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ABSTRACT

The Teacher-Student Framework (TSF) is a reinforcement learning setting where
a teacher agent guards the training of a student agent by intervening and providing
online demonstrations. Assuming optimal, the teacher policy has the perfect tim-
ing and capability to intervene in the learning process of the student agent, provid-
ing safety guarantee and exploration guidance. Nevertheless, in many real-world
settings it is expensive or even impossible to obtain a well-performing teacher
policy. In this work, we relax the assumption of a well-performing teacher and
develop a new method that can incorporate arbitrary teacher policies with mod-
est or inferior performance. We instantiate an Off-Policy Reinforcement Learning
algorithm, termed Teacher-Student Shared Control (TS2C), which incorporates
teacher intervention based on trajectory-based value estimation. Theoretical anal-
ysis validates that the proposed TS2C algorithm attains efficient exploration and
substantial safety guarantee without being affected by the teacher’s own perfor-
mance. Experiments on various continuous control tasks show that our method
can exploit teacher policies at different performance levels while maintaining a
low training cost. Moreover, the student policy surpasses the imperfect teacher
policy in terms of higher accumulated reward in held-out testing environments.
Code is available at https://metadriverse.github.io/TS2C.

1 INTRODUCTION

In Reinforcement Learning (RL), the Teacher-Student Framework (TSF) (Zimmer et al., 2014; Kelly
et al., 2019) incorporates well-performing neural controllers or human experts as teacher policies in
the learning process of autonomous agents. At each step, the teacher guards the free exploration of
the student by intervening when a specific intervention criterion holds. Online data collected from
both the teacher policy and the student policy will be saved into the replay buffer and exploited
with Imitation Learning or Off-Policy RL algorithms. Such a guarded policy optimization pipeline
can either provide safety guarantee (Peng et al., 2021) or facilitate efficient exploration (Torrey &
Taylor, 2013).

The majority of RL methods in TSF assume the availability of a well-performing teacher pol-
icy (Spencer et al., 2020; Torrey & Taylor, 2013) so that the student can properly learn from the
teacher’s demonstration about how to act in the environment. The teacher intervention is triggered
when the student acts differently from the teacher (Peng et al., 2021) or when the teacher finds
the current state worth exploring (Chisari et al., 2021). This is similar to imitation learning where
the training outcome is significantly affected by the quality of demonstrations (Kumar et al., 2020;
Fujimoto et al., 2019). Thus with current TSF methods if the teacher is incapable of providing
high-quality demonstrations, the student will be misguided and its final performance will be upper-
bounded by the performance of the teacher. However, it is time-consuming or even impossible to
obtain a well-performing teacher in many real-world applications such as object manipulation with
robot arms (Yu et al., 2020a) and autonomous driving (Li et al., 2022a). As a result, current TSF
methods will behave poorly with a less capable teacher.

In the real world, the coach of Usain Bolt does not necessarily need to run faster than Usain Bolt. Is
it possible to develop a new interactive learning scheme where a student can outperform the teacher
while retaining safety guarantee from it? In this work we develop a new guarded policy optimization
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method called Teacher-Student Shared Control (TS2C). It follows the setting of a teacher policy
and a learning student policy, but relaxes the requirement of high-quality demonstrations from the
teacher. A new intervention mechanism is designed: Rather than triggering intervention based on
the similarity between the actions of teacher and student, the intervention is now determined by a
trajectory-based value estimator. The student is allowed to conduct an action that deviates from
the teacher’s, as long as its expected return is promising. By relaxing the intervention criterion
from step-wise action similarity to trajectory-based value estimation, the student has the freedom
to act differently when the teacher fails to provide correct demonstration and thus has the potential
to outperform the imperfect teacher. We conduct theoretical analysis and show that in previous
TSF methods the quality of the online data-collecting policy is upper-bounded by the performance
of the teacher policy. In contrast, TS2C is not limited by the imperfect teacher in upper-bound
performance, while still retaining a lower-bound performance and safety guarantee.

Experiments on various continuous control environments show that under the newly proposed
method, the learning student policy can be optimized efficiently and safely under different levels
of teachers while other TSF algorithms are largely bounded by the teacher’s performance. Further-
more, the student policies trained under the proposed TS2C substantially outperform all baseline
methods in terms of higher efficiency and lower test-time cost, supporting our theoretical analysis.

2 BACKGROUND

2.1 RELATED WORK

The Teacher-Student Framework The idea of transferring knowledge from a teacher policy to a
student policy has been explored in reinforcement learning (Zimmer et al., 2014). It improves the
learning efficiency of the student policy by leveraging a pretrained teacher policy, usually by adding
auxiliary loss to encourage the student policy to be close to the teacher policy (Schmitt et al., 2018;
Traoré et al., 2019). Though our method follows teacher-student transfer framework, an optimal
teacher is not a necessity. During training, agents are fully controlled by either the student (Traoré
et al., 2019; Schmitt et al., 2018) or the teacher policy (Rusu et al., 2016), while our method fol-
lows intervention-based RL where a mixed policy controls the agent. Other attempts to relax the
need of well-performing teacher models include student-student transfer (Lin et al., 2017; Lai et al.,
2020), in which heterogeneous agents exchange knowledge through mutual regularisation (Zhao &
Hospedales, 2021; Peng et al., 2020).

Learning from Demonstrations Another way to exploit the teacher policy is to collect static
demonstration data from it. The learning agent will regard the demonstration as optimal transitions
to imitate from. If the data is provided without reward signals, agent can learn by imitating the
teacher’s policy distribution (Ly & Akhloufi, 2020), matching the trajectory distribution (Ho & Er-
mon, 2016; Xu et al., 2019) or learning a parameterized reward function with inverse reinforcement
learning (Abbeel & Ng, 2004; Fu et al., 2017). With additional reward signals, agents can perform
Bellman updates pessimistically, as most offline reinforcement learning algorithms do (Levine et al.,
2020). The conservative Bellman update can be performed either by restricting the overestimation
of Q-function learning (Fujimoto et al., 2019; Kumar et al., 2020) or by involving model-based un-
certainty estimation (Yu et al., 2020b; Chen et al., 2021b). In contrast to the offline learning from
demonstration, in this work we focus on the online deployment of teacher policies with teacher-
student shared control and show its superiority in reducing the state distributional shift, improving
efficiency and ensuring training-time safety.

Intervention-based Reinforcement Learning Intervention-based RL enables both the expert and
the learning agent to generate online samples in the environment. The switch between policies can be
random (Ross et al., 2011), rule-based (Parnichkun et al., 2022) or determined by the expert, either
through the manual intervention of human participators (Abel et al., 2017; Chisari et al., 2021; Li
et al., 2022b) or by referring to the policy distribution of a parameterized expert (Peng et al., 2021).
More delicate switching algorithms include RCMP (da Silva et al., 2020) which asks for expert
advice when the learner’s action has high estimated uncertainty. RCMP only works for agents with
discrete action spaces, while we investigate continuous action space in this paper. Also, Ross &
Bagnell (2014) and Sun et al. (2017) query the expert to obtain the optimal value function, which
is used to guide the expert intervention. These switching mechanisms assume the expert policy to
be optimal, while our proposed algorithm can make use of a suboptimal expert policy. To exploit
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samples collected with different policies, Ross et al. (2011) and Kelly et al. (2019) compute behavior
cloning loss on samples where the expert policy is in control and discard those generated by the
learner. Other algorithms (Mandlekar et al., 2020; Chisari et al., 2021) assign positive labels on
expert samples and compute policy gradient loss based on the pseudo reward. Some other research
works focus on provable safety guarantee with shared control (Peng et al., 2021; Wagener et al.,
2021), while we provide an additional lower-bound guarantee of the accumulated reward for our
method.

2.2 NOTATIONS

We consider an infinite-horizon Markov decision process (MDP), defined by the tuple M =
⟨S,A, P,R, γ, d0⟩ consisting of a finite state space S, a finite action space A, the state transition
probability distribution P : S × A × S → [0, 1], the reward function R : S × A → [Rmin, Rmax],
the discount factor γ ∈ (0, 1) and the initial state distribution d0 : S → [0, 1]. Unless otherwise
stated, π denotes a stochastic policy π : S ×A → [0, 1]. The state-action value and state value func-
tions of π are defined as Qπ(s, a) = Es0=s,a0=a,at∼π(·|st),st+1∼p(·|st,at) [

∑∞
t=0 γ

tR (st, at)] and
V π(s) = Ea∼π(·|s)Qπ(s, a). The optimal policy is expected to maximize the accumulated return
J(π) = Es∼d0V π(s).

The Teacher-Student Framework (TSF) models the shared control system as the combination of a
teacher policy πt which is pretrained and fixed and a student policy πs to be learned. The actual
actions applied to the agent are deduced from a mixed policy of πt and πs, where πt starts gener-
ating actions when intervention happens. The details of the intervention mechanism are described
in Sec. 3.2. The goal of TSF is to improve the training efficiency and safety of πs with the in-
volvement of πt. The discrepancy between πt and πs on state s, termed as policy discrepancy, is
the L1-norm of output difference: ∥πt(·|s) − πs(·|s)∥1 =

∫
A |πt(a|s)− πs(a|s)|da. We define

the discounted state distribution under policy π as dπ(s) = (1 − γ)
∑∞
t=0 γ

t Pr (st = s;π, d0),
where Prπ (st = s;π, d0) is the state visitation probability. The state distribution discrepancy is de-
fined as the difference in L1-norm of the discounted state distributions deduced from two policies:
∥dπt − dπs∥1 =

∫
S |dπt(s)− dπs(s)|ds.
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Figure 1: Overview of the proposed teacher-
student shared control method. Both student and
teacher policies are in the training loop and the
shared control occurs based on the intervention
function.

Fig. 1 shows an overview of our proposed
method. In addition to the conventional single-
agent RL setting, we include a teacher policy
πt in the training loop. The term “teacher” only
indicates that the role of this policy is to help
the student training. No assumption on the op-
timality of the teacher is needed. The teacher
policy is first used to do warmup rollouts and
train a value estimator. During the training of
the student policy, both πs and πt receive cur-
rent state s from the environment. They pro-
pose actions as and at, and then a value-based
intervention function T (s) determines which
action should be taken and applied to the en-
vironment. The student policy is then updated
with data collected through such intervention.

We first give a theoretical analysis on the general setting of intervention-based RL in Sec. 3.1. We
then discuss the properties of different forms of intervention function T in Sec. 3.2. Based on these
analyses, we propose a new algorithm for teacher-student shared control in Sec. 3.3. All the proofs
in this section are included in Appendix A.1.

3.1 ANALYSIS ON INTERVENTION-BASED RL

In intervention-based RL, the teacher policy and the student policy act together and become a mixed
behavior policy πb. The intervention function T (s) determines which policy is in charge. Let
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T (s) = 1 denotes the teacher policy πt takes control and T (s) = 0 means otherwise. Then πb can
be represented as πb(·|s) = T (s)πt(·|s) + (1− T (s))πs(·|s).
One issue with the joint control is that the student policy πs is trained with samples collected by the
behavior policy πb, whose action distribution is not always aligned with πs. A large state distribution
discrepancy between two policies ∥dπb

− dπs∥1 can cause distributional shift and ruin the training.
A similar problem exists in behavior cloning (BC), though in BC no intervention is involved and
πs learns from samples all collected by the teacher policy πt. To analyze the state distribution
discrepancy in BC, we first introduce a useful lemma (Achiam et al., 2017).

Lemma 3.1. The state distribution discrepancy between the teacher policy πt and the student policy
πs is bounded by their expected policy discrepancy:

∥dπt
− dπs

∥1 ⩽
γ

1− γ
Es∼dπt

∥πt(· | s)− πs(· | s)∥1 . (1)

We apply the lemma to the setting of intervention-based RL and derive a bound for ∥dπb
− dπs∥1.

Theorem 3.2. For any behavior policy πb deduced by a teacher policy πt, a student policy πs and
an intervention function T (s), the state distribution discrepancy between πb and πs is bounded by

∥dπb
− dπs

∥1 ⩽
βγ

1− γ
Es∼dπb

∥πt(· | s)− πs(· | s)∥1 , (2)

where β =
Es∼dπb

[T (s)∥πt(·|s)−πs(·|s)∥1]
Es∼dπb

∥πt(·|s)−πs(·|s)∥1
∈ [0, 1] is the expected intervention rate weighted by the

policy discrepancy.

Both Eq. 1 and Eq. 2 bound the state distribution discrepancy by the difference in per-state pol-
icy distributions, but the upper bound with intervention is squeezed by the intervention rate β. In
practical algorithms, β can be minimized to reduce the state distribution discrepancy and thus re-
lieve the performance drop during test time. Based on Thm. 3.2, we further prove in Appendix A.1
that under the setting of intervention-based RL, the accumulated returns of behavior policy J(πb)
and student policy J(πs) can be similarly related. The analysis in this section does not assume a
certain form of the intervention function T (s). Our analysis provides the insight on the feasibility
and efficiency of all previous algorithms in intervention-based RL (Kelly et al., 2019; Peng et al.,
2021; Chisari et al., 2021). In the following section, we will examine different forms of intervention
functions and investigate their properties and performance bounds, especially with imperfect online
demonstrations.

3.2 LEARNING FROM IMPERFECT DEMONSTRATIONS

A straightforward idea to design the intervention function is to intervene when the student acts
differently from the teacher. We model such process with the action-based intervention function
Taction(s):

Taction(s) =

{
1 if Ea∼πt( ·|s)[log πs(a | s)] < ε,

0 otherwise,
(3)

wherein ε > 0 is a predefined parameter. A similar intervention function is used in EGPO (Peng
et al., 2021), where the student’s action is replaced by the teacher’s if the student’s action has low
probability under the teacher’s policy distribution. To measure the effectiveness of a certain form of
intervention function, we examine the return of the behavior policy J(πb). With Taction(s) defined in
Eq. 3 we can bound J(πb) with the following theorem.

Theorem 3.3. With the action-based intervention function Taction(s), the return of the behavior
policy J(πb) is lower and upper bounded by

J(πt)+

√
2(1− β)Rmax

(1− γ)2

√
H − ε ⩾ J(πb) ⩾ J(πt)−

√
2(1− β)Rmax

(1− γ)2

√
H − ε, (4)

where H = Es∼dπb
H(πt(·|s)) is the average entropy of the teacher policy during shared control

and β is the weighted intervention rate in Thm. 3.2.
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The theorem shows that J(πb) can be lower bounded by the return of the teacher policy πt and
an extra term relating to the entropy of the teacher policy. It implies that action-based intervention
function Taction is indeed helpful in providing training data with high return. We discuss the tightness
of Thm. 3.3 and give an intuitive interpretation of

√
H − ε in Appendix A.2.

Student trajectory

Teacher trajectory

Student action

Teacher action

Figure 2: In an autonomous driving scenario, the ego
vehicle is the blue one on the left, following the gray
vehicle on the right. The upper trajectory is proposed
by the student to overtake and the lower trajectory is
proposed by the teacher to keep following.

A drawback of the action-based interven-
tion function is the strong assumption on
the optimal teacher, which is not always
feasible. If we turn to employ a subopti-
mal teacher, the behavior policy would be
burdened due to the upper bound in Eq. 4.
We illustrate this phenomenon with the ex-
ample in Fig. 2 where a slow vehicle in
gray is driving in front of the ego-vehicle
in blue. The student policy is aggressive
and would like to overtake the gray vehi-
cle to reach the destination faster, while
the teacher intends to follow the vehicle
conservatively. Therefore, πs and πb will
propose different actions in the current state, leading to Taction = 1 according to Eq. 3. The mixed
policy with shared control will always choose to follow the front vehicle and the agent can never
accomplish a successful overtake.

To empower the student to outperform a suboptimal teacher policy, we investigate a new form of
intervention function that encapsulates the long-term value estimation into the decision of interven-
tion, designed as follows:

Tvalue(s) =

{
1 if V πt (s)− Ea∼πs(·|s)Q

πt (s, a) > ε,

0 otherwise,
(5)

where ε > 0 is a predefined parameter. By using this intervention function, the teacher tolerates
student’s action if the teacher can not perform significantly better than the student by ϵ in return.
Tvalue no longer expects the student to imitate the teacher policy step-by-step. Instead, it makes
decision on the basis of long-term return. Taking trajectories in Fig. 2 again as an example, if the
overtake behavior has high return, the student will be preferable to Tvalue. Then the student control
will not be intervened by the conservative teacher. So with the value-based intervention function,
the agent’s exploration ability will not be limited by a suboptimal teacher. Nevertheless, the lower-
bound performance guarantee of the behavior policy πb still holds, shown as follows.
Theorem 3.4. With the value-based intervention function Tvalue(s) defined in Eq. 5, the return of the
behavior policy πb is lower bounded by

J (πb) ⩾ J (πt)−
(1− β)ε

1− γ
. (6)

In safety-critical scenarios, the step-wise training cost c(s, a), i.e., the penalty on the safety
violation during training, can be regarded as a negative reward. We define r̂(s, a) =

r(s, a) − ηc(s, a) as the combined reward, where η is the weighting hyperparameter. V̂ , Q̂

and T̂value are similarly defined by substituting r with r̂ in the original definition. Then we
have the following corollary related to expected cumulative training cost, defined by C(π) =
Es0∼d0,at∼π(·|st),st+1∼p(·|st,at) [

∑∞
t=0 γ

tc (st, at)].

Corollary 3.5. With safety-critical value-based intervention function T̂value(s), the expected cumu-
lative training cost of the behavior policy πb is upper bounded by

C(πb) ⩽ C(πt) +
(1− β)ϵ

η(1− γ)
+

1

η
[J(πb)− J(πt)] . (7)

In Eq. 7 the upper bound of behavior policy’s training cost consists of three terms: the cost of teacher
policy, the threshold in intervention ϵ multiplied by coefficients and the superiority of πb over πt in
cumulative reward. The first two terms are similar to those in Eq. 6 and the third term means a trade-
off between training safety and efficient exploration, which can be adjusted by hyperparameter η.
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Comparing the lower bound performance guarantee of action-based and value-based intervention
function (Eq. 4 and Eq. 6), the performance gap between πb and πt can both be bounded with
respect to the threshold for intervention ε and the discount factor γ. The difference is that the
performance gap when using Taction is in an order of O( 1

(1−γ)2 ) while the gap with Tvalue is in an
order of O( 1

1−γ ). It implies that in theory value-based intervention leads to better lower-bound
performance guarantee. In terms of training safety guarantee, value-based intervention function
Tvalue has better safety guarantee by providing a tighter safety bound with the order of O( 1

1−γ ), in
contrast to O( 1

(1−γ)2 ) of action-based intervention function (see Theorem 1 in (Peng et al., 2021)).
We show in the Sec. 4.3 that the theoretical advances of Tvalue in training safety and efficiency can
both be verified empirically.

3.3 IMPLEMENTATION

Justified by the aforementioned advantages of the value-based intervention function, we propose a
practical algorithm called Teacher-Student Shared Control (TS2C). Its workflow is listed in Ap-
pendix B. To obtain the teacher Q-network Qπt in the value-based intervention function in Eq. 5,
we rollout the teacher policy πt and collect training samples during the warmup period. Gaussian
noise is added to the teacher’s policy distribution to increase the state coverage during warmup.
With limited training data the Q-network may fail to provide accurate estimation when encountering
previously unseen states. We propose to use teacher Q-ensemble based on the idea of ensembling
Q-networks (Chen et al., 2021a). A set of ensembled teacher Q-networks Qϕ with the same archi-
tecture and different initialization weights are built and trained with the same data. To learn Qϕ we
follow the standard procedure in (Chen et al., 2021a) and optimize the following loss:

L (ϕ) = Es,a∼D
[
y −Mean

[
Qϕ (s, a)

]]2
, (8)

where y = Es′∼D,a′∼πt(·|s′)+N (0,σ)

[
r + γMean

[
Qϕ (s′, a′)

]]
is the Bellman target and D is the

replay buffer for storing sequences {(s, a, r, s′)}. Teacher will intervene when Tvalue returns 1 or
the output variance of ensembled Q-networks surpasses the threshold, which means the agent is
exploring unknown regions and requires guarding. We also use Qϕ to compute the state-value
functions in Eq. 5, leading to the following practical intervention function:

TTS2C(s) =


1 if Mean

[
Ea∼πt(·|s)Q

ϕ (s, a)− Ea∼πs(·|s)Q
ϕ (s, a)

]
> ε1

or Var
[
Ea∼πs(·|s)Q

ϕ (s, a)
]
> ε2,

0 otherwise.

(9)

Eq. 2 shows that the distributional shift and the performance gap to oracle can be reduced with
smaller β, i.e., less teacher intervention. Therefore, we minimize the amount of teacher intervention
via adding negative reward to the transitions one step before the teacher intervention. Incorporating
intervention minimization, we use the following loss function to update the student’s Q-network
parameterized by ψ:

L(ψ) = Es,a∼D

[(
y′ −Qψ (s, a)

)2]
, (10)

where y′ = Es′∼D,a′∼πb(·|s′)
[
r − λTTS2C(s

′) + γQψ (s′, a′) − α log πb(a
′|s′)] is the soft Bellman

target with intervention minimization. λ is the hyperparameter controlling the intervention mini-
mization. α is the coefficient for maximum-entropy learning updated in the same way as Soft Actor
Critic (SAC) (Haarnoja et al., 2018). To update the student’s policy network parameterized by θ, we
apply the objective used in SAC as:

L(θ) = Es∼D
[
Ea∼πθ(·|s)

[
α log

(
πθ (a | s)

)
−Qψ (s, a)

]]
. (11)

4 EXPERIMENTS

We conduct experiments to investigate the following questions: (1) Can agents trained with TS2C
achieve super-teacher performance with imperfect teacher policies while outperforming other meth-
ods in the Teacher-Student Framework (TSF)? (2) Can TS2C provide safety guarantee and improve
training efficiency compared to algorithms without teacher intervention? (3) Is TS2C robust in dif-
ferent environments and teacher policies trained with different algorithms? To answer questions
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Figure 3: Comparison between our method TS2C and other algorithms with teacher policies pro-
viding online demonstrations. “Importance” refers to the Importance Advising algorithm. For each
column, the involved teacher policy has high, medium, and low performance respectively.

(1)(2), we conduct preliminary training with the PPO algorithm (Schulman et al., 2017) and save
checkpoints on different timesteps. Policies in different stages of PPO training are used as teacher
policies in TS2C and other algorithms in the TSF. With regard to question (3), we use agents trained
with PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018) and Behavior Cloning as the teacher
policies from different sources.

4.1 ENVIRONMENT SETUP

The majority of the experiments are conducted on the lightweight driving simulator MetaDrive (Li
et al., 2022a). One concern with TSF algorithms is that the student may simply record the teacher’s
actions and overfit the training environment. MetaDrive can test the generalizability of learned
agents on unseen driving environments with its capability to generate an unlimited number of scenes
with various road networks and traffic flows. We choose 100 scenes for training and 50 held-out
scenes for testing. Examples of the traffic scenes from MetaDrive are shown in Appendix C. In
MetaDrive, the objective is to drive the ego vehicle to the destination without dangerous behaviors
such as crashing into other vehicles. The reward function consists of the dense reward proportional
to the vehicle speed and the driving distance, and the terminal +20 reward when the ego vehicle
reaches the destination. Training cost is increased by 1 when the ego vehicle crashes or drives out of
the lane. To evaluate TS2C’s performance in different environments, we also conduct experiments
in several environments of the MuJoCo simulator (Todorov et al., 2012).

4.2 BASELINES AND IMPLEMENTATION DETAILS

Two sets of algorithms are selected as baselines to compare with. One includes traditional RL and
IL algorithms without the TSF. By comparing with these methods we can demonstrate how TS2C
improves the efficiency and safety of training. Another set contains previous algorithms with the
TSF, including Importance Advising (Torrey & Taylor, 2013) and EGPO (Peng et al., 2021). The
original Importance Advising uses an intervention function based on the range of the Q-function:
I(s) = maxa∈AQD(s,a) − mina∈AQD(s,a), where QD is the Q-table of the teacher policy. Such
Q-table is not applicable in the Metadrive simulator with continuous state and action spaces. In
practice, we sample N actions from the teacher’s policy distribution and compute their Q-values on
a certain state. The intervention happens if the range, i.e., the maximum value minus the minimum
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Figure 4: Figures (a) and (b) shows the comparison of efficiency and safety between TS2C and
baseline algorithms without teacher policies providing online demonstrations. Figure (c) shows the
comparison of the average intervention rate between TS2C and two baseline algorithms in the TSF.
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Figure 5: Performance comparison between our method TS2C and baseline algorithms on three
environments from MuJoCo.

value, surpass a certain threshold ε. The EGPO algorithm uses an intervention function similar to
the action-based intervention function introduced in section 3.2. All algorithms are trained with
4 different random seeds. In all figures the solid line is computed with the average value across
different seeds and the shadow implies the standard deviation. We leave detailed information on the
experiments and the result of ablation studies on hyperparameters in Appendix C.

4.3 RESULTS

Super-teacher performance and better safety guarantee The training result with three different
levels of teacher policy can be seen in Fig. 3. The first row shows that the performance of TS2C is not
limited by the imperfect teacher policies. It converges within 200k steps, independent of different
performances of the teacher. EGPO and Importance Advicing is clearly bounded by teacher-medium
and teacher-low, performing much worse than TS2C with imperfect teachers. The second row of
Fig. 3 shows TS2C has lower training cost than both algorithms. Compared to EGPO and Importance
Advising, the intervention mechanism in TS2C is better-designed and leads to better behaviors.

Better performance with TSF The result of comparing TS2C with baseline methods without the
TSF can be seen in Fig. 4(a)(b). We use the teacher policy with a medium level of performance to
train the student in TS2C. It achieves better performance and lower training cost than the baseline
algorithms SAC, PPO, and BC. The comparative results show the effectiveness of incorporating
teacher policies in online training. The behavior cloning algorithm does not involve online sampling
in the training process, so it has zero training cost.

Extension for different environments and teacher policies The performances of TS2C in dif-
ferent MuJoCo environments and different sources of teacher policy are presented in Fig. 5 and 6
respectively. The figures show that TS2C is generalizable to different environments. It can also
make use of the teacher policies from different sources and achieve super-teacher performance con-
sistently. Our TS2C algorithm can outperform SAC in all three MuJoCo environments taken into
consideration. On the other hand, though the EGPO algorithm has the best performance in the
Pendulum environment, it struggles in the other two environments, namely Hopper and Walker.
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Figure 6: Performance comparison between our method TS2C and baseline algorithms with teacher
policies providing online demonstrations. The teacher policies are trained by PPO, SAC, and behav-
ior cloning respectively.

4.4 EFFECTS OF INTERVENTION FUNCTIONS
Trajectory with value-based intervention

Trajectory with action-based intervention

Figure 7: Visualization of the trajectories
resulting from different intervention mecha-
nisms. The trajectories of irrelevant traffic
vehicles are marked orange. As in the green
trajectory, action-based intervention make
the car following the front vehicle. Value-
based intervention instead can learn overtak-
ing behavior as in blue trajectory.

We further investigate the intervention behaviors un-
der different intervention functions. As shown in
Fig. 4(c), the average intervention rate Es∼dπb

T (s)
of TS2C drops quickly as soon as the student pol-
icy takes control. The teacher policy only intervenes
during a very few states where it can propose actions
with higher value than the students. The intervention
rate of EGPO remains high due to the action-based
intervention function: the teacher intervenes when-
ever the student act differently.

We also show different outcomes of action-based
and value-based intervention functions with screen-
shots in the MetaDrive simulator. In Fig. 7 the
ego vehicle happens to drive behind a traffic vehicle
which is in an orange trajectory. With action-based
intervention the teacher takes control and keeps fol-
lowing the front vehicle, as shown in the green tra-
jectory. In contrast, with the value-based interven-
tion the student policy proposes to turn left and over-
take the front vehicle as in the blue trajectory. Such
action has higher return and therefore is tolerable by
TTS2C, leading to a better agent trajectory.

5 CONCLUSION AND DISCUSSION

In this work, we conduct theoretic analysis on intervention-based RL algorithms in the Teacher-
Student Framework. It is found that while the intervention mechanism has better properties than
some imitation learning methods, using an action-based intervention function limits the performance
of the student policy. We then propose TS2C, a value-based intervention scheme for online policy
optimization with imperfect teachers. We provide the theoretic guarantees on its exploration ability
and safety. Experiments show that the proposed TS2C method achieves consistent performance
independent to the teacher policy being used. Our work brings progress and potential impact to
relevant topics such as active learning, human-in-the-loop methods, and safety-critical applications.

Limitations. The proposed algorithm assumes the agent can access environment rewards, and thus
defines the intervention function based on value estimations. It may not work in tasks where reward
signals are inaccessible. This limitation could be tackled by considering reward-free settings and
employing unsupervised skill discovery (Eysenbach et al., 2019; Aubret et al., 2019). These methods
provide proxy reward functions that can be used in teacher intervention.

9



Published as a conference paper at ICLR 2023

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

David Abel, John Salvatier, Andreas Stuhlmüller, and Owain Evans. Agent-agnostic human-in-the-
loop reinforcement learning. arXiv preprint arXiv:1701.04079, 2017.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
ICML, volume 70 of Proceedings of Machine Learning Research, pp. 22–31. PMLR, 2017.
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A THEOREMS IN TS2C

A.1 DETAILED PROOF

We start the proof with the restatement of Lem. 3.1 in Sec. 3.1.

Lemma A.1 (Lemma 4.1 in (Xu et al., 2019)).

∥dπ − dπ′∥1 ⩽
γ

1− γ
Es∼dπ ∥π(· | s)− π′(· | s)∥1 . (12)

Thm 3.2 can be derived by substituting π and π′ in Lem A.1 with πb and πs.

Theorem A.2 (Restatement of Thm. 3.2). For any behavior policy πb deduced by a teacher policy
πt, a student policy πs and a intervention function T (s), the state distribution discrepancy between
πb and πs is bounded by policy discrepancy and intervention rate:

∥dπb
− dπs

∥1 ⩽
βγ

1− γ
Es∼dπb

∥πt(· | s)− πs(· | s)∥1 , (13)

where β =
Es∼dπb

∥T (s)[πt(·|s)−πs(·|s)]∥1

Es∼dπb
∥πt(·|s)−πs(·|s)∥1

is the weighted expected intervention rate.

Proof.

∥dπb
− dπs∥1 ⩽

γ

1− γ
Es∼dπb

∥πb(· | s)− πs(· | s)∥1

=
γ

1− γ
Es∼dπb

∥T (s)πt(· | s) + (1− T (s))πs(· | s)− πs(· | s)∥1

=
γ

1− γ
Es∼dπb

∥T (s) [πt(· | s)− πs(· | s)]∥1

=
βγ

1− γ
Es∼dπb

∥πt(· | s)− πs(· | s)∥1 .

(14)

Based on Thm. 3.2, we further prove that under the setting of shared control, the performance gap
of πs to the optimal policy π∗ can be bounded by the gap between the teacher policy πt and π∗,
together with the teacher-student policy difference. Therefore, training with the trajectory collected
with mixed policy πb is to optimize an upper bound of the student’s suboptimality. The following
lemma is helpful in doing this.

Lemma A.3.

|J (π)− J (π′)| ⩽ Rmax

(1− γ)2
Es∼dπ ∥π(· | s)− π′(· | s)∥1 (15)

Proof. It is a direct combination of Lemma 4.2 and Lemma 4.3 in (Xu et al., 2019).

Theorem A.4. For any behavior policy πb consisting of a teacher policy πt, a student policy πs and
a intervention function T (s), the suboptimality of the student policy is bounded by

|J (π∗)− J (πs)| ⩽
βRmax

(1− γ)2
Es∼πb

∥πt(· | s)− πs(· | s)∥1 + |J (π∗)− J (πb)| , (16)

13



Published as a conference paper at ICLR 2023

Proof.

|J (πb)− J (πs)| ⩽
Rmax

(1− γ)2
Es∼dπb

∥πb(· | s)− πs(· | s)∥1

=
Rmax

(1− γ)2
Es∼dπb

∥T (s)πt(· | s) + (1− T (s))πs(· | s)− πs(· | s)∥1

=
Rmax

(1− γ)2
Es∼dπb

∥T (s) [πt(· | s)− πs(· | s)]∥1

=
βRmax

(1− γ)2
Es∼πb

∥πt(· | s)− πs(· | s)∥1 .

|J (π∗)− J (πs)| ⩽ |J (πb)− J (πs)|+ |J (π∗)− J (πb)|

⩽
βRmax

(1− γ)2
Es∼πb

∥πt(· | s)− πs(· | s)∥1 + |J (π∗)− J (πb)| .

(17)

Theorem A.5 (Restatement of Thm. 3.3). With the action distributional intervention function
Taction(s), the return of the behavior policy J(πb) is lower and upper bounded by

J(πt)+

√
2(1− β)Rmax

(1− γ)2

√
H − ε ⩾ J(πb) ⩾ J(πt)−

√
2(1− β)Rmax

(1− γ)2

√
H − ε (18)

where Rmax = max
s,a

r(s, a) is the maximal possible reward, H = Es∼dπb
H(πt(·|s)) is the average

entropy of the teacher policy during shared control.

Proof.

|J (πb)− J (πt)| ⩽
Rmax

(1− γ)2
Es∼dπb

∥πb(· | s)− πt(· | s)∥1

=
Rmax

(1− γ)2
Es∼dπb

∥T (s)πt(· | s) + (1− T (s))πs(· | s)− πt(· | s)∥1

=
(1− β)Rmax

(1− γ)2
Es∼dπb

∥πs(· | s)− πt(· | s)∥1

⩽

√
2(1− β)Rmax

(1− γ)2
Es∼dπb

√
DKL(πt(·|s)∥πs(·|s))

=

√
2(1− β)Rmax

(1− γ)2
Es∼dπb

√
Ea∼πt(·|s) [log πt(a|s)− log πs(a|s)]

=

√
2(1− β)Rmax

(1− γ)2
Es∼dπb

√
H(πt(·|s)− ε

⩽

√
2(1− β)Rmax

(1− γ)2

√
H − ε.

(19)

Therefore, we obtain
√
2(1− β)Rmax

(1− γ)2

√
H − ε ⩾ J (πb)− J (πt) ⩾ −

√
2(1− β)Rmax

(1− γ)2

√
H − ε

J(πt) +

√
2(1− β)Rmax

(1− γ)2

√
H − ε ⩾J(πb) ⩾ J(πt)−

√
2(1− β)Rmax

(1− γ)2

√
H − ε,

(20)

which concludes the proof.

To prove Thm. 3.4, we introduce a useful lemma from (Schulman et al., 2015).
Lemma A.6.

J(π) = J(π′) + Est,at∼τπ

[ ∞∑
t=0

γtAπ′ (st, at)

]
(21)
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Theorem A.7 (Restatement of Thm. 3.4). With the value-based intervention function Tvalue(s) de-
fined in Eq. 5, the return of the behavior policy πb is lower bounded by

J (πb) ⩾ J (πt)−
ε

1− γ
. (22)

Proof.

J(πb)− J(πt) = Esn,an∼τπb

[ ∞∑
n=0

γnAt (sn, an)

]

= Esn,an∼τπb

[ ∞∑
n=0

γn [Qt (sn, an)− Vt(sn)]

]

= Esn∼τπb

[ ∞∑
n=0

γn
[
Ea∼πb(·|sn)Qt (sn, a)− Vt(sn)

]]

= Esn∼τπb

[ ∞∑
n=0

γn
[
T (sn)Ea∼πt(·|sn)Qt (sn, a) + (1− T (sn))Ea∼πs(·|sn)Qt (sn, a)− Vt(sn)

]]

= Esn∼τπb

[ ∞∑
n=0

γn
[
(1− T (sn))

[
Ea∼πs(·|sn)Qt (sn, a)− Vt(sn)

]]]

= (1− β)Esn∼τπb

[ ∞∑
n=0

γn
[
Ea∼πs(·|sn)Qt (sn, a)− Vt(sn)

]]

⩾ −(1− β)Esn∼τπb

[ ∞∑
n=0

γnε

]

= − (1− β)ε

1− γ
,

(23)
which concludes the proof.

Then we prove the corollary related to safety-critical scenarios.

Corollary A.8 (Restatement of Cor. 3.5). With safety-critical value-based intervention function
T̂value(s), the expected cumulative training cost of the behavior policy πb is upper bounded by

C(πb) ⩽ C(πt) +
(1− β)ϵ

η(1− γ)
+

1

η
[J(πb)− J(πt)] . (24)

Proof. We define expected return under policy π with combined reward r̂ as Ĵ(π), therefore

Ĵ(π) = Es0∼d0,at∼π(·|st),st+1∼p(·|st,at)

[ ∞∑
t=0

γtr̂ (st, at)

]

= Es0∼d0,at∼π(·|st),st+1∼p(·|st,at)

[ ∞∑
t=0

γt [r (st, at) + ηc (st, at)]

]
= J(π) + ηC(π)

(25)

According to Thm. A.7, under T̂value(s) we have

Ĵ (πb) ⩾ Ĵ (πt)−
ε

1− γ
. (26)

Eq. 24 can be immediately proved by combining Eq. 25 and Eq. 26.
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A.2 DISCUSSIONS ON THE RESULTS

In Thm. 3.3, the average entropy of the teacher policyH and the threshold for action-based interven-
tion ε is included in the bound. We provide intuitive interpretations on the influence ofH and ε here.
For reference, the action-based intervention function Taction = 1 when Ea∼πt(·|s) [log πs(a | s)] <
ε. According to Thm 3.3 of our paper, a larger ε leads to smaller discrepancy between the returns of
the behavior and teacher policies. This is because ε is the threshold for the action-based interven-
tion function. If the action likelihood is less than ε, the teacher policy will take over the control. A
larger εmeans more teacher intervention, constraining the behavior policy to be closer to the teacher
policy, which leads to a smaller discrepancy in their returns. The influence of H can be similarly
analyzed. A larger H leads to larger return discrepancy. Intuitively, this is because with higher en-
tropy, the teacher policy tends to have a more “averaged” or multi-modal distribution over the action
space. So the policy distributions of the student and teacher are more likely to have overlaps, leading
to a higher action likelihood. In turn, the intervention criterion is less likely to be satisfied, leading
to fewer teacher interventions. In general, the intuitive interpretation of Thm. 3.3 indicates that if we
would like larger return discrepancy, i.e. larger performance upper bound as well as smaller lower
bound, we should use smaller intervention threshold and teacher policy with higher entropy, and
vice versa. Thm. 3.3 has a gap with the actual algorithm in that the algorithm uses a value-based
intervention function which is based on Thm. 3.4. Nevertheless, the intuitive interpretation may
enlighten future work on how to choose a proper teacher policy in teacher-student shared control.

With respect to the tightness, Thm. 3.3 has a squared planning horizon 1
(1−γ)2 in the discrepancy

term. This is in accordance with many previous works (Thm. 1 in (Xu et al., 2019), Thm. 4.1
in (Janner et al., 2019) and Thm. 1 in (Schulman et al., 2015)), which include (1 − γ)2 in the
denominator when it comes to differences of the cumulative return, given the difference in the action
distribution. The order of 1

1−γ in Thm. 3.3 is tight, which dominates the gap in accumulated return.
Nevertheless, the other constant terms, e.g. Rmax and the average entropy, can be tighter given some
additional assumptions. We did not derive a tighter bound since the derivation will not be related to
the main contribution of this paper, which is the new type of intervention function. Thm. 3.3 and
Thm. 3.4 in their current forms are enough to demonstrate that the value-based intervention function
has the advantage of providing more efficient exploration and better safety guarantee compared with
action-based intervention function.

B THE ALGORITHM

The workflow of TS2C during training is show in Alg. 1.

Algorithm 1 The workflow of TS2C during training
1: Input: Warmup steps W ; Scale of warmup noise σ; Training steps N ; Teacher policy πt.
2: Initialize student policy πθs , a set of parameterized Q-function for teacher policy Qϕ, parame-

terized Q-function for student policy Qψ and the replay buffer D.
3: for i = 1 to W do
4: Observe state si and sample ai ∼ πt(·|s) +N (0, σ).
5: Step the environment with ai and store the tuple (si, ai, ri, si+1) to D.
6: Update ϕ with Temporal-Difference loss in Eq. 8.
7: end for
8: for i = 1 to N do
9: Observe state si and sample at ∼ πt(·|si), as ∼ πθs(·|si).

10: Compute Tts2c(si) with Eq. 9, behavior policy πb(·|si) and ab.
11: Step the environment with ab and store the tuple (si, ab, ri, si+1, Tvalue(si+1)) to D.
12: Update ψ in the student Q-function with the loss in Eq. 10.
13: Update θ in the student policy with the loss in Eq. 11.
14: end for
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C ADDITIONAL EXPERIMENT DEMONSTRATIONS

C.1 DEMONSTRATIONS OF DRIVING SCENARIOS

The demonstrations of several driving scenarios are shown in Fig. 8. We provide a demonstrative
video showing the agent behavior trained with PPO and our TS2C algorithm in the supplementary
materials.

Figure 8: Four examples of the traffic scenes in MetaDrive.

C.2 HYPER-PARAMETERS

The hyper-parameters used in the experiments are shown in the following tables. In the TS2C al-
gorithm, larger values of the intervention threshold ε1 and ε2 will lead to a more strict intervention
criterion and the steps with teacher control will be fewer. In order to control the policy distribution
discrepancy, we choose ε1 and ε2 to ensure the average intervention rate to be less than 5%. Nev-
ertheless, different ε1 in the intervention function has little influence on the algorithm performance,
as shown in Fig. 11 of our paper. The coefficient for intervention minimization λ is simply set to 1.
If used in other environments, it may need some adjustments to fit the reward scale. The coefficient
for maximum entropy learning α is updated during training as in the SAC algorithm. The number
of warmup timesteps is empirically chosen so that the expert value function can be properly trained.
Other parameters follow the setting in EGPO (Peng et al., 2021). The hyper-parameters of other
algorithms follow their original setting.

Table 1: TS2C (Ours)
Hyper-parameter Value

Discount Factor γ 0.99
τ for target network update 0.005
Learning Rate 0.0001
Environmental horizon T 2000
Warmup Timesteps W 50000
# of Ensembled Value-Functions N 10
Variance of Gaussian Noise C 0.5
Intervention Minimization Ratio λ 1
Value-based Intervention Threshold ε1 1.2
Value-based Intervention Threshold ε2 2.5
Activation Function Relu
Hidden Layer Sizes [256, 256]

Table 2: EGPO (Peng et al., 2021)
Hyper-parameter Value

Discount Factor γ 0.99
τ for target network update 0.005
Learning Rate 0.0001
Environmental horizon T 2000
Steps before Learning start 10000
Intervention Occurrence Limit C 20
Number of Online Evaluation Episode 5
Kp 5
Ki 0.01
Kd 0.1
CQL Loss Temperature β 3.0
Activation Function Relu
Hidden Layer Sizes [256, 256]
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Table 3: Importance Advising (Torrey &
Taylor, 2013)
Hyper-parameter Value

Discount Factor γ 0.99
τ for target network update 0.005
Learning Rate 0.0001
Environmental horizon T 2000
Warmup Timesteps W 50000
# of Actions Sampled N 10
Variance of Gaussian Noise C 0.5
Range-based Intervention Threshold ε 2.8
Activation Function Relu
Hidden Layer Sizes [256, 256]

Table 4: SAC (Haarnoja et al., 2018)
Hyper-parameter Value

Discount Factor γ 0.99
τ for Target Network Update 0.005
Learning Rate 0.0001
Environmental Horizon T 2000
Steps before Learning starts 10000
Activation Function Relu
Hidden Layer Sizes [256, 256]

D ADDITIONAL EXPERIMENT RESULTS

D.1 ADDITIONAL PERFORMANCE COMPARISONS ON METADRIVE

In Fig. 9, we show the results of TS2C trained with various levels of teachers compared with baseline
algorithms without shared control. Apart from the Fig. 4 in the main paper presenting the training
results of TS2C with the medium level of teacher policy, here we present the performance of TS2C
trained with the high, medium and low levels of teacher policy. The value-based intervention pro-
posed by TS2C can utilize all these teacher policies, leading to safer and more efficient training
compared to traditional RL algorithms.

Fig. 10 shows the results with different levels of teacher policy. Besides the testing reward and the
training cost shown in Fig. 3 of the main paper, we show the training reward and test success rate
of TS2C compared with baseline methods with the Teacher-Student Framework (TSF) respectively.
Our TS2C algorithm still achieves the best performance among baseline algorithms when evaluated
with these two metrics.
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Figure 9: Comparison of training cost and test reward between our method TS2C and other algo-
rithms without shared control.
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Figure 11: Ablation Studies for different variance thresholds, the intervention cost, ensembled value
networks and different intervention functions.
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Figure 10: Comparison of training reward and test success rate between our method TS2C and other
algorithms with shared control.

D.2 ABLATION STUDIES

We conduct ablation studies and present the results in Fig. 11. We find the intervention cost and
ensembled value networks are important to the algorithm’s performance, while different variance
thresholds in the intervention function has little influence. Also, TS2C with action-based interven-
tion function behaves poorly in accordance with the theoretical analysis in Section 3.2.

D.3 DISCUSSIONS ON EXPERIMENT RESULTS

In Fig. 5, our TS2C algorithm can outperform SAC in all three MuJoCo environments taken into
consideration. On the other hand, though the EGPO algorithm has the best performance in the
Pendulum environment, it struggles in the other two environments, namely Hopper and Walker.
This is because the action space of the pendulum environment is only one-dimensional. In this
simple environment, the action-based intervention of the EGPO algorithm is effective. The policy
only needs slight adjustments based on the imperfect teacher to work properly. In other words, the
distance between the optimal action and the teacher action is small. However, in more complex
environments like Hopper and Walker, the distance between the two is large. As the action-based
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intervention is too restrictive, the EGPO algorithm based on such intervention fails to achieve good
performance.

In Fig. 6, the performance of EGPO with a SAC policy as the teacher policy is very poor. This is
because the employed SAC teacher is less stochastic than the PPO policy. Student’s actions have
less likelihood in teacher’s action distribution and are less tolerated by the action-based intervention
function in EGPO, leading to large intervention rate and consequently large distributional shift. Our
proposed TS2C algorithm does not access teacher internal action distribution and instead intervenes
based on the state-action values of teacher policy, so it is robust to the stochasticity of teacher policy.
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