COCO Train stage 1 I+T−→T
Music4way Train stage 2 I+T−→T
Music4way Train stages 1 & 2 V+T−→T
Music4way Train stages 1 & 2 M+T−→T
Alpaca Train stage 2 T−→T
MusicQA Train stage 2 M+T−→T
MusicCaps Train stage 2 M+T−→T
Music4way-MI2T Train stage 2 M+I+T−→T
Music4way-MV2T Train stage 2 M+V+T−→T

Table 1: Overview of training data. M: Music; I: Image;
V: Video; T: Text.

To address these challenges, we propose two 341

modules for music LLMs: multi-sampled Im- 342

ageBind embeddings and pre-alignment Trans- 343

former, as shown in Fig. 2. The former leverages 344

embeddings from multiple clips sampled by Image- 345

Bind without pooling, while the latter introduces a 346

Transformer to globally integrate and align infor- 347

mation across modalities before feeding it into the 348

LLM. Formally, the proposed model is defined as 349

P(wn|Xm,Xv,Xi,Xt,Q,W1:n−1) = 350

LLM(T (Am({em}1:Nm),Av({ev}1:Nv), 351

Ai({ei}1:Ni), {et}), {eq}, {ew}1:n−1). (2) 352

Here, T represents the pre-alignment Transformer, 353

and e∗ (∗ ∈ {m, v, i}) from Eq. 1 is reformu- 354

lated as {e∗}1:N∗ to incorporate multi-sampled 355

ImageBind embeddings for each modality, where 356

N∗ denotes the number of sampled clips for a 357

given modality. With these components, the multi- 358

sampled ImageBind embeddings preserve finer- 359

grained information for each modality, which is 360

expected to enhance music understanding tasks 361

(Sec. 5). The pre-alignment Transformer uses bidi- 362

rectional attention to encode cross-modal depen- 363

dencies, enhancing the interactions between music 364

and other modalities, ultimately aiming to improve 365

multimodal music understanding tasks (Sec. 5.3). 366

5 Experiments and Results 367

Following the training strategy of NExT-GPT and 368

M2UGen, we train DeepResonance in two stages. 369

Table 1 summarizes all datasets used for training, 370

with training details provided in Appx. B. Subse- 371

quently, we evaluate DeepResonance across three 372

music understanding tasks and three multimodal 373

music understanding tasks in supervised settings. 374

Additionally, we assess the model’s zero-shot per- 375

formance on out-of-domain datasets and conduct 376
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Model MusicQA MusicCaps Music4way-MusicCaps
B-1 R-L BERTS B-1 R-L BERTS B-1 R-L BERTS

SALMONN (Tang et al., 2024a) †28.7 †35.4 †90.3 †19.7 †19.1 †86.9 19.1 20.0 87.0
MU-LLaMA (Liu et al., 2024) †29.7 †33.1 †89.9 ∗†9.6 ∗†16.2 ∗†86.8 15.1 27.6 88.3
OpenMU (Zhao et al., 2024) †24.5 †25.5 †88.6 †23.9 †19.4 †86.6 – – –
MusiLingo sft. w/ MusicCaps (Deng et al., 2024) – – – – †21.7 †86.8 – – –
NExT-GPT (Wu et al., 2024) 23.3 26.0 87.6 16.5 14.0 84.0 16.6 17.2 86.7
M2UGen (Hussain et al., 2023) †29.1 †37.9 †90.5 ∗†14.4 ∗†16.4 ∗†86.5 ∗†13.1 ∗†26.0 ∗†87.6
NExT-GPT w/ M2UGen †34.0 †39.6 †91.2 12.4 16.1 86.9 ∗†23.2 ∗†36.7 ∗†91.3
NExT-GPT w/ Music4way †34.1 †39.2 †91.3 †25.0 †21.0 †87.2 †39.1 †46.8 †93.0
DeepResonance-α (ours) †35.1 †40.8 †91.6 †26.0 †21.6 †87.3 †40.9 †48.4 †93.3
DeepResonance-β (ours) †35.6 †41.1 †91.6 †25.8 †21.6 †87.3 †39.9 †47.8 †93.2

Table 2: Results on MusicQA, MusicCaps, and Music4way-MusicCaps. The top two performances are high-
lighted in bold. “*” denotes the test data was included in the corresponding model’s training set. “†” indicates that
the test set’s train split is included in the corresponding model’s training data, representing a supervised setting.
“B-1”, “R-L”, and “BERTS” denote BLEU-1, ROUGE-L, and BERTScore, respectively.

an ablation study to demonstrate the effectiveness377

of each proposed component. Results are reported378

using BLEU (Papineni et al., 2002),4 ROUGE-379

L (Lin, 2004), and BERTScore (Zhang et al., 2020).380

5.1 Baselines and Ours381

Below are the baseline models and our models that382

we compare in this section.383

SALMONN (Tang et al., 2024a): A robust base-384

line model for audio understanding. It leverages a385

variety of audio datasets for training, including Au-386

dioCaps (Kim et al., 2019), WaveCaps (Mei et al.,387

2024), MusicNet (Thickstun et al., 2017), etc.388

MU-LLaMA (Liu et al., 2024): The first LLM389

instruction-tuned for music understanding with the390

MusicCaps and MusicQA as fine-tuning data.391

NExT-GPT (Wu et al., 2024): The first any-to-392

any multimodal LLM trained on multimodal fine-393

tuning data, serving as the backbone for ours.394

M2UGen (Hussain et al., 2023): The first any-to-395

any multimodal LLM tailored to the music domain,396

trained on newly curated data derived from the397

music split of AudioSet (Gemmeke et al., 2017).398

NExT-GPT w/ M2UGen: We train a NExT-GPT399

model on the same data as M2UGen, excluding Mu-400

sicCaps, as its test split was inadvertently included401

in M2UGen’s training data.402

NExT-GPT w/ Music4way: We train a NExT-403

GPT model using the Music4way datasets (see404

Sec. 3.1), a more extensive and 4-way aligned405

dataset compared to M2UGen’s training data. We406

exclude Music4way-MI2T and Music4way-MV2T407

(Table 1), aiming to evaluate the benefits of them.408

DeepResonance (Ours): The models introduced409

4Following prior studies, we primarily report BLEU-1,
while BLEU-1 and BLEU are shown in Appx. E, F, G, and H.

in Sec. 4, built upon NExT-GPT and trained with 410

datasets as shown in Table 1. We introduce 411

two DeepResonance variants: DeepResonance-α, 412

trained without the pre-alignment Transformer, and 413

DeepResonance-β, which includes it. The follow- 414

ing sections examine their effectiveness, as the pre- 415

alignment Transformer is specifically designed for 416

multimodal music understanding tasks (Sec. 5.3). 417

We also include results from a task-specific 418

music understanding model, MusiLingo (Deng 419

et al., 2024), for comparison. We also report the 420

performance of OpenMU (Zhao et al., 2024), a 421

benchmark model for multiple music understand- 422

ing datasets for supervised comparison. In zero- 423

shot evaluations, OpenMU and MusiLingo serve as 424

upper bounds for supervised performance, as they 425

were directly trained on those benchmarks. 426

5.2 Music Understanding Tasks 427

Table 2 reports the performance of all models in- 428

troduced in Sec.5.1 on music understanding tasks 429

(music + text −→ text) using MusicQA(Liu et al., 430

2024), MusicCaps (Agostinelli et al., 2023), and 431

our constructed Music4way-MusicCaps5. 432

First, we observe that DeepResonance outper- 433

forms baseline models on three datasets, demon- 434

strating the effectiveness of our proposed train- 435

ing datasets and model architecture. Second, we 436

find that applying the same training data to the 437

NExT-GPT framework yields a better performance 438

than using the M2UGen framework, suggesting 439

that NExT-GPT is a more suitable backbone model. 440

Third, by expanding M2UGen’s training data with 441

our constructed Music4way dataset, we observe 442

an improvement in performance, further validating 443

5A music captioning subset of the Music4way test split.
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Model Music4way-MI2T Music4way-MV2T Music4way-Any2T
B-1 R-L BERTS B-1 R-L BERTS B-1 R-L BERTS

NExT-GPT (Wu et al., 2024) 26.7 21.3 85.2 26.5 21.0 84.8 25.4 23.4 86.6
M2UGen (Hussain et al., 2023) ∗31.7 ∗26.4 ∗87.1 ∗31.7 ∗25.9 ∗86.8 ∗20.8 ∗21.5 ∗87.3
NExT-GPT w/ M2UGen ∗33.8 ∗27.3 ∗88.1 ∗34.6 ∗27.3 ∗88.1 ∗26.3 ∗28.5 ∗89.4
NExT-GPT w/ Music4way 24.2 22.0 85.4 25.0 22.5 85.5 29.4 27.0 88.4
DeepResonance-α (ours) 44.6 30.1 89.4 44.5 29.6 89.2 54.7 35.1 90.9
DeepResonance-β (ours) 49.2 36.8 90.2 49.0 36.8 90.3 33.5 27.4 88.7

Table 3: Results on Music4way-MI2T, Music4way-MV2T, and Music4way-Any2T. The top two performances
are highlighted in bold. “*” denotes the test data was included in the corresponding model’s training set.
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Figure 4: Zero-shot evaluation on GTZAN, MusicNet, MTG-Jamendo, MusicInstruct-short, and MusicInstruct-long.

the effectiveness of the Music4way dataset. Fi-444

nally, the comparison between DeepResonance-α445

and DeepResonance-β shows a comparable per-446

formance, indicating that the pre-alignment Trans-447

former is not crucial for music + text −→ text tasks.448

This aligns with expectations, as the pre-alignment449

Transformer is designed for multimodal music un-450

derstanding, whereas these tasks involve only a451

single modality (music) alongside the text query.452

5.3 Multimodal Music Understanding Tasks453

Table 3 lists the results on our proposed multimodal454

music understanding tasks (music + image/video455

+ text −→ text), including Music4way-MI2T,456

Music4way-MV2T, and Music4way-Any2T. We457

compare the performance of DeepResonance with458

baseline models capable of processing multiple459

modalities—music, text, image, and video—such460

as the M2UGen and NExT-GPT-based models.461

First, we observe that Music4way-MI2T and462

Music4way-MV2T represent novel downstream463

tasks for which no existing baseline models are464

inherently equipped. Through supervised fine-465

tuning with our curated training data for these466

datasets, the DeepResonance models gain the abil-467

ity to generate unified multimodal captions suc-468

cessfully. Second, on Music4way-Any2T, which469

features flexible inputs and open-ended question-470

answer pairs, the baseline models perform poorly. 471

Their generalization remains weaker than Deep- 472

Resonance models, highlighting their limitations in 473

handling diverse input patterns. Third, comparing 474

DeepResonance-α and DeepResonance-β, we find 475

that the latter demonstrates a superior performance 476

on Music4way-MI2T and Music4way-MV2T. This 477

indicates that the pre-alignment Transformer, with 478

its additional parameters, effectively integrates mul- 479

tiple modalities, thereby improving the supervised 480

performance in structured multimodal music un- 481

derstanding tasks. However, DeepResonance-β 482

exhibits reduced robustness on Music4way-Any2T, 483

which highlights a trade-off, as the model’s in- 484

creased complexity may hinder its adaptability with 485

limited instruction tuning data. 486

5.4 Zero-shot Evaluation 487

Fig. 4 present the zero-shot performance of Deep- 488

Resonance and baselines on music understand- 489

ing benchmarks, including GTZAN (Tzanetakis, 490

2001), MusicNet (Thickstun et al., 2017), MTG- 491

Jamendo (Bogdanov et al., 2019), MusicInstruct- 492

short, and MusicInstruct-long (Deng et al., 2024). 493

We adopt the benchmark settings outlined in 494

OpenMU-bench (Zhao et al., 2024), combining 495

captioning and reasoning test sets where separate 496

splits exist. All NExT-GPT-based models without 497
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Figure 5: Ablation study on Music4way-MI2T, Music4way-MV2T, and Music4way-Any2T. “PT-*L” indicates the
number of layers used in the pre-alignment Transformer. See Appx. H for result details.
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exposure to test data during training are compared,498

to ensure the zero-shot configurations. Detailed499

results are provided in the Appx. G.500

First, DeepResonance-β achieves the best per-501

formance across all five benchmarks in terms of502

ROUGE-L and BERTScore, demonstrating the503

effectiveness of the proposed training data and504

model architecture. Second, DeepResonance-β505

outperforms DeepResonance-α, highlighting the506

pre-alignment Transformer’s effectiveness in im-507

proving inference on unseen data. Referring back508

to Sec. 5.3, we recommend DeepResonance-α for509

tasks with flexible inputs and DeepResonance-β510

for other scenarios. Finally, DeepResonance’s zero-511

shot performance approaches the supervised upper512

bounds of MusiLingo on MusicInstruct in terms513

of BERTScore, demonstrating the out-of-domain514

generalization capabilities of DeepResonance.515

5.5 Ablation Study516

Figs. 5 and 6 present the results of ablation stud-517

ies evaluating the effectiveness of key components518

in the proposed methods, including Music4way-519

MI2T and Music4way-MV2T instruction tuning 520

data (MWIT), multi-sampled ImageBind embed- 521

dings (MIE), and the pre-alignment Transformer 522

(PT). For music + text −→ text tasks (Fig. 6), we 523

observe that MWIT, MIE, and PT each contribute 524

positively to performance. However, when com- 525

bined, PT does not consistently complement the 526

other two components across all three benchmarks, 527

with MWIT + MIE (DeepResonance-α) yielding 528

the consistent improvements. For multimodal mu- 529

sic understanding tasks (music + image/video + 530

text → text), we compare settings with and without 531

MIE and PT in Fig. 5, as MWIT serves as the in- 532

domain data for these tasks. Integrating MIE and 533

PT enhances performance, with PT proving most 534

effective when limited to a single Transformer layer. 535

This highlights the effectiveness of MIE and PT 536

while suggesting that increasing PT’s parameters 537

may lead to overfitting on limited instruction tun- 538

ing data. Moreover, PT with different layer settings 539

negatively impacts performance on Music4way- 540

Any2T (refer to Sec. 5.3). 541

6 Conclusion 542

In this study, we introduced DeepResonance, a 543

multimodal music understanding LLM capable of 544

comprehending music through its connections with 545

other modalities, such as image and video. To 546

train and evaluate DeepResonance, we developed 547

new music-centric multi-way instruction-following 548

datasets. In addition, we proposed modules de- 549

signed to enhance music-centric multimodal in- 550

struction tuning. Empirical results highlight the 551

effectiveness of DeepResonance across six music 552

understanding tasks and zero-shot scenarios. Fu- 553

ture work will explore more refined instruction tun- 554

ing datasets to improve the model’s generalization 555

capabilities for music understanding tasks. 556

8



Limitations557

The proposed methods have the following limita-558

tions:559

(1) The input music training data is mostly lim-560

ited to clips shorter than 30 seconds, with561

a significant portion (e.g., AudioSet) being562

10 seconds. This may restrict the fine-tuned563

models’ performance on longer music se-564

quences. Additionally, the dataset’s image565

frames are directly extracted from videos, as-566

suming relevance within short clips (10s). For567

longer videos, selecting the most representa-568

tive frames, such as cover images, should be569

explored in future work.570

(2) The effectiveness of DeepResonance has been571

verified using Vicuna (based on LLaMA) as572

the backbone LLM, but further studies are573

needed to assess its improvements when ap-574

plied to other LLM architectures.575

(3) The extracted music features (e.g., downbeats,576

tempo, key, chords) rely on existing MIR algo-577

rithms, which may have precision limitations.578

Incorporating more signal-oriented features579

such as MFCCs or Chromagrams could be580

explored in future work.581

(4) While the proposed methods perform well582

on supervised datasets included in the train-583

ing data, further the enhancing generaliza-584

tion capability to out-of-domain (distribution-585

shifted) music remains an open challenge.586

(5) Generating instruction tuning data with LLMs587

is a well-established and widely accepted ap-588

proach, as seen in Self-Instruct (Wang et al.,589

2023). Our instruction tuning data construc-590

tion process is relatively simple, ensuring the591

overall reliability. However, as with any LLM-592

generated data, biases may exist, and users593

should be mindful of potential biases.594

Ethical Considerations595

In this study, we leveraged publicly available596

datasets (without licensing issues) to create new597

datasets for multimodal music understanding. The598

newly generated content consists solely of text pro-599

duced by LLMs such as GPT-4o mini, with no orig-600

inally generated music, images, or videos. We fine-601

tuned the multimodal music understanding model602

through instruction tuning. While the model has603

been adapted to a specific domain, it may still gen- 604

erate hallucinations or biased content due to the 605

nature of LLM-based text generation. Users should 606

exercise caution when using the generated content, 607

be aware of the potential risks associated with LLM 608

outputs, and implement content safety checks as a 609

post-processing measure. 610
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A Discussion on Multi-way Alignment900

The 4-way alignment introduced in this work,901

which connects music, text, image, and video, is902

facilitated by pairing music with video and video903

with image. Each modality is further linked to text904

through captioning or feature extraction. There-905

fore, the 4-way relationship is constructed from906

several 2-way mappings, with any pair among four907

modalities being closely correlated as they stem908

from a single original music-video pair. Future909

work may develop finer-grained multi-way align-910

ment for music understanding tasks. We encourage911

further discussion and research on how to establish912

improved multi-way relationships across different913

modalities.914

B Training and Evaluation Details915

Following the training strategy of NExT-GPT and916

M2UGen, we train DeepResonance in two stages.917

In the first stage, we fine-tune only the parame-918

ters of the linear adaptors and the proposed pre-919

alignment Transformer. This stage focuses on920

captioning tasks for music, image, and video921

modalities, utilizing images from COCO (Lin922

et al., 2014) and music and video clips from the923

constructed Music4way dataset.6 In the second924

stage, we fine-tune the linear adaptors and the pre-925

alignment Transformer while simultaneously per-926

forming LoRA-based fine-tuning (Hu et al., 2022)927

on Vicuna. This stage incorporates instruction tun-928

ing tasks using datasets including Alpaca (Taori929

et al., 2023), MusicCaps (Agostinelli et al., 2023),930

6We use COCO instead of Music4way for the image cap-
tioning task in the first stage, as empirical results indicate
that using the larger image-text dataset, COCO, yields better
performance.

and MusicQA (Liu et al., 2024)7, along with our 931

constructed Music4way, Music4way-MI2T, and 932

Music4way-MV2T datasets. A summary of all 933

datasets used for training and evaluation is provided 934

in Table 1. As depicted in Fig. 2, instructions are 935

fed directly into the text-LLM, bypassing the adap- 936

tors and the pre-alignment Transformer, as they do 937

not require interaction with the input information. 938

We fine-tune for 5 and 2 epochs in the first and 939

second stages, respectively, utilizing a learning rate 940

of 1e−4 and a batch size of 16. Training is con- 941

ducted on 8 NVIDIA A100 GPUs (40GB each). 942

For LoRA, the rank and alpha are both set to 32, 943

following NExT-GPT. We train the pre-alignment 944

Transformer with various layer configurations (see 945

Sec. 5.5) and find that a single Transformer layer 946

achieves the best performance. Regarding the train- 947

able parameters, the linear adaptors, LoRA, pre- 948

alignment Transformer, and LLaMA embedding 949

layers contain 4M, 33M, 157M, and 262M param- 950

eters, respectively, comprising 5.6% of the total 951

model parameters. Regarding the training budget, 952

stage 1 took 25.2 hours, while stage 2 took 20.3 953

hours for DeepResonance-α. For DeepResonance- 954

β, the training times were 27.0 hours for stage 1 955

and 22.7 hours for stage 2. 956

For evaluation, we report the mean results from 957

three inference runs and include BLEU (Pap- 958

ineni et al., 2002), ROUGE-L (Lin, 2004), and 959

BERTScore (Zhang et al., 2020), following the 960

setup of M2UGen (Hussain et al., 2023). We report 961

BLEU-1, BLEU, ROUGE-L precision, ROUGE- 962

L recall, ROUGE-L F1, BERTScore precision, 963

BERTScore recall, and BERTScore F1 details in 964

Appx. E, F, G, and H. 965

C Construction Details and Data 966

Examples of Music4way-MI2T and 967

Music4way-MV2T 968

Table 5 presents the specific templates used to 969

prompt the MPT-7B model (Team, 2023) to gen- 970

erate unified captions based on music, video, and 971

image captions, along with low-level music fea- 972

tures. Table 6 provides data examples from the 973

Music4way-MI2T and Music4way-MV2T datasets 974

we constructed for multi-way instruction tuning. 975

7We use the “fine-tune” split of the MusicQA dataset and
exclude the “train” split to avoid overlap with the test split of
MusicCaps.

12

https://doi.org/10.48550/ARXIV.2408.11039
https://doi.org/10.48550/ARXIV.2408.11039
https://doi.org/10.48550/ARXIV.2408.11039
https://openreview.net/forum?id=QmZKc7UZCy
https://openreview.net/forum?id=QmZKc7UZCy
https://openreview.net/forum?id=QmZKc7UZCy
https://openreview.net/forum?id=QmZKc7UZCy
https://openreview.net/forum?id=QmZKc7UZCy


Dataset #Instance_train #Instance_test Used for In−→out modality Task
COCO 82,783 – Train stage 1 I+T−→T Image captioning
Music4way 59,128 – Train stage 2 I+T−→T Image captioning
Music4way 59,128 – Train stages 1 & 2 V+T−→T Video captioning
Music4way

59,128 3,000 Train stages 1 & 2, test M+T−→T Music captioning
(Music4way-MusicCaps)
Alpaca 51,974 – Train stage 2 T−→T Text question-answering
MusicQA 70,011 5,040 Train stage 2, test M+T−→T Music captioning and question-answering
MusicCaps 2,640 2,839 Train stage 2, test M+T−→T Music captioning
Music4way-MI2T 59,128 3,000 Train stage 2, test M+I+T−→T Multimodal captioning
Music4way-MV2T 59,128 3,000 Train stage 2, test M+V+T−→T Multimodal captioning
Music4way-Any2T 59,128 3,000 Test M+I/V+T−→T Multimodal question-answering
GTZAN – 1,406 Test M+T−→T Music captioning and question-answering
MusicNet – 140 Test M+T−→T Music captioning
MusicInstruct-long – 16,658 Test M+T−→T Music captioning
MusicInstruct-short – 13,935 Test M+T−→T Music captioning
MTG – 25,452 Test M+T−→T Music captioning and question-answering

Table 4: Overview of datasets used for training and evaluation. M: music; I: image; V: video; T: text.

D Construction Details and Data976

Examples of Music4way-Any2T977

Table 7 displays the templates used to prompt GPT-978

4o mini8 to generate structured text comprising in-979

put, instruction, and output, based on music, video,980

and image captions, unified captions, and music981

features. Table 8 presents data examples from the982

Music4way-Any2T dataset we constructed to eval-983

uate the robustness and generalization capabilities984

of music LLMs.985

E Detailed Results on Music986

Understanding Tasks987

Tables 9, 10, and 11 report the detailed perfor-988

mance on all metrics of all models introduced in989

Sec.5.1 on music understanding tasks (music + text990

−→ text) using MusicQA(Liu et al., 2024), Music-991

Caps (Agostinelli et al., 2023), and our constructed992

Music4way-MusicCaps.993

F Detailed Results on Multimodal Music994

Understanding Tasks995

Tables 12, 13, and 14 list the result details on all996

metrics on our newly proposed multimodal music997

understanding tasks (music + image/video + text998

−→ text), including Music4way-MI2T, Music4way-999

MV2T, and Music4way-Any2T.1000

G Detailed Results of Zero-shot1001

Evaluation1002

The detailed results of the zero-shot evaluation are1003

presented in Tables 15, 16, 17, 18, and 19.1004

8https://platform.openai.com/docs/models#
gpt-4o-mini

H Detailed Results of Ablation Study 1005

The detailed results of the ablation study are pre- 1006

sented in Tables 20, 21, 22, 23, 24 and 25. 1007
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Input

- Video Caption: A man is playing a song on a guitar and he is sitting on a table.
- Image Caption: The image shows a man playing a guitar.
- Music Caption: The music is a slow, heavy metal song with a dark and intense mood.
The instruments used are electric guitar, bass guitar, drums, and vocals ...
- Music Features:
—— Tempo: [[105.26315789473684, 0.4619219529856875], ... ]
—— Chords: [[0.0, 1.5, ’C:maj’], [1.5, 3.7, ’F:maj’], ... ]
—— Downbeats: [[0.25, 3.0], [0.81, 4.0], [1.39, 1.0], [1.99, 2.0], ... ]
—— Key: [[9.83237405307591e-05, 8.27968106023036e-05, ...]

Instruction

Given the above information of video captions, image captions, music captions, and
music features, generate a unified description that combines the elements of both
the video and the music, taking into account the mood, style, and emotions conveyed
by the captions and music features. The description should be cohesive and provide
a holistic view of the content, reflecting how the visual and auditory components
complement each other. Focus on creating a narrative that integrates the rhythm,
harmony, and tonality of the music with the visual elements and storyline of the
video.

Output (Unified Captions)

The video and music describe a fast-paced and energetic performance by a group of
musicians, with a positive and upbeat mood. The music features a driving rhythm, a
strong beat, and a variety of instruments, including drums, bass, electric guitar,
and keyboards. The chords used in the music are major, with a key of A minor. The
tempo ranges from 60 to 120 beats per minute, with a strong sense of energy and
movement conveyed by the upbeat tone of the music. The downbeats occur every four
beats, with a strong emphasis on the first and third beats of each measure. Overall,
the visual and auditory components complement each other to create a cohesive and
engaging experience for the viewer.

Table 5: Prompting MPT-7B to generate unified captions for Music4way-MI2T and Music4way-MV2T.

Input (Music4way-MI2T) <Music> <Image>
Input (Music4way-MV2T) <Music> <Video>

Instruction

Analyze the music by considering both its auditory and visual components. Describe
the music in detail, incorporating its tempo, chords, downbeats, and key, while also
reflecting on how these musical features align with the video or a key image from
the video.

Output (Unified Captions)

The video and music describe a fast-paced and energetic performance by a group of
musicians, with a positive and upbeat mood. The music features a driving rhythm, a
strong beat, and a variety of instruments, including drums, bass, electric guitar,
and keyboards. The chords used in the music are major, with a key of A minor. The
tempo ranges from 60 to 120 beats per minute, with a strong sense of energy and
movement conveyed by the upbeat tone of the music. The downbeats occur every four
beats, with a strong emphasis on the first and third beats of each measure. Overall,
the visual and auditory components complement each other to create a cohesive and
engaging experience for the viewer.

Table 6: Data examples of Music4way-MI2T and Music4way-MV2T for instruction tuning. “<Music>”, “<Image>”,
and “<Video>” represent the paths to the respective files.
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Input

Generate the output for the following input; the style of the input, instruction,
and output may vary.

- Video Caption: A man is playing a song on a guitar and he is sitting on a table.
- Image Caption: The image shows a man playing a guitar.
- Music Caption: The music is a slow, heavy metal song with a dark and intense mood.
The instruments used are electric guitar, bass guitar, drums, and vocals ...
- Music Features:
—— Tempo: [[105.26315789473684, 0.4619219529856875], ... ]
—— Chords: [[0.0, 1.5, ’C:maj’], [1.5, 3.7, ’F:maj’], ... ]
—— Downbeats: [[0.25, 3.0], [0.81, 4.0], [1.39, 1.0], [1.99, 2.0], ... ]
—— Key: [[9.83237405307591e-05, 8.27968106023036e-05, ...]
- Unified Caption: The video and music describe a fast-paced and energetic performance
by a group of musicians, with a positive and upbeat mood. The music features a driving
rhythm, a strong beat, and a variety of instruments, including drums, bass, ...

Instruction

Help generate input, instruction, and output triplets using the given paired music
caption, video caption, image caption, music features, and unified caption. The
unified caption includes all three captions as well as music features such as tempo,
chords, downbeats, and key.

Guidelines:
1. Input: Should be a sentence that includes two or all three modalities: music
(mandatory), video, and/or image. Music must be referred to as <Music>. Image must
be referred to as <Image>. Video must be referred to as <Video>.
2. Instruction: Should be a text-based question or directive that requires generating
a unified output based on the given inputs. It should guide the model to consider both
the audio and the visual aspects, explaining how they interact to create a unified
experience.
3. Output: Should be a textual response, potentially composed using the information
from the music, video, image captions or the unified caption.

Example:
Input: Consider the music of <Music> and its paired image of <Image> that visually
represents a key moment of the music.
Instruction: Provide a description of how the music’s rhythm, tempo, and tonal
qualities are visually represented in the image, combining insights from both the
music and the image captions.
Output: The music is characterized by a slow tempo with a calm, serene melody,
primarily featuring piano and soft strings. The image complements this mood, showing
a peaceful sunset over a calm ocean. The soft, gentle waves in the image mirror the
steady downbeats of the music, while the warm color palette in the image reflects
the key of the music, which is in A major, creating a sense of tranquility. Together,
they evoke a feeling of peace and reflection.

Output

Input: Consider the music of <Music>; and its paired image of <Image>; or video of
<Video>; that visually represents a dark and intense atmosphere.
Instruction: Describe how the music’s slow, heavy metal style and the visuals of a
man playing a guitar are reflected in the image or video.
Output: The music is a slow, heavy metal song with a dark and intense mood. It
features electric guitar, bass guitar, drums, and powerful vocals. The tempo is slow
and the rhythm is steady, with a heavy, distorted guitar sound and a solid foundation
provided by the bass guitar and drums. The vocals are deep and powerful, emphasizing
the lower register. This creates a heavy and intense sound. The image or video
shows a man playing a guitar, holding it, and sitting on a table. The visuals are
simple but effective, focusing on the man and his instrument. The dark and intense
atmosphere of the music is reflected in the visuals, capturing the mood and energy of
the song. Together, the music and visuals create a cohesive experience that immerses
the audience in a dark and intense musical journey.

Table 7: Prompting GPT-4o mini to generate triplets of input, instruction, and output for Music4way-Any2T. The
instruction represents the system description used when prompting GPT-4o mini.

15



Example 1

Input
The music from <Music> plays alongside a captivating scene of <Video> where a person
is sitting and showcasing their musical talent with a string instrument, which is
also reflected in <Image>.

Instruction
Analyze how the mood and emotion conveyed through the music interact with the visual
elements presented in the video and image, focusing on the cohesive atmosphere they
create together.

Output

The music is characterized by a slow tempo and intense instrumental arrangement,
prominently featuring the guitar which serves as the main tune. The video depicts a
person deeply focused while playing a string instrument, highlighting their connection
with the music. This is mirrored in the image of the man playing the guitar, showcasing
the intimacy of this musical expression. The harmonious blend of the electric guitar
enhances the emotional depth, adding layers to the music that evoke feelings of
intensity. The consistent downbeats and the key of D minor resonate with the serious
tone of the visuals. Together, the visual components and the auditory experience
create a mesmerising atmosphere, pulling the viewer into a world where music and
emotion intertwine seamlessly.

Example 2

Input
Consider the music of <Music>, which is a slow and mellow instrumental with a
melancholic mood, alongside the paired video of <Video> where a man is playing a song
on a guitar.

Instruction
Explain how the guitar performance in the video enhances the melancholic atmosphere
of the music, and describe how both elements work together to create an emotional
experience for the viewer.

Output

The music, characterized by its slow tempo and melancholic mood, beautifully
complements the visuals of the man playing the guitar in the video. As he strums
the instrument on the table, the gentle, steady rhythm of the music aligns with
his movements, emphasizing the emotional weight of each chord he plays. The use of
major and minor chords, particularly in the F# major scale, enhances the bittersweet
feelings conveyed by the music. The visuals of the man fully engrossed in his
performance highlight the introspective nature of the piece, creating a profound
connection between the audio and the visual. Together, they evoke a powerful sense of
sadness and reflection, inviting the viewer to immerse themselves in this poignant
moment.

Example 3

Input
Consider the music of <Music> that is fast-paced and energetic, while viewing the
video of <Video> showing a young man playing the guitar, alongside the image of
<Image> depicting the same scene.

Instruction
Describe how the fast-paced rhythm and energetic tone of the music interact with the
visuals of the video and image, focusing on the emotions and energy conveyed by both
the audio and visual components.

Output

The fast-paced music, characterized by a strong beat and an upbeat tempo, perfectly
complements the visuals of the young man playing guitar in both the video and the
image. The upbeat rhythm creates a vibrant atmosphere, as the energetic strumming of
the guitar aligns with the driving drums and pulsating bass. The 4/4 time signature
of the music further emphasizes the lively performance, with each downbeat coinciding
with the man’s movements. The use of E major and A major chords adds a bright and
happy tonal quality that is visually represented in both the video and image through
the man’s engaging expression and dynamic posture, conveying a sense of excitement
and intensity that radiates through the screen. Together, the music and visuals fuse
seamlessly, creating an exhilarating experience that captures the essence of a lively
performance.

Table 8: More examples of Music4way-Any2T for evaluation. “<Music>”, “<Image>”, and “<Video>” represent
the paths to the respective files.

16



Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
SALMONN (Tang et al., 2024a)† 28.7 13.1 45.7 37.2 35.4 90.8 89.9 90.3
MU-LLaMA (Liu et al., 2024)† 29.7 10.9 30.8 46.4 33.1 89.8 90.0 89.9
OpenMU (Zhao et al., 2024)† 24.5 6.1 20.8 44.8 25.5 86.9 90.5 88.6
NExT-GPT (Wu et al., 2024) 23.3 7.6 26.2 38.4 26.0 86.7 88.5 87.6
M2UGen (Hussain et al., 2023)† 29.1 13.1 52.7 35.0 37.9 91.7 89.3 90.5
NExT-GPT w/ M2UGen† 34.0 14.3 49.1 38.3 39.6 92.1 90.5 91.2
NExT-GPT w/ Music4way† 34.1 13.8 48.2 37.9 39.2 92.1 90.5 91.3
DeepResonance-α (ours)† 35.1 15.1 51.0 38.6 40.8 92.5 90.7 91.6
DeepResonance-β (ours)† 35.6 15.3 51.3 39.0 41.1 92.5 90.8 91.6

Table 9: Results on MusicQA. The top two performances are highlighted in bold. “†” indicates that the test set’s
train split is included in the corresponding model’s training data.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
SALMONN (Tang et al., 2024a)† 19.7 0.9 23.6 21.5 19.1 87.6 86.3 86.9
MU-LLaMA (Liu et al., 2024)† ∗9.6 ∗0.2 ∗32.0 ∗12.0 ∗16.2 ∗88.7 ∗85.1 ∗86.8
OpenMU (Zhao et al., 2024)† 23.9 1.2 18.8 22.8 19.4 86.1 87.2 86.6
MusiLingo sft. w/ MusicCaps (Deng et al., 2024)† – – – – 21.7 – – 86.8
NExT-GPT (Wu et al., 2024) 16.5 0.1 15.3 16.4 14.0 84.3 83.8 84.0
M2UGen (Hussain et al., 2023)† ∗14.4 ∗0.4 ∗26.1 ∗14.5 ∗16.4 ∗87.8 ∗85.4 ∗86.5
NExT-GPT w/ M2UGen 12.4 0.1 28.2 13.2 16.1 88.6 85.3 86.9
NExT-GPT w/ Music4way† 25.0 2.7 23.0 20.6 21.0 87.6 87.0 87.2
DeepResonance-α (ours)† 26.0 3.0 23.4 21.8 21.6 87.6 87.1 87.3
DeepResonance-β (ours)† 25.8 2.8 23.6 21.4 21.6 87.5 87.1 87.3

Table 10: Results on MusicCaps. The top two performances are highlighted in bold. “*” denotes results that
should be interpreted with caution, as the test data was included in the corresponding model’s training set. “†”
indicates that the test set’s train split is included in the corresponding model’s training data.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
SALMONN (Tang et al., 2024a) 19.1 0.8 15.7 39.8 20.0 85.5 88.6 87.0
MU-LLaMA (Liu et al., 2024) 15.1 0.4 52.1 20.9 27.6 90.1 86.6 88.3
NExT-GPT (Wu et al., 2024) 16.6 0.2 12.4 37.0 17.2 85.3 88.2 86.7
M2UGen (Hussain et al., 2023)† ∗13.1 ∗0.0 ∗52.8 ∗19.5 ∗26.0 ∗89.6 ∗85.8 ∗87.6
NExT-GPT w/ M2UGen† ∗23.2 ∗6.7 ∗60.8 ∗29.7 ∗36.7 ∗93.1 ∗89.6 ∗91.3
NExT-GPT w/ Music4way† 39.1 18.4 55.5 46.9 46.8 91.7 92.5 93.0
DeepResonance-α (ours)† 40.9 19.9 57.8 47.5 48.4 94.0 92.6 93.3
DeepResonance-β (ours)† 39.9 19.3 57.3 47.3 47.8 93.9 92.5 93.2

Table 11: Results on Music4way-MusicCaps. The top two performances are highlighted in bold. “*” denotes
results that should be interpreted with caution, as the test data was included in the corresponding model’s training
set. “†” indicates that the test set’s train split is included in the corresponding model’s training data.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 26.7 1.2 26.2 19.7 21.3 85.5 85.0 85.2
M2UGen (Hussain et al., 2023) ∗31.7 ∗4.1 ∗29.5 ∗26.5 ∗26.4 ∗87.7 ∗86.6 ∗87.1
NExT-GPT w/ M2UGen ∗33.8 ∗4.1 ∗35.0 ∗23.9 ∗27.3 ∗89.0 ∗87.3 ∗88.1
NExT-GPT w/ Music4way 24.2 1.7 25.1 23.6 22.0 85.7 85.3 85.4
DeepResonance-α (ours) 44.6 9.2 27.8 33.8 30.1 89.1 89.6 89.4
DeepResonance-β (ours) 49.2 17.2 36.8 38.3 36.8 90.1 90.3 90.2

Table 12: Results on Music4way-MI2T. The top two performances are highlighted in bold. “*” denotes results
that should be interpreted with caution, as the test data was included in the corresponding model’s training set.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 26.5 1.1 25.6 19.6 21.0 85.1 84.6 84.8
M2UGen (Hussain et al., 2023) ∗31.7 ∗4.3 ∗27.9 ∗26.5 ∗25.9 ∗87.2 ∗86.4 ∗86.8
NExT-GPT w/ M2UGen ∗34.6 ∗4.0 ∗34.8 ∗24.2 ∗27.3 ∗88.9 ∗87.4 ∗88.1
NExT-GPT w/ Music4way 25.0 1.8 25.4 24.2 22.5 85.7 85.4 85.5
DeepResonance-α (ours) 44.5 8.9 28.2 32.7 29.6 89.0 89.4 89.2
DeepResonance-β (ours) 49.0 17.2 36.7 38.4 36.8 90.3 90.3 90.3

Table 13: Results on Music4way-MV2T. The top two performances are highlighted in bold. “*” denotes results
that should be interpreted with caution, as the test data was included in the corresponding model’s training set.
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Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 25.4 3.4 33.5 19.8 23.4 87.4 85.9 86.6
M2UGen (Hussain et al., 2023) ∗20.8 ∗2.5 ∗34.4 ∗17.1 ∗21.5 ∗88.9 ∗85.8 ∗87.3
NExT-GPT w/ M2UGen ∗26.3 ∗4.8 ∗41.7 ∗22.2 ∗28.5 ∗91.1 ∗87.7 ∗89.4
NExT-GPT w/ Music4way 29.4 2.8 35.9 22.7 27.0 89.7 87.1 88.4
DeepResonance-α (ours) 54.7 14.2 35.9 34.6 35.1 91.2 90.6 90.9
DeepResonance-β (ours) 33.5 3.9 34.0 23.9 27.4 90.0 87.5 88.7

Table 14: Results on Music4way-Any2T. The top two performances are highlighted in bold. “*” denotes results
that should be interpreted with caution, as the test data was included in the corresponding model’s training set.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 19.3 1.0 22.2 16.7 16.9 85.0 84.2 84.6
NExT-GPT w/ M2UGen 15.4 2.9 38.6 16.6 21.7 88.9 86.3 87.5
NExT-GPT w/ Music4way 16.3 2.6 37.2 17.2 22.5 89.6 86.9 88.2
DeepResonance-α (ours) 19.2 3.1 35.8 18.7 23.0 89.4 87.0 88.2
DeepResonance-β (ours) 19.5 4.5 39.2 20.1 25.2 90.1 87.5 88.8
OpenMU (supervised performance upper bound) 47.2 18.5 35.7 41.2 37.5 91.1 91.9 91.5

Table 15: Results on GTZAN. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 19.5 0.0 23.6 10.1 13.5 83.7 83.2 83.4
NExT-GPT w/ M2UGen 4.3 0.2 42.0 9.4 14.1 88.0 84.8 85.8
NExT-GPT w/ Music4way 13.7 0.1 24.8 12.2 15.8 86.9 85.2 86.0
DeepResonance-α (ours) 14.6 0.1 24.4 12.5 15.9 87.0 85.2 86.1
DeepResonance-β (ours) 14.9 0.1 25.1 12.7 16.4 87.0 85.6 86.2
OpenMU (supervised performance upper bound) 52.4 22.0 35.8 44.4 39.3 91.5 92.4 92.0

Table 16: Results on MusicNet. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 13.9 0.1 23.7 12.2 15.4 85.7 84.2 84.9
NExT-GPT w/ M2UGen 7.1 0.1 33.0 10.2 15.3 87.6 83.6 85.6
NExT-GPT w/ Music4way 7.3 0.2 32.7 10.4 15.5 87.8 83.8 85.8
DeepResonance-α (ours) 8.6 0.2 35.9 10.5 15.8 88.4 83.8 86.0
DeepResonance-β (ours) 9.4 0.2 33.6 11.4 16.5 88.4 84.0 86.1
MusiLingo (supervised performance upper bound) 45.0 – – – 22.9 – – 86.1

Table 17: Results on MusicInstruct-long. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 28.9 10.3 28.6 50.1 32.1 88.5 90.9 89.6
NExT-GPT w/ M2UGen 41.5 15.5 47.3 46.8 44.6 92.5 91.8 92.1
NExT-GPT w/ Music4way 42.9 16.4 47.8 46.5 44.9 92.7 91.9 92.3
DeepResonance-α (ours) 43.0 16.8 48.0 47.3 45.3 92.8 92.1 92.4
DeepResonance-β (ours) 44.7 18.5 50.4 47.9 47.0 93.1 92.2 92.6
MusiLingo (supervised performance upper bound) 47.0 – – – 51.4 – – 92.9

Table 18: Results on MusicInstruct-short. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
NExT-GPT (Wu et al., 2024) 25.6 5.1 22.6 31.2 23.7 87.6 88.4 88.0
NExT-GPT w/ M2UGen 18.9 3.3 38.4 19.7 24.2 89.6 87.2 88.4
NExT-GPT w/ Music4way 20.6 3.0 36.7 20.4 25.0 89.7 87.7 88.7
DeepResonance-α (ours) 22.6 3.7 35.4 21.6 25.3 89.9 87.9 88.8
DeepResonance-β (ours) 23.5 4.7 37.8 23.0 27.2 90.4 88.2 89.3
OpenMU (supervised performance upper bound) 45.7 19.2 36.7 46.3 39.8 91.2 92.4 91.8

Table 19: Results on MTG. The top two performances are highlighted in bold.

18



Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
(1): NExT-GPT w/ Music4way 34.1 13.8 48.2 37.9 39.2 92.1 90.5 91.3
(1) + MIE 35.0 14.5 50.1 38.3 40.4 92.3 90.6 91.4
(1) + PT (6-layer) 35.8 15.3 49.0 39.2 40.7 92.1 90.6 91.3
(1) + MIE + PT (6-layer) 35.5 14.8 46.4 39.0 39.4 91.4 90.5 90.9
(1) + PT (2-layer) 34.5 14.8 50.9 38.3 40.5 92.4 90.6 91.5
(1) + MIE + PT (2-layer) 34.3 14.3 50.2 38.0 40.1 92.4 90.6 91.4
(1) + PT (1-layer) 34.9 14.6 49.6 38.3 40.2 92.3 90.8 91.5
(1) + MIE + PT (1-layer) 35.6 15.3 50.6 39.5 41.1 92.4 90.8 91.5
(2): (1) + Music4way-MI2T & Music4way-MV2T 35.0 14.5 49.5 38.5 40.2 92.3 90.7 91.5
(2) + MIE (DeepResonance-α) 35.1 15.1 51.0 38.6 40.8 92.5 90.7 91.6
(2) + PT (6-layer) 34.4 14.8 49.0 38.0 40.0 92.2 90.4 91.3
(2) + MIE + PT (6-layer) 35.3 14.6 46.6 38.7 39.4 91.6 90.4 91.0
(2) + PT (2-layer) 34.2 14.7 51.0 38.0 40.4 92.5 90.6 91.5
(2) + MIE + PT (2-layer) 34.5 14.6 50.8 38.1 40.4 92.5 90.6 91.5
(2) + PT (1-layer) 35.5 15.0 50.3 39.2 40.9 92.4 90.8 91.6
(2) + MIE + PT (1-layer) (DeepResonance-β) 35.6 15.3 51.3 39.0 41.1 92.5 90.8 91.6

Table 20: Ablation study on MusicQA. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
(1): NExT-GPT w/ Music4way 25.0 2.7 23.0 20.6 21.0 87.6 87.0 87.2
(1) + MIE 25.4 2.6 22.8 21.3 21.1 87.5 87.0 87.2
(1) + PT (6-layer) 24.3 2.5 21.3 20.5 20.0 87.1 86.6 86.8
(1) + MIE + PT (6-layer) 21.9 1.7 21.1 18.5 18.6 86.9 86.1 86.5
(1) + PT (2-layer) 24.7 2.4 21.8 20.6 20.2 87.3 86.9 87.1
(1) + MIE + PT (2-layer) 25.5 2.5 22.2 21.2 20.8 87.4 87.0 87.2
(1) + PT (1-layer) 25.7 2.8 22.7 21.4 21.1 87.5 87.1 87.3
(1) + MIE + PT (1-layer) 25.8 2.8 23.5 21.5 21.6 87.5 87.0 87.3
(2): (1) + Music4way-MI2T & Music4way-MV2T 25.9 2.8 23.1 21.6 21.4 87.6 87.0 87.3
(2) + MIE (DeepResonance-α) 26.0 3.0 23.4 21.8 21.6 87.6 87.1 87.3
(2) + PT (6-layer) 21.6 1.7 21.3 18.0 18.5 86.9 86.1 86.5
(2) + MIE + PT (6-layer) 21.6 1.8 21.2 18.2 18.5 87.0 86.1 86.5
(2) + PT (2-layer) 24.9 2.5 22.0 20.8 20.4 87.3 86.9 87.1
(2) + MIE + PT (2-layer) 25.1 2.4 22.1 21.0 20.5 87.3 86.9 87.1
(2) + PT (1-layer) 25.9 2.8 23.5 21.4 21.6 87.5 87.0 87.3
(2) + MIE + PT (1-layer) (DeepResonance-β) 25.8 2.8 23.6 21.4 21.6 87.5 87.1 87.3

Table 21: Ablation study on MusicCaps. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
(1): NExT-GPT w/ Music4way 39.1 18.4 55.5 46.9 46.8 91.7 92.5 93.0
(1) + MIE 39.5 18.2 55.8 46.5 46.8 93.7 92.5 93.0
(1) + PT (6-layer) 35.9 14.5 50.2 43.2 42.7 92.8 91.9 92.3
(1) + MIE + PT (6-layer) 33.4 14.1 58.0 40.5 45.0 93.6 91.0 92.3
(1) + PT (2-layer) 39.6 18.7 56.7 46.3 47.3 93.9 92.4 93.1
(1) + MIE + PT (2-layer) 39.9 19.1 57.2 46.9 47.7 93.9 92.5 93.2
(1) + PT (1-layer) 40.3 19.3 57.6 46.8 47.9 94.0 92.5 93.2
(1) + MIE + PT (1-layer) 39.9 19.1 56.7 47.1 47.5 93.8 92.5 93.1
(2): (1) + Music4way-MI2T & Music4way-MV2T 40.7 19.8 57.0 48.0 48.2 93.9 92.6 93.2
(2) + MIE (DeepResonance-α) 40.9 19.9 57.8 47.5 48.4 94.0 92.6 93.3
(2) + PT (6-layer) 33.5 14.2 58.0 40.4 45.0 93.6 91.0 92.3
(2) + MIE + PT (6-layer) 33.6 14.2 58.0 40.5 45.1 93.6 91.0 92.3
(2) + PT (2-layer) 39.6 18.7 56.7 46.3 47.3 93.9 92.4 93.1
(2) + MIE + PT (2-layer) 39.2 18.8 57.1 46.8 47.4 93.9 92.4 93.1
(2) + PT (1-layer) 40.3 19.5 57.3 47.4 48.0 93.9 92.5 93.2
(2) + MIE + PT (1-layer) (DeepResonance-β) 39.9 19.3 57.3 47.3 47.8 93.9 92.5 93.2

Table 22: Ablation study on Music4way-MusicCaps. The top two performances are highlighted in bold.
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Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
(1): NExT-GPT w/ Music4way 24.2 1.7 25.1 23.6 22.0 85.7 85.3 85.4
(1) + MIE 23.7 1.7 30.0 18.5 22.1 87.9 85.8 86.8
(1) + PT (6-layer) 20.6 1.3 30.8 17.8 21.0 87.6 85.5 86.5
(1) + MIE + PT (6-layer) 12.0 0.3 25.4 14.6 16.2 85.0 84.1 84.5
(1) + PT (2-layer) 23.0 1.8 32.8 19.9 23.3 87.8 85.9 86.8
(1) + MIE + PT (2-layer) 10.7 0.2 29.2 11.8 16.0 86.9 84.3 85.6
(1) + PT (1-layer) 19.4 1.4 30.5 17.1 20.7 87.6 85.5 86.6
(1) + MIE + PT (1-layer) 15.1 0.6 30.1 14.6 18.8 87.4 84.9 86.1
(2): (1) + Music4way-MI2T & Music4way-MV2T 43.8 8.7 28.0 34.0 30.1 88.8 89.5 89.1
(2) + MIE (DeepResonance-α) 44.6 9.2 27.8 33.8 30.1 89.1 89.6 89.4
(2) + PT (6-layer) 48.6 15.5 37.1 36.2 36.1 90.0 90.1 90.0
(2) + MIE + PT (6-layer) 49.1 15.7 36.3 36.9 36.1 90.1 90.1 90.1
(2) + PT (2-layer) 47.9 15.9 36.7 36.5 35.8 90.1 90.1 90.1
(2) + MIE + PT (2-layer) 49.0 17.1 36.7 38.3 36.7 90.0 90.3 90.1
(2) + PT (1-layer) 48.4 16.6 37.3 37.0 36.4 90.3 90.2 90.2
(2) + MIE + PT (1-layer) (DeepResonance-β) 49.2 17.2 36.8 38.3 36.8 90.1 90.3 90.2

Table 23: Ablation study on Music4way-MI2T. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
(1): NExT-GPT w/ Music4way 25.0 1.8 25.4 24.2 22.5 85.7 85.4 85.5
(1) + MIE 14.2 0.6 34.7 14.9 20.1 88.1 84.9 86.4
(1) + PT (6-layer) 17.0 1.1 34.6 16.6 20.8 88.1 85.3 86.7
(1) + MIE + PT (6-layer) 16.3 0.7 28.3 16.1 19.0 86.2 84.9 85.5
(1) + PT (2-layer) 23.3 1.8 31.9 20.6 23.2 87.6 85.8 86.7
(1) + MIE + PT (2-layer) 6.4 0.2 36.2 10.3 15.2 87.5 83.8 85.6
(1) + PT (1-layer) 19.5 1.3 30.8 17.0 20.8 87.7 85.5 86.6
(1) + MIE + PT (1-layer) 10.3 0.6 37.5 13.5 18.9 88.3 84.7 86.5
(2): (1) + Music4way-MI2T & Music4way-MV2T 43.0 8.8 28.0 32.7 29.6 88.8 89.4 89.1
(2) + MIE (DeepResonance-α) 44.5 8.9 28.2 32.7 29.6 89.0 89.4 89.2
(2) + PT (6-layer) 48.5 15.4 37.0 36.2 36.1 89.9 90.1 90.0
(2) + MIE + PT (6-layer) 48.7 15.3 36.9 36.2 35.9 90.4 90.0 90.2
(2) + PT (2-layer) 49.0 16.9 36.6 37.9 36.5 90.0 90.3 90.1
(2) + MIE + PT (2-layer) 48.9 17.0 36.6 38.4 36.7 90.0 90.3 90.1
(2) + PT (1-layer) 48.5 16.5 37.0 36.9 36.2 90.2 90.2 90.2
(2) + MIE + PT (1-layer) (DeepResonance-β) 49.0 17.2 36.7 38.4 36.8 90.3 90.3 90.3

Table 24: Ablation study on Music4way-MV2T. The top two performances are highlighted in bold.

Model BLEU-1 BLEU ROUGE-P ROUGE-R ROUGE-F1 BERT-P BERT-R BERT-F1
(1): NExT-GPT w/ Music4way 29.4 2.8 35.9 22.7 27.0 89.7 87.1 88.4
(1) + MIE 16.2 1.2 39.1 16.7 22.8 89.8 85.9 87.8
(1) + PT (6-layer) 3.7 0.0 10.9 10.2 7.0 70.9 77.2 73.8
(1) + MIE + PT (6-layer) 21.3 1.6 34.2 19.6 23.5 88.3 85.9 87.0
(1) + PT (2-layer) 7.4 0.5 36.9 10.8 14.4 84.3 80.8 82.5
(1) + MIE + PT (2-layer) 1.3 0.0 41.5 7.5 12.1 87.3 82.4 84.8
(1) + PT (1-layer) 23.5 1.9 34.7 20.0 24.1 88.9 86.1 87.5
(1) + MIE + PT (1-layer) 1.6 0.0 43.5 8.2 13.4 87.9 82.6 85.2
(2): (1) + Music4way-MI2T & Music4way-MV2T 54.4 13.7 34.3 34.8 34.4 90.9 90.5 90.7
(2) + MIE (DeepResonance-α) 54.7 14.2 35.9 34.6 35.1 91.2 90.6 90.9
(2) + PT (6-layer) 36.9 4.6 33.2 25.2 28.2 90.1 87.8 88.9
(2) + MIE + PT (6-layer) 34.1 4.1 34.2 24.3 27.9 90.2 87.6 88.9
(2) + PT (2-layer) 17.8 1.5 36.2 17.1 20.3 88.0 84.9 86.3
(2) + MIE + PT (2-layer) 36.2 3.4 28.6 25.0 25.9 88.6 87.3 87.9
(2) + PT (1-layer) 24.7 2.4 34.0 20.3 23.5 88.6 86.0 87.2
(2) + MIE + PT (1-layer) (DeepResonance-β) 33.5 3.9 34.0 23.9 27.4 90.0 87.5 88.7

Table 25: Ablation study on Music4way-Any2T. The top two performances are highlighted in bold.
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