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Abstract

In this work, we introduce SPLICE, a human-
curated benchmark derived from the COIN in-
structional video dataset, designed to probe
event-based reasoning across multiple dimen-
sions: temporal, causal, spatial, contextual, and
general knowledge. SPLICE includes 3,381
human-filtered videos spanning 12 categories
and 180 sub-categories, such as sports, engi-
neering, and housework. These videos are seg-
mented into a total of 11,423 event clips. We
evaluate both human participants and state-of-
the-art vision-language models (VLMs) on the
task of rearranging these clips into coherent
event sequences to assess visual reasoning capa-
bilities. Results reveal a significant gap: VLMs
struggle to match human performance. While
human-annotated textual descriptions improve
model accuracy, they do not affect human per-
formance, suggesting that models rely more
on language priors than on visual understand-
ing. Even with annotations, VLMs fall short of
human-level reasoning, underscoring persistent
challenges in visual reasoning. A deeper analy-
sis across sub-categories shows that VLMs per-
form relatively better on videos where temporal
and causal reasoning are dominant, compared
to those where contextual and spatial reason-
ing are dominant. They also perform better on
everyday tasks than on specialized ones.

1 Introduction

Transformer-based models (Vaswani, 2017) ini-
tially focused on pre-training with language data
alone (Radford et al., 2018; Devlin et al., 2019;
Raffel et al., 2020). They later evolved to multi-
modal pre-training with the introduction of patch-
based training (Dosovitskiy, 2020). Since then, vi-
sion large language models (VLMs) have advanced
rapidly, increasingly matching or even surpassing
human performance across various domains, in-
cluding coding, mathematics, scientific knowledge,
and reasoning. For example, benchmarks like ARC-
AGI (Chollet, 2019), where models scored 0% in
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Figure 1: Video clip ordering accuracy of VLMs across
12 video categories (3,381 videos) in two modalities,
compared to the human and random baseline.

2019, now report state-of-the-art models achiev-
ing scores between 33% and 55.5% (Chollet et al.,
2024). While this remarkable progress in reasoning
capabilities is essential for enhancing the utility of
current Al systems, our understanding of how well
these models reason about purely visual sequences
remains incomplete. Unlike textual reasoning tasks,
where progress is well-documented, the field lacks
benchmarks that rigorously evaluate visual reason-
ing without heavy reliance on language priors.

Alongside advancements in performance, VLMs
have become significantly more efficient, enabling
them to process long videos. For instance, open-
source models like Qwen2-VL (Wang et al., 2024b)
can understand videos exceeding 20 minutes in
length and handle multiple input videos simulta-
neously. However, despite these capabilities, cur-
rent benchmarks do not sufficiently probe models’
ability to infer event sequences from purely visual
cues.



Leveraging this new capability, we propose an
intuitive yet challenging benchmark, SPLICE'
(Sequential Processing for Learning and Inference
in Chronological Events), where the task is to order
shuffled clips, cut from original videos, based on
the events depicted in them. SPLICE fills this gap
by leveraging a dataset where the correct ordering
of clips requires multiple types of reasoning, such
as causal, temporal, spatial, contextual, and general
knowledge reasoning.

Unlike previous datasets that rely on automatic
or unsupervised segmentations, SPLICE is con-
structed through a rigorous human curation process.
We adapt the COIN instructional video dataset
(Tang et al., 2019), which was originally created for
video understanding and event localization, by ex-
tracting 3,600 videos spanning 180 tasks across 12
domains (e.g., vehicles, gadgets, cooking). In the
"vehicles" domain, for instance, tasks may include
changing tires, lights, or fuses. COIN provides
event-based annotations, which we use to segment
each video into distinct clips before shuffling them.
This repurposing necessitates careful filtering and
validation to ensure that only meaningful and well-
defined tasks remain. Consequently, SPLICE elim-
inates ambiguous or trivial sequences, making it a
stronger probe of true visual reasoning.

This event-based structure aims to prevent mod-
els from relying solely on the first and last frames
or other shortcuts, instead requiring deeper reason-
ing. For instance, a Karate practice video may be
divided into three clips: an opening salutation, prac-
ticing movements, and a closing salutation. Since
the salutation clips are visually identical but occur
at different points, the model must rely on other
cues such as breathing, sweat levels, spatial posi-
tioning, or background actions to determine their
order.

In this work, we compare the performance of
multiple state-of-the-art models that support multi-
video input, including Qwen2-VL (Wang et al.,
2024b), Gemini-Flash (Gemini Team, 2024), In-
ternVL2.5 (Chen et al., 2024), and LlavaOnevision
(Li et al., 2024a), across three different input set-
tings: videos only, text only, and videos+text. Ad-
ditionally, we provide human performance bench-
marks and compare them with the performance of
these VLMs in both the video-only and video-+text

1Samples of the benchmark: https://drive.google.
com/file/d/191vuzTNgQLOkpgIpWLM4mwzK5ZZzNHWNY /
view?usp=sharing. The full dataset will be made available
upon acceptance.

settings. Our results indicate that VLMs fall signif-
icantly behind humans, particularly in the vision-
only setting, where there is a substantial perfor-
mance gap.

The main contributions of this paper can be sum-
marized as follows:

* We introduce a simple and yet challenging,
human-curated benchmark designed to test a
model’s ability to reconstruct event sequences
from shuffled video clips. The dataset con-
sists of 3,381 human-validated videos, each
segmented into multiple clips that must be
ordered correctly.

* We show that state-of-the-art models struggle
with this task, achieving only 23% to 51%
accuracy, while humans consistently score
around 85%.

* We perform a reasoning-type analysis and
show that VLMs perform better when the
dominant type of reasoning is causal or tem-
poral, as opposed to contextual or spatial.

2 Related Work

As this work evaluates VLMs on various aspects of
reasoning, we provide a comprehensive review of
reasoning evaluations for VLMs, along with tasks
similar to our approach, where videos or images
were shuffled and reordered.

2.1 Reasoning in VLMs

While reasoning in large language models has been
extensively explored (Huang and Chang, 2023;
Plaat et al., 2024; Xu et al., 2025), covering as-
pects such as temporal reasoning (Chu et al., 2023;
Tang and Belle, 2024; Li et al., 2023; Maruthi et al.,
2022), causal reasoning (Zhang et al., 2023; Hobb-
hahn et al., 2022), general knowledge reasoning
(Zhang et al., 2024; Wu et al., 2024b), and spa-
tial reasoning (Li et al., 2024b; Hu et al., 2024),
vision language models (VLMs) are considered rel-
atively underexplored (Wang et al., 2024c). This
is partly due to their novelty, higher computational
demands, and the complexity of evaluating their
performance. Nevertheless, several studies have in-
vestigated different aspects of reasoning in VLMs
(Wu et al., 2024a; Li et al., 2024c¢; Ko et al., 2023;
Zhang et al.).

Several benchmarks have also been developed to
evaluate VLMs on different reasoning aspects, such
as intuitive physics (Jassim et al., 2023; Weihs et al.,
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2022), mathematics (Gupta et al., 2024; Chen et al.,
2021), spatial reasoning (Mayer et al., 2025), and
science in general (Bubeck et al., 2023; Nori et al.,
2023). With the increasing capabilities of VLMs
and claims of achieving AGI, more challenging
benchmarks—such as MMbench (Liu et al., 2025),
MMMU (Yue et al., 2024), M4U (Wang et al.,
2024a), and ARC-AGI (Chollet et al., 2024)—have
been introduced to assess the general capabilities
of these models and compare them to human per-
formance. In this context, we present our bench-
mark, which is human-baselined, to challenge the
visual reasoning abilities of VLMs using diverse
real-world instructional videos that require multi-
ple aspects of reasoning to solve.

2.2 Ordering Videos

With the new capability of models to take multiple
videos as input, most earlier work has focused on
reordering videos (Misra et al., 2016; Lee et al.,
2017; Xu et al., 2019; Sharma et al., 2020; Hu
et al., 2021; Wang et al., 2023) or images (Sevilla-
Lara et al., 2021; Kim and Sabuncu, 2023) based
on their extracted embeddings.

Additional works (Yang et al., 2025; Li et al.,
2020; Fernando et al., 2015) in the literature use
image or video ordering for pre-training or training
models to enhance their temporal reasoning abil-
ities. Other studies (Wei et al., 2018; Zhou and
Berg, 2015) also employ video ordering, but with
a primary focus on temporal reasoning. While our
presented dataset could be used as a pre-training
task, our main goal is to benchmark state-of-the-
art vision-language models against human perfor-
mance on event-based video ordering. This task
serves as a proxy to evaluate not only temporal rea-
soning but also other types of reasoning, including
causal, contextual, spatial, and general knowledge.

A closely related line of work (Xu et al., 2019;
Hu et al., 2021) treats clip reordering as a self-
supervised task by extracting embeddings from
uniformly sampled clips. In contrast, we input
raw, non-overlapping clips directly into models,
leveraging their ability to process multiple clips
simultaneously. We also adopt an event-driven clip
extraction strategy, where clip lengths vary based
on event duration. This approach introduces rea-
soning challenges beyond temporal understanding,
as discussed in Section 7.5.

The approach in Sharma et al. (2020) is simi-
lar to Xu et al. (2019) but incorporates additional
modalities such as audio, text, and visual features.

In our work, we also leverage the multi-modal ca-
pabilities of the models, employing two different
settings: one using vision only, and another com-
bining vision and text

3 The SPLICE Benchmark

3.1 Step-Annotated Video Dataset

Our video ordering benchmark, SPLICE, is built
on a subset of the COIN dataset (Tang et al., 2019),
a hierarchically organized collection of 11,827 in-
structional videos covering 180 tasks across 12 ev-
eryday domains®. Originally designed for event lo-
calization and video understanding, COIN provides
detailed, human-annotated step-by-step segments
with precise timestamps.

Each video is divided into distinct action steps,
with Figure 4 showing an example sequence. Al-
though multiple videos may depict the same task,
they vary in execution, step grouping, camera an-
gles, lighting, and backgrounds. This diversity
makes COIN a strong foundation for evaluating
video ordering tasks in realistic instructional sce-
narios.

3.2 From COIN to SPLICE: Data
Preparation

Due to the complexity and high cost of human
cleaning and ordering, we randomly selected a
3,600-video subset from COIN before dividing
them into smaller clips for ordering. This subset
spans all domains and tasks, with each video origi-
nally containing up to 7 clips, segmented based on
the original annotations.

The decision to limit the number of clips to 7
was motivated by several factors. First, compu-
tational memory constraints in the models make
handling longer sequences impractical. Second,
longer sequences are more challenging and time-
intensive for humans to order accurately. Finally,
many high-step videos in the COIN dataset involve
repetitive loop actions (e.g., prolonged mixing),
where it becomes infeasible to determine an or-
der from shuffied clips, as there are no discernible
changes after the action has been completed.

3.3 Human Ordering Protocol

Our dataset includes two modalities: videos-only
and videos combined with text. The audio modality

*Domains include: Nursing & Caring, Vehicles, Leisure &
Performance, Gadgets, Electric Appliances, Household Items,
Science & Craft, Plants & Fruits, Snacks & Drinks, Dishes,
Sports, and Housework.



was excluded because not all models support au-
dio alongside videos. We have 3,600 uncut videos
in total, which effectively becomes 7,200 order-
ing tasks when considering both modalities. The
videos were divided into eight sets of 900: four
sets for the video-only modality and four sets for
the video + text modality. Four annotators, all au-
thors in this paper, were grouped into two teams,
each consisting of a PhD student and a Master’s stu-
dent in cognitive science. Each team handled 1,800
videos across both modalities (900 per modality)
without access to the original video order, ensur-
ing that they relied solely on the provided clips
for sequencing. The annotators used the following
cross-checking procedure:

* Annotator A: orders 900 videos in the video-
only modality and another 900 in the video
+ text modality, completing 1,800 ordering
tasks in total.

* Annotator B: orders the same 900 videos as
Annotator A, but flips the modality for each
set. Specifically, the 900 videos Annotator A
ordered in video-only are ordered by Anno-
tator B in video + text, and the 900 videos
Annotator A ordered in video + text are or-
dered by Annotator B in video-only.

Each set of 900 videos is ordered by both anno-
tators in both modalities to enable cross-checking
and ensure consistency. Videos are either ordered
or marked as inconclusive. Annotators provide
their best guess regardless, and a video is labeled
inconclusive only if both annotators independently
agree. If one annotator provides an order and the
other marks it inconclusive, the latter’s best guess
is used as the final sequence.

We opted against crowd-sourcing to ensure trans-
parency and consistency, as the publicly available
dataset and metadata could compromise the relia-
bility of crowd-sourced annotations.

3.4 Criteria for Excluding Videos

Annotators were instructed to mark a video as in-
conclusive only in specific cases: when identical
actions were performed separately, such as two peo-
ple independently demonstrating fire extinguisher
use; when actions spanned multiple clips without
clear temporal cues, like continuous CPR compres-
sions; or when unrelated actions appeared without
contextual links, such as cutting different vegeta-
bles with no indication of sequence. This system-
atic filtering ensured a high-quality dataset suitable

#of Clips # of Videos Average Duration (s)
2 1020 46.83
3 1026 53.31
4 734 62.41
5 333 72.67
6 172 67.86
7 96 73.50

Table 1: Distribution of videos by the number of clips,
with a total of 3,381 videos segmented into 11,423 clips.
The average duration per video is reported.

for evaluating model reasoning. The final dataset
includes 3,381 videos, available in both video-only
and video-+text modalities. Table 1 presents the
video distribution by clip count, and additional
statistics are provided in Table 5 in Appendix A.4.

4 Types of Reasoning

Cutting, shuffling, and reordering clips may seem
like a simple task requiring basic temporal reason-
ing. However, when applied to event-based instruc-
tional videos, it demands a richer set of reasoning
skills. Below, we outline key reasoning types, with
examples from our benchmark:

Contextual Reasoning: Understanding the con-
text of actions to predict what follows. E.g., when
changing a printer cartridge, opening the door is
typically followed by replacing the cartridge and
then closing the door.

Spatial Reasoning: Interpreting spatial relation-
ships and orientations. E.g., aligning a car to park
or tracking an athlete’s movement across pole vault
stages.

General knowledge Reasoning: Applying ev-
eryday knowledge to infer plausible actions. E.g.,
drying follows washing potatoes, or avoiding a hot
plate after oven use.

Temporal Reasoning: Grasping the correct se-
quence of events. E.g., assembling a sofa by attach-
ing legs before placing the mattress.

Causal Reasoning: Recognizing cause-effect
links. E.g., mixing flour and water forms dough;
cutting a bike chain results in it falling loose.

5 [Evaluation

5.1 Metrics

As outlined earlier, each video in the dataset
is segmented into clips based on the original
COIN dataset’s step localization. These clips
are then randomly shuffled and renamed as C' =
{c1,¢2,...,¢cn}. Models were tested on differ-
ent modalities, receiving either video input, text



annotations input (short textual descriptions of
events in the video) or a combination of both.
The model’s task is to predict the correct permu-
tation of the clip order. Lety = [y1, 2, ., Yn]
denote the ground-truth sequence of clip indices,
and ¥ = [J1,72,...,Un) represent the predicted
sequence. For n clips, there exist n! possible per-
mutations. We evaluate performance using two
main metrics: binary accuracy, where a prediction
is correct only if the entire sequence matches the
ground truth, and position-wise (Hamming) accu-
racy, which measures the proportion of correctly
placed clips. Additional metrics, such as Longest
Common Subsequence (LCS) and Edit Distance
(Levenshtein Distance), are included in Appendix
A.1. Due to the high cost of inference on this
benchmark, which includes 22,846 clips for two
modalities, we evaluated each model only once,
as preliminary tests indicated minimal variation
across multiple runs.

5.2 Models

Our benchmark requires models to process multiple
videos and reference them accurately. Simply merg-
ing frames from different clips is not sufficient; the
model must correctly identify and arrange them in
sequence, a capability still uncommon in current
state-of-the-art models. To assess this, we ran a san-
ity check by inputting multiple clips into candidate
models to evaluate whether they could reference
and describe them coherently. Based on these re-
sults, we selected Qwen2-VL-Instruct (Wang et al.,
2024b), Gemini-Flash (Gemini Team, 2024), In-
ternVL2.5 (Chen et al., 2024), and LlavaOnevi-
sion (Li et al., 2024a) as they were among the few
able to perform this task reliably. Full test settings,
prompts, and model details are provided in Appen-
dices A.2 and A.3.

6 Results

The performance of the models compared to hu-
mans is shown in Table 2, with different input set-
tings and metrics, along with random accuracy cal-
culated based on the number of clips in the videos.
In terms of binary accuracy, where a prediction
is considered correct only if it exactly matches
the ground truth, humans score 84.86%, while the
highest-performing model, Gemini-2.0-Flash-Exp,
scores 51.08%, and random accuracy is 21.14%
when using video-only input. This demonstrates
that although the model performs well above ran-
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Figure 2: Binary accuracy versus the number of clips
(2-7), comparing various state-of-the-art VLMs against
human and random baselines

dom accuracy, it still lags behind human perfor-
mance. In contrast, while human performance did
not benefit from the additional text modality, mod-
els showed substantial improvement.

Even on videos that humans misordered, models
rarely outdo them. For instance, Qwen2-VL-72B
solved none of the 57 seven-clip videos humans
got wrong, while Gemini-2.0-Flash-Exp solved
only three. Likewise, out of 77 six-clip videos
misordered by humans, Qwen2-VL fixed two, and
Gemini-2.0-Flash-Exp five, highlighting the persis-
tent gap in visual reasoning.

7 Discussion

7.1 Models Performance

The results indicate that open-source models still
lag behind closed-source models like Gemini, par-
ticularly in visual reasoning tasks. However, this
performance gap narrows when text input is intro-
duced or in text-only evaluations, where Qwen2-
VL-72B outperforms Gemini. Notably, Qwen2-
VL-7B performs on par with Qwen2-VL-72B in
visual reasoning, suggesting that increasing the lan-
guage model size does not specifically enhance
visual reasoning capabilities, given that both mod-
els utilize the same vision encoder. Furthermore,
SPLICE proves to be a particularly challenging
benchmark, as models like LlavaOneVision per-
form at random levels, while InternVL-2.5-78B
scores just above random chance with video only
settings.



Vision Only Vision+Text Text
Binary Hamming | Binary Hamming | Binary Hamming

Random 0.2114  0.3385 | 0.2114  0.3385 - -

Human 0.8486  0.8855 | 0.8332  0.8904 - -

Qwen2-VL-7B 0.3091  0.4432 | 04354 0.5683 | 0.3318  0.4924
Qwen2-VL-72B 0.2990 04170 | 0.5708  0.6820 | 0.5402  0.6907
Gemini-1.5-Flash 04599  0.5825 ] 05936 0.7115 | 04642  0.6029
Gemini-2.0-Flash-Exp | 0.5108  0.6188 | 0.6939  0.7931 | 0.5271  0.6652
InternVL2.5-78B 0.2899  0.4243 | 04856  0.6046 | 0.4768  0.6062
LLaVA-OneVision-72B | 0.2260  0.3514 | 0.4256  0.5597 | 04210  0.5545

Table 2: Binary and Hamming accuracy scores for various VLMs across different input modalities: Vision Only,
Text Only, and Vision+Text. Human and random baselines are included for comparison.

7.2 Human Performance

Human performance on the binary metric reaches
around 84%, reflecting the challenge of tasks re-
quiring commonsense and domain-specific knowl-
edge. This ceiling highlights the difficulty of in-
structional videos, where distinguishing sub-steps
in technical domains like automotive or medical
tasks depends on expert knowledge. Notably, per-
formance did not improve with text, likely because
the short captions (averaging 4.84 words) rarely
add information beyond the video. As a result,
performance remains consistent across metrics.

7.3 Input Modality

In our study, we report results across three modal-
ities: video-only, text-only, and video+text. How-
ever, the text-only results are not intended to assess
the reasoning capabilities of language models, as
the dataset was curated with a focus on video and
video-text inputs. The text often lacks sufficient
detail on its own and is primarily included to eval-
uate the impact of combining modalities. When
paired with video, the descriptions become clearer
through visual context. Thus, we use text-only
performance solely as a baseline to measure gains
from incorporating visual information.

The results show that models benefit signifi-
cantly from the additional text modality, unlike
humans. This could be due to two factors. First,
the text is a human-generated summary of what is
happening in the video, meaning there is a form of
knowledge distillation from humans to the model.
In contrast, with video-only input, the model re-
ceives no additional human-provided context. Ad-
ditionally, this improvement suggests that language
models are still more capable of reasoning com-
pared to Vision-Language Models (VLMs), as they

were able to benefit from information that was not
necessary for humans to correctly order the videos.

7.4 Factors Influencing Performance

One clear factor influencing the performance of
both models and humans is the number of clips.
As shown in Figure 2, performance declines for
both groups as the number of clips to be ordered
increases. However, models are more adversely af-
fected than humans by this increase, and the benefit
of including human annotations diminishes with
longer sequences as shown in Figure 7 in the ap-
pendix. This trend aligns with findings from prior
work (Sharma et al., 2024). As a result, most mod-
els perform near random when ordering seven clips,
where the random-chance baseline is much lower
due to the 7! possible permutations.

Figure 3 (left) shows varying performance across
categories that does not always concur with human
outcomes. For instance, electrical appliances is
hard for most models but easy for humans, while
both struggle with sports. Models in the same fam-
ily typically show similar trends, but cross-family
comparisons can differ. Another interesting find-
ing illustrated is that Gemini, similar to humans, is
not affected by the duration of the videos for both
video only input (Figure 3 right) and video+text
(Appendix, Figure 6). It maintains stable perfor-
mance even on longer videos, whereas Qwen2-VL-
72B, and to an even greater extent Qwen2-VL-7B,
exhibit performance degradation as video length
increases. This suggests that Gemini has robust
performance across long contexts.

7.5 In-depth Analysis of Reasoning in Models

To better understand model failures, we analyzed
sub-domains within the 12 main COIN domains.
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Figure 3: Binary accuracy performance of various state-of-the-art VLMs across different domains (left) and video
durations (right), compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed
line). Error bars represent the 95% confidence interval (CI)

For example, the "sport" domain includes sub-
classes like "Practice Skiing Aerials" and "Practice
Karate." Our analysis used only the video modality.

Contextual vs. Temporal Reasoning We first
examined the "electrical appliance" domain, which
exhibited the second-lowest model performance
and contained 485 of the dataset’s 3381 videos, to
understand the reasons for this low performance.
A closer look revealed that approximately 70%
of the videos involve actions like "replacing" or
"changing". In these "change/replace" videos, the
initial and final states are often visually similar.
For example, in the "replace toner cartridge" sub-
domain, a typical sequence involves opening the
printer door, removing the old cartridge, insert-
ing the new one, and closing the door. Conse-
quently, the first and last clips (door closed) are vi-
sually similar to each other, as are the intermediate
clips involving the cartridge exchange. Therefore,
within the "electrical appliance" domain, we com-
pared sub-domains involving "change/replace" ac-
tions against those without. We found a significant
performance disparity: Gemini-2.0-Flash scored
26.83% on "change/replace" videos but 53.5% on
other videos within the same domain. Results for
all models are shown in Table 6 in the appendix.
While models performance drops sharply for the
"change/replace" group, human performance re-
mains largely unaffected.

To investigate this performance gap fur-
ther, we examined the models’ predictions for
"change/replace" videos. We found that models
frequently predicted the first and last clips as be-
ing sequential. For instance, in videos with four
or more clips, Gemini-2.0 predicted the first and
last clips were adjacent 57.36% of the time. In con-
trast, human annotators made this prediction only
2.45% of the time, while random chance would be
27.29%. This indicates a model bias towards order-
ing visually similar clips adjacently. We attribute
this to a potential lack of contextual understanding,
where models take shortcuts by associating visually
similar clips as sequential rather than performing
deeper contextual reasoning (e.g., recognizing that
opening a door precedes intermediate actions and
closing the door comes last). However, in these
same videos, models like Gemini-2.0-Flash demon-
strated relatively better temporal reasoning con-
cerning the first and last clips (despite their visual
similarity), correctly identifying the first clip as
preceding the last about 70% of the time.

Contextual vs. Causal Reasoning We further
investigated this hypothesis across all domains us-
ing a larger set of videos, filtered into two groups:
"make" and "change/replace". Our hypothesis
was that "make" videos primarily require causal
and temporal reasoning, whereas "change/replace"
videos, as previously argued, depend more heav-



Models

Causal vs. Contextual H General Knowledge H Spatial

Change/Replace Make || Everyday Technical |

|
|
Number of videos ‘
|

844 765 | 342 300 || 138
Random 18.02 19.14 || 2326 2249 || 19.19
Human 84.95 86.01 || 8538 80.00 | 76.09
Gemini-1.5-Flash 28.44 61.18 || 56.14 44.33 24.64
Gemini-2.0-Flash-Exp 32.11 68.37 || 59.65 47.00 36.96
Qwen2-VL-72B 20.38 36.86 | 36.55 3200 | 21.01

Table 3: Models and human video ordering accuracy (%) on task subsets probing different reasoning types

ily on contextual reasoning. For example, in
"make" tasks like preparing food, mixing ingre-
dients causally changes the food’s state; similarly,
when making a bed, folding the covers has a causal
relationship to the finished state. The dataset con-
tains 844 "change/replace" videos (average 3.57
clips) and 765 "make" videos (e.g., make ice cream,
make bed; average 3.53 clips), indicating similar
complexity based on clip count and thus a com-
parable random baseline. The results in Table
3 reveal a significant performance difference be-
tween the "change/replace” and "make" groups,
suggesting models possess stronger causal reason-
ing abilities compared to contextual reasoning with
models like Gemini-2.0-Flash-Exp scoring 32.11%
on "change/replace” videos, but 68.37% on "make
videos".

General Knowledge Reasoning

Next, we defined two groups: "Everyday tasks"
and "Specialized/Technical tasks". "Everyday
tasks" include activities like washing dishes or iron-
ing clothes, while "Specialized/Technical tasks"
involve actions such as drawing blood or in-
stalling a ceiling fan. To avoid earlier issues
with "change/replace" scenarios, we excluded such
videos from both groups. This resulted in 342
videos labeled as "Everyday tasks" and 320 as "Spe-
cialized/Technical tasks". Results in Table 3 show
that both models and humans perform better on
"Everyday tasks". These tasks likely rely more on
commonsense reasoning and are better represented
in the models’ training data. The performance drop
on specialized tasks suggests limitations in the mod-
els’ knowledge and reasoning in less familiar tech-
nical contexts.

Spatial Reasoning Finally, we identified a set
of sub-domains requiring spatial reasoning. Ex-
amples include "Practice Skiing Aerials", where

the model must recognize that the skier in the air
precedes landing; pole vaulting, involving jump-
ing, being airborne, and landing; and weightlifting,
where the weight on the ground precedes being
lifted. Results indicate that models struggle with
these spatial reasoning sub-domains; for instance,
Gemini-2.0-Flash achieved only 36.96% accuracy,
compared to its overall dataset average of 51.08%
as shown in Table 3. This likely explains the lower
performance observed in the "sport" domain, as 8
out of its 10 sub-domains heavily involve spatial
reasoning.

8 Conclusion

In this paper, we presented a novel, human-curated
benchmark designed to assess multiple facets of
visual reasoning, including temporal, causal, con-
textual, visual-spatial, and general knowledge. We
evaluated various open-source and closed-source
VLMs under different input modalities and com-
pared their performance against human participants.
Despite improvements from combining video and
text (highlighting the value of cross-modal align-
ment), all models lag significantly behind human
performance, especially without human-annotated
descriptions. Moreover, open-source models lag
further behind their closed-source counterpart, re-
vealing a persistent gap in visual reasoning. The
low performance of several models, with some scor-
ing just above random chance, highlights the bench-
mark’s effectiveness as a rigorous probe of visual
reasoning. Our reasoning analysis further reveals
that models perform better on videos dominated by
causal and temporal reasoning than on those requir-
ing contextual or spatial reasoning. In the future,
we aim to incorporate voice to enhance cross-modal
alignment and assess how models integrate audio
with visual reasoning.



9 Limitations

Currently, only a few state-of-the-art VLMs sup-
port the ability to input multiple videos and refer-
ence them appropriately. Even single-video pro-
cessing capabilities are limited in many models,
restricting our evaluation to the handful that do
offer this functionality. Nonetheless, the field is
evolving rapidly, and we expect that most mod-
els will soon be able to handle multi-video inputs,
enabling broader application of our benchmark.
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A Appendix
A.1 Additional Metrics and full results

Each video in the dataset is segmented into clips based on the original COIN dataset’s step localization.
These clips are then randomly shuffled and renamed as C' = {c;, ca, ..., ¢, }. Depending on the modality
being tested, the model receives either video-only input or a combination of video and annotations (short
textual descriptions of events in the video). The model’s task is to predict the correct permutation of the clip
order. Lety = [y1, ¥2, - . . , Yn| denote the ground-truth sequence of clip indices, and § = [§1, U2, - - - , Un]
represent the predicted sequence. For n clips, there exist n! possible permutations. The models are
evaluated on four metrics:
Binary Accuracy. The prediction is correct only if the entire sequence matches the ground truth:

1 ify=y,

Binary Accuracy = :
0 otherwise.

Position-Wise (Hamming) Accuracy The proportion of correctly placed clips:

. LS~
Hamming Accuracy = - z; I(9; = yi)
1=

where I(-) is the indicator function.
Longest Common Subsequence (LCS). The LCS measures the longest sequence of elements appearing
in the same relative order in both y and §. Let ¢(4, j) denote the length of the LCS for substrings y1.; and

5’1:]'1
0 t=0o0rj=0,
C(Zaj): C(i_lvj_1)+1 yi = Uj,
max{c(i — 1,7),c(i,7 — 1)} otherwise.
The LCS ratio normalizes this value:

LCS Length
n

LCS Ratio =

Edit Distance (Levenshtein Distance). The minimum number of insertions, deletions, or substitutions
required to transform ¥ into y. Define a matrix D where D(, j) is the edit distance between y.; and
yl: 7 :

D(i,0) =14, D(0,7) =7 (boundary conditions),

D(i—1,j-1) vi = 9,
Dii i D(i—1,5)
(i,5) = 1+min | DG,j—1) otherwise.

The final edit distance is D(n,n).
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Vision Only Vision+Text

Binary = Hamming LCS Edit Binary Hamming LCS Edit

Random 0.2114 0.3385 0.6554  2.0970 | 0.2114 0.3385 0.6554  2.0970

| Human [ 0.8486 0.8855 0.9359  0.4105 [ 0.8332 0.8904 0.9337 0.3875
Qwen2-VL-7B 0.3091 0.4432 0.7130  1.7891 | 0.4354 0.5683 0.7896  1.4377
Qwen2-VL-72B 0.2990 0.4170 0.7011  1.8465 | 0.5708 0.6820 0.8483  1.0677
Gemini-1.5-Flash 0.4599 0.5825 0.7980 1.3458 | 0.5936 0.7115 0.8633 0.9734
Gemini-2.0-Flash-Exp | 0.5108 0.6188 0.7927 1.2511 | 0.6939 0.7931 0.9030 0.7788
InternVL2.5-78B 0.2899 0.4243 0.7050 1.8364 | 0.4856 0.6046 0.7694  1.3602
LlavaOnevision-72B 0.2260 0.3514 0.6615 2.0636 | 0.4256 0.5597 0.7866 1.4312

Table 4: Performance comparison of various VLMs across different input modalities (Vision Only and Vision+Text)
using Binary Accuracy, Hamming Distance, Longest Common Subsequence (LCS), and Edit Distance metrics.
Human and random baselines are included for reference. Models perform significantly better with textual input,
highlighting the benefit of cross-modal information

A.2 Testing Settings

Below are the details about test settings of each model:

Qwen2-VL-Instruct Family. Qwen2-VL was tested with both 7B and 72B parameters. The number of
frames was set to 1 fps, and the highest image resolution was set to 448 pixels, while the other dimension
was automatically adjusted based on the aspect ratio of the input frames.

Gemini-Flash Family. We used Gemini Flash 1.5 and 2.0 (experimental) versions, with the fps set to
1. The model was loaded using the official Google API, and the image resolution was left at the default
setting, allowing the model to handle it automatically.

InternVL2.5 Family. InternVL2.5 was tested with the 78B parameters model only. The 8B model did
not pass the sanity check. We used the default settings of the uniformal distribution of frames input for
each clip and we set it to 16 frames instead of fps.

LlavaOnevision Family LlavaOnevision was tested with 72B parameters. The 7B model did not pass
the sanity check. We used the default settings of the uniformal distribution of frames input for each clip
and we set it to 16 frames instead of fps.

All of the open source models were used from the Hugging Face library (Wolf et al., 2019) and adopted
with the Flash Attention approach. All of these models are tested with three different modalities, vision
only, text only, and vision + text. Samples of the prompts are shown in the Appendix A.3. All jobs were
submitted to a cluster of A100 and H100 GPUs, which were used interchangeably based on availability.
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A.3 Prompts

Three samples of prompts are shown below, for each model the prompts were slightly tuned for better
performance:

Here is a sample prompt for video-only input: prompt: f"A video has been split into len(clips) clips,
shuffled randomly." "Your task is to analyze each clip deeply to reorder them into the correct temporal
sequence. Focus on:" "1. Visual content: Examine the actions, transitions, scene details, and context within
each clip." "Provide the reordered sequence strictly within order tags in this format: " "’<order>Video X,
Video Y, Video Z, ...</order>’."

Here is a sample prompt for video+text input: prompt: f"A video has been split into len(clips)
clips, shuffled randomly." "Your task is to analyze each clip deeply to reorder them into the correct
temporal sequence. Focus on:" "1. *Visual content*: Examine the actions, transitions, scene details, and
context within each clip." "2. *Temporal logic*: Identify the logical progression of events based on what
happens before or after." "3. *Annotations*: Leverage the annotations to infer their proper chronological
sequence." "Provide the reordered sequence strictly within order tags in this format: " "’<order>Video X,
Video Y, Video Z, ...</order>"."

Here is a sample prompt for text models: prompt: "Analyze the following video clips descriptions and
order them chronologically as they are part of one continuous video. " "Focus on temporal clues, event
progression, scene transitions and other cues " "Each video clip is labeled as ‘Video X’, where Video X
corresponds to one shuffled clip. " "Maintain these labels in your response. "

"Return the ordered video strictly within <order> tags in this format: " "<order>Video X, Video Y
...<lorder>")
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A.4 Videos Stats

Table 5 provides statistics on the segmented video dataset, detailing how videos are divided into segments
and their distribution across different segment counts.

Segments Videos Clips Mean Time (s) StdDev (2,35] (35,68] (68,100] (100,133] (133,166] (166,198] (198, 330]

2 1020 2040 46.84 40.75 531 245 128 65 35 12 4
3 1026 3078 53.32 42.68 434 309 142 79 36 19 7
4 734 2936 62.41 40.76 209 260 146 70 32 13 4
5 333 1665 72.67 43.20 62 123 69 46 21 10 2
6 172 1032 67.86 37.49 38 56 45 22 9 2 0
7 96 672 73.50 38.28 19 26 30 14 5 2 0

Table 5: This table summarizes the distribution of videos based on their segmentation. It includes the number of
segments(2-7), total videos per segment number, total clips, mean duration (seconds), and standard deviation. The
rightmost columns show the distribution of videos across predefined video duration intervals, providing insights
into the dataset’s temporal structure for event ordering analysis.

15



A.5 Instructions for Annotators

Instruction Brief Task: Reorder the video parts for each folder into their correct sequence. Steps:
Download and Open the Folder assigned to you: You will receive a folder containing several subfolders,
each labeled with a unique number (e.g., 1, 2, 3, etc.). Each subfolder corresponds to a video task
with shuffled parts. View the Video Parts: Inside each subfolder, you will find video parts named
random_part_1.mp4, random_part_2.mp4, etc. These parts contain embedded labels as secondary context
for your understanding of the video context. Reorder the Parts: Watch each video part carefully. Determine
the correct sequence of these parts based on the visual and textual cues. Write down the sequence in the
format: Folder Number: Correct Order (e.g., 1: random_part_3, random_part_1, random_part_2). For
simplicity use [2, 3, 4, 5, 1], where each number represents the Random number video. Use “unk” in
these cases:

1- Repeated instructions: If the video contains two separate instances of the same instruction.

2- Continuous actions without sufficient context: An action extends across multiple clips with insuffi-
cient background information to establish a clear sequence.

3- Unrelated actions: The video includes unrelated actions with no contextual clues to establish order.

Submit Your Results: Compile the correct order for all folders in the attached spreadsheet Use “unk”
for any task sample you believe makes no sense or as discussed during the meeting, Notes: Do not use
any external sources Complete all tasks to the best of your ability.
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A.6 Additional Results

Table 6: Video Ordering Accuracy of Electrical Appliance domain for sub-domains that include change/replace
compared to others that dont

Models Accuracy (%)
Group: change/replace, 328 videos
Random 15.02
Human 88.11
Gemini-1.5-Flash 26.22
Gemini-2.0-Flash-Exp 26.83
Qwen2-VL-72B 21.04
Group: other, 157 videos
Random 22.68
Human 86.62
Gemini-1.5-Flash 54.14
Gemini-2.0-Flash-Exp 53.50
Qwen2-VL-72B 33.12
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A.7 Additional Figures
A.7.1 Example of Video Input

Clip a Clip ¢ Clipd

E.7

Iy

t

First frame
in clip

Last frame
in clip

Annotations juice the oranges pour the orange juice into the cup cut oranges pour the orange juice into the cup

e from 70 to 84s (14s) from 99 to 105s (6s) from 29 to 62s (33s) from 90 to 96s (6s)

Localization

Figure 4: An example of a set of clips that the models need to order correctly. The figures show the first and last
frames of each clip. The clips are segmented based on events, reducing the reliance on shortcuts. Clip durations
vary based on the event, with gaps where moments not relevant to the main steps are omitted. In this video, models
must infer that the oranges are cut, juiced, filtered, and then served. Clips order: c, a, d, b.
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A.7.2 Modalities Across Domains

Hm video B video+label -==-- Human Baseline -=- Random Baseline
1.0
>
8
508
Q
<
E‘O'G
<
=
m 04
[}
jo2]
g 02
<
0.0 N
N N\ c}e’
$° &0 \ 2% % N
® @ % FOE'S N
& £ ,\<\\ © UK e
RS N s S O
(a) Average VLM performance on both modalities across video domains.
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(c) VLM performance by video domains with video and text input

Figure 5: Binary accuracy performance of various state-of-the-art VLMs across different domains and modalities
compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed line). Error bars
represent the 95% confidence interval (CI).
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A.7.3 Modalities Across Video Length
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(a) Average VLM performance on both modalities across video length.
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(b) VLM performance by video duration with video only input
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(c) VLM performance by video duration with video and text input

Figure 6: Binary accuracy performance of various state-of-the-art VLMs across video duration and modalities
compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed line). Error bars
represent the 95% confidence interval (CI).
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A.7.4 Modalities Across Number of Clips

—-— video+label
-= Human Baseline
=== Random Baseline

Average Binary Accuracy
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(a) Average VLM performance on both modalities across number of Clips.

—— Gemini-1.5-Flash Qwen-2-VL-7B —— LLaVA-OneVision-72B -+ Human Baseline
—— Gemini-2.0-Flash-Exp Qwen-2-VL-72B —— InternVL-2.5-78B —== Random Baseline

0.8

Binary Accuracy

0.2

0.0

0.8

o
o

Binary Accuracy
o
S

o
[N

0.0

4 5
Number of Clip Segments

(c) VLM performance by number of clips with both video and text as input

Figure 7: Binary accuracy performance of various state-of-the-art VLMs across different number of clips and
modalities, compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed line).
Error bars represent the 95% confidence interval (CI).
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