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Abstract
In this work, we introduce SPLICE, a human-001
curated benchmark derived from the COIN in-002
structional video dataset, designed to probe003
event-based reasoning across multiple dimen-004
sions: temporal, causal, spatial, contextual, and005
general knowledge. SPLICE includes 3,381006
human-filtered videos spanning 12 categories007
and 180 sub-categories, such as sports, engi-008
neering, and housework. These videos are seg-009
mented into a total of 11,423 event clips. We010
evaluate both human participants and state-of-011
the-art vision-language models (VLMs) on the012
task of rearranging these clips into coherent013
event sequences to assess visual reasoning capa-014
bilities. Results reveal a significant gap: VLMs015
struggle to match human performance. While016
human-annotated textual descriptions improve017
model accuracy, they do not affect human per-018
formance, suggesting that models rely more019
on language priors than on visual understand-020
ing. Even with annotations, VLMs fall short of021
human-level reasoning, underscoring persistent022
challenges in visual reasoning. A deeper analy-023
sis across sub-categories shows that VLMs per-024
form relatively better on videos where temporal025
and causal reasoning are dominant, compared026
to those where contextual and spatial reason-027
ing are dominant. They also perform better on028
everyday tasks than on specialized ones.029

1 Introduction030

Transformer-based models (Vaswani, 2017) ini-031

tially focused on pre-training with language data032

alone (Radford et al., 2018; Devlin et al., 2019;033

Raffel et al., 2020). They later evolved to multi-034

modal pre-training with the introduction of patch-035

based training (Dosovitskiy, 2020). Since then, vi-036

sion large language models (VLMs) have advanced037

rapidly, increasingly matching or even surpassing038

human performance across various domains, in-039

cluding coding, mathematics, scientific knowledge,040

and reasoning. For example, benchmarks like ARC-041

AGI (Chollet, 2019), where models scored 0% in042

Figure 1: Video clip ordering accuracy of VLMs across
12 video categories (3,381 videos) in two modalities,
compared to the human and random baseline.

2019, now report state-of-the-art models achiev- 043

ing scores between 33% and 55.5% (Chollet et al., 044

2024). While this remarkable progress in reasoning 045

capabilities is essential for enhancing the utility of 046

current AI systems, our understanding of how well 047

these models reason about purely visual sequences 048

remains incomplete. Unlike textual reasoning tasks, 049

where progress is well-documented, the field lacks 050

benchmarks that rigorously evaluate visual reason- 051

ing without heavy reliance on language priors. 052

Alongside advancements in performance, VLMs 053

have become significantly more efficient, enabling 054

them to process long videos. For instance, open- 055

source models like Qwen2-VL (Wang et al., 2024b) 056

can understand videos exceeding 20 minutes in 057

length and handle multiple input videos simulta- 058

neously. However, despite these capabilities, cur- 059

rent benchmarks do not sufficiently probe models’ 060

ability to infer event sequences from purely visual 061

cues. 062
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Leveraging this new capability, we propose an063

intuitive yet challenging benchmark, SPLICE1064

(Sequential Processing for Learning and Inference065

in Chronological Events), where the task is to order066

shuffled clips, cut from original videos, based on067

the events depicted in them. SPLICE fills this gap068

by leveraging a dataset where the correct ordering069

of clips requires multiple types of reasoning, such070

as causal, temporal, spatial, contextual, and general071

knowledge reasoning.072

Unlike previous datasets that rely on automatic073

or unsupervised segmentations, SPLICE is con-074

structed through a rigorous human curation process.075

We adapt the COIN instructional video dataset076

(Tang et al., 2019), which was originally created for077

video understanding and event localization, by ex-078

tracting 3,600 videos spanning 180 tasks across 12079

domains (e.g., vehicles, gadgets, cooking). In the080

"vehicles" domain, for instance, tasks may include081

changing tires, lights, or fuses. COIN provides082

event-based annotations, which we use to segment083

each video into distinct clips before shuffling them.084

This repurposing necessitates careful filtering and085

validation to ensure that only meaningful and well-086

defined tasks remain. Consequently, SPLICE elim-087

inates ambiguous or trivial sequences, making it a088

stronger probe of true visual reasoning.089

This event-based structure aims to prevent mod-090

els from relying solely on the first and last frames091

or other shortcuts, instead requiring deeper reason-092

ing. For instance, a Karate practice video may be093

divided into three clips: an opening salutation, prac-094

ticing movements, and a closing salutation. Since095

the salutation clips are visually identical but occur096

at different points, the model must rely on other097

cues such as breathing, sweat levels, spatial posi-098

tioning, or background actions to determine their099

order.100

In this work, we compare the performance of101

multiple state-of-the-art models that support multi-102

video input, including Qwen2-VL (Wang et al.,103

2024b), Gemini-Flash (Gemini Team, 2024), In-104

ternVL2.5 (Chen et al., 2024), and LlavaOnevision105

(Li et al., 2024a), across three different input set-106

tings: videos only, text only, and videos+text. Ad-107

ditionally, we provide human performance bench-108

marks and compare them with the performance of109

these VLMs in both the video-only and video+text110

1Samples of the benchmark: https://drive.google.
com/file/d/19lvuzTNgQLOkpg9pWLM4mwzK5ZzNHWNv/
view?usp=sharing. The full dataset will be made available
upon acceptance.

settings. Our results indicate that VLMs fall signif- 111

icantly behind humans, particularly in the vision- 112

only setting, where there is a substantial perfor- 113

mance gap. 114

The main contributions of this paper can be sum- 115

marized as follows: 116

• We introduce a simple and yet challenging, 117

human-curated benchmark designed to test a 118

model’s ability to reconstruct event sequences 119

from shuffled video clips. The dataset con- 120

sists of 3,381 human-validated videos, each 121

segmented into multiple clips that must be 122

ordered correctly. 123

• We show that state-of-the-art models struggle 124

with this task, achieving only 23% to 51% 125

accuracy, while humans consistently score 126

around 85%. 127

• We perform a reasoning-type analysis and 128

show that VLMs perform better when the 129

dominant type of reasoning is causal or tem- 130

poral, as opposed to contextual or spatial. 131

2 Related Work 132

As this work evaluates VLMs on various aspects of 133

reasoning, we provide a comprehensive review of 134

reasoning evaluations for VLMs, along with tasks 135

similar to our approach, where videos or images 136

were shuffled and reordered. 137

2.1 Reasoning in VLMs 138

While reasoning in large language models has been 139

extensively explored (Huang and Chang, 2023; 140

Plaat et al., 2024; Xu et al., 2025), covering as- 141

pects such as temporal reasoning (Chu et al., 2023; 142

Tang and Belle, 2024; Li et al., 2023; Maruthi et al., 143

2022), causal reasoning (Zhang et al., 2023; Hobb- 144

hahn et al., 2022), general knowledge reasoning 145

(Zhang et al., 2024; Wu et al., 2024b), and spa- 146

tial reasoning (Li et al., 2024b; Hu et al., 2024), 147

vision language models (VLMs) are considered rel- 148

atively underexplored (Wang et al., 2024c). This 149

is partly due to their novelty, higher computational 150

demands, and the complexity of evaluating their 151

performance. Nevertheless, several studies have in- 152

vestigated different aspects of reasoning in VLMs 153

(Wu et al., 2024a; Li et al., 2024c; Ko et al., 2023; 154

Zhang et al.). 155

Several benchmarks have also been developed to 156

evaluate VLMs on different reasoning aspects, such 157

as intuitive physics (Jassim et al., 2023; Weihs et al., 158
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2022), mathematics (Gupta et al., 2024; Chen et al.,159

2021), spatial reasoning (Mayer et al., 2025), and160

science in general (Bubeck et al., 2023; Nori et al.,161

2023). With the increasing capabilities of VLMs162

and claims of achieving AGI, more challenging163

benchmarks—such as MMbench (Liu et al., 2025),164

MMMU (Yue et al., 2024), M4U (Wang et al.,165

2024a), and ARC-AGI (Chollet et al., 2024)—have166

been introduced to assess the general capabilities167

of these models and compare them to human per-168

formance. In this context, we present our bench-169

mark, which is human-baselined, to challenge the170

visual reasoning abilities of VLMs using diverse171

real-world instructional videos that require multi-172

ple aspects of reasoning to solve.173

2.2 Ordering Videos174

With the new capability of models to take multiple175

videos as input, most earlier work has focused on176

reordering videos (Misra et al., 2016; Lee et al.,177

2017; Xu et al., 2019; Sharma et al., 2020; Hu178

et al., 2021; Wang et al., 2023) or images (Sevilla-179

Lara et al., 2021; Kim and Sabuncu, 2023) based180

on their extracted embeddings.181

Additional works (Yang et al., 2025; Li et al.,182

2020; Fernando et al., 2015) in the literature use183

image or video ordering for pre-training or training184

models to enhance their temporal reasoning abil-185

ities. Other studies (Wei et al., 2018; Zhou and186

Berg, 2015) also employ video ordering, but with187

a primary focus on temporal reasoning. While our188

presented dataset could be used as a pre-training189

task, our main goal is to benchmark state-of-the-190

art vision-language models against human perfor-191

mance on event-based video ordering. This task192

serves as a proxy to evaluate not only temporal rea-193

soning but also other types of reasoning, including194

causal, contextual, spatial, and general knowledge.195

A closely related line of work (Xu et al., 2019;196

Hu et al., 2021) treats clip reordering as a self-197

supervised task by extracting embeddings from198

uniformly sampled clips. In contrast, we input199

raw, non-overlapping clips directly into models,200

leveraging their ability to process multiple clips201

simultaneously. We also adopt an event-driven clip202

extraction strategy, where clip lengths vary based203

on event duration. This approach introduces rea-204

soning challenges beyond temporal understanding,205

as discussed in Section 7.5.206

The approach in Sharma et al. (2020) is simi-207

lar to Xu et al. (2019) but incorporates additional208

modalities such as audio, text, and visual features.209

In our work, we also leverage the multi-modal ca- 210

pabilities of the models, employing two different 211

settings: one using vision only, and another com- 212

bining vision and text 213

3 The SPLICE Benchmark 214

3.1 Step-Annotated Video Dataset 215

Our video ordering benchmark, SPLICE, is built 216

on a subset of the COIN dataset (Tang et al., 2019), 217

a hierarchically organized collection of 11,827 in- 218

structional videos covering 180 tasks across 12 ev- 219

eryday domains2. Originally designed for event lo- 220

calization and video understanding, COIN provides 221

detailed, human-annotated step-by-step segments 222

with precise timestamps. 223

Each video is divided into distinct action steps, 224

with Figure 4 showing an example sequence. Al- 225

though multiple videos may depict the same task, 226

they vary in execution, step grouping, camera an- 227

gles, lighting, and backgrounds. This diversity 228

makes COIN a strong foundation for evaluating 229

video ordering tasks in realistic instructional sce- 230

narios. 231

3.2 From COIN to SPLICE: Data 232

Preparation 233

Due to the complexity and high cost of human 234

cleaning and ordering, we randomly selected a 235

3,600-video subset from COIN before dividing 236

them into smaller clips for ordering. This subset 237

spans all domains and tasks, with each video origi- 238

nally containing up to 7 clips, segmented based on 239

the original annotations. 240

The decision to limit the number of clips to 7 241

was motivated by several factors. First, compu- 242

tational memory constraints in the models make 243

handling longer sequences impractical. Second, 244

longer sequences are more challenging and time- 245

intensive for humans to order accurately. Finally, 246

many high-step videos in the COIN dataset involve 247

repetitive loop actions (e.g., prolonged mixing), 248

where it becomes infeasible to determine an or- 249

der from shuffled clips, as there are no discernible 250

changes after the action has been completed. 251

3.3 Human Ordering Protocol 252

Our dataset includes two modalities: videos-only 253

and videos combined with text. The audio modality 254

2Domains include: Nursing & Caring, Vehicles, Leisure &
Performance, Gadgets, Electric Appliances, Household Items,
Science & Craft, Plants & Fruits, Snacks & Drinks, Dishes,
Sports, and Housework.
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was excluded because not all models support au-255

dio alongside videos. We have 3,600 uncut videos256

in total, which effectively becomes 7,200 order-257

ing tasks when considering both modalities. The258

videos were divided into eight sets of 900: four259

sets for the video-only modality and four sets for260

the video + text modality. Four annotators, all au-261

thors in this paper, were grouped into two teams,262

each consisting of a PhD student and a Master’s stu-263

dent in cognitive science. Each team handled 1,800264

videos across both modalities (900 per modality)265

without access to the original video order, ensur-266

ing that they relied solely on the provided clips267

for sequencing. The annotators used the following268

cross-checking procedure:269

• Annotator A: orders 900 videos in the video-270

only modality and another 900 in the video271

+ text modality, completing 1,800 ordering272

tasks in total.273

• Annotator B: orders the same 900 videos as274

Annotator A, but flips the modality for each275

set. Specifically, the 900 videos Annotator A276

ordered in video-only are ordered by Anno-277

tator B in video + text, and the 900 videos278

Annotator A ordered in video + text are or-279

dered by Annotator B in video-only.280

Each set of 900 videos is ordered by both anno-281

tators in both modalities to enable cross-checking282

and ensure consistency. Videos are either ordered283

or marked as inconclusive. Annotators provide284

their best guess regardless, and a video is labeled285

inconclusive only if both annotators independently286

agree. If one annotator provides an order and the287

other marks it inconclusive, the latter’s best guess288

is used as the final sequence.289

We opted against crowd-sourcing to ensure trans-290

parency and consistency, as the publicly available291

dataset and metadata could compromise the relia-292

bility of crowd-sourced annotations.293

3.4 Criteria for Excluding Videos294

Annotators were instructed to mark a video as in-295

conclusive only in specific cases: when identical296

actions were performed separately, such as two peo-297

ple independently demonstrating fire extinguisher298

use; when actions spanned multiple clips without299

clear temporal cues, like continuous CPR compres-300

sions; or when unrelated actions appeared without301

contextual links, such as cutting different vegeta-302

bles with no indication of sequence. This system-303

atic filtering ensured a high-quality dataset suitable304

# of Clips # of Videos Average Duration (s)
2 1020 46.83
3 1026 53.31
4 734 62.41
5 333 72.67
6 172 67.86
7 96 73.50

Table 1: Distribution of videos by the number of clips,
with a total of 3,381 videos segmented into 11,423 clips.
The average duration per video is reported.

for evaluating model reasoning. The final dataset 305

includes 3,381 videos, available in both video-only 306

and video+text modalities. Table 1 presents the 307

video distribution by clip count, and additional 308

statistics are provided in Table 5 in Appendix A.4. 309

4 Types of Reasoning 310

Cutting, shuffling, and reordering clips may seem 311

like a simple task requiring basic temporal reason- 312

ing. However, when applied to event-based instruc- 313

tional videos, it demands a richer set of reasoning 314

skills. Below, we outline key reasoning types, with 315

examples from our benchmark: 316

Contextual Reasoning: Understanding the con- 317

text of actions to predict what follows. E.g., when 318

changing a printer cartridge, opening the door is 319

typically followed by replacing the cartridge and 320

then closing the door. 321

Spatial Reasoning: Interpreting spatial relation- 322

ships and orientations. E.g., aligning a car to park 323

or tracking an athlete’s movement across pole vault 324

stages. 325

General knowledge Reasoning: Applying ev- 326

eryday knowledge to infer plausible actions. E.g., 327

drying follows washing potatoes, or avoiding a hot 328

plate after oven use. 329

Temporal Reasoning: Grasping the correct se- 330

quence of events. E.g., assembling a sofa by attach- 331

ing legs before placing the mattress. 332

Causal Reasoning: Recognizing cause-effect 333

links. E.g., mixing flour and water forms dough; 334

cutting a bike chain results in it falling loose. 335

5 Evaluation 336

5.1 Metrics 337

As outlined earlier, each video in the dataset 338

is segmented into clips based on the original 339

COIN dataset’s step localization. These clips 340

are then randomly shuffled and renamed as C = 341

{c1, c2, . . . , cn}. Models were tested on differ- 342

ent modalities, receiving either video input, text 343
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annotations input (short textual descriptions of344

events in the video) or a combination of both.345

The model’s task is to predict the correct permu-346

tation of the clip order. Let y = [y1, y2, . . . , yn]347

denote the ground-truth sequence of clip indices,348

and ŷ = [ŷ1, ŷ2, . . . , ŷn] represent the predicted349

sequence. For n clips, there exist n! possible per-350

mutations. We evaluate performance using two351

main metrics: binary accuracy, where a prediction352

is correct only if the entire sequence matches the353

ground truth, and position-wise (Hamming) accu-354

racy, which measures the proportion of correctly355

placed clips. Additional metrics, such as Longest356

Common Subsequence (LCS) and Edit Distance357

(Levenshtein Distance), are included in Appendix358

A.1. Due to the high cost of inference on this359

benchmark, which includes 22,846 clips for two360

modalities, we evaluated each model only once,361

as preliminary tests indicated minimal variation362

across multiple runs.363

5.2 Models364

Our benchmark requires models to process multiple365

videos and reference them accurately. Simply merg-366

ing frames from different clips is not sufficient; the367

model must correctly identify and arrange them in368

sequence, a capability still uncommon in current369

state-of-the-art models. To assess this, we ran a san-370

ity check by inputting multiple clips into candidate371

models to evaluate whether they could reference372

and describe them coherently. Based on these re-373

sults, we selected Qwen2-VL-Instruct (Wang et al.,374

2024b), Gemini-Flash (Gemini Team, 2024), In-375

ternVL2.5 (Chen et al., 2024), and LlavaOnevi-376

sion (Li et al., 2024a) as they were among the few377

able to perform this task reliably. Full test settings,378

prompts, and model details are provided in Appen-379

dices A.2 and A.3.380

6 Results381

The performance of the models compared to hu-382

mans is shown in Table 2, with different input set-383

tings and metrics, along with random accuracy cal-384

culated based on the number of clips in the videos.385

In terms of binary accuracy, where a prediction386

is considered correct only if it exactly matches387

the ground truth, humans score 84.86%, while the388

highest-performing model, Gemini-2.0-Flash-Exp,389

scores 51.08%, and random accuracy is 21.14%390

when using video-only input. This demonstrates391

that although the model performs well above ran-392

Figure 2: Binary accuracy versus the number of clips
(2–7), comparing various state-of-the-art VLMs against
human and random baselines

dom accuracy, it still lags behind human perfor- 393

mance. In contrast, while human performance did 394

not benefit from the additional text modality, mod- 395

els showed substantial improvement. 396

Even on videos that humans misordered, models 397

rarely outdo them. For instance, Qwen2-VL-72B 398

solved none of the 57 seven-clip videos humans 399

got wrong, while Gemini-2.0-Flash-Exp solved 400

only three. Likewise, out of 77 six-clip videos 401

misordered by humans, Qwen2-VL fixed two, and 402

Gemini-2.0-Flash-Exp five, highlighting the persis- 403

tent gap in visual reasoning. 404

7 Discussion 405

7.1 Models Performance 406

The results indicate that open-source models still 407

lag behind closed-source models like Gemini, par- 408

ticularly in visual reasoning tasks. However, this 409

performance gap narrows when text input is intro- 410

duced or in text-only evaluations, where Qwen2- 411

VL-72B outperforms Gemini. Notably, Qwen2- 412

VL-7B performs on par with Qwen2-VL-72B in 413

visual reasoning, suggesting that increasing the lan- 414

guage model size does not specifically enhance 415

visual reasoning capabilities, given that both mod- 416

els utilize the same vision encoder. Furthermore, 417

SPLICE proves to be a particularly challenging 418

benchmark, as models like LlavaOneVision per- 419

form at random levels, while InternVL-2.5-78B 420

scores just above random chance with video only 421

settings. 422
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Vision Only Vision+Text Text
Binary Hamming Binary Hamming Binary Hamming

Random 0.2114 0.3385 0.2114 0.3385 – –
Human 0.8486 0.8855 0.8332 0.8904 – –
Qwen2-VL-7B 0.3091 0.4432 0.4354 0.5683 0.3318 0.4924
Qwen2-VL-72B 0.2990 0.4170 0.5708 0.6820 0.5402 0.6907
Gemini-1.5-Flash 0.4599 0.5825 0.5936 0.7115 0.4642 0.6029
Gemini-2.0-Flash-Exp 0.5108 0.6188 0.6939 0.7931 0.5271 0.6652
InternVL2.5-78B 0.2899 0.4243 0.4856 0.6046 0.4768 0.6062
LLaVA-OneVision-72B 0.2260 0.3514 0.4256 0.5597 0.4210 0.5545

Table 2: Binary and Hamming accuracy scores for various VLMs across different input modalities: Vision Only,
Text Only, and Vision+Text. Human and random baselines are included for comparison.

7.2 Human Performance423

Human performance on the binary metric reaches424

around 84%, reflecting the challenge of tasks re-425

quiring commonsense and domain-specific knowl-426

edge. This ceiling highlights the difficulty of in-427

structional videos, where distinguishing sub-steps428

in technical domains like automotive or medical429

tasks depends on expert knowledge. Notably, per-430

formance did not improve with text, likely because431

the short captions (averaging 4.84 words) rarely432

add information beyond the video. As a result,433

performance remains consistent across metrics.434

7.3 Input Modality435

In our study, we report results across three modal-436

ities: video-only, text-only, and video+text. How-437

ever, the text-only results are not intended to assess438

the reasoning capabilities of language models, as439

the dataset was curated with a focus on video and440

video-text inputs. The text often lacks sufficient441

detail on its own and is primarily included to eval-442

uate the impact of combining modalities. When443

paired with video, the descriptions become clearer444

through visual context. Thus, we use text-only445

performance solely as a baseline to measure gains446

from incorporating visual information.447

The results show that models benefit signifi-448

cantly from the additional text modality, unlike449

humans. This could be due to two factors. First,450

the text is a human-generated summary of what is451

happening in the video, meaning there is a form of452

knowledge distillation from humans to the model.453

In contrast, with video-only input, the model re-454

ceives no additional human-provided context. Ad-455

ditionally, this improvement suggests that language456

models are still more capable of reasoning com-457

pared to Vision-Language Models (VLMs), as they458

were able to benefit from information that was not 459

necessary for humans to correctly order the videos. 460

7.4 Factors Influencing Performance 461

One clear factor influencing the performance of 462

both models and humans is the number of clips. 463

As shown in Figure 2, performance declines for 464

both groups as the number of clips to be ordered 465

increases. However, models are more adversely af- 466

fected than humans by this increase, and the benefit 467

of including human annotations diminishes with 468

longer sequences as shown in Figure 7 in the ap- 469

pendix. This trend aligns with findings from prior 470

work (Sharma et al., 2024). As a result, most mod- 471

els perform near random when ordering seven clips, 472

where the random-chance baseline is much lower 473

due to the 7! possible permutations. 474

Figure 3 (left) shows varying performance across 475

categories that does not always concur with human 476

outcomes. For instance, electrical appliances is 477

hard for most models but easy for humans, while 478

both struggle with sports. Models in the same fam- 479

ily typically show similar trends, but cross-family 480

comparisons can differ. Another interesting find- 481

ing illustrated is that Gemini, similar to humans, is 482

not affected by the duration of the videos for both 483

video only input (Figure 3 right) and video+text 484

(Appendix, Figure 6). It maintains stable perfor- 485

mance even on longer videos, whereas Qwen2-VL- 486

72B, and to an even greater extent Qwen2-VL-7B, 487

exhibit performance degradation as video length 488

increases. This suggests that Gemini has robust 489

performance across long contexts. 490

7.5 In-depth Analysis of Reasoning in Models 491

To better understand model failures, we analyzed 492

sub-domains within the 12 main COIN domains. 493
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Figure 3: Binary accuracy performance of various state-of-the-art VLMs across different domains (left) and video
durations (right), compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed
line). Error bars represent the 95% confidence interval (CI)

For example, the "sport" domain includes sub-494

classes like "Practice Skiing Aerials" and "Practice495

Karate." Our analysis used only the video modality.496

Contextual vs. Temporal Reasoning We first497

examined the "electrical appliance" domain, which498

exhibited the second-lowest model performance499

and contained 485 of the dataset’s 3381 videos, to500

understand the reasons for this low performance.501

A closer look revealed that approximately 70%502

of the videos involve actions like "replacing" or503

"changing". In these "change/replace" videos, the504

initial and final states are often visually similar.505

For example, in the "replace toner cartridge" sub-506

domain, a typical sequence involves opening the507

printer door, removing the old cartridge, insert-508

ing the new one, and closing the door. Conse-509

quently, the first and last clips (door closed) are vi-510

sually similar to each other, as are the intermediate511

clips involving the cartridge exchange. Therefore,512

within the "electrical appliance" domain, we com-513

pared sub-domains involving "change/replace" ac-514

tions against those without. We found a significant515

performance disparity: Gemini-2.0-Flash scored516

26.83% on "change/replace" videos but 53.5% on517

other videos within the same domain. Results for518

all models are shown in Table 6 in the appendix.519

While models performance drops sharply for the520

"change/replace" group, human performance re-521

mains largely unaffected.522

To investigate this performance gap fur- 523

ther, we examined the models’ predictions for 524

"change/replace" videos. We found that models 525

frequently predicted the first and last clips as be- 526

ing sequential. For instance, in videos with four 527

or more clips, Gemini-2.0 predicted the first and 528

last clips were adjacent 57.36% of the time. In con- 529

trast, human annotators made this prediction only 530

2.45% of the time, while random chance would be 531

27.29%. This indicates a model bias towards order- 532

ing visually similar clips adjacently. We attribute 533

this to a potential lack of contextual understanding, 534

where models take shortcuts by associating visually 535

similar clips as sequential rather than performing 536

deeper contextual reasoning (e.g., recognizing that 537

opening a door precedes intermediate actions and 538

closing the door comes last). However, in these 539

same videos, models like Gemini-2.0-Flash demon- 540

strated relatively better temporal reasoning con- 541

cerning the first and last clips (despite their visual 542

similarity), correctly identifying the first clip as 543

preceding the last about 70% of the time. 544

Contextual vs. Causal Reasoning We further 545

investigated this hypothesis across all domains us- 546

ing a larger set of videos, filtered into two groups: 547

"make" and "change/replace". Our hypothesis 548

was that "make" videos primarily require causal 549

and temporal reasoning, whereas "change/replace" 550

videos, as previously argued, depend more heav- 551

7



Models Causal vs. Contextual General Knowledge Spatial

Change/Replace Make Everyday Technical

Number of videos 844 765 342 300 138

Random 18.02 19.14 23.26 22.49 19.19

Human 84.95 86.01 85.38 80.00 76.09
Gemini-1.5-Flash 28.44 61.18 56.14 44.33 24.64
Gemini-2.0-Flash-Exp 32.11 68.37 59.65 47.00 36.96
Qwen2-VL-72B 20.38 36.86 36.55 32.00 21.01

Table 3: Models and human video ordering accuracy (%) on task subsets probing different reasoning types

ily on contextual reasoning. For example, in552

"make" tasks like preparing food, mixing ingre-553

dients causally changes the food’s state; similarly,554

when making a bed, folding the covers has a causal555

relationship to the finished state. The dataset con-556

tains 844 "change/replace" videos (average 3.57557

clips) and 765 "make" videos (e.g., make ice cream,558

make bed; average 3.53 clips), indicating similar559

complexity based on clip count and thus a com-560

parable random baseline. The results in Table561

3 reveal a significant performance difference be-562

tween the "change/replace" and "make" groups,563

suggesting models possess stronger causal reason-564

ing abilities compared to contextual reasoning with565

models like Gemini-2.0-Flash-Exp scoring 32.11%566

on "change/replace" videos, but 68.37% on "make567

videos".568

General Knowledge Reasoning569

Next, we defined two groups: "Everyday tasks"570

and "Specialized/Technical tasks". "Everyday571

tasks" include activities like washing dishes or iron-572

ing clothes, while "Specialized/Technical tasks"573

involve actions such as drawing blood or in-574

stalling a ceiling fan. To avoid earlier issues575

with "change/replace" scenarios, we excluded such576

videos from both groups. This resulted in 342577

videos labeled as "Everyday tasks" and 320 as "Spe-578

cialized/Technical tasks". Results in Table 3 show579

that both models and humans perform better on580

"Everyday tasks". These tasks likely rely more on581

commonsense reasoning and are better represented582

in the models’ training data. The performance drop583

on specialized tasks suggests limitations in the mod-584

els’ knowledge and reasoning in less familiar tech-585

nical contexts.586

Spatial Reasoning Finally, we identified a set587

of sub-domains requiring spatial reasoning. Ex-588

amples include "Practice Skiing Aerials", where589

the model must recognize that the skier in the air 590

precedes landing; pole vaulting, involving jump- 591

ing, being airborne, and landing; and weightlifting, 592

where the weight on the ground precedes being 593

lifted. Results indicate that models struggle with 594

these spatial reasoning sub-domains; for instance, 595

Gemini-2.0-Flash achieved only 36.96% accuracy, 596

compared to its overall dataset average of 51.08% 597

as shown in Table 3. This likely explains the lower 598

performance observed in the "sport" domain, as 8 599

out of its 10 sub-domains heavily involve spatial 600

reasoning. 601

8 Conclusion 602

In this paper, we presented a novel, human-curated 603

benchmark designed to assess multiple facets of 604

visual reasoning, including temporal, causal, con- 605

textual, visual-spatial, and general knowledge. We 606

evaluated various open-source and closed-source 607

VLMs under different input modalities and com- 608

pared their performance against human participants. 609

Despite improvements from combining video and 610

text (highlighting the value of cross-modal align- 611

ment), all models lag significantly behind human 612

performance, especially without human-annotated 613

descriptions. Moreover, open-source models lag 614

further behind their closed-source counterpart, re- 615

vealing a persistent gap in visual reasoning. The 616

low performance of several models, with some scor- 617

ing just above random chance, highlights the bench- 618

mark’s effectiveness as a rigorous probe of visual 619

reasoning. Our reasoning analysis further reveals 620

that models perform better on videos dominated by 621

causal and temporal reasoning than on those requir- 622

ing contextual or spatial reasoning. In the future, 623

we aim to incorporate voice to enhance cross-modal 624

alignment and assess how models integrate audio 625

with visual reasoning. 626

8



9 Limitations627

Currently, only a few state-of-the-art VLMs sup-628

port the ability to input multiple videos and refer-629

ence them appropriately. Even single-video pro-630

cessing capabilities are limited in many models,631

restricting our evaluation to the handful that do632

offer this functionality. Nonetheless, the field is633

evolving rapidly, and we expect that most mod-634

els will soon be able to handle multi-video inputs,635

enabling broader application of our benchmark.636
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A Appendix921

A.1 Additional Metrics and full results922

Each video in the dataset is segmented into clips based on the original COIN dataset’s step localization.923

These clips are then randomly shuffled and renamed as C = {c1, c2, . . . , cn}. Depending on the modality924

being tested, the model receives either video-only input or a combination of video and annotations (short925

textual descriptions of events in the video). The model’s task is to predict the correct permutation of the clip926

order. Let y = [y1, y2, . . . , yn] denote the ground-truth sequence of clip indices, and ŷ = [ŷ1, ŷ2, . . . , ŷn]927

represent the predicted sequence. For n clips, there exist n! possible permutations. The models are928

evaluated on four metrics:929

Binary Accuracy. The prediction is correct only if the entire sequence matches the ground truth:930

Binary Accuracy =

{
1 if ŷ = y,

0 otherwise.
931

Position-Wise (Hamming) Accuracy The proportion of correctly placed clips:932

Hamming Accuracy =
1

n

n∑
i=1

I(ŷi = yi)933

where I(·) is the indicator function.934

Longest Common Subsequence (LCS). The LCS measures the longest sequence of elements appearing935

in the same relative order in both y and ŷ. Let c(i, j) denote the length of the LCS for substrings y1:i and936

ŷ1:j :937

c(i, j) =

{
0 i = 0 or j = 0,

c(i− 1, j − 1) + 1 yi = ŷj ,

max{c(i− 1, j), c(i, j − 1)} otherwise.
938

The LCS ratio normalizes this value:939

LCS Ratio =
LCS Length

n
940

Edit Distance (Levenshtein Distance). The minimum number of insertions, deletions, or substitutions941

required to transform ŷ into y. Define a matrix D where D(i, j) is the edit distance between y1:i and942

ŷ1:j :943

D(i, 0) = i, D(0, j) = j (boundary conditions),944
945

D(i, j) =


D(i− 1, j − 1) yi = ŷj ,

1 + min

D(i− 1, j)

D(i, j − 1)

D(i− 1, j − 1)

 otherwise.
946

The final edit distance is D(n, n).947

12



Vision Only Vision+Text
Binary Hamming LCS Edit Binary Hamming LCS Edit

Random 0.2114 0.3385 0.6554 2.0970 0.2114 0.3385 0.6554 2.0970
Human 0.8486 0.8855 0.9359 0.4105 0.8332 0.8904 0.9337 0.3875
Qwen2-VL-7B 0.3091 0.4432 0.7130 1.7891 0.4354 0.5683 0.7896 1.4377
Qwen2-VL-72B 0.2990 0.4170 0.7011 1.8465 0.5708 0.6820 0.8483 1.0677
Gemini-1.5-Flash 0.4599 0.5825 0.7980 1.3458 0.5936 0.7115 0.8633 0.9734
Gemini-2.0-Flash-Exp 0.5108 0.6188 0.7927 1.2511 0.6939 0.7931 0.9030 0.7788
InternVL2.5-78B 0.2899 0.4243 0.7050 1.8364 0.4856 0.6046 0.7694 1.3602
LlavaOnevision-72B 0.2260 0.3514 0.6615 2.0636 0.4256 0.5597 0.7866 1.4312

Table 4: Performance comparison of various VLMs across different input modalities (Vision Only and Vision+Text)
using Binary Accuracy, Hamming Distance, Longest Common Subsequence (LCS), and Edit Distance metrics.
Human and random baselines are included for reference. Models perform significantly better with textual input,
highlighting the benefit of cross-modal information

A.2 Testing Settings 948

Below are the details about test settings of each model: 949

Qwen2-VL-Instruct Family. Qwen2-VL was tested with both 7B and 72B parameters. The number of 950

frames was set to 1 fps, and the highest image resolution was set to 448 pixels, while the other dimension 951

was automatically adjusted based on the aspect ratio of the input frames. 952

Gemini-Flash Family. We used Gemini Flash 1.5 and 2.0 (experimental) versions, with the fps set to 953

1. The model was loaded using the official Google API, and the image resolution was left at the default 954

setting, allowing the model to handle it automatically. 955

InternVL2.5 Family. InternVL2.5 was tested with the 78B parameters model only. The 8B model did 956

not pass the sanity check. We used the default settings of the uniformal distribution of frames input for 957

each clip and we set it to 16 frames instead of fps. 958

LlavaOnevision Family LlavaOnevision was tested with 72B parameters. The 7B model did not pass 959

the sanity check. We used the default settings of the uniformal distribution of frames input for each clip 960

and we set it to 16 frames instead of fps. 961

All of the open source models were used from the Hugging Face library (Wolf et al., 2019) and adopted 962

with the Flash Attention approach. All of these models are tested with three different modalities, vision 963

only, text only, and vision + text. Samples of the prompts are shown in the Appendix A.3. All jobs were 964

submitted to a cluster of A100 and H100 GPUs, which were used interchangeably based on availability. 965
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A.3 Prompts966

Three samples of prompts are shown below, for each model the prompts were slightly tuned for better967

performance:968

Here is a sample prompt for video-only input: prompt: f"A video has been split into len(clips) clips,969

shuffled randomly." "Your task is to analyze each clip deeply to reorder them into the correct temporal970

sequence. Focus on:" "1. Visual content: Examine the actions, transitions, scene details, and context within971

each clip." "Provide the reordered sequence strictly within order tags in this format: " "’<order>Video X,972

Video Y, Video Z, ...</order>’."973

Here is a sample prompt for video+text input: prompt: f"A video has been split into len(clips)974

clips, shuffled randomly." "Your task is to analyze each clip deeply to reorder them into the correct975

temporal sequence. Focus on:" "1. *Visual content*: Examine the actions, transitions, scene details, and976

context within each clip." "2. *Temporal logic*: Identify the logical progression of events based on what977

happens before or after." "3. *Annotations*: Leverage the annotations to infer their proper chronological978

sequence." "Provide the reordered sequence strictly within order tags in this format: " "’<order>Video X,979

Video Y, Video Z, ...</order>’."980

Here is a sample prompt for text models: prompt: "Analyze the following video clips descriptions and981

order them chronologically as they are part of one continuous video. " "Focus on temporal clues, event982

progression, scene transitions and other cues " "Each video clip is labeled as ‘Video X’, where Video X983

corresponds to one shuffled clip. " "Maintain these labels in your response. "984

"Return the ordered video strictly within <order> tags in this format: " "<order>Video X, Video Y985

...</order> " )986
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A.4 Videos Stats 987

Table 5 provides statistics on the segmented video dataset, detailing how videos are divided into segments 988

and their distribution across different segment counts. 989

Segments Videos Clips Mean Time (s) Std Dev (2, 35] (35, 68] (68, 100] (100, 133] (133, 166] (166, 198] (198, 330]
2 1020 2040 46.84 40.75 531 245 128 65 35 12 4
3 1026 3078 53.32 42.68 434 309 142 79 36 19 7
4 734 2936 62.41 40.76 209 260 146 70 32 13 4
5 333 1665 72.67 43.20 62 123 69 46 21 10 2
6 172 1032 67.86 37.49 38 56 45 22 9 2 0
7 96 672 73.50 38.28 19 26 30 14 5 2 0

Table 5: This table summarizes the distribution of videos based on their segmentation. It includes the number of
segments(2-7), total videos per segment number, total clips, mean duration (seconds), and standard deviation. The
rightmost columns show the distribution of videos across predefined video duration intervals, providing insights
into the dataset’s temporal structure for event ordering analysis.
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A.5 Instructions for Annotators990

Instruction Brief Task: Reorder the video parts for each folder into their correct sequence. Steps:991

Download and Open the Folder assigned to you: You will receive a folder containing several subfolders,992

each labeled with a unique number (e.g., 1, 2, 3, etc.). Each subfolder corresponds to a video task993

with shuffled parts. View the Video Parts: Inside each subfolder, you will find video parts named994

random_part_1.mp4, random_part_2.mp4, etc. These parts contain embedded labels as secondary context995

for your understanding of the video context. Reorder the Parts: Watch each video part carefully. Determine996

the correct sequence of these parts based on the visual and textual cues. Write down the sequence in the997

format: Folder Number: Correct Order (e.g., 1: random_part_3, random_part_1, random_part_2). For998

simplicity use [2, 3, 4, 5, 1], where each number represents the Random number video. Use “unk” in999

these cases:1000

1- Repeated instructions: If the video contains two separate instances of the same instruction.1001

2- Continuous actions without sufficient context: An action extends across multiple clips with insuffi-1002

cient background information to establish a clear sequence.1003

3- Unrelated actions: The video includes unrelated actions with no contextual clues to establish order.1004

Submit Your Results: Compile the correct order for all folders in the attached spreadsheet Use “unk”1005

for any task sample you believe makes no sense or as discussed during the meeting, Notes: Do not use1006

any external sources Complete all tasks to the best of your ability.1007
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A.6 Additional Results 1008

Table 6: Video Ordering Accuracy of Electrical Appliance domain for sub-domains that include change/replace
compared to others that dont

Models Accuracy (%)
Group: change/replace, 328 videos

Random 15.02
Human 88.11
Gemini-1.5-Flash 26.22
Gemini-2.0-Flash-Exp 26.83
Qwen2-VL-72B 21.04

Group: other, 157 videos
Random 22.68
Human 86.62
Gemini-1.5-Flash 54.14
Gemini-2.0-Flash-Exp 53.50
Qwen2-VL-72B 33.12
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A.7 Additional Figures1009

A.7.1 Example of Video Input1010

First frame
 in clip

Last frame
 in clip

Annotations

Event
Localization 

juice the oranges

from 70 to 84s  (14s) from 99 to 105s  (6s) from 29 to 62s  (33s) from 90 to 96s  (6s)

pour the orange juice into the cup pour the orange juice into the cupcut oranges

Clip a Clip dClip cClip b

Figure 4: An example of a set of clips that the models need to order correctly. The figures show the first and last
frames of each clip. The clips are segmented based on events, reducing the reliance on shortcuts. Clip durations
vary based on the event, with gaps where moments not relevant to the main steps are omitted. In this video, models
must infer that the oranges are cut, juiced, filtered, and then served. Clips order: c, a, d, b.
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A.7.2 Modalities Across Domains 1011

(a) Average VLM performance on both modalities across video domains.

(b) VLM performance by video domains with video only input

(c) VLM performance by video domains with video and text input

Figure 5: Binary accuracy performance of various state-of-the-art VLMs across different domains and modalities
compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed line). Error bars
represent the 95% confidence interval (CI).
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A.7.3 Modalities Across Video Length1012

(a) Average VLM performance on both modalities across video length.

(b) VLM performance by video duration with video only input

(c) VLM performance by video duration with video and text input

Figure 6: Binary accuracy performance of various state-of-the-art VLMs across video duration and modalities
compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed line). Error bars
represent the 95% confidence interval (CI).

20



A.7.4 Modalities Across Number of Clips 1013

(a) Average VLM performance on both modalities across number of Clips.

(b) VLM performance comparison by number of clips with video only input

(c) VLM performance by number of clips with both video and text as input

Figure 7: Binary accuracy performance of various state-of-the-art VLMs across different number of clips and
modalities, compared to a human baseline (red dashed line) and a weighted random baseline (gray dashed line).
Error bars represent the 95% confidence interval (CI).
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